
Unlimited Release

SPTH3: A Subroutine for Finding Shortest
Sabotage Paths

Bernie L. Hulme, Diane B. Holdridge

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research and Development Administration,
nor the United States Nuclear Regulatory Commission, nor any of
their employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, expressed or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not
infringe privately owned rights.

SAND 77- 1060
Unlimited Release
Printed July 1977 .

SPTH3: A SUBROUTINE. FOR FINDING SHORTEST SABOTAGE PATHS
\

.. ,

Bernie L. ·Hulme
Numerical Mathematics Division

Diane B. Holdridget
Applied Mathematics Division

Sandia Laboratorie~
Albuquerque, New Mexico 87115

ABSTRACT

·•~ NOTICE-----,
ed an account of work

This report ~~ ~re~:s s~:es Government. Neither
sponsored by t e ru the United States Energy
the United S~t~ ":nt Administration, nor anY of
Research and ve op of their contractors,
their employees, no:he:ny employees, makes any
subcontmctors, or impU•d nr assumes any legal
~nty, exprr-P -:ility forth~ accun.cy, completeneli

:b:~;;:;s:;~Y lnformation, app~tus, pr~~ctn~~
process disclosed, or rep~esents that Its use wo
infringe privately owned rights.

This document explains how to construct a sabotag~ graph which models
any fixed-site facility and how to use the subroutine .SPTH3 to find
shortest paths in the graph. The shortest sabotage paths represent
physical routes through the site which would allow an adversary to take
advantage of the greatest weaknesses in the system of barriers and alarms.
The subroutine SPTH3 is a tool with which safeguards designers and analysts
can study the relative effects of design changes on the adversary routing
problem. In.addition ·to showing how to use SPTH3, this report discusses
the methods used to find shortest paths and several implementation details
which cause SPTH3 to be extremely efficient.

tPresently in Nuclear Waste Technology Division.

Printed in the United States of America

Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: $4.00 Microfiche $3.00

DISTRIBUTION OF THrs DOCUMENT u3 UNLIMI~g
1

'·

2

TABLE OF CONTENTS

l. Introduction . 0.

2o Description of SPTH3

3. The· Sabotage Graph •

3 ol. The Regions •

3o2 o The Graph G ·.

3o3o The Weights

4 o How to Use SPTH3

4ol. The Call List

4.?.
4.3o

4.4.

Input

Work Arrays

Output

5. · Examples

5.10 A Sample Prohlem

~.2. Run 'l'~me and·Array Storage Results

6 o Some Details of T,mplementation •

7.

6 .lo A Flow Chart o

6.2o

6.3.

6.4.

6.5.
6.6o

6.7.

The Triangle Inequality Tests

Computing Dire~t Distances

Storing ru1d Accessing Direct Distances

The Dijkstra-Yen Search

Retracing'the Shortest Paths

Counting the Shortest PaiJw o

Listing of SPTH3

·Page

3

4

5

6

6

9

0 11

11

12

13

0 13

14

J4

0 16

.. 18

0 18

0 19

0 20

0 20

. 22

• 24

• 25

• 26

'I

1. Introduction

This report documents the latest code for finding shortest paths in

the sabotage graphs described in [4]. A sabotage graph is a network

which models a fixed-site facility. Shortests paths in the graph represent

physical routes along which a saboteur could minimize time, or detection

probability, or some other quantity reflected in the graph weights.

C1rrrently path length in SPTH3 is the ordinary sum of the node and arc

weights in tJ:e path, so that either delay times (for barrier penetration

at nodes.and travel along arcs) or else distances could ·be used as weights.

So far shortest-time paths have been of principal int~rest. A trivial

JilOdification to SPTH3 would allow it . to accept detection pr.o"babili ty

weights and produce sabotage paths which minimize cumulative detection

probability. In the remainder of the report we shall think of the graph

weights as times.

SPTH3 addre·sses the pro"blem of. a simultaneous attack by several teams

each having a single target. This provides a lower bound for the path

length of a ~:>ingle team with several targets to attack sequentially, and

it also addres.ses a very real possibility which would place great stress

upon the safeguards system. For further details motivating this model

and considering the length-independence of different shortest-time paths,

see .[4]. ·

. It ~ust be'understood that the graph model and the pathfinding

techniques do not take into account battles 'between· adversaries and

defenders. Such encounters require stochastic models. The sabotage

graphs used for pathfinding have constan~ weights which give representative

(perhaps ~nimum or average) values of delay times. Since ~he delay times

are in reality random variables, the graph-theoretic method of this.

3

4

4
report should be viewed as a deterministic approach to finding sabotage

routes which exploit any weaknesses in the barrier ru1d alarm systems.

Such paths require further evaluation either by simulation methods such

as FESEM [2] to assess the paths' effects upon guar~encounters or else

by pro"babilistic methods such as EASI [1] to predict the likelihood of

sabotage interruption. Both of these path evaluators require a path to

be given. Thus, SPTH3 may be used to derive input. f'or FESEM or EAOI Ol'

e..Lse s:i,rn.ply +.n inni~ate relative vu.lw::!l'a.'b111ties in the barrier and alarm

. systems.

This documen.t explains both what SPTH3 does and how to use it. Those

readers :interested only in how to use it may ignore Section 6. The

shortest path algorithm embedded in SPTH3 is that of Dijkstra [3] as

modified by Yen [6,5]. This algorithm is the best available. However,

its use in SPTH3 differs somewhat from t.hP description given :iu [4] .

.Kather thru1 searching outward to the boundary from each target as described

in [4], SPTH3 searches inward from the boundary to all nodes. A substantial

reduction in storage requirements and tenf'old reductions in run time ,have

resulted from this and -other improvements to the pathfinding code.

2. Dcocription of' SPTH3

SPTH3 finds shortest paths in a special graph called a sabotagP.

graph. This graph models a fixed-site facility to some level of detail

thought-to be appropriate for the user's purpose. The details for

conot:r-ucting the gl'a.ph are given in the next section·. In brief, the noues

are important locations in the plant (say, perimeter gates, building doors,

windows, vents, stairwells; storage vaults,-and vital equipment locations),

and the arcs are physical paths from one location to another.

There are three types of' nodes: (i) boundary nodes located at

possible perimeter penetration points, (ii) 'barrier nodes located on

internal barriers at possible penetration points, and (iii) target nodes*

at vital equipment or material locations. The simultaneous sabotage

problem is to f'ind all .the shortest paths f'rom the set of' boundary nodes

to each target. Given the graph (as a list of' arcs) and the arc and node

weights, SPTH3 uses the.Dijkstra-Yen algorithm described in Section 6.5

to search f'rom the 'boundary nodes of' the graph until the lengths of' the

shortest paths to all the other nodes are known. During the search SPTH3

keeps a list of the immediate predecessor(s) of each node along a shortest

path from the boundary. This allows· all shortest paths to each target to

be retraced ·an~ stored without further arithmetic following the Dijkstra­

·Yen search.

