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Section 1

INTRODUCT1ON

Slagzing of utility steam generator furnaces while firing eéstern bituminous

coals has bee: attributed to the pyritic iron in the coal ash. Investigators
have also learned that coals with similar pyritic levels fired in furnaces of
similar design do not always produce the same degree of slagging. Since sep-
aration of pyrite from other mineral matter does occur in some coals and since

the physicochemical behavior upon heating the pyrite and pyrite mixed with other

Ju

nineral matter or ccal ..ay be quite different, tne degree of furnace slaggin
mav possibly be attributed to the size and orientation of the prrite in ccal in

I

eadition to its concentration level.

The objective of this program is to examine slags formed as a result of firing
coals with varying concentration levels, size distribution, and orientation of

pyrite with regard to mineral matter in the coal in a laboratory furnace.

The program tasks are:
‘Task l--Selection of eight candidate coals
Task 2--Chemical characterization of the coal samples and identification
of the pyrite size, distribution, and orientation with respect to
other mineral matter and concentration levels

Task 3--Testing of the candidate coals in a laboratory furnace

Task 4--Chemical and physical characterization of the slag and fly ash
samples created by the impurities in the coal sample

Task 5--Influence of coal beneficiation on furnace slagging

Task 6--Analysis of data and identification of parameters influencing the
contribution of pyrite to slagging problems.

i-1
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Washing of the Upper Freeport coal from Indiana County, Pennsyvlvania, was com-
pleted by the last quarter of 1983. The washed product was characterized for
mineral content, and a combustion test was performed. Kentucky No. ¢ from
.ienderson County, Kentucky; selected as the sixth coal to be Lnvestigated, was
characterized using size and gravity fractionation technicues and was compusted
~ in the laboratory furnace to evaluate its slagging and fouling potential. The
remaining two coals to be characterized and combusted were ideniititeu as Illt

nois No. 5 and Lower Kittanning from Clarion County, Pennsvlvauia.

~

Figure 1.1 is the revised milestone schedule and status report.
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1
0

wrivinaily eient candidate cozls were selected based or veriation in pyvrt

ey

rt
47

size, concentration, anc distribution &ccording to the specifications ¢
test matrix described in Table 2.1. The objectives of selecting coals contain-
ing minerals of variable size and distribution with regard to coal ard other

]

i the

o

mineral matter were to identify the species responsible for élagging én
options avallable for modification of fuel preparation procedures, steamn gener-
ator cesign, or steam zeneratcor operation necessary to inhiZit slag Ioroarion.
ihils woulld be accomplished by chizracterizing the pyrite present in I flven CC&l,
test firing the coal, aqi anzlvzing the resultant fireslde deposits. Yariation
irn fireside deposit chemistry and total accumuiation with changes in minersl size

and assoctiation should reveal the species responsible for slagging. The originail

[41]

selections were made on the basis of the best data available iIn the literatur

Table 2.1 Desirable Cnaracteristics of Sample Coals
¢ 3 to 6% Sulfur, Moderate Ash Level, Coarse and Isolated Pvrite
e 3 to 4% Sulfur, High Ash Level, Coarse and Isolated Pyrite
e 3 to 4. Sulfur, Moderate Ash Level, Isolated and Finely Divided Purite
e 3 to 4% Sulfur, Mcderate Ash Level, Pyrite and Ash Mixed

e 27 Sulfur, Coarse and Isolated Pvrite

e 1% Sulfur, Coarse and Isolated Pvrite

[}®]
|
—
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Since characterizing and combustion testing six of the elght coals proposea in
tne original scope of the program, we have learned that the purity and total
concentration of the iron reporting to the heaviest gravity fraction have a
substantial impact on slagging. Since we know that a reduction in sulfur ana
nence a reductlon 1n iron 1n proportion to the non-iron-bearing imlnerals in tne
coal will reduce slagging, there is more to be gained by examining the impact of
liberated pyrite on slagging them on total sulfur. Therefore, alternative fuels
with high sulfur levels, high ilron concentrations in the ash, and easily lip-
erated pyrite and ash were selected to replace thell— and 2-percent sulfur coals
originally proposed. after considering availability and otrer logistics prob-
lems, Illinois wo. 5 ifrom Gallatin County, Illinois, and Upper XKittaunning frow

Clarion County, Pennsvivania, were the coals selected. The composite fuel analy-

ses are described in Taole 2.Z.

™~
|
[
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i2ole 2.2 Composite Fuel Analysis--Illinois fo. 5 and Lower Kittamning (Drv)

=%

tilinois No. 5 . Lower XKittanning’
Description Gailatia County Clarion Coun:tv, Peanswvivania

Proximate Anaivsis (Wtha)

Fixed Carbon 42.54 49 .02

Volatiie Matter 30.51 42.40

Asn 26. 7.92
Ultimate analysis (Wtld)

Carbon 357.86 78.48 \

fydrogen 4.41 4.95

Oxvgen 5.62 5.24

Nitrogen 1.02 1.04

Sul fur 4.24 2.37

Ash 26.85 7.92
HHV (Btu/1b) 10,836 13,463
Forms of Sulfur ()

Suifatic 0.923 Q.4

Pvriticz 2.04 G.33

Jdrganic 1.90 1.42
Asn Chewmistrwv (%)

510, 2.0 52.1

Al,0, 20.1 21.3

T.0, 1.0 Nil

Fe,J, a7 26,4

Ca0 3.3 11.2

MgO 0.8 0.5

Na,0 0.3 J9.3

X,0 3.1 0.9

s0, 4.3 1.1

2,0, 0.2 Ol
Reducing:

Initial Deformation 2050 2040

Softening (Spn.) 2080 2100

Softening (Hem.) 2120 2180

Fluid 2150 2540
Oxidizing: -

Initial Deformation 2290 2400

Softening (Sph.) 2320 2600

Snftening (Hem.) 2340 2640

Fluid 2380 2680

**ictual sample analysis.
ranalvsis upon wricn sample was selected.



FOSTER WHEELER DEVELOPMENT CORPORATION REF..  DE-ALZ2-B17C30263
DATE: June 198&

Section 3

TASK 2--CHARACTERLZATION OF CuUal SAMPLES ANL WASHED COAL PRODUCT

INTRODUCTION

0

w
e

lazging of utility steam generater furnaces by ash in eastern ditu~inous

Ui

coals is generally attributed to the fluxing action of the ilron Iovumdi [ pyrite
on the acidic constituents comprising the major portion.of the remaining coeal
impurities (e.g., Al,0,, Si0,). On occasion, coals with identical ash composi-
tion have been known to produce decidedly different slagging conditions in iden-
tically designed boilers operated in the same mode. Variations in composition
of the slag when compared with the coal ash have led some investigators to be-

selectively deposited on the furnac2 wat. acedriin. I

1]

itieve flv ash 1s beln
LLs gravity, composition, and phvsicechemical nroperties uzon D=ing neatsd, - The
imslications are that coal ash is heterozeneous 1o nature ang tnst eac:h rarticle

bernaves independently as it is introduced into the furnace.

As the coal and ash are being pulverized, they are reduced in size ana sub-

divided into many size and gravity fractions with differing coai comnpositions

and ash chemistries. The final composition of the individual species willi de-
pend to a large extent on the original distribution and orientation of mineral
matter in the coal. Slagging may be caused by the individual species with the
lowest melting temperature and greatest potential for attaching itseif to tne
furnace wall. If the composition of an individual ash species is altered while
it is being pulverized, so that a portion of the ash has a higher melting tem-
perature than the composite ash sample and the melting temperature of the remain-

ing portion of the particulate has a melting temperature lower than that of the
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composite ash sample, furnace slagging may occur unexpectedly with coals identi-

fied as nonslagging on the basis of a composite analysis.

In Step 1 coals are characterized by analyzing a composite sample for:

e Proximate Analvsis e Hardgrove Grindability
e Ultimate Analysis e Thermal Analysis
» Tuirms of Sulfur - Thermogravimetric Analysis
' = DNilfereutial Scanning Calorimetry
- Pyritic :
- Organic o Low-Temperature Ashing
- Sulfatic

- Mineral Analysis
Thermogravimetric Analvsis
- Differential Thermal Analvsis

e Ash Fusion Temperatures

e Ash Chemistryv

At the present time, most investigators base their predictions on the gquantita-
tive elemental amalvsis of the composite coal sample determined durinz the f{irst
step of characterizing coal. If the analyses are inadequate and individual luw-
melting species are indeed the source of slagging and fouling, the coal must be

further characterized by analyzing the size- and gravity-fractionated coal.

¥

In Step 2 pyrite size and distribution in the coal are further character-
ized by pulverizing a 200U-lb samplié t6 70 percent thruugh 50 wesl and analysing
it for equally weighted size fractions, gravimetrically separated into +1.30,
-1.30/+1.80, -1.80/+2.85, and -2.85 gravity fractions for ash chemistry, ash
fusion temperatures, petrcentage of ash, and percentage of pyrice. We se¢lacted
70 percent ‘through 50 mesh, rather than through 200 mesh, to provide sufficient
samples for analysis in the coarse size range of the pulverized coal. The num-

ber of gravity separations was restricted to four for economic reasons. A
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portion of the four gravity fractions with a +50 mesh size was retained for

low-temperature ashing and mineral and thermal analyses.

Six coals have been characterized according to the analyses just described
in Steps 1 and 2. The results of the analyses of five ot thesé coals nave been
reported in previous progress reports. During thée period covered by’this quar-
terly report, a sixth coal, identified as Kentucky No. 9 from Henderson County,

Kentucky, was characterized in depth,

KENTUCKY NO. 9, HENDERSON COUNTY, KENTUCKY

Tables 3.1 and 3.2, fuel analyses and composite coal analyses, directly
compare Xentucky No. 9 coal, Henderson County, with previously analvzea cozls.
viineral analyses of the various fuels is compared in Table 3.3. The ccmposite
analysis of the coal reveals an increase in pyritic sulfur and percentage of
iron with lictctle change in ash level, as compared with ;he previously analv:zeu
Kentucky No. 9 coal from Union County. There was also a slight increase in
calcium. The slight changes in mineral composition, as reflected in the ash
analysis, increased the slagging potential from medium to high. Tne fouling po-
tential increased from low to medium as a result of a change in base-to-acid
ratio. There is a substantial increase in the differential between the ash fu-
sion temperature under oxidizing and reducing temperatures when compared with
previously characterized fuels. Fusion temperatures under reducing conditions
are lower than for most of the coals previously analyzed. Conversely, they are

considerably higher under oxidizing conditions than for any of the coals pre-

viously analyzed. There is no obvious explanation for the large difference.

3-3
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Table 3.1 Fuel Analyses--Kentucey No. 11; Lllinois wo. 6; Upper Frazeport, ludiana County,
Pennsylvania; Lower Freeport, Cawbria County, Pennsylvaniz; Kentucky o. 9,
Union County; and Kentuckvy Ho. Y, llenderson County

7-¢

. 1llinp.s No. & Upper Freepurt Lower Frueport Rentucky No. 9 Km\iucky No. 9
Deacription Kentucky No. 11 Callatin County . lIndiana County Cambria County Union County Henderson County
Prozimate Analysis (Wtl)
Fixed Carbon 40.71 41.54 52.58 56.87 al. 17 38.99
valatile Matter 39.16 36.93 w64 . 22,00 36.49 29.93
Ash 14.90 9.36 23.58 16u a3 td.ul 18.41
Moistuce 5.23 12.17 3.0 “. 10 4.33 12.617
Total 100.0V wo.o0 1v0.00 100.90 100.00 10u.0Y
Ultimate Aaalysis (WtX)
Carbon 62.45 61.36 62.54 6<.0Y .60.17 58.21
Hydrogen 4.78 4.32 4.22 &.42 4.43 3.83
Oxygeu 7.94 7.83 2.80 x.70 8.24 1.55
Hitrogen ©1.24 1.17 0.70 .20 1.14 1.04
Sulfur 3.46 3.79 2.96 £.406 3.68 4.24
Ash +14.90 .9.36 23.58 12.43 18.01 18.41
‘Moisture 5.23 12.17 3.20 +-710 4.33 12.67
Total 100.0v0 100.00 100.00 109.00 1go.uvu 100.00
Wigher Heating Value [Btu/lb) 11,529 10,927 11,080 12,113 10,776 9,883
Forms of Sulfur (3)
Sulfatic 0.24 0.00 0.00 '0.01 0.00 0.00
Pyritic 2.15% 1.1% 1.97 0.63 1.43 2.28
Wreganic 1.07 2.64 0.5% a.82 2.25 2.64

NOILVHOdH0D LNIWJOTIAIA §ITIIHM 43I LSOS
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Table 3.2 Composite Coal Analyses--Kentucky No. 11; 1lllinols No. 6; Upper Freeport,
Indiana County, Pennsylvania; lower Ureeport, Cambria County, Pennsylvania;
Kentucky No. 9, Uaion County; and Kentucky No. 9, Henderson CounlLy

1llinois No. 6 Upper Freeport Lewer Freepoert Kentucky No. 9 Kn'-;l ucky No. 9
ceeo— . Description Kentucky No. it ~ Gallatia County  Indiana Gounty  Cawbria County  Union Comnty ftenderson County
Ash Chemistry (1) .

Si0, 66,3 50.9 48.6 51.3 45.3 4n.0
Al1,0, 20.4 18.3 25.5 26.3 18.2 16.64
Tio, (D] 0.9 1. 1.4 0.9 0.8
Fe,0, 21.5 18.5 16.6 10.3 17.2 20.5
€a0 4.3 4.0 2.9 -3.9 5.1 1.8
Mg0 0.7 1.2 0.9 0.7 0.7 ol
Na,0 0.4 1.4 0.1 0.3 0.9 0.8
K,0 2.6 2.3 2.9 2.5 2.8 2.3
50, 3.6 3.3 2.8 3.6 6.7 9.4
P,0, 0.3 0.3 0.4 0.3 0.4 0.1
W
'\|I\ Ash Fusion (°F)
Reducing:
Initial Deformation 2370 1980 2063 2355 2061 016
Softerning (Sph.) 2100 2030 2134 2197 2170 2042
Softening (llem.) 2130 2080 2245 243 2368 2100
Fluid 2160 2160 2460 2575 2400 2111
Oxidizing:
Initial Deformation 2370 2280 2413 2531 215 2360
Softening (Sph.) 23%0 2320 2,487 2596 2420 2490
Softening (Hem.) 2470 2350 2540 2643 2420 2700
Fluid 24730 2480 2585 2712 7574 2700
Percen:age Rasic 31.0 28.5 24.3 18.6 29.7 35.9
Base/A~id Ratin 0.44 0.8 0.32 0.22 n.41 0.56
Stagring ¥Yndex (R/A x 18) 1.65% (Med.) 1.29 (Med.) 0.92 (Med,) 0.31 (Low) 1.67 (Med.) 2.00  (Nigh)
Fonling Factur (B/A x INa,0) 0.8 (Low) 0,54 (Med ) 0,10 (Med ) 0.06 (Low) 0.3R (Low) 0448 (Med.)

