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ABSTRACT

This document explains how to construct a sabotage graph which models
any fixed-site facility and how to use the subroutine .SPTH3 to find
shortest paths in the graph. The shortest sabotage paths represent
physical routes through the site which would allow an adversary to take
advantage of the greatest weaknesses in the system of barriers and alarms.
The subroutine SPTH3 is a tool with which safeguards designers and analysts
can study the relative effects of design changes on the adversary routing
problem, In addition to showing how to use SPTH3, this report discusses

the methods used to find shortest paths and several implémentation details
which cause SPTH3 to be extremely efficient.
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1. Introduction

This report documents the latest code for finding shortest paths in

the sabotage graphs described in [4]. A sabotage graph is a network

" which models a fixed-site facility. Shortests paths in the graph represent

physical routes along which a saboteur could minimize time, or detection
prdbability, or some other quéntity reflected in the graph weiéhts.‘
Currently path length iﬁ SPTH3 is the ordinary sum of the node and arc
weighté in the path, so that either delay fiﬁes (for barrier penetration
at nodes and travel along arcs) or else distances could be used as weights.
So far shortést-time paths have been of priﬁcipal interest. A trivial
modification to SPTH3 would allow it .to accept detection prbbability
weights and proauce.sabotage paths which minimize cumulative detection
probability. In the remainder of the report we shall think of the graph
weights as times. | ’

SPTH3 addresses the problem of .a simultaneous attack by several teams
each having a single targef. This provides a lower bound for the path |
length of a single team with several targets to attack sequentially, and
it aiso addresses a very real possibility Whicﬁ would place g?eat stress
uﬁon the safeguards system. For further details motivating this model
and considering the length-indepeﬁdence of different éhortést-time paths,
seé.[h],“ _

It must be understood that the graph model and the pathfinding
techniques do not take into account battles between -adversaries and
defenders. Such encounters require stochastic models. The sabotage
graphs used fqr pathfinding have constant weights which give representative
(perhaps @inimum or average) values of delay times. Sihcé the delay times

are in reality réndom‘variables, the graph-theoretic method of ‘this -



_report should be viewed as a deterministic approach to finding sabotage
routes which exploit any weaknesses in the barrier and alarm systems.
Sﬁch paths require further evaluation either by simulation methods such-
as.FESEM [2] to assess the paths' effectz upon guarq_encounters or else
by probabilistic methods such as EASI [l] to predict the likelihood of
sabotage-interruption. Both of these path evaluators~reqﬁire a path to
be given. Thus, SPTH? may be used to derive input for IE3EM or [EABI or
else simply to indicate rclative vulue;abilities'in the harrier and alarﬁ
systems.

This document explains both what SPTﬁ3 does and how to use it. Those
readers lnterested only in how to use it may ignore Section 6. The
shortest path algorithm embedded in SPTH3 is that -of Dijkétra [3] as
modified by Yen [6,5]. This algorithm is the best available. However,
its use in SPTH3 differs somewhat from the description given iu [k4].

Kather tpan searching outward to the boundary from each target as descfibed
in [47], SPTH3 searches inward from the boundary to all nodes. A substantial
reduction in storage requirements and tenfold reductions in run time have

resulted from this and -other improvements to the pathfinding code.

2. Description ol SPTH3

SPTH3 finds shortest paths in a special graph called a sabotage
graph. This graph‘modéls a fixed-site facility to some level of detail
thought - to be appiopriate for the user's purpouse. The details for
congtructing the graph are given in the next section. In brief, the nodes
are important locations in the plant (say, perimeter gates, building doors,.
windows, vents, stairwells, storage vaults, and vital equipment locations),

and the arcs are physical paths from one location to another.



There are three types of nodes: (i) boundary nodes located at

possible perimeter penetration points, (ii) barrier nodes located on

internal barriers at possible penetration points, and (iii) target nodes*
at vital.equipment or material locations. The simultaneous sabotage
problem is to find all .the shortest pathé from the set of boundary nodes
to each target. Given the graph (as a list of arcs) and the arc and node
weights, SPTH3 uses the‘Dijkstra-Yen algorithm described in Section 6.5
to search from the boundary nodes of the graph until the lengths of the
shorfest paths'to.all the other nodes are known. During the search SPTH3
keeps a list of the immediate predecessor(s) of each node along a shortest
path from the boundary. This allows all shortest paths to each target to
be retraced and stored withoat further arithmetic following the Dijkstra-
‘Yen search. '

The output from SPTH3 is simply a list of the directed arcs which
"belong to the shortest paths directed from the bbundary to all the tafgets,
togethér with a list of thé'number and length of the ghortegt pathb to
each target. If is possible to have mo?e than gne'shortest path to any
node, and this number can'be obtained easily by a simple procedure

explained in Section 6.7.

3. The Sabotage Graph

The first_and most important part of the use of SPTH3 is the
construction and weighting of the sabotage graph. This involves three
steps:

(l)'rpartitioning the drawings of the plant into regions,

¥Formerly called hardware nodes.




(2) specifying the nodes and arcs of the graph model,

(3) weighting the nodes and arcs with times (or detection

‘probabilities) derived from test data or analyst judgement.

3.1 . The Regions

The boundany,and the important internal barriers (fences, walls,
floors,<stéirwells, ete.) naturally partition a map of the site into
regions Rr’ r = 1,2,.;. « A region i; é very general area within which
éaboteufé may travel unimpeded by barriers. Someé regions may appéar on
the drawing as disjoint domains, e.g., & stairwell or elevator region may
appear as the union of the areas in‘which'it intersects each floor of a
building. waeVef, if there are no significant delays to entering the
stairwell, then the floors.and'the connecting.staiiwell mayzbe treated as
one region. The region structure is simply an aid'to cénstructing the |

nodes and arcs which constitute the sabotage graph.