The output from SPTH3 is simply a list of' the directed arcs which

belong to the shortest paths directed f'rom the boundary to all the targets,

togethe:t· with a list <:>f the· number and length of the shortest paths to

each target. It is possible to have more than one shortest path to any

node, and this number can be obtained easily by a simple procedure

explained in Section 6.7.

3. The Sabotage Graph

The f'irst and most important part of the use of SPTH3 is the

construction and weighting of' the sabotage graph. This involves three

steps:

(1) partitioning the drawings of the plant into regions,

*Formerly called hardware nodes.

5

6

(2) specifYing the nodes and arcs of the graph model,

(3) weighting the nodes and arcs with times (or detection

probabilities) derived from test data or analyst judgement.·

3.1 The Regions

TI1e boundary and the important internal barriers (fences, walls,

floors, stairwells, etc.) naturally partition a map of the site into

regions R , r = 1,2, •••• A region is a very general area within which
r

Saboteurs may traVP.l nn.imp~ded b;'y" ba.r:l.".iel'S. 80nie regions may appear on

the drawing as dj.sjoint domains, e.g., a stairwell or elevator region may

appear as the union of the areas in which it intersects each floor of a

'bui.Lding. However, if ·there are no significant delays to entering the

stairwell, then the floors and the connecting.stairwell may ·be treated as

one region. The region structu~e is simply an aid to constructing the

nodes and arcs which constitute the sabotaee gr.<~,ph.

3.2. The Graph G

Next, the analyst must carefully place nodes at all the important

locations. Since the model is discrete there is. some arbitrariness in

the node selection pror.ess, and an analyst may want to try various graphs

differing in the nuniber and location of the nodes. ThP:. nnnP. iet ohould

include representative penetration points along the bounda:ry .<~.nn along

the barriers between rP.eions as well as all Largets o:t' interest inside

the regions.

Once the regions and the nodes are spE;!cified, the ~ arP. determined

by a fixed rule which gives sabotage'graphs their special structure.

Every pair of nodes in region R is ·connected .by an arc, forming a
r

complete subgraph Gr' r = 1,2, •.•

r.

'An interface between two regions may contain more than one barrier

node, and this requires special attention from the analyst. Two reasons

for using such multiple barrier nodes are to ni.odel ·barriers that (a) have
/

varying hardness, .or (b) have such physical extent that the arc lengths

are significantly affected by the node locations. An arc joining node i· to

node j is denoted by the unordered integer pair (i,j) or (j,i). Multipl~

barrier nodes on a single barrier cause an arc in one region to have the

same name, or node pair, as some arc in .the adjacent region (Figure la).

In order that each .arc have a unique node pair as its endpoints, the

analyst must split. each of the multiple 'barrier nodes into two barrier

nodes connected 'by an arc (Figure lb).· Our decisio:q. to list the arcs of

G region by region fqr purposes of. computer input requires that each arc

belong to a single region. Consequently each arc introduced 'by splitting

multiple barrier nodes must belong to its own specially created region.

Figure la.

Multiple 'barrier nodes.

ij-- -_-_1.:.:-_----R;
RJ

--,---­
______J. -·-~-----

Figure lb.

Splitting of multiple barrier nodes.

The regions created 'by splitting multiple barrie·r nodes are nunibered

also, giving a total of NR regions Rr' each having a complete subgraph Gr.

7

8

The union of' all these subgraphs is the sabotage graph*

NR
G = U G

r=l r

whose nodes are then numbered as f'ollows:

target nodes, 1 to n1 ,

'barrie~ nodes, n1 + 1 to n1 + n2 , · ·

boundary nodes, n1 + n2 + 1 to n1 + n2 + n
3

= N,

.An example is shown in Figure 2, where ·squares are used f'or boundary nodes,

circles f'or barrier nodes, and shaded circles f'or targets. Three nodes

on the barrier ~ n R2 have been split.

T%---
1

--~"l

I
I
I
I

I
·I
I
I
I

I
I
I
I

I
I
I
I
I ,.
I
I

I
I
I
I
I
L----. ·-- ------·---- ____ j

Figure 2.

A Sabotage Graph

*This graph dif'f'ers slightly f'rom the graph of' [4] in which boundary­
boundary and.target-target arcs were omitted.

I

I
;

Notice that every" barrier and boundary node belongs to exactly two

regions (counting the infinite off-site region), and every target node

'belongs to only one region. Also, due to the completeness of the sU:bgraph:::,

the paths of·G represent all the physically meaningful ways ·for saboteurs

to proceed using only the given penetration points and targets.

3.3. The Weights

Both the nodes and the arcs of G are assigned constant, nonne~ative

weights. The node weights w. ~ 0, l s: i s: N, are penetration and target
~

destruction times,.while the arc weights a .. =a .. ~ 0, (i,j) € G, are
~,J J,~ .

transit times. Realizing that these constants are simply representative

v8.lues of random variables that depend on the physical characteristics of

the barriers and the amount and type of equipment postulated for the

attacking force,- the analyst must decide whether to be· conservative. and

use minimum values reflecting best possible adversary performance or else

use intermediate or average values.

When the arc weights are minimum values, they will automatically

satisfy a regional triangle inequality. That is, if arcs (i,J), (j,k) and

(k,i) belong to G and their weights represent minimal transit times, then
r

it must be true that

(l) . a. k s: a. . + a. k •
~, ~,J J,

Since saboteurs may travel at different rates in different regions, this

inequality n~ed not hold for triangles whose.arcs lie in different regions.

SPTH3 tests all the triangle inequalities (l) for. each region simply as a

check on data consistency for the user's benefit. The pathfinding

algorithm.will perform perfectly well, of course, whether or not the

triangle inequalities hold, so that this data check can be deleted from

9

SPTH3.

The weighting of the nodes and arcs which result from the splitting·

of multiple :barrier nodes may be done in many ways as long as th~ weights

of the two new nodes and their connecting arc sum to the ·barrier penetration

time.

A weighting of the graph from Figure 2 is given in Figure 3.

---.l

I
·l I
l I
I I
I I
I I
l I
I ~-------------------45--~-----7 I
I -----------------45~------------ I
I· 6
l------=------=--...::.-_- _·-:._-.::_-_-_-----=---==--.----=--=---=----- _.J

lO

Figure 3.

A Weighted Sabotage Grap4

SPTH3 does not accept directed nodes and arcs, i.e., nodes and arcs

whosE;! weights depend on the direction of travel. Of course, directed noder.

and a:r-cs could have been allowed, because Dijkstra' s algorithm works ·

equally well for· directed graphs (digraphs) as fo~ undirected graphs.

