
ORNL/M-1121

OAK RIDGE
NATIONAL
LABORATORY

Automated Sensitivity Analysis
with the Gradient Enhanced
Software System (GRESS)

J. E. Horwedel

f

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

'-’'J; : OF THIS DOCUMENT IS UNLIMIT

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni­
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTIS price codes—Printed Copy: A04 Microfiche A01

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com­
pleteness, or usefulness of any information, apparatus, product, or process dis­
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti­
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/M—1121
DE90 011291

Engineering Physics and Mathematics Division

AUTOMATED SENSITIVITY ANALYSIS
WITH THE GRADIENT ENHANCED

SOFTWARE SYSTEM (GRESS)

J. E. Horwedel*

DATE PUBLISHED — May 1990

Contract Program: DOE Project No. 3410-6926

’Computing and Telecommunications Division

NOTICE: This document contains information of a preliminary
nature. It is subject to revision or correction and
therefore does not represent a final report.

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
operated by

MARTIN MARIETTA ENERGY SYSTEMS
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400

INC.

DISTRIBUTION OF THIS DOCUMENT !S UNLIMITED

CONTENTS

SECTION PAGE

LIST OF FIGURES.. iv
LIST OF TABLES... v
ACKNOWLEDGEMENTS..vi
ABSTRACT ... vii
1. INTRODUCTION... 1
2. APPLICATION INFORMATION ... 3

2.1. SAMPLE PROBLEM TEST.FOR ..3
2.2. PRECOMPILATION... 4
2.3. COMPILING AND LINKING THE ENHANCED CODE.................... 4
2.4. EXECUTING THE ENHANCED CODE ..4
2.5. SOLVING THE ADJOINT MATRIX..5

3. CONCLUSIONS AND RECOMMENDATIONS..6
REFERENCES .. 7
APPENDIX A. UTILITY ROUTINES ..8
APPENDIX B. DETAILED DESCRIPTION OF PRECOMPILER
COMMANDS ...30
APPENDIX C. LISTING OF THE ENHANCED VERSION OF
TEST.FOR, 36

LIST OF FIGURES

Figure Page

1. Processing steps for a GRESS application............................
2. A simple FORTRAN program, TEST.FOR.........................
3. Program TEST.FOR prepared for an ADGEN application
4. Derivative and sensitivity report generated by BSOLVE. .

cs co co co

LIST OF TABLES

Table Page

1. Default logical units used by EXAP... 4
2. Logical units required by the enhanced code... 5

vi i {III

ACKNOWLEDGEMENTS

I am grateful to Brian Worley for his continued support of the development activities
related to GRESS and ADGEN. I am also pleased to acknowledge the efforts by R. E.
Maerker in specifying the requirements for several new utility routines that improve the
sensitivity report generated by an ADGEN application. Finally, I appreciate the careful
typing of this report by Wanda Merriweather.

ABSTRACT

GRESS automates the implementation of the well-known adjoint method for perform­
ing a comprehensive sensitivity analysis of existing FORTRAN 77 computer models. The
GRESS ADjoint matrix GENerator (ADGEN) option is used to calculate first derivatives
and sensitivities of selected model results with respect to all input data. This report pro­
vides a small sample problem used to exercise most of the major program options for a
GRESS/ADGEN application. A description of the input and output from each process­
ing step as well as the method for controlling the application is presented. The report is
designed to aid users of the GRESS ADGEN option.

XT

1. INTRODUCTION

ADGEN was developed as a GRESS option that provides the capability of automated
implementation of the adjoint sensitivity methods into existing FORTRAN 77 models.1-3
The GRESS Version 0.0 User’s Manual describes how to use GRESS for both the CHAIN
and ADGEN applications. However, recent improvements in the GRESS ADGEN op­
tion render some of the information included in the GRESS Version 0.0 User’s Manual
obsolete.4-6 Specifically the processing steps in performing an ADGEN application are
different. This report is supplemental to the documentation of earlier versions of GRESS.

The flow chart shown in Fig. 1 illustrates the processing steps for a GRESS application.
A FORTRAN 77 program is input to the GRESS precompiler (EXAP). EXAP creates a
new FORTRAN program that when compiled and linked with the GRESS run-time li­
brary is capable of calculating derivatives for each real equation along with the normally
calculated result. For an ADGEN application, these derivatives are written to a computer
disk in a structure that can easily be solved by back substitution. Utility programs are
then used to solve the matrix for user selected results of interest. A report of sensitivities
and derivatives for selected results with respect to all input data is generated. The actual
sensitivity reported is normalized and expressed as as percentage. Input data is identi­
fied either automatically as any data that is entered via a FORTRAN read statement or
manually by the user through the insertion of subroutine calls to the GRESS run-time
library.