3.2. The Graph G

Next, the analyét must carefully place nodes at all the important
locations. Sincé the model is discrete there is some arbitrariness in
thc node selection process, and an analyst may want to try varions graphs
' differing in the number and location of the nodes; The, nnde set ohould

‘include representative penetration points along the boundary and along

thé barriers between regions as wcll as all Largets ot interest inside
the regions.
Once the regions and the nodes are specified, the arcs are determined

by a fixed rule which gives sabotage graphs their special structure.

Every pair of nodes in region Rr is connected by an arc, forming a

complete subgraph Gr, r=1,2,¢.. .



‘An interface between two regions may contain more than one barrier
ndde, and this requires special attention from the analyst. Two reasons

for using such multiple barrier nodés are to model barriers that (a) have

vér&ing hardnes;,(or (b) have such physical extgnt that the arc'lengths
are‘significantly affected by the node locations. An Arc joini;g noéé i to
node j is denoted b& the unordered integér pair (i,J) or‘(j,i). Multiple
tbarrier nodes on a single barriér'cause an arc¢ in one region to have the
same hame, or node pair, as some arc in the adjacent region (Figure la).

In 6rder that’eéch,arc have a unique'node pair as its endpoints, thé
analyst must split each of the multiple'barfier nodes into two barrier
nodes cénnected'by an arc (Figure 1lb). Our decision to list the arcs of

G region by region for purposes of.compﬁter'input reqﬁires that each arc
'beléng to a single region. Consequently each arc introduced by splitting

multiple barrier nodes must belong to its own specially created region.

(i) =
——————-
|
I
(J) -
. -1
Tigure 1la. . Figure 1b, )
Multiple barrier nodes. Splitting of multiple barrier nodes.

The regions created by splitting multiple barrier nodes are numbered

also, giviﬁg a total of NR'regions Rr’ each having a complete subgraph Gro.



The union of all these subgraphs is the sabotage graph*

N
G= U G,
r=1 r

whose nodes are then numbered as follows:

target nodes, 1 to nl,

+ 1 to' n. +n

barrier nodes, n o
. ? 1 2?

1

boundary nodes,'n

1 + n2 +1 to n

+n., +n, =N,

1 2 3

An example is shown in Figure 2, where ‘'squares are used for boundary nodes,

circles for barrier nodes, and shaded circles for targets. Three nodes

on the barrier R1 N R2 have been spliﬁ.

Figure 2,
A Sabotage Graph

¥This graph differs slightly from the graph of [4] in which boundary- -
boundary and target-target arcs were omitted. Co



Notice that every:barrier and boundary node belongs to exactly two
regions (counting the infiﬁite off-site region), and every target noae
belongs to only one region. Also, due to fhé‘éompletenessbof the subgraphs,
the‘paths of G represent all the physically meaningful ways for saboteurs

to proceed using only the given penetration points and targets.

3.3. The Weights

Both the nodes and the arcs of G are assigned constant, nonnegative

weights. The node weights w, 2 0, 1 < 1 < N, are penetration and target
—_— i

destruction times, while the arc weights a, . = 20, (i,j) € G, are

a, .
) X 1,3 Jdsl
transit times. Realizing that these constants are simply representative
values of random variables that depend on the physical characteristics of
the barriers and the amount and type of equipment postulated for the
attacking férce, the analyst must decide whether to be conservative and
use minimum values reflecting best possiblé adversary performance or else

use intermediate or average values.

When the arc weights aré minimum values, they will automatically

satisfy a regional triangle inequality. That is, if arcs (i,j), (j,k) and
(k,i) belong to Gr.and their weights represent minimal transit times, then

it must be true that

(1) ‘ a, , sa, ., +a,

Since saboteurs may travel at different rates in different regions, this
inequality need ﬁot hold for triangles whose arcs lie in different regions.
SPTH3 tests ail the triangle inequalities (1) for each region simply as a
check on data consistency for the user's benefit. The pathfinding
algorifhm'wili bérform pérfectly well,“of course, whether or not the

triangle inequalities hold, so that this data check can be deleted from



- SPTH3. |
-The Weighting of the nQdes and arcs which result from the splitting
of multiple barrier nodes méy‘be done in many ways as long as the weights
of the ﬁﬁo new nodes aﬁé théir connecting arc sum to the barrier penetration
time. | , |

A weighting 6f the graph from Figure 2 is given in Figure 3.

Figure 3.

A Weighted'Sabotage Graph

SPTH3 does not accept directed nodes and arcs, i.e., nbdes and arcs
whose weights depend on the direction of travel. Of course; directed ndden
and arcs could have been alléwed,'beéause Dijkstra's aléqrithm,works:
edually,well for'direbﬁed graphs (digraphs) as for undirected graphs.

However, we have deliberately omitted directedness from the sabotage
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graphs because, in the applications for which SPTH3-1is intended, arc
lengths are essentially the same in both directions and the doors locked
on only one side are normally locked on the side first encountered by

the saboteur.

4, How to Use SPTH3

L,1, The Call List

The call list for subroutine SPTH3 is
SPTH3(Nl,N2,N3,NA,W,MR,II,JJ,AWT,MAXE,IEDGE,NE,NSP,XMINL).

The dumy arguments have the following meanings:

N1

the number of- target nodes,
N2 - the number of barrier nodes,

N3 - the number of boundary nodes,

=
b
[}

the number of arcs,

W(.) - the node weight vector, dimensioned N=N1+N2+N3,
(the next foﬁr vectors, dimensioned NA, give the arcs as quadruples
Zcohsisting of a region,ltwo nodes, and an arc weight)

MR(-) - the region index vector,

II(+) - a node index vector,

JJ(+) - a node index vector,

AWT(+) - the arc weight vector,

MAXE - the maximum number of edges (arcs). in the digraph S of
: shortest paths directed from the boundary to all target

nodes, :
IEDGE(+,+) - the edges in the digraph S; each edge being .given by three
' indices -- the region and two ordered nodes, dimensioned
(3,MAXE),

‘NE - the number of edges in digraph 3,

NSP(*) the number of shortest:paths to each targét; dimensioned N1,

-
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XMINL(+) - the length of the shortest paths to each target; dimensioned
N1, '

L.2. Input

To use SPTH3, first construct a weighted sabotage graph as indicated
in Section 3. Next, in the program which calls SPTH3, -dimension W by N,

the vectors MR, II, JJ and AWT by NA, and the vectors NSP and XMINL by N1.