However, we have deliberately omitted directedness from the sabotage

16

graphs because, in the applications for which SPTH3 is intended, arc

lengths .are essentially the same in both directions and the doors locked

on only one side are normally locked on the side first encountered by

the saboteur.

4. How to Use SPTH3

4.1. The Call List

The call list for subroutine SPTH3 is

SPTH3(Nl,N2,N3,NA,W,MR,II,JJ,AWT,MAXE,IEDGE,NE,NSP,XMINL).

The dummy arguments have the following meanings:

Nl the.number of·target nodes,

N2 - the nuniber of barrier nodes,

N3 - the number of ·boundary nodes,

NA- the number of arcs,

W(·) -the node weight vector, dimensioned N=Nl+N2+N3,

(the next four vectors, dimensioned NA, give the ar~s as quadruples

consisting of a region, two nodes, and an arc weight)

MR(·) - the region index vector,

II(•)- a node index vector,

JJ(·) -a node index yector,

AWT(·) the arc weight vector,

MAXE the maximum number of edges (arcs). in the digraph S of
shortest paths directed from the boundary to all target
nodes .•

IEDGE(·,·)

·NE

the edges in the digraphS; each edge being.given by three
indices -- the region and two ordered nodes, dimensioned
(3,MAXE),

the number·of edges in digraph :3,

NSP(·) -the number of shortest·paths to each target, dimensioned Nl,

·:

11

12

XMINL(•) -·the length of the shortest paths to each target, dimensioned
Nl.

4.2. Input

To use SPTH3, first construct a weighted sabotage graph as indicated
. .

in Section 3. Next, in the program which calls SPT.B.3, ~imension W by N,

the vectors MR, II, JJ and AWT 'by NA, and the vectors NSF and XMINL by Nl.

Set MAXE to some guess at the maximum number of edges S will have, and

dimension IEDGE 'by (3,MAXE). Then store the node weights in W and·the

arc data in MR, II, JJ and AWT. The·node weights are given in the obvio1,1.s

order: W(I) for node I, 1 :5: I :5: N. Although there is no·obvious order

in which to give the arc data, a very special ordering of the arcs is

required.

The arcs are given by the quadruples

MR(K), II(K), JJ(K), AWT(K), 1 :5: K :5: NA.

All the arcs of one region are listed consecutively, and the regions may

b·e given in any order. For example, in a three region problem, the arcs

of region two could be listed first, followed by the arcs of regions

three and one. The arcs of each region, however, must be listed aR if

they were taken row by row from the strictly upper triangular part of

some node adjacency matrix. F'or example, if the nodes of one region are

[l6,S),21,4,7}, then an acceptable arc ordering based on the given node

ordering is (16,9), (16,21), (16,4), (16,7); (9,21), (9,4), (9,7), (21,4),

(21,7), (4,7). Notice that the arc ordering for a region may pe based

on any ordering of' the region's nodes. But once a node ordering is

chosen for the region, the arcs must be given by pairing the first node

with each other node in order, then pairing the second node with each

following node in order, and similarly for the third node, etc.

The reason for this requirement is that it produces tremendous savings

in storage. The special arc ordering allows SPTH3 to quickly compute the

address of any arc weight and, :thereby, completely eliminates the need for

the usual N X N direct distance matrix. For graphs with several hundred

nodes this is very important.

4.3. Work Arrays

SPTH3 has several work arrays whose dimensions must be set by the

user 'before running the job. The meanings of these arrays are explained

in the program comments and in Section 6. In order to use SPTH3 it is

sufficient for the user to set the following dimensions:

XLABEL,NPATH,IPERM,ITEMP,NEXT - N,

NODE - (N, 4),

IREG- (NR,2), where NR =the number of regions,

NPOOL - 40, an arbitrary setting for an unpredictable total number of
extra'predecessors for nodes which have more than one predecessor
along shortest paths. SPTH3 prints a message when this dimension
needs to 'be increased. In this case, the results should 'be
considered.incomplete, and the prOblem should 'be rerun with a
larger dimension for NPOOL. ·

4.4. Output

The output consists of

MAXE, IEDGE ,NE ,NSP and XMINL ,

whose meanings are given above.

MAXE and NE serve as flags· and must 'be tested upon return from SPTH3

to see if,a normal execution took place. If MAXE = 0 upon return, there

was a failure of the triangle inequality on the arc weights of some

region, a message was printed, and ·the pathfinding algorithm was not

13

14

executed. The user should correct the arc data indicated by the message

and try again. Also, it is possible to return with NE = 0. This means

that pathfinding was abortedbecause some node could not be reached from

the boundary. The user must check the arc list to be sure that all the

arcs are present in each region.

It should be noted that the weight vectors W and AWT are changed by

SPTH3 in the following way:

W(I) ,_ W(I)/2. Nl+l<;T<;l\Tl.+N~,

AWT(K) ,_ AWT(K) + w(II(K)) + w(JJ(K)) , 1 :s: K :s: NA ·.

If necessary, the user may restore Wand AWT to their input 'values by

first subtracting w(II(K)) + w(JJ(K)) from. AWT(K), for'l :s: K :s: NA, and

then doubling each barrier node we.ight. This change of W and AWT is also

related to the above mentioned storage economy because.it allows the

input vector AWT to be used for the direct distance storage in lieu of the

standard N x N matrix normally used in Dijkstra' s algod thm.

5. Examples

~ .1. A Sarnple Pru'blem

Let us take the weighted graph of Figure 3 ~s an example. In

Figure 4 this graph is shown with the digraph S of shortest sa;bota.ge ,paths . '

superimposed in dark lines.

The input consists of

Nl = 2, N2 = 6, . N3 :::;: 2, NA = 23

w = [4.,4.,5.,5.,5.,5.,5.,5.,16.,20.}

MR II JJ AWT

1 6 7 40.
1 6 8 6.
1 6 9 45.·
1 6 10 40.
1 7 8 40.
1 7 9 10.
1 7 10 6.
1 8 9 4o.
1 8 10 45.
1 9 10 6.
2 1 2 3.
2 1 3 4.
2 1 4 36.
2 1 .5 34.
2 2 3 2.
2 2 4 34.
2 2 5 32.

. 2 3 4 33.
2 3 ~ 30.
2 4 5 3.
3 3 6 o.
4 4 7 0.
5 5 8 o.

Figure 4.
The Digraph S of Shortest Sabotage Paths Superimpose.d

· on a Weighted Sabotage Graph

---,

15

I
I
I
I

16

16

The output is

Target NSP XMINL

1 2 73.
2 2 7L

IEDGE (NE = 9)

Region Node Node
~ 2 3 1

2 3 2
3 6 3
1 8 6
~) lj

2 4 5
4 7 4
1 10 7
l 9 7

-Since the digraph S is given completely by IEDGE, S is easily drawn by

simply darkening the edges indicated by the ordered node pairs in IEDGE.