The major improvement in GRESS Version 1.0 was the implementation of Forward
and Back Reduction algorithms as presented in Refs. 4 and 5. The implementation of
these algorithms significantly reduces the amount of data storage required to perform an
adjoint application with GRESS.

Appendixes A and B contain GRESS utility routine descriptions and commands to the
precompiler. These appendixes supersede sections 4.10 and 4.11 in the GRESS Version 0.0
User’s Manual.

1

EXAP
precompilerORTRAN

Enhanced
FORTRAN

P-CODE

GRESS COMPILE
and LINKlibrary

RUN <4

Model Results
----- s Derivatives
Yy\ Sensitivities

Derivative
Matrix . . \-v

Fig. 1. Processing steps for a GRESS application.

2

2. APPLICATION INFORMATION

Provided in this section is information on how to do a GRESS ADGEN application.
A simple FORTRAN program is presented as an example. The processing steps, data
sets created, output information, and utility programs necessary to perform a complete
application are shown. There are four steps in performing an ADGEN application: 1)
precompile with EXAP; 2) compile and link with GRESS run-time library; 3) execute the
enhanced code; and 4) solve the matrix.

2.1. SAMPLE PROBLEM TEST.FOR
Shown in Fig. 2 is a simple FORTRAN program to be used to demonstrate the GRESS

ADGEN option.

C GRESS/ADGEN test program
READ(5,1000)B,C,D
X = B + D
Y - d**2 -I- B**2
R = 7.0*X + D**2
S = Y**2

1000 F0RMAT(3E15.5)
END

Fig. 2. A simple FORTRAN program, TEST.FOR.

Note specifically that FORTRAN variables B, C, and D are input via a READ state­
ment which means they will automatically be treated as independent parameters. FOR­
TRAN variables R and S will be chosen as results of interest. That is, the first derivatives
and sensitivities of variables R and S with respect to B, C, and D will be calculated and
reported. The modifications to prepare the code for an ADGEN application are shown in
Fig. 3. Subroutine calls are included to identify the purpose of the run (SETRXX), to
select results of interest (POTRXX), and to ’’clear” the matrix buffers (CLEARXX). A
description of how to use these routines and others is included in Appendix A. Also the
first line in Fig. 3., *COMMENTS ON, is a command to the precompiler. Commands
to the precompiler are described in Appendix B. The ^COMMENTS ON command will
cause any comments beginning with a ’C’ in column one to be included in the enhanced
code. The default is to not include comments in the enhanced code.

♦COMMENTS ON
CALL SETRXX(’ADJOINT’)

C GRESS/ADGEN test program
READ(5,1000)B,C,D
X = B + D
Y = D**2 + B**2
R = 7.0*X + D**2
CALL POTRXX(R,’ R ’)
g _ y**2
CALL POTRXX(S,’ S ’)
CALL CLEARXX

1000 F0RMAT(3E15.5)
END

Fig. 3. Program TEST.FOR prepared for an ADGEN application.

3

2.2. PRECOMPILATION

Once the code is prepared for precompilation, make the appropriate logical unit as­
signments and execute EXAP. The default logical units are described in Table 1.

Table 1. Default logical units used by EXAP

Data Set Logical Unit Description

Enhanced code 7 EXAP enhanced code
Input code 50 Program to be enhanced
P-code 80 Binary pseudo-machine code

The following commands will make logical
enhance TEST.FOR.

unit assignments and execute EXAP to

$ ASSIGN/USER-MODE
$ ASSIGN/USER-MODE
SASSIGN/USER-MODE
$RUN EXAP

TEST.FOR FOR050
EH.FOR FOR007
PC80.DAT FOR080

The two data sets created during precompilation are the enhanced source program
and the P-code. The P-code is an unformatted data set that becomes input data to the
enhanced code. The P-code contains information that GRESS uses to solve each equation.
A more complete description of the P-code and the enhancement process is included in
Reference 2. A listing of the enhanced version of TEST.FOR (i.e., EH.FOR) is included
as Appendix C.

2.3. COMPILING AND LINKING THE ENHANCED CODE

The FORTRAN 77 compiler and link editor used with the code prior to enhancement
are also used to compile and link the enhanced code. The object module for the enhanced
code must be linked with the GRESS run-time library. This example assumes that the
GRESS run-time library (EXLIB.OLB) is in the same directory as the enhanced code and
that the enhanced code is named EH.FOR.

SFOR EH
SLINK EH,EXLIB/LIB

2.4. EXECUTING THE ENHANCED CODE

Table 2. shows the logical units used during execution of the enhanced code.

4

Table 2. Logical units required by the enhanced code.