‘Set MAXE to some guess at the maximum number of edges S will have, and

dimensioﬁ IEDGE'by (3,MAXE). Then store'the.node weights in W and -the
arc data in MR, II, JJ and AWT. The node weights are given in the obvious
order: W(I) for node I, 1 < i < N. Althcdugh there is no obvious order:
in which to give the arc data; a very special ordering of the arcs is

required.

The arcs a?e given by the quadruples
MR(K), II(X), JJ(K), AWT(K), 1 <K < NA .

All the arcs of one region are listed copsecutively, and the regions may
be given in any order. For example, in & three region problem, the arcs
of region two could be iisted first, followed by the arcs of regions
three aﬁd one. The arcs of each region, howevef, must be listed as if
they were taken row by row from the strictly upper triangular part of
somg node adjacency matrix. For example, if the nodes of ohe region are
{16,9,21,4,71, then an acceptable arc ordering based on the given nédé

ordering is (16,9), (16,21), (16,k4), (16,7), (9,21), (9;4), (9,7), (21,4),

“(21,7), (4,7). Notice .that the arc ordering for a region may be based

. on any ordering of the region's nodes. But once a node ordering is

chosen for the region, the arcs must be given by pairing the first node

with each other node in order, then pairing the' second node with each



following node in order, and similarly for the third node, etc.

The reason for this requirement is that it produces tremendous savings
in storage. The special arc ordering allows SPTH3 to quickly compute the
address of any arc weight and, thereby, completely eliminates the need for

the usual N x N direct distance matrix. For graphs with several hundred

nodes this is very important.

4,3. Work Arrays

SPTH3 has several work arrays whose dimensions must be set by the
user before running the job. The meanings of these arrays are explained
in the program comments and in Section 6. In order to use SPTH3 it is
sufficient for the user to set the following dimensions:

XLABEL,NPATH,IPERM, ITEMP,NEXT - N,
NODE - (N,4),
IREG - (NR,2), where NR = the number of regions,

NPOOL - 4O, an darbitrary setting for an unpredictable total number of
extra predecessors for nodes which have more than one predecessor
along shortest paths. SPTH3 prints a message when this dimension
needs to be increased. In this case, the results should be

considered incomplete, and the problem should be rerun with a
larger dimension for NPOOL. ' :

4.4, Output

The output consists gf
| MAXE,IEDGE,NE,NSP and XMINL ,
whose meanings ére given gbove.
MAXE and NE serve as flags and must be tested upon return from éPTH3
| to see if a nofmal execution took placé. If MAXE = O upon return, there

was a failure of the triangle inequality on the arc weights of some

region, a message was printed, and the pathfinding algorithm was not

13
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executed. The user should correct the arc data indicated by the messége
and try again. Also, it‘is.possible to return with NE = 0. This means
that paghfinding ﬁas aborted- because some node could not be reached from
the boundary. The user must check the afc_list to be sure that all the
arcs #re present in each region. |

| It should be noted that the weight vectors W and AWT are changed by

SPTH3 in the following way:

W(I) «W(I)/2. , ML +1<T <N +N>,

.-AW'.‘I'(K) - (k) + w(rr(x)) + w(JJ(K)) , 1<K =<DNA-

If neceséary, the user may restore W and AWT to their input values by

first subtracting W(II(K)) + W(JJ(K)) from'AWT(K), for 1 < K < NA, and
then doubliﬁg each barrief noae weight.‘ This change of W and AWT is also
related to the abové.mentioned storage economy because it allows the |
inbut vector AWT to be used for the direct distance storage in lieu qf the

standard N x N matrix normally used in Dijkstra's algorithm.

5. lIxamples

5.1. A Sample Problem

Let us take the weighted graph of Figure 3 as an example. 1In

. Figure L4 this graph is shown with the digraph S of shortest sabotage paths

superimposed in dark lines.
The input consists of
Nl1=2, N2=6, N3=2, NA=2Z23,

W

{u-:)"'-,sws-’s"5~35-:5-:16°,205} ]



MR II JJ AWT
1 6 7 4o.
1 6 8 6.
1 6 9 45,
1 6 10 ho.
1 7 8 4o.

1 7 9 10.
1 7 10 6.
1 8 9 Lo,
1 8 10 us.
1 9 . 10 6.
2 1 2 3.
2 1 3 b,
2 1 4 36.
2 1 .5 0 3k,
2 2 3 2.
2 2 L 3k.
2 2 5 - 32.

"2 3 L 33.
2 3 5 30.
2 4 5 3.
3 3 6 0.
L L 7 0.
5 5 8 oR

Figure k.

The Dlgraph S of Shortest Sabotage Paths Superlmposed
on a Welghted Sabotage Graph
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The output is

‘Target NSP XMINL

1 2 73.

2 2 1.

IEDGE (NE = 9)

Region Node Node

2 3 1
" 2 3 2
3 6 3
1 8 .6
> 5 8
‘ 2 Y 5
4 7 by
1 10 T

1 9. T .

.Since the digraph S is given completeiy‘by IEDGE, S is easily drawn by

simply darkening the edges indicated by the ordered node pairs in IEDGE.

NSP and XMINL show that there are two shartest paths to cach target, thooc

"to node 1 having length 73. and.those to node 2 having length Tl.