NSP and XMINL show thqt th~re are two shorte~t. paths to each target, thooc

·to node l having length 73. and.those to node 2 having length 71.

5.2. Run 'l'ime and Array Storage Results

SPTH3 is extremely f'ast. The Dijkstra-Yen algori.thm used f'or
. . . . 2

pathf'inding has a worst-case run time ·on the order of' O(N) ·f'or an N-node

graph. Although SPTH3. also checks all the triangle ineq:ualities in each

region, does the 'bookkeeping f'or multiple predeGessors, and retraces and

counts the number of' shortest paths to each target,· it uses almost a

negligible amount of' run time. As shown in Table I a realistic sized

problem of' 310 nodes and 1191 arcs requires only about a second and a half'

of' CDC 6600 run time. Consequently,.we· f'eel that execution ~ime f'or

shortest path problems should be of' very little concern t9 most users.

SPTH3 is also very storage ef'f'icient •. As mentioned in Section 4.4,

the N x N matrix of' direct distances normally used in Dijkstra's algorithm

·I

has been eliminated in favor of a storage scheme which overwrites the

I input vector AWT with direct distances between node centers. Thus, the

array storage, which dominates SPTH3's storage requirements for larger

pro"blems, is linear in the number of nodes, arcs, regions, etc. In

particular SPTH3's arrays need

lON + 4NA. + 2NR + 2Nl + 3NE + 40

storage locations, where 40 is an unpredictable dimension that proved

adequate for our set of test problems. Table I also gives the array

storage requirements for the larger problems in the test set •

. 1The sample problem in Figure 4 is Problem 3 below.

Table I

CDC 6600 Run Time and Array storage Results

Problem Nl-N2-N3 Nodes Arcs Regions Edges in s Array Run Time
.N NA NR NE Storage (seconds)

1 1- 5-l 7 13 4 3 - 0.004

2 5~1~2 8 16 2 6 - 0.004

3 2-6 -2 10 23 5 9 - 0.005

~. tJ.- 8 -2 11.1 3h 6 12 - 0.007

5 1-8-8 17 32 8 1 - 0.009

6 l-10- 8 19 40 8 l 411 0.009

7 1-31-14 46 112 20 2 996 0.041

8 20-58-4 82 514 35 43 3155 0.167 ..

9 30-120-5 155
..

656 82 81 4681 0.446

10 10-296-4 310 1191 192 38 8422 1.563
•.

17

18

6. Some Details of Implementation

6.1. A Flow Chart

Figure 5.

A Flow Chart of SPTII3

Store direct
distance DII(K) ,JJ (K)
between node
centers in AWT(K).

1 s: K s; NA.

Set array::;
NODE,IREG

so that DI,J may

be addresse'd in AWT.

Perform a
Dijkstra-Yen

search from the
boundary to all
nodes.

Retrace S, all
shortest paths to
targets, storing
arcs in HJJGI!:.

Count number of
shortest paths to
each node I in S.
Ston~ lu NPATH(I).

Set
NSP(I)=NPATH(I)
XMINL(I)- ..

XLABEL(I)
ls:I~Nl

6.2. The Triangle Inequality Tests

Finding the. triangles of each region is very easy given the completeness

of the sU:bgraph and the special ordering of the arcs. For example, consider ·

the arcs of region R
2

in the graph of Figure 4,

II

1
1
1
1
2
2
2
3
3
4

JJ

2
3
4
5
3.
4
5'
4
5
5

AWT

3.
4 •.

36.
34.
2.

34.
32.
33.
30.
3.

All the triangles containing arc (1,2) are found· by taking each arc (l,,.t)

listed below (1,2) together with each arc (2,t). In this case, the

triangles are (1,2,3); (1,2,4) and (1,2,5). Next, all the triangles

containing arc (1,3) are o"btained by taking each arc (l,t) listed below

(1,3) together with each arc (3,t). This yields triangles (1,3,4) and ..

(1,3,5): Finally; triangle· (1,4,5) is obtained ·in a similar way.

Of course,_ each triangle (i,j,k).has three corresponding inequalities

which are tested separately

a. k ~ a .. · + a. k •
"J, J,J.. J.,

As mentioned earlier, this portion of SPTH3 could be deleted without

affecting the pathfinding procedure.·

19

20

6.3. Computing Direct Distances

Dijkstra's algorithm is defined in terms of a direct distance matrix.

D, whose elements

(2) d ..
J.,J {

direc~ di~tance

= o, ~=J,
co otherwise.

from i to j , (i,j)eG,

The algorithm applies .to any digraph having weights only on the arcs, since

the nodes are thought of as points. A sabotage graph has node weights w.
~

which SPTH3 combines with the arc weights a .. in forming the distances
~,J

d. . between node centers·. The procedure is to halve the barrier node.
~,J .

wefghts (since these are the intermedlate nodes on paths from the hulmdary

:to the targets) and then to add each arc weight to its endpoint weights, i.e.

(3) w. = w./2. ' nl + 1 ::.: i ~ nl + n2
"' ~ ~

{4) ·d .. ' a . + w. !· w. (i,j) ~ G .
~,J ~,j ~ ,]

6.4. Storing and Accessing Direct Distances

SPTH3 avoids creating the N x N matrix D by storing the positive,

finite, D values in the input arc weight vector AWT when (4) is computed, i.E

I = II(K) , J = JJ(K)
(5)

AWT(K) = AWT(K) .+ W(I) + W(,J) , 1 s; K ~ NA .

This saves a great deal of storage for large N because the number of arcs

in G is always small with respect _to ~ (s~e ·,Ta'ble I).

The penalty we pay for this storage efficiency is in the cost of

finding any particular di,J in AWT. That is, when Dijkstra's algorithm

needs di J' SPTH3 must find a value K such that
'

(6) AWT(K) = di J ,
'

instead of ju~t referencing D(I,J). Fortunately, the completeness of the

subgraphs and the special ordering of arcs in each subgraph allows K to be

computed very quickly given I and J (see the run times in Table I).

To facilitate this index computation, two integer arrays are constructed

prior to the Dijkstra-Yen search .. NODE(I,·) contains the two regions and

two local node numbers for node I. The local node number in each region

is determined by the node ordering used to order the arcs of the region.
'·

For the sample problem in Section 5.1,

NODE(7,·) = [1,2,4,2}

meaning that node 7 is the second node of region 1 and the second node of

region 4. Since only the finite, internal regions are numbered, boundary

nodes have only one region number and one local node number. Similarly

for target nodes which belong to only one region.