Data Set Logical Unit Description

Parameter Dictionary 42 selected parameters
Response Dictionary
Adjoint matrix0

43 selected results

DERIV.DAT 46 derivative values
COLUMN.DAT 47 column numbers
NPAIRS.DAT 48 non-zero derivative count

“The adjoint matrix is represented by three unformatted data sets containing the
derivative values, column numbers, and number of non-zero derivatives for each row in the
matrix.

For this example three numbers (2.0, 3.0, 5.0) were entered into a file named
USER.DAT with a 3E15.5 format. To execute the enhanced version of TEST.FOR (i.e.,
EH) and create the adjoint matrix enter the following commands.

$ ASSIGN/USER-MODE PCS0.DAT FOROSO
SASSIGN/USER_MODE USER.DAT FOR005
SRUN EH

2.5. SOLVING THE ADJOINT MATRIX

The two utility programs used to solve the adjoint matrix are BREDUCE and BSOLVE.
BREDUCE implements the Back Reduction algorithm discussed in Refs. 4 and 5 to create
a ”reduced” form of the adjoint matrix. The BREDUCE step actually only needs to be
executed when working with large models; however, it is included here for purposes of
demonstration. One could proceed directly to the BSOLVE step. After executing the
BREDUCE step there will be two copies of the adjoint matrix data sets. Only the latest
version needs to be kept. To execute BREDUCE and then solve the matrix enter the
following.

SRUN BREDUCE
SRUN BSOLVE

The BSOLVE program will request a value for the smallest sensitivity to report (i.e.,
CUTOFF). In practice sensitivities that are less than 0.01 axe of little interest. Entering
a value of 0.0 for CUTOFF will result in all sensitivities being reported. The output from
the BSOLVE program is a report of derivatives and sensitivities written to logical unit 45.
The sensitivity report for TEST.FOR is shown in Fig. 4.

5

Row number for response = 6 Number of parameters

ROW
RESPONSE 1 R = 7.4000000+01
NAME DERIVATIVE SENSITIVITY

1 B 7.00000E+00 1.89189E-01
2 C 0.00000E+00 0.00000E+00
3 D 1.70000E+01 1.14865E+00

3

Row number for response = 7 Number of parameters

ROW
RESPONSE 2 S = 8.410000D+02
NAME DERIVATIVE SENSITIVITY

1 B 2.32000E+02 5.51724E-01
2 C 0.00000E+00 0.00000E+00
3 D 5.80000E+02 3.44828E+00

3

Fig. 4. Derivative and sensitivity report generated by BSOLVE.

3. CONCLUSIONS AND RECOMMENDATIONS

The sample problem presented in this report is meant both as a supplement to previous
documentation and as an aid to GRESS users. For a more complete discussion of the
processing steps and data sets created Refs. 1-4 are recommended.

6

REFERENCES

1. Oblow, E. M. “GRESS, Gradient-Enhanced Software System,” ORNL/TM-9658,
Oak Ridge National Laboratory, Oak Ridge, TN (1985).

2. Horwedel, J. E., B. A. Worley, Oblow, E. M., Pin, F. G., and Wright, R. Q., “GRESS
Version 0.0 User’s Manual,” ORNL/TM-10835, Oak Ridge National Laboratory
(1988).

3. Worley, B. A., Pin, F. G., Horwedel, J. E., and Oblow, E. M., “ADGEN-ADjoint
GENerator For Computer Models,” ORNL-11037, Oak Ridge National Laboratory
(1989).

4. Horwedel, J. E., “Matrix Reduction Algorithms for GRESS and ADGEN,”
ORNL/TM-11261, Oak Ridge National Laboratory (1989).

5. Horwedel, J. E., Raridon, R. J., and Wright, R. Q., “Sensitivity Analysis of
AIRDOS-EPA Using ADGEN with Matrix Reduction Algorithms,” ORNL/TM-
11373, Oak Ridge National Laboratory (1989).

6. Horwedel, J. E., Wright, R. Q., Maerker, R. E., “Sensitivity Analysis of EQ3,”
ORNL/TM-11407, Oak Ridge National Laboratory (1990).

7

APPENDIX A

GENERAL UTILITY ROUTINES USED IN GRESS

Utility routines are used to control the application of the enhanced code. The
following pages provide a description of each utility function. The format is one
utility function per page. Each page includes at least one example on how to use
the routine.

8

UTILITY ROUTINE

Name: AUTOXX (LUN, NUMP)

Function: To set the maximum number of parameters to be declared.

Application: CHAIN

Arguments:
1) LUN = -1 is required
2) NUMP - maximum number of parameters to be declared

Argument Types: Integer*4

How to use it: CALL AUTOXX must be made after CALL SETRXX but before calling any other
library routines. A call to AUTOXX is required if derivatives are to be calculated by forward
propagation using the chain rule.