5.2. Run Iime and Array Storage Results .

SPTH3 is extremely fast. The Dijkstra-Yen algorithm used for
. - . ) )
pathfinding has a worst-case run time on the order of O(N ) for an N-node

graph. Although SPTH3 also checks all the triangle inequélities in each

region, does the bookkeeping for multiple predecessors, and retraces and

Acounté the number of shortest'paths to each target, it uses almost a
negligible amount of rﬁnltime. As shown in Table I a realistic sized
problem of 310 nodes and 1191 arcs requires only about a second and a half

of CDC 6600 run time. Consequently,. we feel that execution time for

shortest path problems should be of very little concern to most users.

SPTH3 is also very storage efficient.‘ As mentioned in Section Lk,

the N x N matrix>of direct distances nbrmally used in Dijkstra's algorithm



has been eliminated in favor of a storage scheme which overwrites the

input vector AWT with direct distances between node centers.

Thus, the

afray storage, which dominates SPTH3's storage requirements for larger

problems, is linear in the number of nodes, arcs, regions, etc.

particular SPTH3's arrays need

10N + 4NA + 2NR + 2N1 + 3NE + 4O

In

storage locations, where 40 is an unpredictable dimension that proved

adequate for our setlof test problems. Table I also gives the array

storage requirements for the larger problems in the test set.

«The sample problem in Figure 4 is Problem 3 below.

Table I

CDC 6600 Run Time and Array Storage Results

1 1-5-1 7 13 i 3 - 0.00k4
2. 5-1-2 8 16 2 6 - 0.004
3 2-6-21 10 | 23 5 9 - 0.005
L h-8-2 1h 3k 6 12 - 0.007
5 1-8-81 17 | 32 8 1 - 0.009
6 1-10-8 19 Lo 8 1 b1l 0.009
7 1-31-1k L6 112 20 2 996‘ 0.0k
8 20-58-4 | 82 | 514 35 43 3155 0.167
9 30-120-5} 155 | 656 82 81 4681 0.446
10 10-296-4| 310 | 1191 | 192 38 8422 1.563

17
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6.

Some Details of Implementation

6.1. A Flow Chart

Figure 5.

A Flow Chart of SPTI3

Any
triangle
inequality
\Jailures

MAXE=0

Store direct
ai .
istance DII(K),JJ(K)
between node .
centers in AWT(K)
1l <K < NA.

B!

Set arrays
NODE, IREG
so that DI,J may

be addressed in AWT.

Y

Perform a
Dijkstra-Yen

search from the

boundary to all

nodes.

Retrace S, all

‘I shortest paths to

targets, storing
ares in LEDGE,

¥

Count number of
shortest paths to
each node I in S.
Store in NPATH(I).

— 3

Set

Return




6.2. The Triangle Inequality Tests

Finding the. triangles of each region ié very easy given the completeness
of the subgraph and the special ordering of the arcs. For example, consider

the arcs of region R, in the graph of Figure L,

2

N a7 T
1 ) 3.
1 3 4,
1 N 36.
1 5 3L,
2 3, 2.
2 I 3k4.
2 5 32.
3 L 33.
3 5 30.
L 5 3.

‘All the triangles‘COntaining arc (1,2) are found'b& taking eéch arc (1,2)
listed below (1,2) together with éach arc (2,4). In this.case, the |
triangles are (1,2,3), (1,2,4) and (1,2,5). ‘Next, all the triangles
containing arc (1,3) are obtained by taking each arc (1,2) listéd'below
(1,3) together'with each arc (3,2). This yields triangles (1,3,4) and,
(1,3,5); Finally, triangle-(1,4,5) is obtained in a similar way. |

of course, each triangle (i,j,k) has three corresboﬁding inequalities

which are tested sepaiately

As mentioned earlier,'this portion of SPTH3 could be deleted without

affecting the pathfinding procedure.’

,19
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6.3. Computing Direct Distances

Dijkstra's algorifhm is defined in terms of a direct distance matrix
D, whose élemeﬁté
direct distance from i to j , (i,j) e G,
(2) a, .={0, i=3j, |

154 o
«© , otherwise.

The‘algorithm applies .to any digraph having weights only on thé arcs, since
the nodes aré thought of as points. A sabotage graph haé node weights LA
which SPTH3 combines Qith the arc weights ai,j in forming'the distances
di,j'between node centers. The procedﬁre is to halve the barrier nodeA 

weighté (since these are the intermediate.nodes on paths from the houndary

to the targets) and then to add each arc weighf to its endpoint weights, i.e.

(3) W, = wi/2. , mp+1<isn +n,,

(k) .di;j = ai,j +~Wi %ij , (1,3) eG.

-

6.4. Storing and Accessing Direct Distances

SPTH3 avoids creating the N x N matrix D by storing the positive,

finite, D values in the input arc weight vector AWT when (4) is computed, i.e

I - 11(K) , J = JJ(K)
(5) '

AWT(K) = AWT(K) + w(i) +W(J), 1<K< NA .

This saves a greaf‘deal of storage for large N because the number of arcs
in G is always small with respect to N2 (see “Table I).
The penalty we pay for this storage efficiency is in the cost of

finding any particular 4 in AWT. That is, when Dijkstra's algorithm

1,J

I J,“SPTH3 must find a value K such that
b} i S

needs d



.(6) : AWT(K) = dr 5

instead of just referencing D(I,J). Fortunately, the completeﬁess of the
subgraphs and the special ordering of arcs in each subgraph allows K to be

computed very quickly given I and J (see the run times in Table I).

To facilitate this index computation, two integer arrays are constructed

prior to the Dijkstra-Yen search.. NODE(I,:) contains the two regions and
two local node numbers for node I, The local node number in each region
is determined by the node ordering used to order the arcs of the region.