NOILVHOdH09 LNIWJOT3IAIA HITITHM HILSOA
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Kentucky No. 9
_Union county

Table 3.3 Summary of Micaral Analysis
Bituminous Coels
Raw Coal Kentur'k) No. 11 Lilinois No. 6
and Gravity
Fractionation Ma jor Minor Major Minr
Raw Coal
Quartz Nlite Quarez niits
Kaolinite Muacovite Eaolinite Feldsasc
Pyrite Pyrite
Gravity
Fract ion
EEIURT Quartz Muscovite Tuarte 1llite
Kaolinit= Kaolinite
Eyrite
-1.30/+1.82 Quartz Muscovite Quartz Titisz
Kaolinite ‘Laolinite
Pycite
-1.80/+2.85 Quartz Nlite Quartz Calc.te

Kaolinite Muscovite Raolinite 1Illize

Pyrite dyrite

-2.85 Insufficient Sample Insufficient Sample

Allenlamdite-Clinoptiltolize.

Upper Freepart
Indiana County

Lewer Frecport
Canbris County

‘Determined From Low-Temperature Ash for IFive Eastern

Kentucky No. Y

_ Henderson County

Major  Minor Major Minor Major Hinor Major Minoi
Quartz Sllite Quartz Quaresz Muscovite Quartz Ilite
Kaolinite Kaolinitve Pyrite Pyrite Feldspar
Pyrite Pyrite Kaol-nite Kaolinite N-¢*
Calcite Ilite Calc.te Calcite
tarctz Iilite Quartz llite Quares Muscovite Quartz Pyrite
Kaolinite Kaolinite Kavlin.te Kaolinite Calcite
Pyrite Pyrite Apatite

H-C
Quartz Lllite Quartz Caléite Quarte Muscovite Quartz Iliite
Kaolinize Kaolinite Kaolinita Pyrite Apatite
Pyrite Pyrite n-¢ Calcite
Itlite Kaolinite '
Insuifizient Data Quartz Celcite Quartz Muscovite Quartz lite
Kaolinite Kaolimite Pyrite Apatite
Pyrite Pyrite H-¢ Calcite
Ilite Kaolinite
Yuartz lite Quartz Muscovite Pyrite Marcasite
Kaolinite Kaclinite Calcite

Pyrite

Prrite
Calcite

NOILVHOdHOD LNIWJOTIAIA H3IT3IHM H31SO4
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Based on an assumption that the ash would behave in a homogeneous fashion, de-
posits formed while firing this coal should be quite voluminous because of the
large temperature range over which the ash i1s plastic and apparently quite

viscous.

The coal was fractionated into four size fractioms (+105, =-105/+74, -74/+44,
and -44 ym) as shown in Figure 3.1, and each size fraction was further divided
into four gravity fractionms (+1.30, +1.80/-1.30, +2.85/-1.80, and -2.85). Each
size and gravity fraction was weighed, ashed, and analyzed for pyritic sulfur,
ash chemistry, and ash fusion temperatures. Thermogravimetric analysis (TGA)
was performed on each sample to be certain that no individual species hac un-

usual combustion characteristics as a result of partitioning oI .acerzl groups

ou

and to determine the contribution of pyrite to the combustion proZile. Tne
coarse size fraction was low-temperature ashed for mineral ana tnermal analyses.

This work 1s not yet complete.

The weight, ash concentration, and pyrite concentration are summarized 1n
Table 3.4. The ash chemistry of the individual size and gravity fract.ons 1s
summarized in Table 3.5. The ASTM ash fusion temperatures of the fractionated
coal appear in Table 3.6. For interpretation, the data have been plotted in
Figure 3.2 on a curve illustrating the relationship between ash softening tem-
perature under reducing conditions and ash chemistry expressed in terms of the

percentage of basic constituents [i.e., I Fe,0, + Ca0 + MgO + Na,0 + K,0)]. 1In
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Table 3.4 Ash Chemistry for Size and Gravity Fractionated Pulverized Kentucky nNo. 9 Coal,
Henderson County, Kentucky
Ash Total Cumulative Pyritic Total Pyritic Cumulative Py-
Density Fraction We} (1) Ash (1) Ash (%) Sulfur() Sultur (%) vitic Sultur (%)

Size: ~-105 ym weX: 213
¥loat-Sink ) ‘
+1.30 55.6 10.20 5.67 5.67 0.18 0.10 0.10
+1.807-1.30 37.2 9.24 / 3.45 9.12 0.14 0.05 0.15
+2.85'-1.80 4.0 €406 2.56 11.68 1.45 0.06 0.21
-2.85 Sink 3.2 €Y.54 2.23 14.91 38.53 u.16 . 0.37

Size: -105/+74 ym WeZ: 30.2
Float-Sink
L300 e e e mm o m oo tnsufficient Sample-—---=srororomm e mc e em e
+1.80/-1.30 B6.0 9.67 H.32 B.32 0.7 0.15 15
+2.85/-1.80 12.0 67.71\ 8.1 16 .45 5.11 0.61 -0.76
-2.85 Sink 2.0 62.67 1.25 17.70° 48.55 0.26 1.02

Size: -74/+44 ym WtZ: 20.8
Float-Sink
L T L e Insufficient Sample-———r=—room oo e oo
1.80/-1. 90.5 12 .48 .29 11.29 0.35 ¢.32 0.32
+2.85/-1.80 6.9 72.64. 5.01 16.31 2.1 0.19 0.51
-2.85 Sink 2.6 63.09 L.b4 17.95 46.92 0.13 .64

Size: =44 yw wel: 27.17
Float-Sink
L R T ittt L Insutficient Sample=—--m= = rm oo o e e
t1.80/-1.30 8.1 17.917 195.81 15.83 0.3 0.29 0.9
v2.85/-1.80 11.2 70.96 1.99 2.8 1.64 0.18 0.47
-2.85% Sink 0.7 LUBR L 005 2.2 43.117 0.07 0.50

*These values were estimated based on the percentage of ron in the pyrite and the percentage of iren in the ash.
tron ta the coal was asanmed te be

concentrated

in the pvril--.

All
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Table 3.5 Ash Chemis:iry--Size and Gravily Fractionated Pulverized Kentucky No. Y Coal,
Henderson Ccunty

Ash Chenis:ry (X of Total)

Pyritic
bensity Fraction Ash (2) Sultur %) 510, Al10s Ti0z FeaOs Ca0 Mz Na:0 K20 S0 Pa0s
Size:  +105 wm
Wil o 21.3
+1.30 10.20 0.18 55.2 21.0 1.2 3.7 +.8 0.8 b.U 2.9 I.4 0.1
+1.80/-1.30 9.28 0.14 53.4% 22.1 1.2 13.8 5.6 0.7 2.2 2.5 1.8 0.1
+2.85/-1.80 64.Ce }.45 53.t 18.0 0.6 6.0 +. 1 0.7 L.6 2.8 0.7 0.1
-2.85 Sink 69.54 4.93 8.7 2.9 0 69.4 10.5 0.2 0.2 0.4 8.6 0.3
Size: -105/+474 mn
wed:  30.2
Float-Siak
+1.30 e et Insufficient Sample-—-m—m— o cmm oo e
+L.80/-1.30 9.67 G.17 5.8 22.1 1.4 8.9 S & J.9 3.4 2.4 t.1 0.1
+2.85/-1.80 67.11 5.11 55.1 18.2 0.6 11.6 60 J.b 2.0 2. 4.7 0.1
-2.85 Siuk 62.67 13.10 3.8 3.5 0 92.2 06 J.l 0.1 0.3 0.2 0.2
Size: =-74/+44 vm
weZ:  20.8
Float-Sink
+1.30 s e e Insufticient Sample—=-=w—=--mmm oo
t1.80/-1.30 12.48 0.35 6.7 21.1 1.0 8.5 50 3.8 3.2 2.4 1.0 u.1
+2.85/-1.80 72.6L 2.79 2.0 3.0 0.6 14.5 & 3 3.7 L./ 2.6 3.7 0.1
-2.85 Sink 63.0% 4.81 6.2 2.1 4] 48.5 TRY J.1 0.3 0.3 1.1 0.2
Size: -44 bn
wed: o 27.7
Float-Sink
L S T Rt ke tosut ficienl Samplem—m oo s o o e o e e e
1RO/ =130 17.97 0.133 £9.1 22.1 1.0 6.5 4 ¢ J.8 3.1 2.4 0.7 0.1
rY2.85/-1.80 70.96 1.64 4.0 7.2 u.b 7.3 ho 5 0.5 1.8 1.4 2.8 0.1
-2.84% Siok 64 . 3L 4.92 6.2 2.5 0.2 36,73 2k ).l 0.3 0.3 1.8 0.3

NOILVHOdHO0D 1NIWdOT3A3A H3T33IHM H31S04
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Table 3.6 Ash Fusion Temperatures--Size and Gravily Fractiouated Pulverized Kentucky nNo. Y Coal,
Henderson County

Reduc illg _(_i’_li)'___ ox il ‘_1‘_!..'!_5. ..l.o.f_)

sotftening Soltening Softening SotLeuing

NDensity Fraction 1., (sph.) (ewm.) L 1.0, (sph.) (Hem.) FLlL
Size: +105 pn wel: 21.3
Float-Sink
+1.730 2030 2050 2130 22720 2300 2340 2370 2420
+L.HO/-L1.30 2040 2100 2140 2210 2310 2420 2480. 2510
+2.85/-1.80 2030 2060 2100 2150 2310 2360 2370 26420
-2.89 Sink 2070 2130 2260 27100 2320 2440 2520 2550
'
Size: =105/+74 um WwtZ: 30.2
Float-Sink
L U 0 it Insuftficient Sample~—-=----mcmmmmm oo
w
| +1.80/-1.130 2150 2190 2300 2390 2380 2420 2540 2600
—
L +2.85/-1.80 2130 2110 2270 2350 2370 2410 2510 2590
~-2.85 Sink 2440 2460 2510 2540 2580 2600+ 2000+ 2600+
Size: ~-74/+44 pm Wel: 20.8
Float-Sink
L3 O T ettt Lt lnsuftficient Sample--=-—--=—--—-c oo o ce e oo
rL.80/-1.30 2160 2250 2280 2300 2270 2320 Z@UU 2680
+2.84%/-1.80 20080 2170 2200 2360 2190 2290 2611 2500
-2.895 Sink 2280 2330 2390 2430 2190 2460 2500 2550
Size: -44 ym wet:o 2707
Float-Sink
+1.30 e e B P T B R O] R T L e R ettt
+1.B0O/-1.30 2000 2140 2200 2210 2240 2300 2360 Zﬂ&p
+2.85/-1.80 2200 2210 2800 - 2900 200 2400 2640 Z2H0
~2.89% Sink 2250 2180 2420 2540 2310 420 2590 5

NOILVHOdHO0I LNINJOT3IAIA Y3T3ITIHM 1431LS04
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Figure 3.3 these data are quantified with regard to the weight of ash in the
individual size and gravity fractions. Figure 3.4 illustrates the distribution

of iron between the liberated ash and the lighter coal fractions.

The variability of the ash softening temperature in the fraccionatsc coel
species of Kentucky No. 9 from Henderson County is less than either of tne
Freeport coals from Pennsylvania, greater than either Illinois No. 6 or Kentuckw
No. 11, and identical to Kentucky No. 9, Union County, mined only a few miles
away. The distribution of mineral matter within the two Kentucky No. 9 coals is
decidedly different. Kentucky No. 9 from Henderson Couﬂty is the only coal in

which the softening temperatures of the fractionated coal ash species ars all

118}

reater than the composite coal ash, illustrating good partitioning of the pyrite

rn

rom otner mineral matter. The heaviest gravity fractions are nighly basic and

e’ ST
ps

are composed of the highest purity pyritic iron (see Figure 3.2 and Table 3.3,.
Tne fusibility diagram in Figure 3.3 suggests the liberated pyrite is concentrated
in the coarse size fractions. 1In all the previous coals analyzed, tne liberatea
pyrite was concentrated in the fines. At least two coals revealed very little
liberation of.pyrite. The distribution 9f pyrite among the weighted coal frac-
tions, appearin% in Figure 3.4, suggests the pyrite cize in the raw coal is
bimodal,\aCCOunting for the decrease in liberated pyritg with a reduction in
particle size and an increase in nonliberated pyrites--also with a reduction in
size. Figures 3,5 through 3.9 illustrate the distribution of pyritic iron in

the other coals analyzed by size and gravity, permitting a direct comparison

of liberated pyrite by size with that -of Kentucky No. 9, Henderson County.
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FOSTER WHEELER DEVELOPMENT CORPORATION

The analvsls of the size and gravity fractionated coal indicates Xentuciw
No. 9, Henderson County, has the greatest potential for producing ilron-sezrezaced
deposits at the furnace exit, based on the quantity of iron liberated in the

coarse size fraction. Since deposition is believed to be dependernt upon the

-r
o]
-
1%
fal
rJ
o

33

corbustibility of pvrite and burnout time required, 1n addition
quantity of coarse pyrite liberated, further assessment of the formation of
lron-enriched deposit formation must be made by examining TGA combustion

profiles. TGA thermograms will be reviewed in the following section.

During earlier combustion tests, we learned that furnace wall slagzing
of surfaces subjected to axially svmmetric flow at low velocities was initiatad
ov asi with aigh levels of potaséium.' Subseguent desosit zrowi.: eni aovanted
stazes of slagging were dependent upon the phyvsicocihemnical properties ol ne
sink l.Jdu gravity fractions and thnelr concentration ieveis In Lae coai.
Table 3.7 summarizes the initial deformation temperatures, fluld temperet:vr=:.

and the ash/lb coal fired for the -1.80/+2.85 gravitv fraction. The c¢ozls zr2

—

o,
—
[

J
'

listed according to the degree of slagging. The coals causing: the least
ing are tabulated on the far left; those causing the most severe slagzzinz, on the
far right. Except for the ash from the‘Lower Freeport -1.80/+2.35 coal gravity
fraction, the initial deformation temperatures of all ashed species are 203U°F
* 150°F. Variations in the fluid temperature are somewhat greater. X2ntuvsay
No. 11 and Illinois No. 6 caused the least slagging, eveﬁ.though the inictial
deformation temperatures were 50 to‘145°F below the mean value for gll neavy

gravity fractions. The percentage of ash/lb coal having these low initial de-

formation temperatures is very low. In fact, the -1.80/+2.35 gravity fraction

3-21
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DATE: June 1984

of the coals responsible for the least slagging contains approximately one-tenth
of the ash/lb coal of the comparable gravity fraction of the most severely slag-
ging coals. Quite apparently, the advanced stage of slagging is more sensitive

to ash loading than to the precise ash softening temperature. Under the circum-
stances, Kentucky No. 9, Henderson County, should cause more severe Zfurnace slag-

ging than Kentucky No. 9, Union County, but less than Lower Freeport, Cambria

Coun ry.