Note: The present version does not support positive values for argument LUN.

Example:

1) Specifying a maximum of five parameters in an enhanced code

DATA X /4.0/
CALL INITXX(DOOOOl)
CALL SETRXX(’CHAIN’)
CALL AUTOXX(-l,5)

2) Specifying a maximum of twenty parameters in an unenhanced code

CALL SETRXX(’CHAIN’)
XPZ = 5.500

CALL AUTOXX(-1,20)

9

UTILITY ROUTINE

Name: BSOLXX (LUN 1,LUN2,CUTOFF)

Function: To solve the adjoint matrix in virtual memory. This is a test routine and should only
be used for small models.

Application: Adjoint

Arguments:
1) LUN1 - read CUTOFF from lunl. A zero value means use argument three as the CUTOFF
value.
2) LUN2 - write sensitivity report to lun2.
3) CUTOFF - magnitude of the smallest sensitivity to report. A value of zero will result in all
sensitivities being reported.

Argument Type:
1) INTEGERS
2) INTEGER *4
3) REALM

How to use it: A call to BSOLXX may be used in place of a call to CLEARXX at the end of
program execution. A senstivity report will be written to LUN2.

Examples:

1) To report sensitivities that are greater than 1.0E-4 to logical unit 95

CALL BSOLXX(0,95,1 .OE-4)
STOP
END

10

UTILITY ROUTINE

Name: CLEARXX
CLEADXX

Function: To clear the forward matrix buffers.

Application: Adjoint

Arguments: NONE

How to use it: Generally, CALL CLEARXX should be inserted in the main program immediately
before the STOP statement. CLEARXX must be the last executed call before ending the run.
If the program exits at some point other than in the main program, it will be necessary to insert
CALL CLEARXX at that point. Use CLEADXX if responses are double precision and you are
using G_float option on the FORTRAN compiler.

Example:

1) Normal exit from a main program with a STOP statement

PROGRAM MAIN

CALL CLEARXX
STOP
END

2) Possible exit from subroutine and no STOP statement

PROGRAM MAIN

CALL THIS
CALL CLEARXX
END
SUBROUTINE THIS

IF(UNHAPPY) CALL CLEARXX
IF(UNHAPPY) STOP
RETURN
END

11

UTILITY ROUTINE

Name: DECLARXX (CHAR)

Function: To turn the declaration of parameters on or off.

Application: CHAIN

Arguments: ‘ON’ or ’OFF’

Argument Type: CHARACTER

How to use it: CALL DECLARXX is used to limit the number of parameters added to the
parameter dictionary. The default is ’ON’, meaning that any parameters read in will automatically
be added to the paramameter dictionary. To limit the number of parameters, use DECLARXX
to turn off the automatic declaration at the start of the program. To have specific parameters
added to the parameter dictionary, use DECLARXX to turn on the declaration of parameters,
either immediately before the read statement in the unenhanced model or immediately before
calling parameter declaration routines in the enhanced model.

Example:

1) Using DECLARXX to cause only C to be declared a parameter.

DATA X /4.0/
CALL INITXX(DOOOOl)
CALL SETRXX(’ADJOINT’)
CALL DECLARXX(’OFF’)

READ (100,1000)AB
CALL INNRXX(A’ A ’)
CALL INNRXX(B,’ B ’)
CALL DECLARXX(’ON’)
READ(100,1001)C
CALL INNRXX(C,’ C ’)
CALL DECLARXX(’OFF’)

12

UTILITY ROUTINE

Name: DEFIXX (VAR)

Function: To declare a parameter for a GRESS run. No gradients are computed until at least
one parameter is defined. Each call adds a new parameter. There is an upper limit of 200
parameters. Each additional parameter declaration increases the amount of memory and execution
time required by the enhanced code.

Application: CHAIN

Arguments: 1) VAR - program variable to be declared a parameter

Argument Type: REALM or Real*8

How to use it: Insert CALL DEFIXX after the variable has been initialized or defined.
Subroutines SETRXX and AUTOXX must be called prior to CALL DEFIXX.

EXAMPLE:

1) Declare Y to be a parameter for a GRESS run.

READ(LUN,100) Y
CALL DEFIXX(Y)

X = 2.0 * Y + Z

2) Declare D(5) to be a parameter.

D(J) = B(J)**2
IF(J.EQ.5) CALL DEFIXX(D(J))

13

UTILITY ROUTINE

Name: DEFAXX (ARRAY, NELEM, NTYPE)

Function: To declare elements in an array as parameters for a GRESS run. No gradients are
computed until at least one parameter is defined. Each call adds a new array to the list of
parameters. Each element in the array counts as one parameter. There is an upper limit of 200
parameters. Each additional parameter declaration increases the amount of memory and execution
time required by the enhanced code.