IREG(R,·) contains the first word address minus one in AWT of the arcs

of region R followed 'by the number of nodes in R. Thus, when SPTH3 needs

di J(IrJ), it does the following:
'

(a) compares region numbern for I and J to see if arc (I,J) belongs
to G,

(b) if (I,J) f. G, no address computation is needed since d J = QO ,
I,

(c) if (I,J.) e: GR' then the first word address-minus one of the arcs

.of :t·egluu R, Lhe number· of nodes in region H, the local number:
of node I in. R, _{I' . and the local number of node J in R, tJ' a·re

combined to yield

K = J IREG(R,l) + (t1 -l)IREG(R,2) ti\.ti +l)/2

t IREG(R,l) + (tJ-l)IREG(R,2) ·- tJ(tJ+l)/2

K s~tisfies (6).

.ti" ~ t,J

tJ <._ti

21

22

6.5. ·The Dijkstra-Yen Search

The Dijkstra-Yen search finds the length of the shortest paths from

the boundary to every node I in G and stores the value in XMINL(I),

1 s I s N. During the search the (immediate) predecessor of node J along

a shortest path i'S stored in NEXT(J), 1 s J s N. When some node has more

than one such predecessor, the extras are stored in a vector NPOOL. A

link (an index for NPOOL) is stored in the upper portion of the word NEXT(J)

to indicate where the second predecessor of rT i 1'\ Rt.nrPn . This ~.econd

-'predecessor, NPOOL(LINK), is linked to another entry in NPOOL' if there is

a third predecessor of J, etc.* These data allow the efficient. retracing

of all (not just one) shortest paths to each target, as explained in the

next section.

In Dijkstra's algorithm [3] each node has a label which eventually

becomes the length of the shortest paths from the 'boundary to the node.

TI1~~~ labels are temporary as ~ong as they represent only the shortest

path lengths currently found by the search, and they become permanent labels

as soon as they are known to be the absolutely shortest lengths.

SPTH3 initially sets all boundary node labels to zero and all other

labels to co (a large machine number). The boundary node lahel XLABEL(N)

is made permanent first by·setting IPERM(l)=N. All the other labels are

temporary. From the last permanently labeled node I, all the temporary

labels XLABEL(J) are examined and reduced if

XLABEL(J) > XLABEL(I) + di J ,
'

where d must be found in AWT as· described in the previous section. Each
I,J

*We are inde'bted to Louann Grady, 5741, ·for giving us this idea for linking
together multiple predecessors.

time XLABEL(J) is reduced, the predecessor I is stored in NEXT(J). If

XLABEL(J) = XLABEL(I) + di J
'

(to machine precision), then I is an extra predecessor of J which must 'be

stored in the .·next available entry of NPOOL, and for which an additional

link must be created at the end of the chain beginning with the link in the

upper portion of NEXT(J). After all the temporary nodes have 'been examined

from I, the one with the least temporary label is made permanent by placing

it in IPERM. This is correct because the nonnegativity of the d implies
I,J

that this label cannot be reduced further. Tn the case of a tie, it does

not matter which o:t' the nodes is permanently labeled next. I is set to

this new permanent.node number and the process is repeated 1mtil all the

nodes are permanently labeled. Notice that IPERM has become a list of the

nodes of G in order of nondecreasing distance from the 'boundary, and the

shortest sabotage path lengths are XLABEL(J), 1 ~ J ~ Nl.

Yen's .contribution [6] to this ·search procedure is one of improved

implementation. Rather than letting J range from 1 to N at each stage and

asking if each J is temporary, Yen suggests the following coding device.·

Initialize ITEMP(I) I, 1 ~ I ~ N, and K = N - 1. The temporary nodes,

then, are the first K entries of IT~~. While trying to reduce e~ch

temporary node label~ keep track of the minimizing temporary node ·IP as

well as its position IQ.in ITEMP. Then, when IP is stored in IPERM, set

ITEMP(IQ.) = ITEMP(K). This has the double effect'of removing IP from

ITEMP and leaving. the new set of temporary nodes in the first K entries
..

of ITEMP. Yeri's modification saves SPTH3 about 25% in run time.

If, because of omissions in arc data, some node is isolated from the
. . .

boundary,·its infinite label will eventually become the least temporary

23

'' '~I '

label at some stage. When this happens, NE is set to zero and SPTH3 returns

t.o the user, who must supply the missing data before trying again. · .. •I
6.6-. Retracing the Shortest Paths

Given the predecessors·· NEXT(·) awl possibly some predecessors in

NPOOL(·), SP~H3 can retrace the digraphS of all the shortest paths from

the boundary to the targets. No label-arithmetic is. needed. As each

directed arc of S is obtained, it is stored as an ordered pair of .integers

in IEDGE(2,·) and IEDGE(3,·), and the arc's region number is stored in

IEDGE(l,·). The retrace proceeds as follows.

Initialize NE = 0. Find the last target node in IPERM, i.e., the one

fUrthest from the boundary, and set J to this node number. Let I= NEXT(J), ·

the predecessor of J, assuming J has only one. Add one to NE, and if NE

does not exceed MAXE, store arc (I,J) and its region number in IEDGE(·,NE).

Now record the fact that a shortest sabotage path passes through I by

negating ITEMP(I) if it is positive, If J has another prP.rlP.r.P.RRnr, it is

NPOOL(LINK), where .LINK is packed in the upper port.i nn nf NEXT.(J). In this

case, set I = NPOOL(LINK), repeat the a·bove arc-storage process and continue

until all the predecessors of J contribute arcs to IEDQE, (NQtice· that all

the arcs of s leading into J are listed consecutively in IEDGE.) Set J

to the node in I PERM just before the one last used to set J, i.e., let J

range over the nodes in the order opposite that in which tqey were made

permanent. If J is a target node or a barrier node with negative ITEMP(J1,

then repeat the above procedure for this new J. If J is a 'boundary node

or a barrier node that does not belong to a shortest sabotage path, then

skip it, continuing until J IPERM(l) has been treated.

Thus, IEDGE contains all the arcs in.the digr~ph S of'all shortest

sabotage paths. Moreover, the second nodes of these· arcs occur in the

24

I

order 9f nonincreasing distance from the boundary.

6.7. Counting the Shortest Paths

The fact that the second nodes in IEDGE have nonincreasing distance

from the boundary allows the shortest paths to be counted quickly as follows.

Set·

= ~10. · NPATH(I) l
)"

·boundary node,

·barrier or target node.

Then for each arc K in IEDGE, taken from bottom to top, i.e., from the

·boundary to the last target, se~·

I IEDGE(2,K)
J ;,.IEDGE(3,K)

NPATH(J) = NPATH.(J) + NPATH(I), . K = NE, ••• ,1· •

The final value of NPATH(J) is j11st the sum of NPATH(I)".over all the nodes·

I .in S which have an arc leading to J. Notice that. each such node I will

have its final NPATH value computed before NPATH(I) is added to NPATH(J)

because of the ordering of the arcs in IEDGE. Hence,.NPATH(J), is the

nuniber of shortest. paths from the boundary to each node J in $, in

particular to J = 1,2, ••. ,Nl.