Unlike any of the preceding coals analyzed, the size and gravity fractiona-
tion analysis of Kentucky No. 9, Henderson County, revealed a concentration of
sodium as high as 6 percent in the float 1.30 fraction. The form in wnich it
occurs 1s uncertain. Since carbon is the only other element 1n the various
gravity fractions 1in a coﬁﬁeﬁtration paralleling sodium, there is a zooa possi-
pilicy the s>dium exists as organically bound mineral matter. Howevar, since
cﬁlorine was not determined, there still remains the possibility of sodium occur-
ring as sodium chloride. 'I'he presence of sodium silicates as feldspars caunuvt,
be discounted, even though there is no obvious correlation between silica and
sodium and there is little evidence of liberation of sodium upon pulverizing.
The elemental analysis tells us very little about the mineral forms present and

‘thus reveals no information on the change in distribution of silica between the
various mineral forms (i.e., kaolinite, quartz, illite, and feldspars). Any
correlation of sodium and silica may be masked by variations in distribution

among these other mineral forms.

The high sodium level in the float fraction may cause troublesome sintering

i1f, indeed, it 1s retained on only a portion of the silicates producing fly ash
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wetted bv a stickyv, low-temperature melt. If, on the other nhand, sodium
vaporizes and recondenses indiscriminately on all fly ash and slag deposit
surfaces, the effect of the high concentration of sodium in the float 1.30
fraction should be no different from that of a composite coal ash containing
I.l-percent sodium. An attempt will have to be made to determine tne exact
form of sodium. There is a potential for unusually high sintered deposit

formation at the fturnace exit.

TGA was performed on the composite raw coal sample and the individual size
and gravity fractions of Kentucky No. 9 coal, Henderson County, to identify any
deviations in combustion profile of individual gravity fractions from the
composite cozl sample that wmight be the the result of enrichmeant of pyrite or
inertinites. The combustion profiles of samples known to be enriched with

pyrite or pure pvrite were compared directlv with the composite coai: sanpiz an.

laboratory-grade pyrite to give a qualitative assessment of burnout.

The combustion profile of the composite coal sample is identical to thnose
of Illinois No. 6, Kentucky No. ll, and Kentucky No. 9, Union County, indicating
this sample is a very reactive, bituminous coal (see Figure 3.10). The combus-
tion profiles of individual gravity fractions for a given size fraction are
compared in Figures 3.1l through 3.14. This bituminous is believed to bes cuite
porous, as were Kentucky No. 1l and Illinois No. 6, permitting the absorption of
some of the organics used during the partitioning process. These organics
alter the combustion profiles of the ligliter fractions during the initial
stages of combustion. As indicated by the thermograms, the heaviest gravity

tractions are virtually pure pyvrite, free of ash.

3=93
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FOSTER WHEELER DEVELOPMENT CORPORATION REF: DE-ALZI=81PC40268
DATE: June 1984

Figure 3.15 compares all the heavy gravity fractions with pure laboratory-
grade pyrite. Ignition is improved by almost 100°C, and the weight loss appears
to occur at the same rate in a single-step process for about 85 percent of the
weight loss. The remaining loss in weight proceeds at a much slower rate ana
extends burnout by about 150°C. The improvement in ignition may be from trace
quantities of carbon or reduced pyrite grain size. The extension of burnout
probably results from the formation and ultimate decomposition of FeS in the
presence of small quantities of carbon. The burnout time of the slightly
lighter of the two heaviest gravity fractioms (i.e., -1.80/+42.85) is greatly ex-
tended by the presence of small quantities of carbon in the presence of moderate

gquantities of pyvrite.

Figure 3.16 compares the sink 2.55 gravity fraction of Kentucky lc. S,
Henderson County, with the sink 2.85 gravity fractions of other coals testec
and laboratory-grade pyrite. The combustion profile of pyrite in Kentucky
No. 9 from Henderson County compares quite favorably with the combustion
profile of pyrite in Kentucky No. 9, Union County, but it differs substan-
tially from the combustion profiles of pyrite from the other coals tested.
The difference is probably the result of grain size, adventitious carbon,

and chemical composition.
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FOSTER WHEELER DEVELOPMENT CORPORATION REF.. DE-AC22-81PC40268
. . : DATE: June 1984

Section 4

TASKS 3 AND 4--COMBUSTION TESTS AND ANALYSIS OF SLAG DEPOSITS AND FLY ASH

INTRODUCTION

A combustion test was performed during the fourth quarter of 1983 on
Kentucky No. 9 from Henderson County, Kentucky. The pulverized coal was fired
at a rate of 100 1b/h for only 3 hours, after which the furnace exit became
severely plugged with sintered deposits and the combustor had to be shut down.
A second test was performea on the coal for approximately the same length of
time, after which the furnace exit once again became severely plugged. During
this test the coal was pulvgrized to 70 percent through 200 mesh. Thg excess
air was set at }9 percent. The furnace exit temperature was m;int;ined at
=2000°F., Slagging probe surfaces operated at =300 to l000°F, and fouliﬁg probe
surfaces operated at =1000°F. Table 4.l compares the time-averaged operating

conditions of this test with tests of other coals.

A second combustion test was performed using washed Upper Freeport coal
from Indiana County, Pennsylvania. The results of these tests will be discussed

in Section 5.

EXPERIMENTAL TEST SET-UP

The experimental test set-up has been described in each of the preceding
quarterly reports. For convenience, an abbreviated description is included

here.

The combustor is a vertically upward-fired furnace with a horizontal and

vertical downward flue gas pass. In addition to the furnace and convective



Table 4.1 ‘fime—Averased Operabing Conditions

[l1linois No. 6
Gallatin County

pper Freeport fower frecpont
Cambris County

Kentucky No. 9
JUnion County

Kentucky Noo 4

__Measurement Lacation Kenzucky No. 41 Indiana County Renderson Count y

Furnace Centerline: 2327 2407 2467 2501 2609 2420
Segment 3, °F
Furnace Ewit, °F 1956 rusn 2002 2008 1956 2010
Flue Duct Upstremn of:
1st Fouwling Bank, °F 1678 1€83 -—- — - 1830
Ird Foaling Bank, °F 1594 1593 1574 1590 1597 1621
4th Fouling Bank, °F 1372 a1l 1421 1561 1453 14717
Seeondary Air Preheat, T 281 303 3ot 312 292 06
Slagging Probe Tubes, °F
l.owe, Prohe --- --- 971, 955 ya ) 730
Center Probe 1052 188 H59 912 81k A8Y
Uppet Frobe ' 877 75 R4 848 812 1093
Fouling F:obe Tubes, °F
Ist Bark:
15t Tube 1034 379 116 1151 1022 17
2ud Tube 486 93 997 975 1oy 1058
Yrd Tube 988 927 1030 995 457 1070
Trd Bank:  2nd Tube 729 9¢4 1003 975 920 1096
4ih Raak:  2ud Tube 900 9€9 995 976 --- 954
Coal Feed Rate, Ih/h =100 9s. 102 101 125 129
Combust ism Air Flow Ratz, 1014 1610 10°My 111 1o 1206
1/
Excess Air, T - 7% 17 15 19 15
Duration of Kan, b 9.3 14 t4 16.2 12 3
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FOSTER WHEELER DEVELOPMENT CORPORATION REF.: DE-AC22-81PC40268
. DATE: June 19584

pass, the combustion system includes a heat-recovery system, a particulate-
emission control system, fans, and associated monitoring and control equipment.

Figure 4.1 is a system schematic.

Furnace

The furnace is a cylindrical chamber, 18 ft long x 28 in. in diameter
(internal dimensions), designed to simulate the radiant section of‘a utility
steam generator. Nominal, bulk fluid velocity is =6.5 ft/s in the furnace zone
when firing a typical eastern bituminous coal at 100 1b/h and 15 percent excess

air, resulting in a furnace residence time of =2.8 seconds (see Figure 4.2).

Flue Pass

Upon leaving the furnace section, flue gases pass into a horizontal duct
and over a bank of neat exchange tubes that simulate the convective section of
a utility steam generator. The rectangular duct is 7-1/4 in. high x 1l1-1/4 in.
wide. Nominal, bulk fluid velocities of 50 ft/s exist in this section when

firing a typical eastern bituminous coal at 100 1b/h and 15 percent excess air.

Ash Deposit Sampling Probes

Fouling Probes. Three fouling probe assemblies collect deposits for

examination and analyses. One assembly is in the high-temperature, horizontal
gas pass. Two are in the cooler, vertical gas pass. All assemblies can be
removed at the end of a test for deposit examination. In addition, the last
two probe banks along the flow path are equipped with refractory access plugs

for quick service.
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Each probe bank contains three in-line, 2-in.-d1a test specimen tubes
situated along the centerline of flow, as shown 1in Figure 4.3. The test tubes
extend across the height of the duct and are spaced on 3-1/2 1in. centers.
Monotin wall tubes line the tlue gas duct on either side of the test specimen
tubes to shield the deposits formed on the test specimen from the effects of
radiation imposed by the hot refractory, to give thermal similitude in the flue

gas stream, and to provide a heat sink tor cooling the tlue gas.

The three test specimen tubes are stainless steel, as are superheare:
tubes 1n a utility steam generator. The monofin wall tubes are carbon steel;
since no sampling 1s performed on them, material simulation 1s 1rrelevant.

Each tube 1s air cooled in a bayonet fashion to maintain outer surtface tempera-
tures at those experienced 1n a utility steam generator. Thermocouple probes

implanted 1n the three test specimen tubes monitor temperature.

Slagging Probes. Three slagging probes were inserted iuto Segments 1, 2,
agging gm

and 4 through the inside of the turnace. Each slagging probe (Figure 4.4)
consists of a pair ot tubes cut from 2-in. Sch. 40 pipe mounted in parallel on
a rectangular, flat 1/4-in. thick plate. The tubes are welded to the plate,
with spacing between them, simulating the geometry of waterwall tube array in

the radiant section of a utility steam generator.

The surtace temperatures along the probes are controlled by a compressed
air cooling system. Each probe has one thermocouple mounted on the outermost
tube surface, one mounted at the web between the tubes, and one mounted at the

air exhaust. A low conductivity, castable refractory is used as a backing to
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minimize heat conduction from the not refractory walls. The slagging surfaces

are entirely carbon steel, as are those surfaces found in the waterwall section

of a utility steam generator.

EXPERIMENTAL TEST PROCEDURES

A preheat period of about 24 hours at 10°® Btu/h was allowed to attain near
steady-state temperatures throughout the unit. Preheating was done with the
natural gas burner and its associated equipment. During this time compressed
air was supplied to the fouling probe banks to maintain surface temperatures at
or below 1000°F, and the three slagging probes were cooled by compressed air.

The oxygen meter was given a calibration check before start-up on coal.

When all preliminary procedures for start-up had been performed, tne na-
tural gas burner output was downrated to about 500 x 10*® Btu/h. The actual ,
output could not be determined since the gas flow metering system is not suit-
able for measurements in this low range. The secondary airflow was adjusted to
that required for coal combustion at l5-percent excess air and 100 lb/h fuel
feed rate. The primary air system was switched on to introduce tne fuel into
the combustion chamber and thus begin firing. At start-up the fuel feed indi-

cator was set for 100 1lb/h delivery.

Pressure, temperature, flow rate, and flue gas analysis date were recordea
at periodic intervals from start-up to termination of running. Fouling probe
cooling air was adjusted throughout the test to attempt to maintain the probe
surface temperatures at about 1000°F. Similarly, slagging probe cooling air was

adjusted to keep these surface temperatures in the desired operating range.
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Visual inspections of the various probe surfaces were made periodically
throughout the runs, as were inspections of furnace and flue duct, flame, and

gas stream conditions.

The natural gas burner was sihiut off when it was certain that the coal flame
was stable. At this time supplemental heat was not supplied to the combustion

chamber, and the coal flame was allowed to sustain itself.

At the termination of each test, the coal feed was shut off; however, probe
cooling air remained on to prevent overheating. The unit was allowed to cool
down before any samples were extracted. At this time fly ash that had accumu-
lated in the air heater, cyclone, and baghouse was removed and put in drums.
Total material weights were recorded for each, and samples were taken for la-

boratory analyses.

Several days after each test, the coal burner and lower cap assemvly were
removed for inspection of the deposits. The Lop fouliug prube bank was lifted
out of the flue duct, and the refractory access plugs were remocved from the
third and fourth probe banks. Photographs were taken of each of these, in-

clnding the inside furnace area.

During the following week, all deposit samples were removed from fouling
tubes, slagging probes, and furnace and flue-pass surfaces. Weights of the

various accumulations and their locations were recorded.

ANALYSIS OF DEPOSITS AND FLY ASH

Both combustion tests of Kentucky No. 9 coal from Henderson County were

terminated after 2-1/2 to 3 hours because of excessive deposit accumulation in

4-10



REF.: DE-AC22-81PC40268

FOSTER WHEELER DEVELOPMENT CORPORATION ’
DATE: June 1984

the vena contracta. Figure 4.5 shows the sintered accumulation at the entrance
and exit of the throat. Figure 4.6 shows the accumulation plugging the first
fouling probe bank as a result of attempts to remove the deposit on-line. Very
little, if any, fouling occurred on the tube surfaces during the short duration
of tne test program, as illustrated in Figures 4.7 and 4.8. The test was not a
fair trial of selective deposition of free pyrites because it was so short.
Very little ash accumulated on the first slagging probe, illustrated in Fig-
ures 4.9a and 4.9b. Deposits were powdery in texture and represent the very
initial stages of slag formation. Beads of molten slag were just beginning to
form on the higher temperature refractory immediately adjacent to the probe.
The center slagging probe, located in a hotter portion of the furnace, showec
signs of molten beads forming on the powdery base shortly after 2-1i/2 nours of
operation. No doubt these probes would have contained large accumulations

of molten slag had the tests been allowed to continue for 14 to 16 nours.
Molten beads were also forming on a sintered base layer of the probe immersed

in the furnace perpendicular to the direction of gas flow (see Figure 4.10).

The chemical analysis of the deposits and fly ash are compared directly
with the coal ash in Tables 4.2 and 4.3, representing Trials 1 and 2. 1In
Figure 4.11 the data have been plotted on a softening-temperature curve vs.
percentage basic curve and compared directly with the fractionated coal analysis.
In Figure 4.12 a comparison is made with other bituminous coals whose silica/
alumina ratio generally runs 2:1. With exception for the cyclone deposits, the
ash-softening temperatures of furnace slag deposits under reducing conditions

are about 100°F below the fouling probe deposits, the fly ash, and the coal asnh.