Application: CHAIN

Arguments:
1) ARRAY - array to be declared a parameter
2) NELEM - number of elements in array to be declared
3) NTYPE - argument type

Argument Type:
1) REALM or REAL*8
2) INTEGERM
3) INTEGERM

How to use it: Insert CALL DEFAXX after the array has been initialized or defined. Subroutines
SETRXX and AUTOXX must be called prior to CALL DEFAXX. For multi-dimensional arrays,
the number of elements specified must take into consideration how FORTRAN treats dimensioned
variables. DEFAXX will define the array elements as parameters, sequentially, in order of their
location in memory.

Example:

1) Declare the elements in array Y as parameters for a GRESS run.

DIMENSION Y(10),X(10)

READ(LUN,100) Y
NUMP = 10
NTYPE=1
CALL DEFAXX(Y(1),NUMP, NTYPE)

X(I) = 2.0 * Y(I) + Z

14

UTILITY ROUTINE

Name: DLIBXX (VARIABLE, NAME)

Function: To add a double precision variable to the parameter dictionary.

Arguments:
1) VARIABLE to be included
2) name or description of VARIABLE

Argument type:
1) REAL’S
2) CHARACTER’N (N < 12)

How to use: Insert CALL DLIBXX after the point in the code where a value is assigned to
VARIABLE.

EXAMPLE:

1) To declare X to be a parameter in an adjoint application.
REAL’S X

X = 2.0D+01 * Y + Z
CALL DLIBXX(X,’ X ’)

15

UTILITY ROUTINE

Name: DLINXX (VARIABLE, NAME, COUNTER)

Function: To add a double precision variable to the parameter dictionary with a user defined
counter.

Arguments:
1) VARIABLE to be included
2) name or description of VARIABLE
3) user defined counter

Argument type:
1) REAL*8
2) CHARACTER * N (N < 12)
3) INTEGERM

How to use: Insert CALL DLINXX after the point in the code where a value is assigned to
VARIABLE.

EXAMPLE:

1) To declare X to be a parameter in an adjoint application with the integer ICOUNT as a user
defined counter to help identify the result in the sensitivity report.

REAL*8 X

ICOUNT=ICOUNT +1
X = 2.0D+01 * Y + Z
CALL DLINXX(X,’ X ’,ICOUNT)

16

UTILITY ROUTINE

Function: To add the elements in a double precision array to the parameter dictionary.

Arguments:
1) ARRAY with up to four dimensions
2-5) N1-N4 dimensions 1 to 4 of ARRAY
6) NDIMS - actual number of dimensions
7) name or description of ARRAY

Argument type:
1) REAL’S

2-5) INTEGERM
6) INTEGERM
7) CHARACTER * N (N < 12)

How to use: Insert CALL DRAYXX after the point in the code where values have been assigned
to ALL elements to be included in the parameter dictionary. However, the call must be made prior
to any element of ARRAY being used to assign a value to any other variable in the FORTRAN
program. The values for N2-N4 must be set to at least 1, even if that dimension does not exist.
For example, if an array has only two dimensions, arguments N3 and N4 must be assigned the value
of 1.

EXAMPLE:

1) To declare the elements in array X to be a parameters in an adjoint application.

REAL’S X(10,5)

Name: DRAYXX (ARRAY, Nl, N2, N3, N4, NDIMS, NAME)

DO 20 1=1,10
DO 10 J = l,5

X(I,J) = 2.0D+01 * Y(I,J) + Z
10 CONTINUE
20 CONTINUE

CALL DRAYXX(X, 10, 5, 1, 1, 2, ’X’)

17

UTILITY ROUTINE

Name: FILEXX (LUN)

Function: To alter the logical unit number for all printed output generated by run-time library
routines. The default logical unit number for printed output from the utility routines is 6.

Applicaton: CHAIN

Arguments: LUN - Logical unit number for printed output

Argument Type: INTEGER*4

How to use it: If the user chooses to have all or part of the calculated gradients from a GRESS
application written to a File other than unit 6, simply call FILEXX with an integer argument
specifying the desired unit number. The assignment stays active until the end of the run, or until
FILEXX is called again.

Examples:

1) To print all gradient results in a GRESS application to logical unit 90.