N

For the sample problem in Section 5.1,
NODE(7,-) = {1,2,h,2} ,

meaning that node 7 is the second node of region 1 and the second node of

region 4. Since only the finite, internal regions are numbered, boundary

nodes have only one region number and one local node number. Similarly

for target nodes which belong to only one region.

IREG(R,") contains the first word address minus one in AWT of the arcs

of regioh R followed by the number of nodes in R. Thus, when SPTH3 needs
dr J(I;éJ), it does the following:
3

'(a) compares region numbers for I and J to see if arc (I,J) belongs
+ to G, ‘ '
=]

(b) if (I,J) ¢ G, no address computation is needed since d s

g
(e) if (I,J) ¢ Gp» then the first word address - minus one of the arcs
of reglon R, Lhe number of nodes in region R, the local number

. of node I in R,.ﬁI,’and the local number of node J in R, LJ, are

combined to yield
_-‘IREG(R,l) + (&I-l)IREG(R,Z)‘- &I(LI+1)/2 4 LSy,

K = ) ) .
| l;REG(g,l)-+ (LJ—l)IREG(R,E)'- £J(LJ+1)/2 thrs Ay<ip.

K satisfies (6).

2l
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6.5. The Dijkstra-Yeﬁ Search
| The Dijkstra-Yen search finds the length of the shortest paths from
ﬁhejboundary to every.node I in é and stores the value in XMINL(I),
1 I <N. During the search theA(immediate) predeces§or of node J along
a’shoftest path is stored in NEXT(J), 1 < J < N. When somé node has more
than one such predecessor, the extras are Stored in a‘vector NPOOL. A
link (an index for NPOOL) is stored in the upper portion of the wora_NEXT(J)
to indicate whereAthe second predecessor of 7 is stnrpdl, Thig seéond_
»predecessor, NPOOL(LINK), is linked to another entry in NPOOL if therc is
a third predecessor of J, etc.* These data allow the efficient retracing
ot all (not just oﬁe) shortest paths to each target, as explained in the
next ééction. |

In Dijkstra's algorithm [3] each node has a label which eventual}y
becomes the length of the shortest paths from the boundary to the node.
These labelé are temporary as long as they represent only the_shortestA
path lengths currently found by the search, and they become permanent labels
as soon as they are known to be the absolutely shortest,lengths."

SPTH3 initially sets all bbundary node labels to zero and all other
labels to = (a large ﬁachine number). The boundary.node label XLABEL(N)
is made permanent first by setting IPERM(1)=N. All the other labels are
temporary. From the last permanently labeled node I, al; the temporary

labels XLABEL(J) are examined and reduced if

XLABEL(J) > XLABEL(I) + dI g
M b

where dI 7 must be found in AWT as' described in the previous section. Each
. , _ ; . .

*We are indebted to Louann Grady, 574l, for giving us this idea for linking
together multiple predecessors. ) ‘



time XLABEL(J) is reduced, the predecessor I is stored in NEXT(J). Ir

XLABEL(J) = XLABEL(I) + dr 5 >
b

(to machine precision), then I is an extra predédessor of.J which must be
stored in the next available entry of NPOOL, and for whiéﬁ an additional
liﬁk must be created at the end of the chain beginﬁing with the link in the
upper portion of NEXT(J). After all the temporary nodes héve'been examiﬁed
from I, the one with the least temporary label is made permanent by placing
it in IPERM. This is correct because the nonpegativity of the dI,J imélies
that this label cannot be reduced furtﬁer. In the case of a tie, it doeé
not matter which ot the nodes is bermanently labeled next. I is set to
this new permanent node number and the proceés is repeated until all the
nodes are permanehtly labéled. Notice that IPERM has become a list of the- .
nodes of G in order of nohdecreasing distance from the'bouhdary, and the
shortest sabotage path lengths are XLABEL(J),-l <J < Nl - ' .

Yen's contribution [6] to this -search procedure is one of iﬁproved |
implementafion. Rather than letting J'range from 1 to N at each stagé and
asking if each J is temporary, Yen suggests the following éodiﬁg device.-
Tnitialize ITEMP(I) = I, 1 <I <N, and X ; N - 1. The temporary nodes,
then, afe the first K entries of ITEMP. While trying to reduce each ‘
-tempqrary node label, keép track of the minimizing temporary node 'IP as
well as its position IQ.in ITEMP. Then,‘when IP is stored in IPERM, set
ITEMP(IQ) = ITEMP(K). This has the double effect’of removing'IP from
ITEMP and leaving the new set of temporary nodes ih the first K entriesv
of ITEMP. Yer's modification saves SPTH3 about 25% ih run time.

If,‘because of omissions in érc data,'éome node is isolated frém the

'boundary;-its infinite label will eventually become the least tempofary

23
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label at some stage. When this happens, NE is set to zero and SPTH3 returns

to the user, who must supply the missing data before trying again.

6.6. Retracing the Shortest Paths

Given the predecessors NEXT(*) and possibly some predecessors in
NPOOL(-), SPTH3 can retrace the digraph S of all the shortest paths from
the boundary to the targets. No label-arithmetic is. needed. As each

directed arc of S is obtained, it is stored as an ordered pair of integers

in IEDGE(2,-) and IEDGE(3,°*), and the arc's region number is stored in

IEDGE(1,*). The retrace proceeds as follows.

Initiaiize NE = 0. Find the last target node in IPERM, i.e., the one
furthest from the boundary, and seﬁ J to this node number. Let I = NEXT(J),"
the predecéséor of J, assﬁming J has only one, Add one to NE, and if NE
does not exceed MAXE, store arc (I,J) énd its region number in IEDGE(:,NE).
Now reéord the fact that a shortest sabotage path passes through I by ‘
negating ITEMP(I) if it is positive, If J has another predecessor, it is
NPOOL(LINK), where LINK is packed in the upper portion of NEXT(J). In this
case,.set I = NPOOL(LINK), repeat the above arc-storage process and continue
until all the predecessors of J contribute arcs tO‘IEDGE.- (Notice that all
the arcs of S leading into J are listed consecutively in IEDGE.) Set J |
to the node in IPERM just before the one last used to set J, i.e., let J
range oyér ghe nodes in the order opposite that in which they were made
permanent. If J is a target node or a barrier node with negative ITEMP(J),
then repeat the above procedure for this new J. If J is a boundary node
or a barrier node that does not bglong to a shortest s;botage path, then
skip it, conﬁinuing until J = IPERM(1) has been treated.