©~
|

st

fasy



REF.:. DE-AC22-81PC40268

FOSTER WHEELER DEVELOPMENT CORPORATION DATE: June 1984

Gas
Flow

Furnace
View

Convection
Pass View

Figure 4.5 Deposit Accumulation in Vena Contracta at Entrance to
Convection Pass After Firing Kentucky No. 9 Coal
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Figure 4.6 Accumulation of Deposits in First Fouling Probe as a Result
of Attempt to Clear Vena Contracta While On Line
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Kentucky No. 11 (9 hours)

Kentucky No. 9, Henderson County (2-1/2 hours)

Figure 4.7 Comparison of First Convective Fouling Probe After Firing Kentucky
No. 11 and Kentucky No. 9
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Figure 4.8 Vertical Convective Fouling Probe After Firing Kentucky
No. 9, Eenderson County, for 2-1/2 Hours
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Center Slagging Probe

Lower Slagging Probe

Figure 4.9a Center and Lower Furnace Wall Slagging Probes After Firing Kentucky
No. 9, Henderson County, for Only 2-1/2 Hours (Trial 1)
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Center Slagging Probe

Lower Slagging Probe

Figure 4.9b Center and Lower Furnace Wall Slagging Probes After Firing Kentucky
No. 9, Henderson County, Coal for Only 3 Hours (Trial 2)
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FOSTER WHEELER DEVELOPMENT CORPORATION

Figure 4.10 Deposits Formed on Lower Side of Slagging Probe Perpendicular to
Flue Gas Flow After Firing Kentucky No. 9, Henderson County,
for 2-1/2 Hours
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Table 4.2 Summary of Ash Chemistry and Ash Fusion Data--Cowmbustion Trial 1, Kentucky No. 9 Coal,

Henderson County, Kentucky™

Slagging Probes

Fouling Furanace

Coal Ash Air lleater Cyclone Baghouse Wall Slag Upper Center Lower Prabe 1 CExiv

& O O o© O N VvV & 0O o

Description

Ash Chemistry () @

61-7

sio, 40.0 52.6 40.0 55.2 51.2 34.0 41.7 46 .4 53.2 93.4
Al 0, 16.4 21.8 19.1 2.3 17.6 13.3 15.7 16.6 20.4 20.0
Tio, 0.8 1.0 1.1 1.1 0.7 0.6 0.7 n.7 1.1 0.9
Fe O, 20.5 11.1 20.5 9.2 19.6 41.3 32.0 27.3 10.8 14.6
Ca0 7.8 5.7 6.9 5.5 4.8 5.2 4.9 4.3 7.0 5.1
Mg0 1.1 0.7 1.3 0.7 0.8 0.6 0.6 0.5 0.8 0.8
Na 0 0.8 2.8 1.9 2.6 2.6 1.4 1.8 2.3 4.8 3.4
K0 2.3 2.1 L.4 2.3 2.2 1.6 2.0 2.0 2.2 2.4
S0, 9.4 2.6 5.2 2.5 0.1 L.0 0.8 0.8 1.3 0.3
PO, 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Ash Fusion (°F)

Reducing:
Tnitial Deformation 20t6 2020 2180 1940 1987 1940 1940 1960 2057 2000
Softening (Sph.) 2042 2060 2200 1950 2000 1980 1950 1980 2083 2049
Softening (Hem.) 2100 2090 2270 1960 2042 2000 1960 <1990 2106 2091
Fluid 2111 2160 2390 1980 2138 2020 1980 2060 2223 2173

Oxidizing:
Initial Deformation 2169 2260 2300 2220 2280 2240 2220 2240 2257 2263
Softening (Sgh.) 2490 2300 2330 2244 2292 2340 2240 2250 2292 2292
Sofrening (Hem.) 2700 2330 2390 2280 2350 2360 2280 2320 2350 2350
Fluid 2700 2400 2470 2460 23780 2480 26460 2420 2378 2378

Fagend Tor symbols in Figures &bl and 4512,
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Table 4.3 Summary of Ash Chemistry and Ash Fusion bata--Combustion Trial 2, Kentucky No. 9 Coal,

Henderson County, Kentucky*

. Bescription

Ash Chemistry (1)
$i0,
Al o,y
Tio,
Fe,0,
Ca0
Hgo
Ha, 0
K0
30,

PO,

Ash Fusion ('F)
Redducing:

Initial Deformsliom
Soltening (Sph.?
Softening (Hem.)
Fluid

Usidizing:
©
[nitial Deforma:iun

Softening (Sph )
Softening (llem.)
Fluid

*egead for symb:ls o Figsres

Coul Ash

+

=
@ w = & O

[=2Y- I -
- W &

2016
2042
2100
2111

2360
2490
2700
2100

.11 and 4,12

Locatisu 1

33.2
12.8
2.7
25.5
B.9
.6
U.6
L7

0.3

.99¢C
20DC
0o
2190

2110
2349
2769
2419

_owall Steg o

Location 2

41,
15.

26.

< k=
-~ D P N E o~

[ - B -

1640
1960
[ RUL1Y]
2000

2290
2340
2360
2400

Upper, Slagging Prove
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Side_

)
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Side

h !

oe
[ -

w
[}

)

Eenter
S.agging
LProbe

A 4

o
o oW QW

[~

1900
1920
195C
199¢

2260
2300
234e

27360
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Slapging

Probe

4

S NN
~

1970
2000
2100
2200

2720
2350
2490
2510

Furonace

L2 T
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L g T - B R )

2080
2100
2140
2180

2310
2350
2390
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3000 T : T -

Curve generated from least squares
fit of all data points

N , y = 2920 - 37.0x + 0.36x°
2800

2600

Hem. Ash Softening Temperature (°F)

2400 |
2200
2000 T
Refer to Tables a.li and 4.12
» \ 1 L ) i
1800 20 4 60 80 100

Percentage Basic

‘Figure 4.11 Ash Softening Temperature Vs. Percentage Basic Constituencs
" for Fractiomated Xentucky No. 9, Henderson County
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Lignites and ¥ycming Subbizuminous, Si0,/A1,355>

Ayoming Subbituminous, Si0,/A1,05>>

Wyoming Sudbituminous, Si10;/A1,0, |

ca$Tarn 31tuminous

Bituminous Coals, Si0/A1,0;=2.5 <::-\)
: /

B D N e

2300 |~

(REDUCING)

SOFTURING TLMPURATURE (°F) (NEW. 0 = 172 W)

2300 =

2200 /

2120 )

2000 ! !
¢ b

Refer to Tables 4.11 and 4.12

Figure %.12 1Influence of Percentage of Basic Constituents in Ash on Ash
Softening Temperatures Under Reducing Conditions for
Difrferent PRanks of Coal
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There is very little difference between the initial deformation temperatures
and the softening temperature. Fusion temperatures under oxidizing conditions
are 300 to 400°F higher. The extremely low fusion temperature probably accounts
for the furnace exit fouling, as the flue gas temperatures in this zone are
between the initial deformation temperature and the fluid temperature under re-
ducing conditions. It is interesting to note the fluid temperatures under re-
ducing conditions for all slag species are almost 200°F below the fractionated
coal ash. The initial deformation temperatures are also 100°F lower under re-
ducing conditions. The differences under oxidizing conditions are not as se-
vere. The implication is that pure species may be selectively interactinz at
the furnace wall and on the heat-transfer surface to form eutectics with con-

siderably lower fiuid temperatures.

Only the deposits accumulated during Trial 2 were subjected to microscopl:l
examination by scanning electron microscope (SEM) and x-ray diffraction (EDX).

The results are summarized in Figures 4.13 through 4.25.

The overall surface morphology of powdery ash formed on the lower slegging
probe is illustrated in Figure 4.13. The EDX scan indicates an overall chemis-
try, similar to that for the coal ash, depleted of iron. The individual species
are illustrated in Figure 4.14, along with their chemistry. The semimolten
sphere, appearing to be an agglomerate of smaller particles formed by a molten
material wetting their surfaces, is rich in silica and potassium, with small
quantities of iron. The iron is believed to be contributed by the small, sub-
micron particles attached. This conclusion should become more obvious as

further species are analyzed. The smooth spheres are predominantly silica and
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Figure 4.13 SEM Photomicrograph and EDX Scan--Surface Morphology and Elemental
Composition of Composite Powder Comprising First Layer on Lower
Slag Probe
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Figure 4.14

SEM Photomicrographs and EDX Scans--Surface Morphology and Elemental Composition of
Individual Species Comprising Powdery Layer on First Slagging Probe
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alumina, with small quantities of iron and sulfur. The same spueroids, incapsu-
lated within small crystals, are enricned with calcium, iron, and sulrfur.
Clays such as kaolinite and possibly illite are the source of the small, fused

spneroids. The incapsulated, submicron particulates originated as calcite and

wn

1oure 431

ivrite in the ccal. The molten surface of the globules, shown in Fi

9

is predominantly quartz, to which extraneous pyritic srheres and inherent
submicron particles ot pyrite have attached themselves. The microphotographe
clearly show that some of the particles are mechanically trapped while others

are sintered bv a molten bond of SiO2 and K,0, sulfidation of calcite,

or bonded by FeO or Fef going into solution with SiO,.

The inner laver of powdery ash Icrmed on the center slazzln
1llustrated in Figure &4.16. The large, skeleton-like spheroids, compdsed o
2gzlomarates orf submicron particles, are remnants c¢I speat cnér it a CImpoSi-
tion similar to the coal ash slignhtly enriched with quartz. The chiemistry re-
sembles that ~f rhe lighter coal ash fractions. The semimolten spheres con=
taining blow holes are rich in silica and potassium and completelv void of iran.
There are also traces of sodium, which may be quite high because the EDX will
not identify sodium below 5 percent. Mo doubt these particles originated as
1llite. The spheroids, containing stmall submicrou attachwents, arec clay parti-
icles with irovu guing into solution at the surface Within the cross section
there is a molten phase rich in silica and iron, with trace amounts ot calcium.
This molten phase is formed by small quantities of calcium sulfate crystals,
the illite spheroids, and submicron crystals of pvrite going into solution with

tne quartz as the surface temperature of the deposit increases with continued
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Smooth Fused Silica Matrix . Small Crystals Going Into Large Iron Particles Going
Solution - Into Solution

Figure 4.15 SEM Photomicrographs and EDX Scans--Surface Morphology and Elemental Analysis of Fused
Outer Surface of Slag on Lower Probe
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Large Iron Particle Encapsu- y Large Semimolten Potassium Buraed Out Remnant of Char
lated With Submicron Particles . Silicate Particlz

Figure 4.16

SEM Photomicrograph and EDX Scan--Surface Morphology and Elemental Composition of
Fly Ash Species Initiating Slag On Canter Slagzing [robe

NOILVYHOdH0O LNIW4OT3IA3A H3T3IIHM 431504

434

%861 aunp :31lvd

8970%0d18-2¢0oV-4dd



REF.: DE-AC22-81PC40268

FOSTER WHEELER DEVELOPMENT CORPORATION fiawe: sTumel 194

growth (see Figure 4.17). The outer layer of the deposit (Figure 4.18) is a
dense, molten matrix composed primarily of iron, calcium, and silica. The cou-
centration of calcium sulfate appears to have increased with temperature. There

is evidence of desulfurized iron going into solution.

Figure 4.19 shows the cross section of deposit removed from the flawe side
of the slag probe immersed in the furnace perpendicular to the flow of the flue
gas. The cross section represents the area between molten nodules, 1illustrated
in Figure 4.10. A photomicrograph of the molten nodule appears in Figure 4.20,
along with its EDX scan. The nodule is a molten solution of calcium, iron,
alumina, and silica. The silica probably originated as illite and tnus may in-
clude some potassium which has been depleted by dilution. Tne cross section
shows an iron oxide substrate scale about 1/64 in. thick, to which the deposit
is ponded. The solidified molten matrix forming the bond is ricn in silicz and
contains small amounts of alumina potassium, and calcium. The smooth spneroids,
to which rough appendages comprising submicron iron crystals are attached, are

composed of silica, alumina, and calcium with trace quantitie: »f potassium.

The iron appearing in the EDX scan may have thc same origiu as the other
elements; however, it seems more likely its source is the pyrite crystals going

into solution.

Except for the large molten nodules, which represent an advanced stage in
the growth of the layer initiating the deposit, the ash on the top side of the
tube resembles that on the bottom. The cross section appears in Figure «.21.

The inner laver consists of molten and semimolten particles rich in silica ana
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Figure 4.17 SEM Phctomicrographs ard EDX Scans--Surface Mozphology ard Elemental Composition

of Jroes Section and 3Surface of Outside Molten Layer

Fused Matrix of Slag
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Figure 4.18

Crystals

SEM Photomicrographs and EDX Scans--Surface Morphology and Elemental Composition
of Molten Surface of Deposits Formed on Center Slagging Probe
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Smooth Sphere

Appendages

Molten Matrix
Compositicn of Perpendicular 2robe Tude Scale Bonded to Ash Deposit

Figure 4.19 SEM Photomicrcgraphs and EDX Scans--Surface Morphology and Elemental

Cross Saction

Tube Scale
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Figure 4.20

SEM Photomicrographs and EDX Scans—--Surface Morphology and Elemental Analysis
of Molten Nodules Formed on Lower Surlace of Perpendicular Probe
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Tube Side

30X

Gas bYide

Cross Section

Fizure %4.21 SEM Photom_crographs and EDX Scans--Surface Morphology and Elzmental Analysis
of Inside Powdery Layer and Cross Section cf Deposit on Top Side of Probe
Perpendicular to Gas Stream

NOILYHOd4dH0I LNIINdOT3IA3A 43133HM 431504

434

7861 @unr :3Lva

89¢0%0d18~-¢COV-3dd



REF.: DE-AC22-81PC40268

FOSTER WHEELER DEVELOPMENT CORPORATION
DATE: June 1984

alumina with trace quantities of sodium, potassium, iron, and calcium. The

alkalies may be instrumental in forming the surface bonds. The cross section
consists of a molten matrix of ash whose composition is primarily silica with
traces of sodium and potassium (Figure 4.21) impregnated with submicron parti-
culates rich in iron and containing minor concentrations of alumina, silica,

and calcium. The outside layer is dominated by a silica-rich molten phase and
small iron crystals. In some cases the spheroids, believed to be derivatives

of frambodial pyrite, have attached themselves (Figure 4.22).

The furnace wall slag consists of a molten matrix of a silica-enriched
substance containing crystals composed of iron, calcium, and silicon (see Fig-
ure 4.23). Unlike the advanced stage of slagging associated with-other coals,
there was no outer layer of nearly pure iron oxide. There is no explanation

tor this difference.