LUN=90
CALL FILEXX(LUN)

2) To temporarily change the logical unit during a GRESS run for selected results

LUN=70
CALL FILEXX(LUN)
CALL BSOLXX(A)
LUN=6
CALL FILEXX(LUN)

18

UTILITY ROUTINE

Name: GETNXX (X, N, Z)

Function: To retrieve an individual derivative

Application: CHAIN

Arguments:
1) X - any program variable
2) N - parameter number
3) Z - storage location

Argument Type:
1) REALM or REAL*8
2) INTEGERM
3) REALM

How to use it: GETNXX returns the derivative of X with respect to the N* declared parameter.
As mentioned earlier, parameters have an "ordinal" number corresponding to the sequence in which
they are declared. It is necessary to provide a REALM variable as the third argument for storing
the retrieved derivative.

Example:

1) Retrieve the derivative of A with respect to the first, second, and fourth declared parameters.
Store the derivatives in the first three locations in array ZZ.

CALL GETNXX(A,1,ZZ(1))
CALL GETNXX(A,2,ZZ(2))
CALL GETNXX(A,4,ZZ(3))

19

UTILITY ROUTINE

Name: GETGXX (X, Z)

Function: To retrieve an individual derivative using symbol name

Application: CHAIN

Arguments:
1) X - any program variable
2) Z - an array

Argument Type:
1) REALM or REAL’S
2) REAL*4

How to use it: GETGXX returns the derivatives of X with respect to the N declared parameters.
Z must be dimensioned by at least N to hold the derivative of X with respect to each declared
parameter.

Example:

1) Retrieve the derivative of A with respect to all declared parameters. Store the derivatives in
array B.

DIMENSION B(8)
CALL AUTOXX(-l,8)

CALL GETGXX(A,B)

20

UTILITY ROUTINE

Name: NINDXX (N)

Function: To return the current number of declared parameters.

Application: CHAIN

Arguments: N - number of declared parameters

Argument Type: Integer

How to use it: At any point during program execution, the number of parameters presently
declared is returned as an integer argument.

Examples:

1) To check the number of declared parameters in a GRESS run.

CALL NINDXX (N)
IF(N.GT.3) THEN

21

Name: POTRXX (X, ‘CHAR’)
POTDXX (X, ’CHAR’)

UTILITY ROUTINE

Function: To declare a variable as a potential response of interest during an adjoint application
run. A list of potential responses will be printed at the end of the run with row number and name.

Application: Adjoint

Arguments:
1) X: program variable to be declared
2) name or description of variable

Argument Type:
1) REALM or REAL*8
2) CHARACTER * n (n < 24)

How to use it: Insert CALL POTRXX immediately following the line defining the variable.
CLEARXX must be called at the end of the run. Use POTDXX if X is REAL*8. POTDXX is
used exactly the same way as POTRXX.

Examples:

1) Declare X to be a potential response of interest.

X = 2.0 * Y + Z
CALL POTRXX(X,’ X ’)

2) Declare D(5) to be a response of interest.

D(J) = B(J)**2
IF(J.EQ.5) CALL POTRXX(D(J),’ D of 5 ’)

22

UTILITY ROUTINE

Name: PRNTSS (X)

Function: To print the sensitivities of a dependent variable with respect to the declared parameters
when using the *SENSON command.

Application: CHAIN

Arguments: Any program variable

Argument Type: REALM or REAL*8

How to use it: At any point during program execution, the gradient of a dependent variable may
be printed by a call to PRNTSS.

Examples:

1) To print gradients at two places in a GRESS run.

READ(LUN,100) Y
CALL DEFIXX(Y)

X = 2.0 * Y + Z
CALL PRNTSS(X)

Z = X*B
CALL PRNTSS(Z)

23

UTILITY ROUTINE

Name: PRNTXX (X)

Function: To print the gradients and sensitivities of a dependent variable with respect to the
declared parameters.

Application: CHAIN

Arguments: Any program variable

Argument Type: REAL*4 or REAL*8

How to use it: At any point during program execution, the gradient of a dependent variable may
be printed by a call to PRNTXX.

Examples:

1) To print gradients at two places in a GRESS run.

READ(LUN,100) Y
CALL DEFIXX(Y)

X = 2.0 * Y + Z
CALL PRNTXX(X)

Z = X*B
CALL PRNTXX(Z)

24

UTILITY ROUTINE

Name: REDUXX

Function: To create a reduced form of the adjoint matrix to be solved later by the BSOLVE
program. This is a test routine that implements the Back Reduction algorithm directly in the
enhanced code.

Application: Adjoint

Arguments: NONE

How to use it: A call to REDUXX may be used in place of a call to CLEARXX at the end of
program execution.

Examples:

1) To create a reduce form of the adjoint matrix

CALL REDUXX
STOP
END

25

UTILITY ROUTINE

Name: RLIBXX (VARIABLE, NAME)

Function: To add a single precision variable to the parameter dictionary.

Arguments:
1) VARIABLE to be included
2) name or description of VARIABLE

Argument type:
1) REALM
2) CHARACTER * N (N < 12)

How to use: Insert CALL RLIBXX after the point in the code where a value is assigned to
VARIABLE.