'\,,·:.: J • ';

25

.7. Listing of' SPTH3

SUBROUTIN~ SPTH3C~1tN2tN3,NA,WtMR,II,JJ,AWTtMAXE,IEDGE,NE,NSPt
1 XMINL) .

DIMENSION WC1>•MRC1ltiiCll•JJ(l)•AWTClltiEDGEC3t1l tNSPC1ltXMINLC1>
COMMON XLABEU 155) ,NpATHC 155) tiPERMC 155) tiTEMPC155) ,NODEC155t4)'

1 IREGC82t2l tNEXTC155) tNPOOL(40)
c SIMULTANEOUS SABOTAGE PROBLEM--ONE TEAM PER HARDWARE NODE. USES 'I
C .DIJKSTRA-TYPE ~ABOTAGE ALGORITHM--UNDIRECTED NODES, TIME WEIGHTS.
C SAVES SHORTEST PATHS FROM OFF-SITE TO EACH HARDWARE NODE• ·
C SPTH3 SEARCHES INWARD AND USES NO DISTANCE MATRIX.
C I ~!.PUT •
C · Nl NO. OF HARDWARE NODES.
C N2 NO. OF BARRIER NODES.
C N3 NO. OF BOUNDARY NODES.
C NA NO. OF ARCS~
C W ~ODE WEIGHT VECTOR• DTMFNSIONED N=Nl+N2+N3.
C W IS CHANGED.
C ARC DATA--FOUR NA VECTORS. ARCS MUST BE LISTED REGION BY REGION.
C FURTHERMORE, WITHIN EACH REG I·ON HAVING P NODES THERE MUST
C BE P*CP-1)/2 ARCS LISTED ROW BY ROW IN STRICTLY UPPER
C TRIANGUL.A.R FORM, THAT IS, Cil•IZlt Clld3lt ~ •• , Cil,JP),
C CI2d3lt •••' 112t1Pl, CI3,J4), •••• C!3dP!t ••••
C CIPMltiP>.
C MR REGION INDEX VECTOR.
C II NODE INDEX VECTOR.
C JJ NODE INDEX VECTOR.
C AWT ARC WEIGHT VECTOR. AWT IS CHANGED·
C MAXE MAXIMUM NO• EDGES CARCSl IN THE DIGRAPH S OF SHORTEST PATHS
C FROM OFF-SITE TO ALL HARDWARE NODES·
C THIS VALUE IS THE SECOND DIMENSION OF lEDGE.
C OUTPUT~ .
C !EDGE .EDGE~ IN THE DIGRAPH St THE UNION OF ALL SHORTEST PATHS
C DIRECTED FROM THE BOUNDARY TO ALL HARDWARE NODES• lEDGE WILL
C HOLD MAXE EDGEs, EACH BEING GIVEN BY 3 INDICES -- THE REGION,
C AND TWO ORDERED NODES. THE EDGES ARE LISTED IN lEDGE SO
C THAT THE SECOND NODES HAVE A DECREASlNG DISTANCE FROM
C OFF-SITE.
C NE NO. EDGES IN DIGRAPH s.
C NSP NO. SHORTEST PATHS TO H, H=lt2to•••Nl•
C XMINL LENGTH OF SHORTEST PATHS TO.Ht H=l•2•••••N1.
C THE-DIMENSION OF NSP AND XMINL MUST BE AT LEAST AS LARGE AS N1
C MAXE IF MAXE=O UPON EXIT, THERE WAS A FAILURE OF THE TRIANGLE
C INEOUALITY ON T~E ARC WEIGHTS OF A REGION, AND THE.
C ALGORITHM WAS NOT EXECUTED.
C WORK .ARR.A.YS
C FOUR VECTORS DIMENSIONED N=N1+N2+N3•
C XLA8EL TEMPORARY AND_ PERMANENT DISTANCE LABELS. THESE LABELS
C REPRESENT THE LENGTH OF THE CURRENlLY ~HORTEST
C PATHS FROM OFF-SITE TO EACH NODE• .
C NPATH NUMBER OF SHORTEST PATHS FROM OFF-SITE TO EACH NODE OF s.
C !PERM NODES WHERE DISTANCE LABELS HAVE BEEN MADE PERMANENT•
.c !TEMP NO~~S WHERE DISTANCE LABELS ARE STILL TEMPORARY.
C NODE REG I ON A.ND LOCAL NODE NUMBERS FOR EACH NODE •
C DIMENSION CN,4).
C NODE C ! , 1>, NODE C I t3 > ARE REG I ON NUMBERS FOR NODE I.
C NODE (! , 2 > , NODE (I, 4 l A.RF (ORR ESPOND I NG LOCA.L NODE NUMBERS •

.,.

26

-~.,

I

J'

••

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

!REG REGION DATA CONCERNING ARCS. DIMENSIONED CNO. REGIONS, 2).
IREGCRtll IS THE FIRST WORD ADDRESS MINUS ONE IN THE ARC

.LIST OF THE ARCS OF·REGION R· ·
IREGCRt2l IS THE NUMBER OF NODES IN REGION R, IMPLYING
THERE ARE IREGCRt2l*CIREGCRt2l-lll2 ARCS IN REGION R.

NEXT PREDECESSOR OF EACH NODE J ALONG A CURRENTLY SHORTEST PATH
FROM OFF-SITE TO J. DIMENSIONED Ne

NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECESSORS MAY BE
. I .

STORED WHEN NODE J HAS MORE THAN ONE. THE LINK FROM
N~XTCJ) TO NPOOLCLINKl IS STORED IN THE LEFT 51 BITS OF
NEXT(J). SIMILARLY, IF THERE IS A THIRD PREDECESSOR OF
J, THEN LINK1 FROM NPOOLCLINKl TO NPOOLCLINKll IS STORED
IN THE LEFT ·51 BITS OF NPOOLCLINKlt ETC. DIMENSIONED 40•
IF THE DIMENSION OF NPOOL IS CHANGED, THEN THE FOURTH
STATEMENT NPLDP=41 MUST BE CHANGED. NPLDP IS THE NPOOL
DIMENSION PLUS ONE. IF THE DIMENSION N IS INCREASED TO
MORE THAN 511 NODES' THEN THE FIRST THREE STATEMENTS MUST
BE CHANGED TO ALLOW MORE THAN 9 BITS IN THE RIGHT OF
EACH MASK. .