Thus, IEDGE contains all the arcs in.the digréph S 6f‘all shortest

sabotage paths. Moreovér, the second nodes of these  arcs occur in the




order of nonincreasing distance from the boundary.

6.7. Counting the Shortest Paths

The fact that the second nodes in IEDGE have nonincreasing distance

from the boundary allows the shortest paths to be counted quickly as folloWs..

Set

{1 , boundary node,
“ NPATH(I) = ¢ - : 4
0 , barrier or target node.

S . . T
Then for each arc K in IEDGE, taken from bottom to top, i.e., from the

boundary to the last targét, set

I = IEDGE(2,K)
J = IEDGE(3,K)
NPATH(J) = NPATH(J) + NPATH(I), K = NE,...,1 .

The final value of NPATH(J) is just the sum of NPATH(I) over all the nodes’

I.in 8 which have‘ah arc leading td J. Notice that. each such ﬁode I will
have its final NPATH value computed befoye‘ NPATI—i(I). is added to‘ NPATH(J)
becaﬁse of the ordering of the arcs in IEDGE. Hence, NPATH(J), is the
number of shortest-pafhs ffom the.boundafy to ééch néde J in S, in

particular to J = 1,2,...,NL.
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7. Listing of SPTH3

SUBROUTINE SPTH3(N1sN2sN3sNAsWeMRyIT 9JJsAWT sMAXE » IEDGE s NE9WNSP
1 XMINL)Y .
DIMENSION W(1) sMR(1)sIT(1)sJJ(1) sAWT (1) sTEDGE(351)sNSP{1)sXMINL(1)
COMMON XLABEL(155) sNPATH(155) s IPERM(155) s ITEMP(155) sNODE(15594)
1 IREG(824+2) sNEXT(155) sNPOOL(40)
SIMULTANEOUS SABOTAGE PROBLEM--ONE TEAM PER HARDWARE NODE. USES
"DIJKSTRA-TYPE SABOTAGE ALGORITHM—~-UNDIRECTED NODES, TIME WEIGHTS.
SAVES SHORTEST PATHS FROM OFF-SITE TO EACH HARDWARE NODE. -
SPTH3 SEARCHES INWARD AND USES NO DISTANCE MATRIXe
INPUT. .
- N1 NO. OF HARDWARE NODES.
N2 NO. OF BARRIER NODES. .
" N3 NO. OF BOUNDARY NODES.
NA NO. OF ARCS.
W NODE WEIGHT VECTORs DIMENSTIONED N=N1+N2+N3.
W IS CHANGED. ‘ '
ARC DATA-—-FOUR NA VECTORSe ARCS MUST BE LISTED REGION BY REGION.
FURTHERMORE sy WITHIN EACH REGION HAVING P NODES THERE MUST
BE P*(P-1)/2 ARCS LISTED ROW BY ROW IN STRICTLY UPPER
TRIANGULAR FORM, - THAT ISs (I1912)s (119130 eees (T1sIP)s
(12913)s eees (I29IP)s (I39]4)9 eees (I39IP)s eees
(IPM1,1P). : ‘
MR REGION INDEX VECTOR.
I1 NODE 'INDEX VECTOR.
JJ NODE INDEX VECTOR. ) :
AWT ARC WEIGHT VECTORe AWT IS CHANGED.
MAXE MAXIMUM NO. EDGES (ARCS) IN THE DIGRAPH S OF SHORTEST PATHS
FROM OFF-SITE TO ALL HARDWARE NODESe.
THIS VALUF IS THE SECOND DIMENSION OF IEDGEe
OUTPUT
1EDGE .EDGES IN THE DIGRAPH §s THE UNION OF ALL SHORTEST PATHS
DIRECTED FROM THE BOUNDARY TO ALL HARDWARE NODESe IEDGE WILL
HOLD MAXE EDGES, EACH BEING GIVEN BY 3 INDICES -- THE REGION,
AND TWO ORDERED NODESe THE EDGES ARE LISTED IN IEDGE SO
THAT THE SECOND NODES HAVE A DECREAslNG DISTANCE FROM
OFF-SITE.
NE NOe. EDGES IN DIGRAPH S
NSP NOe SHORTEST PATHS TO Hy H=192scse3Nle
XMINL LENGTH OF SHORTEST PATHS TO Hs H=1%29eeesNle
THE. DIMENSION OF NSP AND XMINL MusT BE AT LEAST AS LARGE. AS N1

- MAXE IF MAXE=0 UPON EXITs THERE WAS A FAILURE OF THE TRIANGLE

ANANANNON ﬁﬁﬁﬁﬁﬁﬂﬂﬂﬂﬁﬁﬁﬂﬁnﬁﬂﬁﬂﬁﬁﬁﬂﬁhﬁﬁﬁﬂﬁﬁﬂﬁﬁﬁﬁﬁﬁﬂ('\(\

n
o\

INEQUALITY ON THE ARC WEIGHTS OF A REGION»s AND THE
"ALGORITHM WAS NOT EXECUTED.
WORK ARRAYS
FOUR VECTORS DIMENSIONED N=N1+N2+N3e.
XLAREL TEMPORARY AND PERMANENT DISTANCE LABELSe. THESE LABELS
REPRESENT THE LENGTH OF THE CURRENTLY SHORTEST
: PATHS FROM OFF-SITE TO EACH NODE. ‘ ‘
NPATH NUMBER OF SHORTEST PATHS FROM OFF-SITE TO EACH NODE OF Se.
IPERM NODES WHERE DISTANCE LABELS HAVE BEEN MADE PERMANENT.
ITEMP NODES WHERE DISTANCE LABELS ARE STILL TEMPORARY.
NODE ~ REGION AND LOCAL NODE NUMBERS FOR EACH NODE.
DIMENSION (Ns&)e "
NODE(1s1)s NODE(193) ARE REGION NUMBERS FOR NODE I
NODE(1s2)s NODE(Is4) ARF CORRESPONDING LOCAL NODE NUMBERSe



asTa¥oaNaNalNalalaTa¥aNaNaNalaRaNaNaXala)