The sintered material formed on the upper furnace wall was similar to the
material responsible for plugging the convection pass inlet (see Figure 4.24).
The particles consist cf two types of spheroids about 4U to 50 ym or smaller.
One spheroid is smooth and appears to be slightly wetted by a thin film. Pre-
vious EDX scans have identified these spheres to be rich in silica with minor
concentrations of potassium, calcium, and alumina. The second type of spheroid
is completely incapsulated with submicron particles of iron whose origin is be-

lieved to be pyrite.

The composition of the bulk of the second type of spheroid is uncertain,

but it is believed to be rich in quartz, as shown earlier in Figure 4.22.
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There appears to be a subtle difference in the morphologv of tne smooth par-

ticles. The wetted film appears to be more dominant. This could be from the

presence of sodium, detected only at the lower gas temperatures.
1

ifite fly asn resemoled a collection of spheres alrecdy ideatilied

previously discussed deposits. Figure 4.25 is a typical example.
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Section 5

I:IPACT OF COAL WASHING ON FIRESIDE DEPOSITS

T°3T
AN §

RO0LUCTION

Ifhe most seriously slagging coal (i.e., Upper fFreeport, Indiana Jounty)
was subjected to washability tests. The individual size and gravity fractions
of the coal, crushed to 3/8 in. x 0, 14 mesh x 0, and 200 mesh x 0O, were ana-
lyzed in detail for percentage ash and‘pyrite; ash chemistry, and ash fusion
temperatures. By examining the elemental analysis and corresponding ash fusioa
temperatures of the raw coal and. its mineral matter partitioned by size and
sravity, the species of coal or mineral matter that should be removecd - uash
ing could be determined. The analysis also helped in selecting thé perticle
size at which the washing should be performed. The coal was then crushed and
wasned. The washed proéuct and residue were subjected to further analvsis to
determine the effectiveness of the cleaning operation on a large sample and
to characterize the coal before combustion. The washed product was tren firec

in a 100 1b/h combustor for 10 hours to assess the fireside behavior ofi tue

mineral ‘matter modified by beneficiation.

WASHABILITY TESTS

The washability tests were reported earlier in Quarterly Progress Report 6.
To maintain continuity in reporting the results, the procedure and data are

briefly reviewed here.

A 300-1b sample was coned, long piled, shoveled into four piles according

to ASTH specifications, and divided into two parts by combining opposite piles.
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)

The coal was then screen-crushed and pulverized, according to the process flow

mesh x 0. The individual streams were further divided by size into increments
of 3/8 in. x 14 mesh; 14 x 100 mesh, and 200 mesh. x 0, as shown in Figure 5.77.
Each slze was sink flogted at gravities of 1.26,-1.28, 1.3C, 1.32, 1.34%, 1.36,
1.38, 1.40, 1.50, 1.80, and 2.85 to develop washability data for ash‘partitién-
ing and to estimatc the liberation of ash with size¢, Each gravity fractiocun was
analyzed for percentage ash, pyritic sulfur, and totai sulfur. WNew gravity
fractions were formed at +1.30, —1.30/+1.80, -1.80/+2.85, and 2.85 by combining
portions of each gravity fraction proportion according to the original par-
titioned wt% distribution. Each of the newly formed weight fractions was

. )
analyvzed for ash chemistry and ash fusion temperatures.

The weight . distribution of.the ash is summarized in Table 5.1; the wash-
ability data appear in Tables 5.2 thrdugh 5.%; the agh chemnistery data‘appéar n
Table 5.6. The elemental analysis ol (he data is summarized in Table 5.7 in
terms of the percentage of each element found in each gravity fraction. This
table provides an insight into the degree of liberation of unéesirable impuri-
tiles. ’

The washability data are summarized in Figure 5.2. The data indicate there
is only a siight improvement in liberation as the voal 13 crushed from 3/8 in.
x 14 mesh to 14 x 100 mesh. At a 1.8 sp gr, the yiela increases from 70 to
85 percent. When the coal is further pulverized to 200 mesh x 0, the yield goes

down and appears to be almost identical to that of the coarse size fraction of

coal crushed to 3/8 in. x 0. Whether this reduction in yield reflects the

5-2
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One 55-gal Drum
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Air Dry
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3/8" x 14 mesh , |
14 x 100 mesh Screen
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100 mesh x 0

}
1307 1h

|

tc 14 mesh x O

Mix and Split

‘Tr 75|

Combine
"a" 3/8" x 14 mesh Mix and Split
"B" 14 mesh x 100 mesh |
"C" 100 mesh x 0 ’

38 1b

AN e

36 1o

l

Mix and split

s "D" 14 mesh x 100 mesh
N "E" 100 mesh x O

! s r .

] N

| ! 1

' ! 19 1b 19 1b

’ "F'" Process to 200 mesh "G" Heae Samp!le2
14 mesh x O

Fractionms: "A", "B", "D", and "F" were sink-~floated at 1.26, 1.28, 1.30,.1.32,

1.34, 1.36, 1.38, 1.40, 1.50, 1.80, and 2.85.

[ =4

Figure 5.1 Process Flow Diagram for Washing 300-1b Sample of Upper Free?ort

Coal, Indiana County, Penasylvania
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-

Takle 3.1 Weight Distribution of Screened Coal! Samples
Alr Drv Loss: 2.49 wti

Size Weight (1b) Direct Wt Cumulative Wti

Sor2en Anzlveis, Pertion 1 (half of representative sa=plaj:

+3/8 in. 21.12 14.5 14.5

3/8 15 ¥ 14 mech 78.50 54.0 58.5

14 » 10U mesh 35,04 V4.4 gz.@

100 meeh % 0 ' 10.28 7.1 10G.0
Total ‘ 145 .44 100.00

T2 +3/3 ia. was crushed to pass 3/3 in. and screensd again:

3.0 ir 12 mesn 17.48 33.0

- D ones! 2.8 13,3 :.3

10O mesh x O 0.74 3.5 v
Total 21.06A 106.0

Combined Screened Analyvsis (3/8 in. x 0):

"A'"-=3/8 in. x 14 mesh 95.98 66.0 66.0

"B'"-~14 x 100 mesh 38.38 26.4 92.4

"C"-=100 mesh x 0 11.02 7.6 100.0
Total 145.38 100.0

Screen Analysis, Portion 2--Crushed to 14 mesh x U (other half of representat ive
sample):

"D'--14 x 100 mesh 27.68 74,7 747
MEY-—10C mesh x 0 9.38 25.3 100.0
Total 37.06 160.0

5-4
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Table 5.2 Summary of Washability Data for Upper Freeport Coal, Indiana County,
Pennsylvania--Size 3/4 in. x 14 mesh (3/8 in. x 0 stream)

bensity Total ' Total Tatal

Fract ion Cumnlative Ash Ash Cumulat ive Sut fur Sulfur Cumulat tve Pyrite Pyrite Comulative
Float/Sink WX Weight (%) (%) (%) Ash (%) R By sulfur (1) S B ¢ ) Pyrite (&)
+1.26 2.9‘ 2.9 1.31 0.04 0.04 .71 0.022 0.02 v.t8 - Tl 0.l
sl.ad/-1.26 11.9 14.8 2.09 0.24 0.24 015 0.08Y 0.11 0. 22 U0y 0.0
RTINS 9.5 26.3 4.66 v.4t4 0.2 0.94 0.u8Y 0.20 .69 0.Ub 0.10
+1.32/-1.%0 7.4 31.7 7.03 0.52 1.24 1.23 0.091 0.24 0.89 U.ub 0.6
vLbag-182 1.3 29.0 9.18 0.07 1.91. 1.4 v. 098 0.39 .87 .06 0. 22
v1.16/-1.34 5.1 4h .1 11.76 0.59 2.50 1.11 0.067. 0.42 0.97 0.05 0.21
v1.38/-1.36 3.4 48.0 13.14 0.51 3.01 1.4 0.055 0.468- 1.09 .04 0.4l
+1.40/-1.38 3. S1.1 14 .83 0.45 3.46 L7 1.051 0.53 1.25 0. 04 0.5
+1.50/-1 .40 10.3 61.4 16.97 L.13 5.19 2.92 0.2%2 0.7 2.9 0.24 Y
v1LB0/-1.50 1.4 72.8 3.8 394 8.73 4.68 0.93 1.31 1.98 .45 IR
12.85/-1.80 25.9 98.7 75.93 194 2847 3.95 1.03 2. % 3.24 0.90 2.00

~2.85 1.3 100.0 66 . B0 0,89 29.22 0.1 0. 2GR 22.2% 0.8 2.

NOILYHOdd0I INFWHOTINIG Y43IT3IIHM HBiSOﬂ

‘31lva
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Table 5.7 (bcttom section) Summary of Washability Data for Upper Freeport Coal,
Inc¢lana County, Penrsylvania--Size 14 x 100 mesh (3/8 in. x 0 stream)

9-¢

Density Total Tatal Total

Fraction Cumulat “ve Ash Ash Cunulat ive Sulfur Sul fur Cumnlaczive Pyrite lyrite Camuel atwvae
Float/Sink wez Weight (X) (2) (%) Ash (%) e (%) Sullur t%) Lh) e Pyrite (4)
+1.26 5.2 5.2 1.20 0.06 0.C6 0.61 0.03 0.03 .10 0,005 (IS
1 28F-1.26 23.6 28.3 1.96 0.45 0.%1 0.75 0.177 0.2 015 [UNTRE) 004
t130/-1.28 10.9 39.7 7.22 06.78 1.29 .04 0,113 - 0.2 0.0 0482 (.n?
£ -0 %0 8.3 48.0 11.53 0.95 2.24 1.63 0.13 0.4s 0.71 (r.os8 (LN
+1.34/0-1.32 6.8 54.8 11.16 0.75 2.139 1.51 4.0 0.55 0.60 0.04 .16
tl.30/-1.34 3.0 57.8 1L.10 0.33 3.32 1.50 (. 045 0.%¢ u. 59 0.04 0.20
th38/-1.36 2.9 60 .1 13.50 0.39 3.71 l.63 0.047 0.64 0.68 0.902 0.22
+1.60/-1.18 2.9 63 6 14.79 0.42 4.3 .73 6.05 0.59 0.6 (.02 U.24
11.50/-1.40 7.2 70.8 1§.86 1.35 5.48 2.29 .16 0.3% 0.98 (.28 0.52
+1.80/-1.50 10.0- 80.8 30.13 3.0 8.49 3.44 0.34 1.19 2.50 0.25 0.77
+2.85/-1.80 17.2 98.0 - 71.93 12.13 20.79 5.86 1.0% 2.20 4.3 0,73 1.50

-2.85 2.0 1001.0 55.68 1.1 21.90 6.30 0,12 2.21 5.0/ 0.0 1.80

Size 100 mesh  --- - 20.06 -~ _— 3.07 -—- --- 2. .44 - ---

x O {38

in.

x 0 stream)

NOILYHOdHOO LNIWJOT3NA3A ¥3T133HM 93 LS04

aunf :31vd
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Table 5.4 Summary of Washability Data for Upper TFreeport Coal, Indiana County,

Pennsylvania--Size 14 x 100 mesh (14 mesh x 0 stream)

L-S

bensity Total Total Total
Fraction Cumulat ive Ash Ash Cumulative  Sultur  Salfur  Cumulative  Pyrite  Pyrite  Comulalive
Float/Sink wed _ﬁkight (%) (%) Z) Ash (%) (e) (%) Sulfur (X) {%) (%) Pyrite (%)
+1.26 2.9 2.9 2.95 0.08 0.4 1.07 0.03 0.01% 10).42 0.012 0.ul2
+1.28/-1.26 28.7 31.6 3.84 1.09 V.17 U. 96 v.21 0. 30 V.45 0.12 [V Y
+1.30/-1.28 17.6 49.2 5.93 1.04 2.28 1.16 V.20 0.50 v.57 0.100 0.232
v1.32/-1.30 7.4 56.6 7.717 a.57 2.78 1.59 .11 0.6! 0.92 U.4b U.l“)l
o!.)A/—l.]Zi 5.1 6l.7 8.50 0.43 3.21 1.6l 0.08 0.69 .92 0.04 V.33
+1.36/-1.34 2.6 64.3 14.70 0. 38 3.59 1.h9 U. 04 0.73 .43 0.0 0. 30
+1.38/-1.35 3.4 67.7 17.94 0.60 4.19 3.55 v, 12 U.89 315 0.1 .37
+1.40/-1.33 2.8 70.5 13.32 0.37 4.5 1.98 u.05 0.90 V.43 0.40 0.77
+1.50/-1.40 6.9 17.4 17.14 1.48 5.74 Z.?l 0. 18 1.08 2.15 0.14 0.91
+1.80/-1.50 8.0 85.4 27.35 2.18 1.92 3.57 0.28 1.36 2.82 V.22 1.13
t2.85/~-1.80 11.0 96 .4 69.93 7.09 15.6 4.6 0.47 1.83 4.73 0.52 1.65
-2.85% 3.6 100.0 73.90 700 18.2 18.21 U.h.‘) 2.48 15.50 0.55 2.20
Size 10O mesh --- --- 25.40 --- -——- 3.06 --- - 1.21 - —--

x U (14 mesh
x 1) stream)

NOILvH0dd00 1NIWdOTIA3IT 43ITIIHM HY31S04
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Table 5.5 Summary of Washability Data for Upper Freeport, Tndizna County,
Pennsylvania--Size 200 Mesh x 0 Stream

Kractivn Cum. Yative Ash
Float/sink e X  Meight () (X))
.26 1.0 1.9 1,50
.28/-1.26 3.2 8.2 1.86
.30/-1.28 &.8 17.0 3.07
.32/-1.30 §.1 25.1 3.4y
30/~1.32 .6 31.7 5.81
L36/-1.34 2.0 35.7 6.51
L38/~1.36 «.0 39.7 7.7
.40/-1.38 5.2 &&.é- 8.73
.50/-1.40 12.1 57.0 12.39
-B0/-1.50 8.4 75.4 21.63
.85/-~1.80 2.5 95.9 63.15%
~2.85 4.1 100.¢C 64.40

Tirval
£ah

ILEYN

o015

~

K

.97

Cinnala

Ash (D
0.0153
0.14%
0.419

0.1

L. 1as

2

3.

7.

20.

23.

L0t

Se

4n

ivee

Sullnr

R

0.1t

0.59

0.H9

0.71

0.74

0.68

0.69

0.66

0.93

36.47

Totral

Sulfur Cumu lative Pyrite
L0 salfer (1) ()
0.007 0.007 0.06
0,049 0.056 0.08
.06 0.117 .15
0,087 v. 17 0.23
0.043% 0.22 0.37
0.a27? 0.24 0.37

0.027 0.27 0.4t

0.0 0.31 0.49

0.112 0.42 0.80

0.29 0.7t 1.58

0.5 1.25 2.27

1.4% 2.74 35.03

Total
Pyrite Cunnlal tve
(%) Pysite (2)
0.0006 v.0u
[T 0,005
(I [ Ry
o 0.19%
0. 24 0,34
0.4 0.409
006 0.425
u.025% }.45)
0.096 0.5%6
0.29 0.8736
0.4h 1.29
.43 2.1?