DATA EPS,BIG I 1e0E-13,1.0E321 I
LTEST=IOOOB
LOW=7778
IHIGH=77777777777777777000B
NPLDP=41
MAXEP=MAXE+1
OMEPS=1•0-EPS
OPEPS=1.0+EPS
N12=Nl+N2
N=N12+N3
N"'11=N-1
NlP=N1+1
N12P=N1?.+1

C CHECK EACH REGION FOR TRIANGLE INEQUALITY ON ARC WEIGHTS
ICT=O
IqEG=1

5 IREGP=IBEG+1
IFCMRCTRFG) .NE. MRCIREGPll GO TO 52
LIKE= I I C IBEGl
DO 10 I=IBEGP,NA
IFCIICil .NE. LIKE) GO TO 15

10· · CONTINUE
GO TO 52

15 NM=I-IBEG
IFCNM .LEo 1) GO TO 52

20 12=IBEG+NM
IEN[)=!2-2
NMT=NM-1.
DO 50 I1=IBEG,IEND
AWTOM=AWTC I1l*OMEPS
13=11+1
DO 45 J=1,NMT
IFCAWTCI2l+AWTCI3l .GE. AWTOMl GO TO 3~

25 FORMATC* TRIANGLE*3I3* FAILS. ARC WEIGHTS--*3El5.5)
3 0 PRINT 2 5 , I I (l 1 l , J J C I l l .1. J J C I 3 l , A W T C I 1 l , A W T C I 2 l • A WT (I 3 l

ICT=1

27

GO TO 40
35 JFCAWTC 11 l+AWTC I2> eLT. AWTCI3>*0MEPS> GO TO 30

IF C .A.WT C I 1) +AWT C I 3) .LT. AWTC I2l*OMEPS> GO TO 30
40 J2=I2+1
45 13=!3+1
50 NMT=~Itv1T-1

NM=NM-1
I!~EG= I F.ND+2
JFCNM .GE. 2) GO TO 20

52 · IBEG=IBEG+l
IF(IBEG .LT. NA> GO TO 5'

290• IFCICT .EO. 0) GO TO 55
MAXE=O
RETURN

c COMRINE NODE WEIGHT~ INTO ARC WEICiHTS
55 DO 6? I=N1PtN12

It/(I)=0.5*\vC I)
65 CONTJNUE

DO 68 IA=l9NA
J=JICJA)
J=JJCIA).
~WtCIA·)=AWTCJA)+WC!)+WCj)

68 CONTINUE
c SET THE ARRAYS NODE, IREG.

DO 70 I=1tN
NODECJ,l)=O

70 NODECI,3>=0
L=1

72 K=1
IR=MRCL>
I R E:·G (I R d) = L - 1
r-rrcu
I r C NODE (I ' 1) • E.Q. 0) ()0 TO 73
NODECJ,3>=IR
NODECJ,4)=K
GO TO 74

1?. Nn[)F.(J,ll=IR
~IOOr: C I' 2) .::.!<'.

74 K=K+1
J=JjCL)
IFCNODECJ,1).~EQ. 0) GO TO .75
NODE(J,3l=IR
N 0 DE (J , 4) - ~~

GO TO 76
75 NODECJt.l>=IR

NODF.CJ,2>=K
76 IFCL .Eo • NA) GO TO 77

. L=L+1
IF (C I .EQ. I I (L) > .AND. C I R .EQ. MR C L))) Gb TO 74
IREGCIR•2>=K
L=L-K+K*CK-1)/2+1
JFCL • LE. NA) GO TO 72

77 IREG<IRt2l=K
c DIJKSTRA-YEN SEARCH INWARD.
c INITIALIZE.

28

c

c
c

DO 12 5 I = 1 , N 1 2 .
XLABELCil=BIG
NPATHCil=O
ITEMP (I l =I

125 CONTINUE
DO 127 I=N12PtN
XLABELC I l=O.
NPATHC I)=1
ITEMP C I l =I

127 CONTINUE
I.PL=1
L=l

PERMANENTLY LABEL NODE N.
IPERM!1l=N
I=N
IR=NODF!I,ll
LI=NODE!I,2l
M=IREG!IRt1l+!LI-1l*IREG!IRt2l-LI*!LI+1l/2
IR2=0
K=NM1
V=BIG

T~EAT EACH TEMPORARILY LABELED NODE.
V IS THE SMALLEST SUCH .LABEL•

130 DO 140 IT=1tK
J= I TEMP (IT>
IF!NODE!J.l) .NE• IR> GO TO 131
LJ=NODE!J,2)
GO TO 132

131 IF!NODECJ,3) .NE. IR> GO TO 133
LJ=NODE(J,4)

132. IF!LI .GT. LJ>. GO TO 138
IA.R=M+LJ
GO TO 137

138 IAR=.IREGCIRt1)+(LJ-1l*lREGCIR,2>-LJ*(LJ+1l/2+LI
GO TO 137

133 IF!NODE!Jt1l .NE. IR2) GO TO 134
LJ=NODE(J,2)
GO.: TO 136

134 JP(NODE!J,3) .NE. IR2l GO TO 135
I F (I R 2 • E Q·. 0) G 0 T 0 1 3 5
LJ=NODE!Jt4l

1~6 IF!LI2 .GT. LJ) GO TO 139
IAR=M2+LJ
GO TO 1.37

139 IAR=IREG! IR2tl l+!L.J-ll*IREG! T'32t2l-L.J*!LJ+l)/2+l:I2
137- DIJ=AWTCIA.Rl .

Z=XLABEL!I)+DIJ
XJPEPS=XLABEL!Jl*OPEPS
[F!Z .GT. XJPEPSl GO. TO 135
XJMEPS=XLABEL!Jl*OMEPS
IF(Z .GE. ~JMEPS> GO TO 300
XLAREL!J)=Z
NEXT!Jl=I

·GO TO 1'35
300 IF!IPL-NPLDP) 305,302t340·

29

301 FORMAT<* NPOOL NEEDS TO STORE MORE LINKS*).
302 PRINT 301

GO TO 340
305 · NPRED=NEXTCJ)
310 IFCNPRED .LT. LTESTl ~0 TO 320

LINK=SHIFTCNPRED .AND• IHIGH,-9)
NPRED=NPOOLILINKl
GO TO 310

320 NPOOLCIPLl=l
I1=SHIFTCJPL,9l eOR. NPRED

·IFCNPRED .EO. NEXTCJl l GO TO 330
NPOOLC LINK l =I 1
GO TO 340

330 NEXTCJ)=11
340 IPL=IPL+1
135 IFCXLABELCJ) .GE. Vl GO TO 140

V=XLABELCJl
IP=J
IQ=IT

' 140 CONTINUE
IFCV -.NE. RIGJ GO TO 155
Nf=O .
DO .J.I!;2 I=l ,-Nl
NSP C I)= 0
XMINLC I >=BIG

152 CONTINUE
RETURN

C NODE IP IS TO BE PERMANENTLY LABELED.
155 V=BIG

L=L+l
IPERMCLl=JP
r-IP
In -NODE C ! , 1 l
LT=NODECI,2)
M=IREGCIR,ll+CLI~1l*IREGCTR,2J-LT*CLI+1l/2
IR2=NODFcl,3)
LI2=NODECI,4)
~2=IREGCIR2,1J+lLJ2-ll*TRFGITR?,?)-LI2*CLI?+ll/2
JTEMPC.TQJ=TTEMPCKl
K=K-1
TFCK .GT. Ol .GO TO 130

C ALL NODES ARE PERMANENTLY LABELED.
C RETRACE AND STORE THE ~HORTEST PATHS TO ALL. HARDWARE.'NODES.