C

10 -

15

20

25
30

IREG REGION DATA CONCERNING ARCSe. DIMENSIONED (NOe REGIONSs -2)e
IREG(Rs1) IS THE FIRST WORD ADDRESS MINUS ONE IN THE ARC

LIST OF THE ARCS OF REGION R
IREG(Rs2) IS THE NUMBER OF NODES IN REGION Rs IMPLYING
THERE ARE IREG(Rs2)#(IREG(Rs2)-1)/2 ARCS IN REGION R

NEXT PREDECESSOR OF EACH NODE J ALONG A CURRENTLY SHORTEST PATH
FROM OFF-SITE TO Je DIMENSIONED No

NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECESSORS MAY BE

STORED WHEN NODE J HAS MORE THAN ONE. THE LINK FROM
NEXT(J) TO NPOOL(LINK) IS STORED IN THE LEFT 51 BITS OF
NEXT(J)s SIMILARLYs IF THERE IS A THIRD PREDECESSOR OF

Js THEN LINK]1 FROM NPQOOL (LINK) TO NPOOL(LINK1l) IS STORED
IN THE LEFT 51 BITS OF NPOOL(LINK})s ETCe DIMENSIONED 40.

IF THE DIMENSION OF NPOOL IS CHANGEDs, THEN THE FOURTH
STATEMENT NPLDP=41 MUST BE CHANGED. NPLDP IS THE NPOOL
DIMENSION PLUS ONE. IF THE DIMENSION N IS INCREASED TO
MORE THAN 511 NODESs THEN THE FIRST THREE STATEMENTS MUST
BE CHANGED TO ALLOW MORE THAN 9 BITS IN THE RIGHT OF
EACH MASK.

DATA EPSsBIG / 140E-1351.0E321 /

LTEST=10008 -

LOW=777R

IHIGH 777777777777777770008

NPLDP=41

MAXEP=MAXE+]1

OMEPS=1.0-EPS

OPEPS=1.0+EPS

N12=N1+N2

N=N12+N3

NM1=N-1

N1P=N1+1

N12P=N12+1

CHECK EACH REGION FOR TRIANGLE INEQUALITY ON ARC WEIGHTS

1CT=0

I12EG=1

IREGP=1BEG+1

IF(MR(TRFG) oNE. MR(IBEGP)) GO TO 52
LIKE=II(IBEG)

DO 10 I=IBEGPsNA

IF(II(I) oNEe.: LIKE) GO TO 15

CONTINUE

GO TO 52

NM=T-1IBEG - :

IF(NM «LE. 1) GO TO 52

12=1BEG+NM :

TEND=12-2

NMT=NM-1

DO 50 I1=IBEGsIEND

AWTOM= AWT(Il)*OMFPS

I3=11+1

DO 45 J=1sNMT : :
IF(AWT(I2)+AWT(I3) «GEs. AWTOM) GO TO 35
FORMAT(#* TRIANGLE#*#3I3% FAILS. ARC WEIGHTS--#3E15.5)
PRINT 25911(11)’JJ(I%)lJJ(IB)!AWT(Il)’AWT(IZ)OAWT(IB)

ICT=1

27



GO TO 40 .
35 IF(AWT(I1)+AWT(I2). «LTe AWT(I3)*OMEPS) GO TO 30
IF(AWT(TI1)+AWT(I3) oLTe AWT(I2)%#OMEPS) GO TO 30
40 12=12+1 ' '
45 I13=13+1
50 NMT =NMT-1
. NM=NM-1
IREG=IFEND+2 )
: IF(NM «GE. 2) GO TO 20
52 - IBEG=IBEG+1 . o
IF(IBEG «LTe NA) GO TO 5
290" IF(ICT «FQe 0) GO TO 55
MAXE =0 '
RETURN
C - COMBINE NODE WEIGHTG INTO ARC WFIGHTQ
58 DO 65 I=M1PsN12
W(I)=0e5%W(1I)
65 CONTINUE
DO 68 I1A=1sNA
"I=11(1A)
J=JJIA)
AWT(IA)‘AwT(IA)+W(I)+W(J)
68 CONTINUE .
C SET THE ARRAYS NODEs IREG.
DO 70 I=14N »
NODE(14+1)=0
70 NODE(143)=0
Lt=1
72 K=1
IR=MR(L)
IREG(IRs1)=L-1
I-11(L) ‘
IF(NODE(Is1l) +EQe O) GO TO T3
NODE(I1+3)=1IR
NODE (1 +4)=K
GO TO 74
73 NODE(T+1)=1IR
NODC(T92) =k
74 K=K+1
J=JJL)
IF(NODE(Js1). «EQe 0) GO TO .75
NODE(Js3)=1IR
NODE(Jst) =K
GO TO 76
75 NODE(Js1)=1IR
: NODFE(Js2) =K
76 IF(L «EQe NA) GO TO 77
' “L=L+1 ' ‘ L
IF((I «EQe II(L)) «ANDe (IR «EQe MR(L))) GO TO 74
IREG(IRs2) =K
L=L-K+K#(K=1)/2+1
IF(L «LE. NA) GO TO 72
77 IREG(IR2) =K
C DIJKSTRA-YEN SEARCH INWARD.
C INITIALIZE.