NOILYHOdH0D LNIWIOTIAIA H3133HM 431504
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Table 5.6

. %
Pennsylvania
Ash
Deasity Fraction wed (%) Si(,l2
3/8 x 0 Stream:
3.8 x l4 .Mesh
ht .U
Float-Sink
130 26.3 2.9 42.9
+1.80/-1.30 48.5  16.5 45.9
v2LH5/-1 .80 25.9 75.93 S4.0
Sink 1.3 68.80 21.3
14 x 100 Hesh
204
Fltoat ~Siuk
.30 39 .7 7.1 42 .4
th.go/-1.030 ab.l <1705 4b. 3
+72.85/-1 .80 7.2 71,93 41w
Sink 2.0 55.68 15.2
™ 100 Mesh x () 7.6 20.06 3IB.6
| 1.t
O
I Mesh x U Strzam?
14 x 10U Mesh
Wike T
Float-Siuk
130 49.2 4.9 40,3
sl.80/-1.30 63.8 8.9 42,7
v2.84%/-1.80 1.0 69.93 51.3
Siuk 3.6 13.90 25.9
Size: 100M x 0 25.% 20.73 42.3
" 293
200M x O Strean:
Size:  200M x 0
w100
Float=Sink
L I 1} 17.0 2.8 46 .1}
11.A07 -1 .30 “8.00 1201 48,y
V2.8 -1 .80 20,5 63,15 53,0
A fink 4.1 bh.L0 25.3

Aiymbols plotied in Figore 5.3,

Alzﬂ.’ T
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Table 5.7

Dansiny Fraction

llﬂ‘- 0 Stscam
Bize 3/8 u 14
i Ploat-Slak
¢+1.30
vh.80/-1.30
02.83/-1.80
Slak

Size MAM x LM ML X T6.4

Ploat-8lak
+1.30
o1.80/~1.320
+2.83/-1.80
6lnk

1M « O Stroam

Stz 14M x 300
‘Piost -Gink

+1.30

*4.80/-)0..30

¢2.83/-k.00
Sduk

001 x 0 Stroam

T 650
.

ux M.)

Slec 2000 2 0 Wik 103

Flost - Slak
). 30
¢).80/-1.30
+2.85%/-1.80
. Gink

sio

",
na

",
M.
35.

v -, w

12,
10.
9.1

~

0.6

bl.&
5.9

a0

1.8
9.1
65.%

2.1

12.6
na
n.:

2.8

eh
.9
3.7

6.7

1.2
3.7
6.6

6.0

vi0

30
29.3
66.2

14

-
(-]
" W W N

24.
n.
j8.

e e v e

3.
32,
3

o> > 0 o

Ash Chemistoy (T of Totel)

¥e O

2.6
1.
52.8
11.)

9.2
29.8
a2.8
1.5

1.6

2.4

20.3
7.6

1.2
21.2
1.3
(YN ]

CaD

1.0
Tt
s

1.3

6.7
20.9
50.2

1.1

15.8
13.%
29.4
40.7

4.2

.1a.e

10.3
6.3

HgO

1.6
19.2
17.9

1.4

132

26.3%

8.3
.37

15.9
16.5
6.1
1.5

22.4
27.2
4403

3

1.4
0.7
39.3

)]

1.2
3.9
42.1

7.3

2.6
.4
3.1

3.7

.2
n.r

7.
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6.2
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FOSTER WHEELER DEVELOPMENT CORPORATION REF..  DE-AC22-81PC40268
DATE: June 1984

0 : 190
] ] l
10 }— _ 90
*0.1 sp gr

20 b 80

30 fe 70
@ x
s 40 60 <
S ©n
-g 50 j= 200 mesh x O 50 _g
© 3/8" x 14 mesh (3/8" x 0) =
3 " ‘ | 40 3
= 60 F14 x 100 mesh (3/8" x 0) [ 2
S 14 x 100 mesh S

70 jaoe
80 = — -1 20
90 |f | —~ 10
/ t
100 W T N N N Y N B N NN AN WA A1 ;
2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2
Specific Gravircy
Scale of Values of Near-Gravity Material:
Quantity Within #0.10 sp gr range (%) Separation Problem
0-7 Simple
7-10 Moderately Difficult
10 - 15 Difficult
15 - 20 Very Difficult
20 - 25 Exceedingly Difficult
Above 25 Formidable

J. W. Leonard and D. R. Mitchell, "Coal Preparation,” The American Institute
of Mining, Metallurgical, and Petroleum Engineers, New York, 1968.

Figure 5.2 Cumulative Float (% Yield) vs. Specific Gravicy for
Various Size Fractions
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difficulty of separation at the smaller size fractions or variability in
mineral size and assoclation within the coal is not certain. The curve illus-
trating the quantity of near gravity material within thé *10 sp gr range
indicates good separation can be achieved at gravities greater than 1.6 sp gr.
The selection of the optimum gravity level for performing a separation is not
explicit, as the percentage yield vs. gravity curve is expenential. A qualita-
tive assessment of the curves suggests that the 1.80 gravity separation of coal
crushed to 14 x 100 mesh gives a yield of about 82 percent while liberating
about 60 percent of the ash apd~51.3 percent of the pyrite. The produc£ sthId
contain about 7.92-percent ash and l.l13-percent pyrites. The ash chemistry ard
ash fusion data, summarized in Figures 5.3 and 5.4 on the ash softening tempera-
ture vs. percentage basic curve and the ash fusibilit§ curve, indicate the lowest
melting and most troublesome ash are contained in the gravity fractions heavier
than 1.80, which will be removed during the beneficiation process. The fusi-
bility curves indicate there is very little change in the physicochemical
properties as the coal is pulverized to 200 mesh x 0. Therefore, althoush the
coal is washed at the 14 mesh x 0 size, further pulverizing to 200 mesh x O
before combustion should have little effect on the fireside characteristics of
the ash. The fusibility curves also indicate the inherent ash coantained in the
float 1.30 coal has melting characteristics similar to the composite ceoal ash
chemistry. The heavier fractions have been depleted of pyrite during crush-
ing; consequently, they have a higher softeping temperature than the raw coal,
reflecting the reduction in iron concentration in the ash. The final composite
sofrening temperature of the washed coal should be 100 ;6 200°F higher than the

raw coal. The reduction in individual elements as a function of yield in the
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wasiiing .process indicates tne most "erffective" reduction in elemental impurity
cccurs at about 70 percent yield or 1.80 sp gr. FeS, is preferentially re-
moved at the higher levels of yield, reflecting the partitioning of FeS, and

other mineral matter in the heaviest gravity fractions (see Fizure 5.5).

COAL WASHING

The washability data indicated the most beneficial improvement in fireside
deposits should occur as a result of washing 14 x 100 mesh coal at 1.80 sp gr.
Tnerefore, 2000 1b of coal was hand washed according to the process flow diagram
in Figure 5.6. The 3/3 in. x 14 mesh material was sink floated at 1.80 sp gr to
remove tne oversized ash before crusning. All the 14 west ¥ U streans were
screenea of luU mesn X u material before washing at i.ob Sp 4r. rTOGUCT ana re-
fuse streams were savea for analysis. Tne chemical analysis of tne wasnee coal
was compared with tne raw coal ana tne comparable gr-vity frzcrions (i.e., +i.30,
-1.3U/+2.80) in each size fraction of the washability study. 7The data inaicate
a ob-percent reduction in ash and a 46-percent reduction in pvritic suifur. The
yield 1s 68 percent, including 100 mesh x 0 fines of the clean coal that account
for 15 percent of the yield. Screening of the fines would reduce tne overall

yield to 53 percent, which is not economical.

Very much to our surprise, the ash chemistry of the wasned product does
not resemble the float 1.80 gravity fractions generated during the washability
studies, nor does the ash chemistry of the pulverized form of the washed prod-

uct resemble the ash chemistry of the fractionated pulverized unwashed coal
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Reject
30%
524 1b

Clean Coal
70%
2156 1b

Crush to 14 mesh
2156 1b

pig

-14 mesh
30%
1320 1b

0

1.80 sp gr Separation

3476 1b
Réject Clean Coal
14% 56
480 1b 2996 1b
14 x 100 mesh 100 mesh

2332 1b

Figure 5.6 Washed Coal Process Flow Diagram

554 1b




FOSTER WHEELER DEVELOPMENT CORPORATION REF..  DE-AC22-81PC40268
DATE: June 1984

studies, as illustrated in Tables 5.8 and 5.9 and Figure 5.7. Instead, the ash
chemistry and ash fusion temperatures resemble the head sample and the unwashed
fines (i.e., <100 mesh). The ash fusion temperatures under oxidizing and reduc-
ing conditions are 100 to 200°F below those predicted from the washability st;dy.
The percentage of pvrite and ash, however, is considerably lower than predicted.
X-ray analysis of low-temperature ash (Table 5.10) indicates that despite similar-
ities in elemental composition of the washed coal and the head sample, the min-
eral composition of the washed product was altered. 1Illite was reported as a
major constituent in the raw coal and a minor constituent in the washed product.
Therefore, it appears that substantial quantities of illite were removed during
washing. This could represent a significant improvement in the fireside behavior
of the coal, as earlier combustion testing of bituminous coals has indicated that

illite may be the mineral inittating the slag deposits.

Pyrite is generally considered to be the dominant mineral source of iron
in coal ash. However, iron may also be found as pyrrhotite, hematite, siderite,
or ankerite. As discussed in the previous progress report, their physicochem-
ical behavior during combustion is quite different; therefore, as pure species
their contribution to fireside deposits is quite different. An estimation of
the distributipn of iron between pyritic and nonpyritic iron-bearing minerals
in the ash of the washed coal and the coal fractionated during the washability
studies. indicates a decided difference in mineral source of the iron in the
washed coal compared with the equivalent gravity fractions generated during

the washability study. Only 53 percent of the iron in the washed coal can be

attributed directly to pyrite, based on the percentage of pyritic sulfur



Table 5.8 Comparison of Ash Chemistry of Washed Coal (14 x 100 Mesh, +1.80 Sp Gr) With Float |.80 and
1.30 Gravity Fractions .of Various Coal Sizes Examined. in Washability Study
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TABLE 5.9  Comparison of Ash Chemistry of Unwashed 200 Mesh x 13 foal with

200 Mesh x 0 Coal Washed at 14 Mesh x 0

_sravity Fraction

0Z-¢

.30 —1.30/41 .80 ~1.80/v2 .85 : )
Descrip:ion Kaw Waghed Raw Waghed Raw Washed Raw  Washed
Ash Chenistry (%)
510, 46.0 9.9 afl. 0 4%71.5 53.0 8.6 5.3 1.9
Al 0, 31.% 244 LA} 28.9 27.6 18.5 16.3 2.0
Tio, 2.9 V.3 1.4 1.5 1.0 0.5 0.6 0.1
Fe 0, 8.5 17.4 9.3 2.5 B.5 14.0 a9.6  87.7
Ca0 5.7 7.0 1.7 3.3 1.9 13.8 1.6 2.1
Mgt it k.0 0.9 0.8 0.8 .8 (U} 0.2
Na ,0 0.5 0.7 0.4 0.6 0.4 0.4 0.2 0.1
K ,0 2.9 2.6 3.3 2.8 1.2 2.0 1.6 0.2
S0, 3.1 5.9 1.1 2.0 2.0 2.3 1.5 1.9
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Takle 5.10 Comparison of Mineral Analysis of Reject Material
from Coal Washery with Run of Mine Coal

Washery Rejects

Run of Mine Washed Coal 3/8" x 14 mesh, -1.80 -14 mesh x 0, -1.80
MAJOR

Kaolinite Kaolinite Kaolinite Kaolinite

Quartz Quartz Quartz Quartz

Pyrite Pvrite Pyrite Pvrite

Illite
MINOR =t Illite Illite Muscovite

TlLT1te
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reported. The remaining iron must come from one of the other iron-bearing
miperals previous}y mentiqned. However, between 80 and 100 percent of the iron
in the ash of the light gravity fractions, generated in the washability study,
originates as pyriteé in the coal. A further examination of the fines and
heavier gravity fractions indicates that 100 percent of the iron in the ash of
the fines originates in pyrite, whereas 40 to 50 percent of the iron in the
heavier gravity fractions occurs as nonpyritic mineral-bearing iron. The:mo-
gravimetric analysis of the heavier gravity fractions, reported in Progress
Report 7, revealed a substantial reduction in reactivity of  the he;;iest gra-
vity fraction compared with other coal-derived pyrite, confirming the presence
of nonpyritic impurities which could be either pyrrhotite or siderite. Since
the head sample'containéd only 36 percent of the iron as pyrite, ;he washabil-
ity study indicates nonpyritic iron-bearing mineral matter would be selectively
removed during beneficiation. The analysis of the washed coals indicates pyrite
was selectively removed. Despite the fact that the coal samples were taken from
the same seam at the same time, the mineral forms, size, and distribution are

quite different.

One sample of pulverized coal was set aside for gravimetric partitioning
and analysis to determine the impact that pulverizing 14 mesh x 0 coal to 70
percent <200 mesh might have on further liberation of mineral matter. The anal-
ysis of the partitioned sample also permits a direct comparison with the 200

mesh x O stream generated during the washability study.

The chemical analyses of the ash and ash fusion temperatures of the minerals

in the individual gravity fractions of the washed and unwashed coal appear in

~ [
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Table 5.11. The quantitative data indicate about 57 percent reduction in total
ash. The iron and calcium concentrations in all the fractipnated samples are
high, accounting fo; the lower fusion temperatures of all the fractionatéd ash,
excepting the sink 2.85 fraction, when compared with their counterpart; in the
unwashed coal (Figure 5.8). The heaviest fraction is rich in pure éyrite, wnich
is responsible for the.higher fusion temperatures in reducing and oxidizing en=
vironments. The sink 1.80/float 2.85 and the sink 2.85 represent mineral spe-
éies released as a result of pulverizing from 14 mesh x O to 200 mesh x 0. The
fusibility diagram in Figure 5.9 and the percentage distribution of iron diagram
appearing in Figure 5.10 indicate these two fractions represent less than 6
percent of the total coal but contain abqut‘30 percent of the total ash and 45
percent of the pyritic ;ron. Liberati;n of pyrife‘during the final step of
comminution from 14 mesh x 0 to 200 mesh x 0 is sligﬁtly greater than liberation
of either éuarté or calcite. A“comparison of the percentage of iron determined
by the pyritic sulfur in the individual gravity fractions with the iron reported
in the ash indicates virtually all the iron in the washed coal originated from

pyrite. The nonpyritic iron species appears to have been washed from the coal.