EXAMPLE:

1) To declare X to be a parameter in an adjoint application.

REALM X

X = 2.0D+01 * Y + Z
CALL RLIBXX(X,’ X ’)

26

UTILITY ROUTINE

Name: RLINXX (VARIABLE, NAME, COUNTER)

Function: To add a single precision variable to the parameter dictionary with a user defined
counter.

Arguments:
1) VARIABLE to be included
2) name or description of VARIABLE
3) user defined counter

Argument type:
1) REALM
2) CHARACTER * N (N < 12)
3) INTEGERM

How to use: Insert CALL RLINXX after the point in the code where a value is assigned to
VARIABLE.

EXAMPLE:

1) To declare X to be a parameter in an adjoint application with the integer ICOUNT as a user
defined counter to help identify the result in the sensitivitiy report.

REAL X

ICOUNT=ICOUNT +1
X = 2.0D+01 * Y + Z
CALL RLINXX(X,’ X ’,ICOUNT)

27

UTILITY ROUTINE

Function: To add the elements in a single precision array to the parameter dictionary.

Arguments:
1) ARRAY with up to four dimensions
2-5) N1-N4 dimensions 1 to 4 of ARRAY
6) NDIMS - actual number of dimensions
7) name or description of ARRAY

Argument type:
1) REALM

2-6) INTEGERM
7) CHARACTER * N (N < 12)

How to use: Insert CALL RRAYXX after the point in the code where values have been assigned
to ALL elements to be included in the parameter dictionary. However, the call must be made prior
to any element of ARRAY being used to assign a value to any other variable in the FORTRAN
program. The values for N2-N4 must be set to at least 1, even if that dimension does not exist.
For example, if an array has only two dimensions, arguments N3 and N4 must be assigned the value
of 1.

EXAMPLE:

1) To declare the elements in array X to be a parameters in an adjoint application.

REALM X(10,5,5)

Name: RRAYXX (ARRAY, Nl, N2, N3, N4, NDIMS, NAME)

DO 20 1=1,10
DO 15 J = l,5

DO 10 K=l,5
X(I,J,K) = 2.0D+01 * Y(I,J,K) + Z

10 CONTINUE
15 CONTINUE
20 CONTINUE

CALL RRAYXX(X, 10, 5, 5, 1, 3, ’X’)

28

UTILITY ROUTINE

Name: SETRXX (CHAR)

Function: To specify the purpose for the run (i.e., chain rule propagation of derivatives or adjoint
matrix generation).

Application: CHAIN or Adjoint

Arguments: ‘CHAIN’ or ‘ADJOINT

Argument Type: CHARACTER*5 or CHARACTER*?

How to use it: CALL SETRXX must be the first executed line in the unenhanced code, or the
line immediately following CALL INITXX in the enhanced code. If CALL SETRXX is NOT
made, no derivatives will be calculated.

Examples:

1) Enhanced code ready for chain rule propagation of derivatives.

DATA X /4.0/
CALL INITXX(DOOOOl)
CALL SETRXX(’CHAIN’)

2) Unenhanced code preparing for adjoint matrix generation.

DATA X /4.0/
CALL SETRXX(’ADJOINT’)

29

APPENDIX B

DETAILED DESCRIPTION OF PRECOMPILER COMMANDS

Commands to the precompiler are used to control the creation of the enhanced
code. The following pages provide a description of each command. The format is
one command per page. Each page includes at least one example on how to use the
routine. All commands to the precompiler must begin with the asterisk (he., *) in
column 1. An asterisk was chosen because it is a legal comment to FORTRAN 77
compilers and does not impede syntax checking using the FORTRAN compiler.

30

PRECOMPILATION COMMAND

Name: * COMMENTS ON/OFF

Purpose: To cause EXAP to pass comments from code being translated to the enhanced code.

Notes: Only comments indicated with a lowercase or uppercase C in column one are passed. Blank
lines and comments indicated by an asterisk in column one are not passed. Use COMMENTS OFF
if you want to selectively pass comments. The default is comments off.

Examples:

* COMMENTS ON
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

31

PRECOMPILATION COMMAND

Name: *ECHO ON/OFF

Purpose: To cause EXAP to echo the line of code being translated as a comment in the enhanced
code. This can be very helpful in debugging.

How to use it: ECHO can be used to echo the entire code as comments in the enhanced code,
or to selectively echo part of the enhanced code. The default is ECHO OFF.

Example:

1) To echo one line in the enhanced code as a comment.

DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

♦ECHO ON
X(I)=Z*Y + 5.0

♦ECHO OFF

32

PRECOMPILATION COMMAND

Name: *EXAP ON/OFF

Purpose: To selectively specify lines or sections of code to be enhanced, or not enhanced. This
is a very dangerous option and should only be used by knowledgeable users.

How to use it: Can be used anywhere within a complete program module or to turn off the
enhancement of entire subprograms. Enhancement cannot be turned off within a subroutine
and then turned back on within another subroutine. The enhancement must be turned on to
process the declaration section of a subprogram if it is turned on anywhere within that subprogram.

Examples:

1) To prevent one line from being enhanced

DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

♦EXAP OFF
X(I)=Z*Y + 5.0

♦EXAP ON

33

PRECOMPILATION COMMAND

Name: *SENSON

Purpose: To cause GRESS to propagate sensitivities rather than derivatives.

Notes: This is a risky option.3 It is available for testing only. It is available with both ADGEN
and CHAIN. As an equation is solved the sensitivity of the result is calculated with respect to the
terms on the right-hand-side of the equation. The sensitivities are propagated similar to the way
derivatives are propagated. If you are using the CHAIN option, then the PRNTSS utility should
be used to print sensitivities as opposed to the PRNTXX utility. It is recommended that you only
use this option if you are using G_float and the exponents for your derivatives are exceeding the
allowable range for F_float representation (i.e., approximately E-38 to E+38).

How to use it: Should be at the top of the main program beginning in column one.

Example:

*SENSON
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

TTie *SENSON option has undergone limited testing. In situations where the result from and
equation is 0.0, the sensitivity for that equation is set to 0.0. However, if the derivative is not zero,
it is possible for the effect of a parameter dependency to be lost. Under those circumstances the
*SENSON option may give an incorrect value for a reported sensitivity.

34

PRECOMPILATION COMMAND

Name: *WSPSIZE

Purpose: To override the default work space size.

How to use it: Must begin in column one.

Example: To set the work space at 2 million words:

*WSPSIZE 2 000 000
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

Comment: Both CHAIN and ADGEN options use a common block area that can vary in size
dependent on the application. The default work space size is usually set at 8 million 4 byte words;
however, the actual size is installation dependent. This command is useful if for any reason you
desire a larger or smaller work space.

35

APPENDIX C

LISTING OF THE ENHANCED VERSION OF TEST.FOR.

COMMON XD0001
C GRESS/ADGEN test program

DOUBLE PRECISION D00001(5)
INTEGER 100001(5)
REAL R00001(5)
CALL INITXX(XDOOOl)
CALL SETRXX(’AD JOINT’)
READ(5,*)B,C,D
CALL INSRXX(B,,B’)
CALL INSRXXfC/C’)
CALL INSRXX(D,’D’)
CALL INTPXX(1,X,B,D,4H$)
CALL INTPXX 7,Y,D,2,B,2,4H$)
CALL INTPXX(19,R,7.0,X,D,2,4H$)
CALL POTRXX(R,’ R ’)
CALL INTPXX(31,S,Y,2,4H$)
CALL POTRXX(S,’ S ’)
CALL CLEARXX
END
SUBROUTINE INITXX(DOOOOl)
IMPLICIT INTEGER (A-Z)
PARAMETER (WSP-SIZE = 8000000)
COMMON/ZZZZZZ/LIMIT(WSP_SIZE+2)
COMMON /ZZZZZZ01/ CODE(36)

C
CALL PREPXX(D00001,WSP-SIZE,36,80)
RETURN
END

36

ORNIAM-1121

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. M. B. Emmett

3-10. J. E. Horwedel
11. R. E. Maerker
12. F. C. Maienschein
13. R. W. Roussin
14. B. A. Worley
15. R. Q. Wright
16. EPMD Reports Office

17-18. Laboratory Records
Department

19. Laboratory Records,
ORNL-RC

20. Document Reference
Section

21. Central Research Library
22. ORNL Patent Section

EXTERNAL DISTRIBUTION
23. J. J. Doming, Department of Nuclear Engineering and Engineering

Physics, Thornton Hall University of Virginia, Charlottesville, Virginia
22901

24. R. M. Haralick, Department of Electrical Engineering, University of
Washington, Seattle, Washington 98195

25. James E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, Maryland
20878

26. Neville Moray, Department of Mechanical and Industrial Engineering,
University of Illinois, 1206 West Green Street, Urban, Illinois 61801

27. Mary F. Wheeler, Mathematics Department, University of Houston, 4800
Calhoun, Houston, Texas 77204-3476

28-37. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge,
Tennessee 37831

38. Office of the Assistant Manager for Energy Research and Development,
Department of Energy, Oak Ridge Operations, P. 0. Box 2001, Oak
Ridge, Tennessee 37831

L it,

4V 1 '

f-yi
^•/li

37