C

C
C

125 -

127

CONTINUE
PO 127 1=N12P,sN
XLABEL(I)=0.

"NPATH(I)=1

ITEMP(I)=1
CONT INUE
IPL=1

L=1
PERMANENTLY LABEL NODE N.

IPERM( 1) =N
I=N

IR=NODF (151)

LI=NODE(1+2)
M=TREG(IRs1)+(LI~1)#IREG(IRs2)~LI*(LI+1)/2
IR2=0 '

K=NM1

V=B16

TREAT EACH TEMPORARILY LABELED NODE.

-V
130

131

132

138

133

134
136

139
137.

300

IS THE SMALLEST SUCH .LABEL .
DO 140 IT=1,K

J=ITEMP(IT) A

IF(NODE(Js1) «NEs IR) GO TO 131

LJ=NODE (Js2) A

GO TO 132 :

IF(NODE(Js3) «NEe IR) GO TO 133

LJ=NODE(Js4)

IF(LI «GTe LJ) GO TO 138

IAR=M+LJ -

GO TO 137

IAR=IREG(IRs1)+(LJ- 1)*IREG(IR,Z)—LJ*(LJ+1)/2+LI
GO TO 137

IF(NODE(Js1) «NEe IR2) GO TO 134

LJ=NODE(Js2)

GO:TO 136

IF(NODE(J»3) oNE. IR2) GO TO 135

IF(IR2 «EQ. 0) GO TO 135

LJ=NODE (Js4) o

IF(LI2 «GT. LJ) GO TO 139

IAR=M2+LJ '

GO TO 137

IAR=IREG(IR2s1)+(LJ- 1)*IRFG(IRZ,Z)BLJ*(LJ+1)/2+L12
DIJ=AWT (TAR) ,

Z=XLABEL (T)+DTJ

XJPEPS=XLABEL (J) *OPEPS ‘

IF(Z «GTe XJPEPS) GO TO 135

"XJMEPS=XLABEL (J)*OMEPS

IF(Z «GEe XJMEPS) GO TO 300
XLAREL(J)=2Z
NEXT(J) =1

"GO TO 135

IF(IPL=NPLDP) 30593029340
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301 FORMAT (* NPOOL NEEDS TO STORE MORE LINKS*)
© 302 PRINT 301
GO TO 340
305 - NPRED=NEXT(J) .
310 IF(NPRED +LT. LTEST) GO TO 320
LINK=SHIFT(NPRED «ANDe IHIGHs=-9)
NPRED= NPOOL(LINK)
_ GO TO 310 3
320 NPOOL(IPL)=1 )
11=SHIFT(IPLs9) <ORs NPRED
"IF(NPRED +EQs NEXT(J)) GO TO 330
NPOOL(LINK)=11
_ GO TO 340
330 NEXT(J)=11
340 IPL=IPL+1 :
135 IF(XLABEL(J) «GE. V) GO TO 140
V=XLABEL (J) : :
IP=J
1IQ=1T
140 CONTINUE
IF(V «NEe RIG) GO TO 155
NE=0
DO 152 I=14N1
NSP(1)=0
XMINL(I)=BIG
152 CONTINUE
RETURN
C NODE IP 1S TO BE PERMANFNTLY LABELED.
155 Vv=BIG
L=L+1 -
IPERM(L)=IP
I-1P
IR-NODE (1, 1)
LI=NODE(1,42) . : ' . )
M=IREG(IRs1)+(LI=1)*IREG(IRs2)=LI*(LI+1)/2
IR2=NODF (1,3)
LI2=NODE(Ts4)
M2=IREG(IR2s1)+(L T2~ 1)*TRFG(IR7 7)-LI7*(LI7+1)/?
JTEMP(IQ)=TTEMP(K)
K=K~-1
K IF(K «GTe 0) GO TO 130
C °~ ALL NODES ARE PERMANENTLY LABELED.
C RETRACE AND STORE THE SHORTEST PATHS TO ALL HARDWARE. ‘NODES.
: NC=0
180 J=IPERM(L)
L=L-1 )
IF(J «GTs N1) GO TO 180
182. I=NEXT(J)
183 "NPRED=1 S
: IF(] «GEe LTEST) I=1 oAND. LOW
NE=NE+1"
IF(NE-MAXEP) 19351925205
191 FORMAT(* DIGRAPH OF SHORTEST PATHS CONTAINS MORE THAN* 13
1 % EDGES#*)
192 PRINT 191, MAXE

0



GO TO 205
193 1EDGE(2sNF) =1
TENGE(34NF)=J
IR=NODE(Jsl)
IR2=NONE (Js3) : ‘
IF((NODE(151) «EQe IR) «ORe (NODE(Is3) +EQe IR)) IR2=IR
IEDGE(1sNE)=IR2 '
IT=ITEMP (1) 4
IF(IT «GTe O0) ITEMP(I)==1IT
205 IF(1 «EQe NPRED) GO TO 215
LINK=SHIFT(NPRED +ANDe IHIGHs-9)
I=NPOOL ( LINK)
GO TO 183 - :
215 IF(L «FQ, N) GO TO 220
J=IPFRM(L)
L=L-1
IF(J «LEe. N1) GO TO 182
IF(J «GTe N12) GO TO 215
IF(ITEMP(J) oLTe O) GO TO 182
GO TO 215
COUNT THE SHORTEST PATHS TO EACH HARDWARE NODE.
220 K=NE ~ : :
DO 225 L=1sNE
ISTEDGE(29K)
J=I1EDGE (34K ‘
NPATH(J)=NPATH(J)+NPATHI(T)
. K=K-1 : .
225 CONTINUE’
NO 230 I=1,N1
NSP(T)=NPATH(T)
XMINL(I)=XLAREL(I)
230 CONTINUE
RETURN
END
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