The high concentration of ash in the float 1.30 fraction and the high con-
centration of iron and calcite in all species compared with the washed coal
suggest slight differences in mineral composition, size, and association with
coal and other mineral matter exist between the raw coal samples used for the
washability test and the washing operation, deséite the fact that they were
sampled at the same time. The differences must be because of the variability
within the miﬁe, accounting for suwbstantial variations in composition over a

short interval in time. Coal variability is discussed in the next section.
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Table 5.11 Comparison of Ash Chemistry and Ash Fusion Temperatures for
Unwashed and Washed 200 Mesh x 0 Samples
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Figure 5.8 Comparison of Softening Temperatures of Fractionated Washed and
Unwashed Pulverized Coal
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Thermograms performed on the washed coal and compared with the raw coal in
Figure 5.11 indicate there was no change in the combustion profile as a result
of washing. TGA thermograms performed on each gravity fraction and compared
with the raw coal and the pure pyrite in Figure 5.12 show that the pure pvrite
was as reactive as the ccal and burnout was achieved in the same amount of time
as was coal burnout. The pyrite retained in the sink 1.80/float 2.85 gravity
fraction goes through a two-stage combustion process, and burnout is not a-
chieved until 800°C, about 200°C higher than the clean coal. Apparently, pvr-
rhotite is formed at an intermediate stage. This species is potentially the

most troublesome with regard to fireside deposition.

in Digure 5.13 the combustlon prefile of Eae Z:ed gravity rractier i1s con-
pared with the combustion profiles of pure pyrite, the 2.35 gravicy rractlon of
tue unwashed Upper Freeport coal, and tne 2.85 gravitv fraction Of otier coa:ics.
Tnere 1is little difference between the combustion profiles of coal-derived pv-
rite liberated from bituminous other than Upper Freeport and the pyvrite report-
ing to the 2.85 gravity fraction of the washed coal. However, a significant
difference exists between the 2.85 gravity fractions of the washed and unwashed
coal. The slower reacting pyrite derived from the raw coal is contaminated by
other mineral matter, and there is a strong suspicion that a substantial portion

of the iron exists as hematite, siderite, or some other iron-enriched mineral.

COAL VARIABILITY

Drs. Cecil, Stanton, and Dulong of tie United States Geological Survey have

made an extensive studv of maceral and mineral composition and distribution in
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the Upper Freeport coal, Indiana County.”™ st tue hoamer City lio. l vsine anc

the Lucerne xo. 6 rine, rield investigations included detailea descriptioas and
sanpling of the coal and associated rocks (21 complete-cnannel and 75 pbencn-
ciunnel samples). Laboratory analyses included deteri:luacion 0Or tae coacent
tioas Of 7U elements; ultimate, proximate, ana sultur forms; maceral analysis;

pyrite morphological analysis; low-temperature x-ray mineralogy; and scanning

electron microscope and electron probe analyses on selected samples.

The Upper Freeport cosl bed in the study area can be divided in the field
into eight facies-—-two nonbanded coal facies, four banded coal facies, and two
snale partinzs. TFigure 5.14 illustrates the generalizea stratigrapny oI tae
.pper rreeport coal, identifving and priefly aescrivinz tnese elii.l Iucles.
figure 3.15 is a fence diagraa illustrating some of tne cnanges 1in tae SCraci-
irapuy of Che Upper Freeport coal wita geograpnic locaciosn., Lo paffiCdidc, .
diagraa illustrates changes tnat might be expected in pyrite morpnclegy wita

location.

The coal bed averages 83 in. thick in the northeru part of tne area wuere
all eight facies are present. Only the four lower facies are present in the

southern part, where the average thickness is 40 in.
dicroscopic analysis of pyrite and marcasite forms and tneir petrograpnic
associations shows definite differences among the coal facies. Specifically,

the bottom facies has framhbnidal pyrite, whercas the other facies teund Lo

%*C. B. Cecil, R. W. Stanton, and F. T. Dulong, "Geology of Contaminants in Coal:
Phase I Report of Investigations," U.S. Department of the Interior Geological
Survey Preliminary Report 51-953-A.
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INTERVAL
FACIES A
2.5 = 14.5 in.

6.4 - 36.8 cm

FACIES A
0.0 = 12 in.
0.0 - 30.5 cm.

FACIES B
4.0 - 20.0 in.
10.2 = 5§0.8 em:

PARTING (ROOF)
0 Rt
1B rem = m

FACIES C
¥8:0 "= 28:0-in.

45 7 = T 1.1 -CmiR

FACIES D
2. 0"= "2 1.0 8.
30.5 - 53 3 em.

LOWER PARTING
Q0 =35 in:
0.0 - 8.9 cm.

FACIES E
5.8 = 14.0 in.

12.7 - 85.6 em.|

Figure 5.14
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Hard blocky . nonbsnded,impure
coal: shaley sometimes displaying
fissility: caicite alcng cleats.

Hard,blocky, barded coal with
bright bancs 2 to 3 mm thick
alternating with attrital (duil)
bands 3 t> 20 mm thick ; tusain
abuncant at fop of tacies:scattered
pyrite lenc.s in basal portion

Hard,blocky.nonbanded,impure coal:
conchoidal fracture: moderastaly

bright, resinous luster: granular texture.
Facies absent in somepliaces.

PARTING(ROOF)

FACIES -

FACIES C -

FACIES D -

LOWER

PARTING =

FAGIES E -

Very dark, gray claystone and shale:
basal portions commonly dark gray
grading upward into medium gray.

Bright, banded coal, cc'umnar fracture:
bright bands 3 to 4 mm thick alternating
with attrital bands 5mm.thick: distinct
fusain layers rssociatecd with pyrite:
fusain chips &t top: calcite and pyrite
rammnnly ftill claats

Hard, banded coal broken in large
bilocks; dull luster: bright bands 3 to
15 mm thickh, scme vieat calcite, very
little pyrite; some fusain layars

and chips.

Dark gray shale to claystone
someplaces absent.

Very hard, bluchy, banded coal: very
dull luster: numerous shale layers;
abundant pyrite in lenses and cleats;
some calcite in cleats: bright bands

3 t0 4 mm thivk, Jull bends 2 ta 3 em,
thick: slickensiides parallel stratitication
in shale layers near base.

Generalized Stratigraphv of Upper Freeport Coal Bed/Lucerne No. 6-

Homer City No. 1 Mines (from Cecil, Stanton, and Dulong)
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Figure 5.15 Fence Diagram of Upper Freeport Coal Facies/Lucerne No. 6-
Homor City No. 1 Mines (from Cecil, Stanton, and Dulong)
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contaln more massive variletiles that should be amenaole to removal during coal
preparation.

he complete channel ana bench channel (i.e., individuzl face) were re-
~Sveaifron Ehe mime gt locations defcripea in Fiture S.le. {uis siggram also
1aentlrles sample numbers, wnich may be useful for interpretinyg results. Al-
tanougn not important to thils discussion, the nomenclature for the sample number

1s listed bpelow to avoid confusion.

Sample numbers were chosen to identify each sample logically. For example,

decoding of Sample number h2-42P-1.2 is as follows:

laple 5.12 Comparison o Total Irom in l4 x 10U .iesu aud LUL li€Sia 4 U uhikasucu
Coal witn rulverizea Coal wasned at l& .esa & v

14 x 1uU clesn 200 Liesn x U vWasnec
sravity Fraction Unwashed unwashed 20y siesa x
+l.30 0.283 U.26 J.lb
=1.30/+1.80 1.08 0.85 .83
-l.oli/+7.85 0.03 0.56 e L
=285 U.07 1.74 0.70
Total 2.66 3.31 2.0l

The minerals identified in the Upper Freeport coal, as interpreted from
the SEM data, are summarized in Table 5.12. There is strong evidence that tne

nonpyritic iron is siderite (FeCO;) rather than the hematite, magnerire, nr

pyrrhotite implied in the earlier discussions of this coal. 1Iron can also be
found in small quantities in the illite. A distinction between tne presence of
potassium, aluminum, magnesium of iron in the iron was not made, nor was it
made 1n our analysis orf mineral matter. Cecil, et al., report the generalized

stratigraphic distribution of these minerals in Figure 5.17.
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Tatie 5.13 Minerals in Upper Freeport Coal as Interpreted from SEM Data

Calcite
CacCo,

Kaolinite
Al,8i,0,(0H,)

Illite (and mixed laver clays)

MAJOR MINERALS

(K, H,0)(Al, Mg, Fe),(Al, Si),0,,[0H),, H,0]

Pvrite-Marcasite
FeS,

"Ankerire"
Ca(re. Me. MnJ{C0,),

Apatite
ra. (PO s (Fy OHy €1)

"Argentite"
Ag,S

"Barite"
BaSn,

Calcium Sulphate
Cagn,

Chalcoovrite
CuFesS,

hlorit
Mo, Fe

1 M-
~—

—~

s (A1, 51) 056 (0H),

"Clausthalite"
PLSe

Crandallite
L4ALl (POL ), OH) sH,0

"Diaspore"
A10(OH)

Feldspar (potash)
xai(Al, si)si,n,
"Galena"

PBs

Magnetite
(Fe, Fe,)0,

ACCESSORY MINERALS*

Quartz (and opal)
510,

Siderite
FeCOy

Halite
MaCl

Iron-Titanium-Oxide
FeTiO,

Manganese Silicate
MnSiO,

"Monazite"

(Ce, La)PO,

"Olivine',
e

Ay w2003
(Mg, Fe)2S5in,

"Pvrrhotite"
FeS

"Rutile™/"Anatase"
Tio,
Sr-2lerite

ZnS

"Xenotime"
YPO,

Zircon
ZrsSin.

*Quotation marks indicate mineral identifications based primarily on major-element
data. All other identifications have been substantiated by x-ray diffraction.
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Faces L, D, and £ are of particular interest; during the mining operaticn,

the coal could be mined indiscrimantely from the individual benches or as a com-
posite mixture. The mining procedure could also change with time. The compon-
sition of the mineral matter is decidedlv dififerent in each bench, as are toe
size and merphological structure (i.e., framboids, lenses, or veinletsl). Ii.is

means that the washability of the coal, as well as its fireside slagging and

fouling characteristics, 1s continually changing.

Cecil, et al., have summarized tLhe morphological structure of the pvrite
(i.e., cvrstals, framboids, irregular pvrite, and marcasite) the maceral as-

sgciation (i.e:; vell £illing, maceral replacement, macsral encassulzation, or

o)

al encapsulation) and size (H.e.; O to 1090 un) in Figures 5.18 and 5.19
o b o

at «three geographLe locatisns.

r
B
"M
fo
0
i
(1)
»n
Q
ot
1

(1]
3
n
=8
[17]
7
(@}
o)
[
a |
2
[1

bench C contains irregular masses of pvrite-->50 um--associated with macerals
and cleats or fractures. This bench should liberate large quantities of pure
pyrite and pyrite contaminated with kaolinite, illite, and g:artz. This bench
should also be more readily beneficiated than either © or £. Bench D contains
considerably less pyrite than the others. 1In several cases it appears to be
void of pyrite. Although the form of pyvrite varies with each sample, there is
a consistent amount or tramboids present. The pyrite size 1s generally smali
and not readily liberated during washing. Bench E contains framboids and
crystals primarily. The particle size is generally very small, which means the

pyrite is not readily liberated during beneficiation or pulverizing in prepara-

tion for combustion.
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In Figures 5.20 and 5.21, Cecil, et al., report the geographic variation
in iron and sulfur in the three benches--C, D, and E. Qualitatively there ap-
pears to be a disparity between the pyritic sulfur reported and the iron re-
ported, particularly in Bench E. Presumably, the difference is caused by the

praesence of siderite.

Benches C, D, and E were also sink floated at various gravities to deter-
mine the washability characteristics of each bench. Unfortunately, the data
have not as yet been placed in the open literature. The results clearly show
the ability to partition and liberate individual minerals as well as total ash.

Sench C is readily beneficiated, whereas E is not.

The variability of the mineral content by geographic location and strati-
sraghic penches 1s substantial in the Upper Freeport seam. Eecause these tiengnes
may be mined simultaneously or individually at the discretion of the miner, any
coal sampled at the mine mouth and analyzed is representative of that sample onlv
and not the Upper Freeport seam or the coal fed either to the washery or stean
generator. Likewise, the results of samples characterized for mineral ccntent‘or
fired in a combustor to evaluate slagging or fouling are representative of that
sample only and not the seam. Evaluation of washability or fireside behavior
requires establishing the variability of the mineral matter in the coal, 1ts
size, and its association with the maceral constituents first. Once the varia-
bility of mineral content is established, the impact of mining on consistent
production must be determined; otherwise, the coal must be characterized by the

least desirable mineral composition and content. To evaluate the impact of

mineral constituents on washing or fireside deposition, investigators should
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From Lucerne No. 6 and Homer City No. 1 Mines (from Cecil,

Stanton, and Dulong)
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select the samples from fully characterized benches rather than from a conveyor
belt, stock pile, etc., even though they may come from a single seam. This 1is
the only way control of mineral content and its association with macerals or

otbher mineral matter can be maintained.

The analysis by Cecil, et al., explains why so much difficulty was en-
countered 1in selecting samples tor this program. The study also explains dif-
ferences in the characteristics of the first Upper Freeport coal fired in the
combustor, the washability tests, and the washed product. Although these coals
were all taken at the same time from a sample on a convevor belt, the individual
iruns were not mixed in one pile to ensure homogeneity before dividinag the pile

for combustion testing, washability characterizing, and washing.

The analysis performed by Cecil, et al., is believed to be unique. Their
future experimental work on the mineral matter in coal is going to be difficult
without carefully characterizing individual seams and the benches constituting
a seam. In the future additional time and effort should be spent on acguiring

individual channel samples.

COMBUSTION TESTS OF WASHED COAL

Combustion tests were performed on the washed Upper Freeport coal pulver-
ized to 70 percent through 200 mesh. The coal was fed at 108 1b/h for 10 hours
while using l8-percent excess air. The furnace exit was held at 2024°F. The

time—-averaged operating conditions are summarized in Table 4.1.
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By reducing the ash in the coal by 66 percent and the pyritic sulfur by
40 percent, the degree of furnace slagging was' substantially reduced. Accumula-
tions on the furnace wall were more fluid than in the previous test with the
unwvashed coal. The calculated viscosity for the washed and unwashed coal ash
and the wall slag produced after firing the washed and unwashed coal appear in
Figure 5.22. Figure 5.23 compares the coal ash viscosity of all coals fired to
date. The curves illustrate the impact on viscosity of a slight increase in
iron concentration. The selective removal of ash over pyrite, resulting from a
slight change in mineral characterization within the mine, causes the slag to
become more fluid upon beneficiating the oal. The increased fluidity of the
ash resulted in the formation of a liquid pond on the furnace floor which ul-
timately flooded, the burner, forcing an outage.  In Figures 5.24 and 5.25 a
direct comparison is made between the slag formed while firing the washed and
unwashed coal on the center and lower slag probes. Figure 5.26 illustrates the
upper and lower surfaces of the slag probe immersed in the furnace perpendicular
to the direction of flow of the flue gases. As the picture indicates, deposits
were just beginning to form, and their bond to the tube surface was extremely
light. The fouling probe, illustrated in Figure 5.27, reveals virtually no de-
posit formation on the leading edge of the first tube. A photograph of the first
first tube in the first probe bank of the convection pass after firing the un-

washed Upper Freeport coal is included for a direct comparison.