NC•O
180 J=IPERMCLl

-L=L-1
IFCJ .GT. N1) GO TO 180

182 I=NEXTCJ)
18 3 . NPRED= I

IFC I .GE. LTES.Tl I=I .AND. L·ow
NE=NE+1· . . .
IFCNE-MAXEP> 193,192,205

191 FORMAT<* DIGRAPH OF SHORTEST PATHS CONTAINS MORE THAN* '13 . .
1 * EDGF::S*>

192 PRINT 191, MAXE

30

• 0

GO TO 205
193 IED\,EC2,NE>=T

IEDG!:C3,NF.l=J
IR=NODECJ.,1)
IR2=N0r)E C J', 3)
IFCJNODECidl .EQ. IR> .OR. CNODECI,3l .• EQ. IRll IR2=IR
IEDGEC1,NE>=IR2
IT= ITEtv1P C I l
IFC IT .GT. 0) ITEMPC I)=-IT

205 1FC I .EO. NPRED> GO TO 215
LINK=SHIFTCNPRED .AND. IHIGH,-9)
I=NPOOLCLINKl
GO TO 183

215 IFCL .FO. 0) GO TO 220
J=IPFRM(L)
L=L-1
IFCJ .LE. N1l GO TO 182
JF(J .GT. N12l GO TO 215
IF (ITEM P (J) • L T • 0) GO T 0 18 2
GO TO 215

t COUNT THE SHORTEST PATHS TO EACH HARDWARE NODE.
220 K=NE

DO 225 L=1,NE
I=IEDGE(2,Kl

.J= I EOGE C 3, K l
NP~TH(J)=NPATH(J)+NPATH(J)

K=K-1
225 CONTINUE.

DO 2 3 0 T = 1 ,N 1
N~P C I) =NP.A.THC T l
X M I N L(I l =XL ARE L (· I)

230 CONTINUE
RE.TtJRN.
FND

._

31

32

Acknowledgements

We want to thank S. L. Daniel, 5J111, and G. B. Varnado, 5412, for

supplying us with some of the test pro.blems and for their helpful comments

concerning the use of SPTH3 •.

[1 J

[2]

[3 J

[4 J

[5]

[6 J

REFERENCES

H. A. Bennett, The "EASI" Approach to Physical Security Evaluation,
SAND76.;..0500, Sandia Laboratories, Albuquerque, New Mexico, January
1977.

L. D. Chapman, Effectiveness Evaluation of Alternative Fixed-Site
Safeguard Security Systems, SAND75-6l59, Sandia Laborat?ries,
Albuquerque, New Mexico, July 1976.

E. W. Dijkstra, A Note on Two Problems in Connexion with Graphs,
Numer. Math. _!, 269-271 (19.59).

H. L. Hulme, Pathfinding in Graph-Theoretic Sabotage Models. I.
Simultaneous Attack by Several Teams, SAND76-0314, Sandia Laboratories,
Albuquerque, New Mexico, July 1976.

T. A. Williams and G. P. White, A Note on Yen's Algorithm for Finding
the Length of All Shortest Paths in N-.Node Nonnegative-Distance
Networks,_ J. Assoc. Comput. Mach. 20, 389-390 (1973).

J. Y. Yen, Finding the Lengths of All Shortest Paths in N-NonP.

Nonnegatfve~Distance Complete Networks Using ~3 Addition::; A.nn w3

Comparisons, J. Assoc. Comput. Mach. 19, 423-424 (1972).

. ..

DISTRIBUTION:

US NRC Distribu~ion Section 5412 J. w. Hickman
Attn: Robert Wade 5412 D. E. Bennett
Washington, DC 20555 5412 D. M. Ericson, Jr.
NRC-13 (208) 5412 G. B. Varnado

5700 J. H. Scott
1000 G. A. Fowler 5740 v. L. Dugan
1140 w. D • We art • ll4l L. R. Hill

5741 L. D. Chapman·
5741 K. G. Adams

ll4l D. B. Holdridge (10) 5741 H.· A. Bennett
1230 w. L. Stevens 5741 D. Engi
1233 R. E. Smith 5741 L. M. Grady
1233 M. D. Olman 5741 R. D. Jones
1310. A. A. Lieber 5741 R. G. Roo sen

Attn: W. F. Roherty, l3ll ·5741 D. w. Sasser
1700 o. E. Jones .5741 A. A.. Trujillo
1710 v. E. Blake 5742 s. G. Varnado
1712 J. w. Kane 8300 B. F. Murphey
1738 J. Jacobs 8320 ·T. s. Gold
1739 J. D. Williams 8321• R. L. Rinne
1739 D. L. Mangan· 8266 E. A. Aas (2)
1750 J. E. Stiegler 3141 c. A. Pepmueller (A.c;tg.) (5) c:,

l750A M. N. Cravens
l750A J. M. Demontmollin

3151 ·W. L. Garner (3)
For ERDA/TIC (Unlimited Release)

1751 T. A. Sellers
1751 J. L. Darbey

3171-l R. Campbell (25)
For ERDA/TIC

1751 B. R. Fenchel
1751 L. c. Nogales
1751 A. E. Wiriblad
1752 M. R. Madsen
1754 J .• F. Ney
1754 J. L.· Todd, Jr.
1'758 T. J. Hoban
1758 D. D. .Boozer
1758 R. c. Hall
1758 G. A. Kinemond
1758 w. K. lJA.nlus
1758 I. G. Waddoups
1758 R. B. Worrell
4010 c. Winter
5000 A. Narath, Attn: Directorates 5200, 5800
5100 ·J. K. Galt
5110 F. L. Vook
51?0 ·G. J. Simmono
5121 . R. J • Thompson
5121 P. ,J. Slater
5122 L. F. Shampine
5122 B. L. Hulme (50).
5130 G. A. Samara
5150 J. E. Schirber
5160 w. Herrman
5400 A. w. Snyder·
5410 D. J •. McCloskey
54l;t s. L. Daniel

33