The ash chemistry and ash fusion data for the wall slag and samples of de-
posit removed from the slagging probes and fouling probes are summarized in

Table 5.14. The deposits formed in the furnace, particularly on the slagging
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D

*@ure °5.24 Comparison of Lower Slagging Probe After Firing Unwashed (top)
and Washed (bottom) Upper Freeport Coal
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Vo

-ure 5.25 Comparison of Center Slagging Probe After Firing Unwashed (top)
and Washed (bottom) Upper Freeport Coal
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s-ire 5.26 Flame (top) and Furnace Exit (bottom) Sides of Probe Immersed
Perpendicular to Gas Flow in Furnace--After Firing Washed Coal
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Iron Enriched Deposit

Side-View

Figure 5.27 Direct Comparison of Fouling Zrobes After Firing Rew Coal(top) and Coal in Which
Liberated Pyrite Wrs3 Removed 5y Washing (bottom)
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Table 5.14

Freeport Coal

Descript ion

Ash Chemistry (%)

510,
Al, 04
Ti0,
Fe,04
Ca0
Mg O
Na, 0
K, 0
S0,

P, 04

Ash Fusian (°F)
Reducing:

Initial Deformation
Softening (Sph.)
Softeming {Hem.)

Fluid

Oxidizirg:

Initizl Deformation
Softering (Sph.)
Softeaing (Ham.)

Fluid

Coa” Ash

"~

Q@ © o
o W o A B B e e R AR

wr

2170
2200
2240
2270

Wall Slag

Lower

wn
O WM PSP A R

1990
2050
2000
2160

2260
2315
2350
2400

Upper

42.7

o
B D RED: °

>
~

2070
2090
2120
2165

2375
2410
2415
2460

Slagging Probe

Upper Center Lower
36.7 40 .4 34.8
22.6 24.5 20.2
n.8 0.9 0.8
29.5 23.4 31.7
Bl 6.6 6.3
0.7 15/ 0.8
0.5 0.4 0.7
2.0 2.4 1.8
0.4 0.8 | %)
0.4 0.4 0.3
1980 2010 1900
2015 2040 1970
2030 2070 2000
2105 2175 2140
2380 216 2340
2415 219(¢ 2380
24135 2425 2450
2590 2460 2580

Surmary of Ash Chemistry and Ash Fusion Data--Combustion Tests of Washed Upper

Fouling Probe

42.7 43.8
23.7 24.2

[= N I S o

N = N~
SN - o
b L B - - S ]

—— 2190
- 2220
- 2250
i 2370

--- 2336
- 2160
——— 2400
- 2460
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probes, are enriched with irom by a factor of =2. Tne ash fusion temperatures
or the fireside deposits under reducing conditions are below that of tne wasieo
coal ash. The small difference petween the initial deformation temperature and
tluic temperature, in addition to their high iron comcentratioun, accounts ior
tae nrge L[luldity of tne asn. The dust removed Lro.a tae CeRLer tude of tue
fouling probe is slightly depleted of ironm and has slightly higher asn fusion
temperatures than the washed coal ash does. Table 5.15 makes a direct compari-

son of the ash chemistry of wall slag deposits, probe slag aeposits, and fouling

probe deposits for the washed and unwashed coals.

St.: pnotomicrograpans and EDX scans were mace 0f powdery imsigse surface

(13

layers, moiten pnases, ana outside surfaces of slag samples rezovea rrao. ..
taree furpace proces anc tae upper and lower rurnace wall. Tne Si.. paccomicro-
srapns Oof tae powdery layer adjacent to tne tube SUrrace anmc Che SuLse.ient
laver representing the very beginning of tne formation of a molten prase J: asa
aeposited on the lower slagging probe are illustrated im Figure 3.2u, aiong .ita
tneir corresponding EbLX. SEM photomicrographs ana EDAXZ sca:is or comparacle as:u
deposits on the lower slagging probe while firing unwasined coal are includeu rouv
a direct comparison hetween the washed and unwashed cases. There appears to oe
a greater portion of submicron agglomerates in the washed coal ash (believes to
be the residue of slow oxidation of carbon particles at temperatures velow Ilaws
temperature in the ash from the washed Upper Freeport coal) than in tne asn fro.

unwashed Upper Freeport coal. There is an abundance of submicron particles in

the ash from the Lower Freeport coal. This was also tne case of Kentucky oo. li,
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Table 5.15 Compariscn of Ash Chenistry of Sl

Description

Ash Chemistry (%)

SIU2
Alzn,
1'1()2

Fe 0,
Ca0

MO

Ash Fusion (°F)
Reducing:

Initial Deformat on
Softening (Spa.)
Softening (lem.)
Fluid

Oxidizing:
Initial Deformation
Softening (Sph.)

Softening (llem.)
Fluid

=i Msl . iSlag @

41.5
24.5
0.8
16.7
5.4
0.8
1.3
1.9
0.1
0.1

1990
2050
2090
2160

2260
2315
2350
2400

Unwashed

47.2
21.2

20.

C O N & N
& 0 v

1
1
\

2333
2361
2380
2419

2424
2460
2470
2510

Washed

=
~N S e v v

0.4

S - =
L -

2010
20640
2070
2175

2365
2390
2425
2460

Unwashed

41.0

- e

N © C w =

w o mm>r e

1955
2000
2057
2074

2319
2436
2460
2541

Lower Slagging krobe

Washed

(=}
E W NN >

—
w o~ >

1900
1970
2000
2140

2340
2380
2450
2580

Uuglested

51.0
21.7
L.0
13.2
3.3
0.9
04

07
0.2

2454
PV ARL]
251¢

2542

ag Formed by Washed and Unwashed Coal

lat Fouling Probe

Washed

)
e &

~

N
~ s N

2190
2220
2250
2370

2330
2360
2400

2460

Unwashed

C «w © © C w
O R

1879
1900
1920
2000

2318
2600
2600
2600
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where little orf the mineral matter was liberatea auring pulverizing. ihe slignt
differeuce in surtface morphology could be due to the source of the asn in the
coal (i.e., inherent vs. extraneous liberated ash). The outer layer of ash is
nighly crystalline in nature. Tne crystaline substance is belleved Lo ove cai-
cium sulrfate., Tnere is no evidence of the needle-like crvstals ricn 1n reu,

510, , and Ca0 frequently observed in the outermost surface of slag, formed by

other iron-rich coal. The temperature within the boundary layer of the lower
slagging probe must be quite low for calcium sulfate to form, suggesting tne
local heat flux, and hence flame temperature, is low. As will be noted 1in sub-
sequent pnotomicrographs of deposits removed from the secous slag prooe locatec
in Segment 3, tne local rflue gas temperature must o€ nlgner as tnere is cviceace
of supmicron particle agglomeration on the inner layer anu completely .olteu asu

on the outer layer. There is no evidence oif crystalline calciua suliate.

SEl pnotomicrographs and EDX of the innermost powderv layer, fused cross
section, and fluid outer surface of deposits formed on the center slagging
prooe appear in Figure 5.29. The innermost layer 1s composea oI agglomerates
of submicron particles which appear to be the burned out remnants of coal par-
ticles, possibly as large as 40 ym. The ash is enriched in potassium. Tne
alumina 1s unusually high in count, implying the source of the ash was preaomi-
nantly clay. Illite retained in the washed coal is probably the source or tuis
ash. Subsequent layers are fused and show signs of iron and silica enrichment

with a depletion in potassium. The outer layer of the deposit contains sub-

stantial amounts of calcium and iron. There is evidence of a preponderance ol
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Figure 5.29 SEM Photomicrograph and EDX Scan Comparing Change in Surface Morphology and Elemental
Composition of Deposit on Center Slagging Probe
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subinlicron particles going 1into solution in the outer layer. Occasionally, a

20 vm particle attaches itself to the slag and 1s dissolvea.

If this deposit were allowed to grow thicker by extending the time the
rrobe was exposed to the flue gases or increasing tne surrace temperature from
time zero, as 1n tne case of the furnace wall, we Glgnt expect Iurtiier cnanges
similar to those demonstratea by the wall slag. Figure 5.30 shows the cnemistry
and morpnology of the wall slag cross section and outer surface in frhe vicinity
of the center slag probe. The bulk of the slag appears to be greatly enricnea
with quartz. However, the outer surface appears to be greatly enriched with
1ron. 7Thnls pneuciienon appears to De cnaracteristic O slags rormez bdy craer
coals (1.e., Rentucky . Yy and Upper Freeport). 1ihe LoweTr Freegort coal siag
inclucea calcium as an aauitional coastituent. Tals Sdue pucuduéddu wad vcca
soserveu 1n slag removec Irom fiela ilnstallations wnilie firilus OCaer CO4Ls.
Figure 5.31 illustrates one sucn example. As shown in tnis glcture, Sudwmicron
perticles attach themselves to rhe outer surface ana migrate 1nto tieé wollew
slag, wnere they are dissolvea. Occasionally, larger particles attacn tnea-
selves. 1In some cases small cubic iron-ricn crystals attacn tnemselives, 1nal-

cating that sublimation of volatile iron is taking place, as illustrated in

Figure 5.32.

The deposits formed on the upper and lower side of the probe, imnersed in
tne furnace perpendicular to the gas stream and illustrated in Figure 5.2t, were
examined separately. The initial layers of the deposit formed on the flamesice
of the probe are composed primarily of unfusea ash, remnanrs of spent cnar par-

ticles enriched with potassium, ana sulfur. As illustrated in Figure 5.33, tne
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Mol ten Matrix Mngular Cubic Crystals

Figure 5.32 SEM Photomicrographs and EDX Analyses of Gas-Side Surface of Fly Ash Deposited on
Furnace Boiler Tube Surface While Firing Steam-Micronized Coal
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300X--Inside Layer

Figure 5.33

300X--Cross Section 300X--Outer Layer

5EM Photomricrographs and E3X Scans Showing Surface Morphology of Deposits Accumla
on Frame Side of the Slagging Probe Parperdicular to the Flue Gas Stream

e

e

d

NOILYHOdHO0I LN3IINdOT3A3A Y3IT3IHM 43 LSO

‘31va
434

=¢ToV-3a

7861 2uny

8970%0d1



REF.: DE-AC22-81PC4026¢8

FOSTER WHEELER DEVELOPMENT CORPORATION
DATE: June 1984

molten material on the outer surface is depleted of sulfur and eunrichea with
iron and calcium to a lesser extent. The particle sizes are 84 pm or less.

Since they are not solid spheres, tney must be very light. There was no evi-
aence of selective depusition of large, pure pyrite particles. lnis was not

unexpectea 1n tnls case as tne free pyrite was wasiies Iroa tie coal.

Tne results of the microscopic examination of the upper layers of deposits
on the perpendicular probe appear in Figure 5.34. Once again, the inner layers
are sligutly enriched with potassium, whereas the molten, outer layer is en-

ricned with iron.

ine sintered deposits removed Irou Uile Teiractory watl 1. Sesument o &
lustrated 1m Figure 5.35. Except for evicence of some meitins. at the slioucly
ulginer rlue gas temperatures, tine composition anae surrace worpitology closely
resemole the dust collected on the fouling propbes, wnicn 1s illustratea 1a ri,-
ure 5.3b. Although the sintered deposit morphology resembples deposits formea on
tne furnace roof while firing unwashed Upper Freeport coal, the chemical compo-
sition 1is quite different. Figure 5.37 compares the surrface morpnology and cou-

position of the sintered deposit formed by the washed and unwashed coal.

The mechanism for formation of the molten slag is uncertain, as the
spheroidized particles contacting the surface are cQmpletely solidified. There
is evidence in Figure 5.32 that submicron particles, attaching themselves to
other particles of dissimilar composition, may form eutectics on the surtface

with much lower melting temperatures. As material from the laryge particles
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300X--Inside Layer 60X--Molten Outside Layer

Figure 5.3¢L
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SEM Photomicrographs and EDX Scans Showing SurZace Morphology and El=wental Composition
of Denosit Forming ‘on Top Side of Probe Perpendicular to Flow of Flue Gas iIn KFarnace
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MAG. 60X MAG. 300X

FIGURE 5.35 SEM Photomicrographs and EDAX Scan of Deposit
Removed from Refractory in Segment 8 at the
Furnace Exit

5-67



89-¢

600X--1st Fouling Probe 1500X--1st Fouling Probe
Upstream CoWnstream

Figure 5.36 Surface Morphology and Elemental Composition of
Firing Washed Upper Freeport Coal

1500X--4th Fouling Probe

Dust Removed From Fouling Probes After
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Washed Coal

Furnace Roof Deposit
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Unwashed Coal

Figure 5.37 Comparison of Surface Morphology and Elemental Composition of Sintered Deposits Removed
From Refractory Surface After Firing”Washed and Unwashed Upper Freeport Coal
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goes into solution, the concentration of the minor constituents approaches that
of the larger particle, and the molten phase solidifies. Presumably, the same
results could be achieved by condensation of a vapor phase. However, because
of the steep temperature gradient within the deposit, there should be some evi-
dence of crystals formed at the dewpoint similar to those found on the first
slagging probe.

Coal washing removed large concentrations of illite and liberated pyrite.
The extraneous ash was completely removed except for ash liberated in pulveriz-
ing from 14 x 100 mesh to 200 mesh x 0. 1In doing so, the total ash devosited
was reduced, despite the apparent low fusion temperatures. a3 In other iaves-
tigations, the ash responsible for the initial layers of the deposit was en-
riche with potassium and believed to be the mineral illite. The nolten lavers
are enriched with 1iron and cale¢ium. They appear to form because the local ash
deposit exceeds the melting temperature of the ash. Iron enrichment occurs in
dissimilar composition forming a eutectic at the surface whose melting temoera-
ture is decidedly below that of either compound. With subsequent counterdiffu-
sion of componeuts into the existing deposited ash, the two foreign constituents
of decidedly different composition are assimilated to form a solid or plastir
slaz, depending on the local temperatures. The large difference in temperaturs:
between the inner and outer layers could explain the difference in deposil cun
position. The tube surface appears to be at temperatures well below eutectics
in the Ca0-Fe0-Si0, or Ca0-Fe,0,-Si0, system, but not below those of the K,0-Si0Q,

system.
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There is no evidence of selective deposition dbv pure, liberated pvrite, as
Y P s P: s

presumably it has been reduced to a minimum by washing.

5-71

*U. .S. GOVLRNMEWT PRINTING OFFICE: 1924-746-0%1/10109





