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ABSTRACT

Absolute fission rate measurements using modified National
Bureau of Standards fission chambers were performed in the
Fast Flux Test Facility at two core locations for isotopic
deOS'itS Of 232Th, 233U, 235U, 238U, 237Np, 239PU, 2'+0Pu’
and 2%*Pu. Monitor chamber results at a third location
were analyzed to support other experiments involving passive
dosimeter fission rate determinations.
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I. INTRODUCTION

The Fast Flux Test Facility (FFTF) is a liquid-sodium-cooled test reactor
designed to irradiate LMFBR fuels and materials at prototypic temperature and
flux conditions. Accurate core environment neutronics characterization is

an integral part of any subsequent test evaluation. Consequently, a Reactor
Characterization Program (RCP)] was formulated to measure the important neutron-
induced reaction rates in-core during reactor operation. The program consists
of three phases to be performed prior to routine operation of the facility.
The first phase consisted of very low power (0-1 MW) measurements of fission
rates and neutron and gamma spectra in the core region by active and passive
techniques 1in a controlled temperature environment. The second phase will
consist of the irradiation of passive sensors in fuel pin cladding contained
in reactor characterizers, which are designed to resemble normal reactor com-
ponents as closely as possible. Second phase measurements will be performed
at a power level of 4 MW (1% of full power). The final phase will consist

of a similar irradiation at full reactor power. The absolute fission rate
measurements were performed during the program's first phase.

2 is given in Table I.

A listing of the first phése neutronics measurements
The absolute fission rate measurements using special absolute fission chambers

were undertaken as Experiment 5. Run-to-run power level normalization relating
measurements in Experiment 5 to those of Experiments 2, 3, 8 and 10, was accom-

plished by including a "monitor" absolute fission chamber in each experiment.

The controlled temperature environment for these experiments was provided by
an In-Reactor Thimble (IRT). This thimble was a 12.2 m (40 ft.) vertical port
in the configuration of a double wall vacuum "bottle" in which dry N2 cooling
was also included. The sensors were operated at 70°F, even though the reactor
sodium coolant outside the IRT was at.a temperature of 400°F.

The IRT took the place of a fuel assemb]yiin the centrally located core position
3202 as showin in Figure 1. Fission chambers for Experiment 5 were nominally
Tocated at the core midplane and the upper axial reflector. Chamber insertion




and positioning in the IRT was accomplished using an Experiment Insert (EI).
Positioning data, EI design, and monitor chamber locations will be discussed
in detail in subsequent sections of this report.

TABLE 1
FFTF-RCP PHASE 1 EXPERIMENTS

Sequence Number Description Power Level
2 Proton recoil proportional counter Ke<1
3 Proton recoil emulsions Ke<1
4 Axially traversable fission chambers 0.2 - 10 kW
5 ~Absolute fission chambers 0.5 - 2 kW
8 Fission product yield 100 ki
10 SSTR and passive dosimeter calibration 200 kW
12

Passive dosimeter irradiation 1 MW

The RCP passive dosimeter fission rate determination goal accuracies for U and

Pu isotopes are in the range of 2 - 5% (lo). This means that the goal measure-
ment accuracies for the absolute fission chamber experiment are in the range

of approximately 2% or better.2 In order to ensure the best measurement possible,
a collaborative effort between HEDL and the National Bureau of Standards (NBS)
Center for Radiation Research was established. NBS has performed similar mea-
surements using a double fission chamber.3 In order to adapt the NBS methodology
to the FFTF-RCP, the chamber operating characteristics were improved for opera-
tion in an environment more severe than is encountered in the laboratory. This
report details the required development effort, experiment hardware design,

and measurement plan, as well as present the final ahalysis of the FFTF experi-
ment data.
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Figure 1.

FFTF Core Cross Section with IRT Location Shown.
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IT. MEASUREMENT PREPARATION

A. Ruggedized Absolute Fission Chamber

As mentioned in the first section, the NBS absolute double fission chamber was
redesigned to be more rugged and therefore more easily used in adverse environ-
ments. Initial efforts in this area were performed as part of a more general
program in LMFBR instrumentation development. The major part of the effort,
however, was undertaken in direct support of the FFTF-RCP.

The fission chamber (re)design criteria were established to meet, as a minimum,
FFTF-RCP requirements. During reactor characterization a set of chambers was

to be placed in the IRT. The IRT was a vertical access port extending from

the reactor operating deck, through the vessel head, and through the reactor
core at a position just off the center axis. Maximum thimble temperature could
reach 204°C (400°F), the liquid sodium temperature at zero power, if the instru-
ment cooling system failed to keep the experiment environment at a nominal 21°C
(70°F). The capability to make measurements in gamma radiation fields greater
than 106 R/hr was also desired.

The more conventional absolute fission chamber, as discussed in Reference 3,

is a gas flow device which utilized teflon dinsulator components assemblied in
a manner to provide easy access and changeout of fissionable material deposits
of known composition and mass. Though suitable for laboratory or zero power
facility experiments, use of the device in a power reactor environment required
additional development.

The absolute fission chamber was redesigned to be a sealed device but with the
capability to change out deposits being retained. Because of certain require-
ments related to weld and seal fabrication, and to improve general resistance

to harsh environments, the wall and electrode material was respecified to be
stainless steel instead of aluminum. Al1l teflon insulator components were
replaced with ceramic counterparts. Internal component tolerances were tightened
and coaxial cable stem connections were used in order to eliminate vibration
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induced microphonic noise - a persistent problem with the Taboratory units.

The mass of all components was kept to a minimum and the electrical connections
were placed at a significant distance from the chamber to reduce scattering
effects. For the same reason, all components were fabricated from hydrogen-
free materials (as in the laboratory version). An exploded drawing of the
ruggedized fission chamber is presented as Figure 2. The chamber is divided
into an upper and lower detector. Fissionable material deposits on stainless
steel substrates are placed back-to-back in the foil retainer to form a common
cathode and inherently are described by the same spatial coordinates. Each
collector is a split ring notched to accept the center conductor of one cable
forming the stem. In this manner, the collector is removable to allow deposit
changeout and microphonic noise is minimized. A1l internal conductors, except
deposit substrates, are electroplated with Au and the foil holder diameter is
0.00T-1inch less than the chamber internal diameter to maintain good, nonmicro-
phonic electrical contacts. Because the chamber internal component dimensions
are nearly the same as those of the laboratory version, the electron collection
time in both devices is believed to be approximately equal, ~ 70 nsec.3

One of the major advantages of the ruggedized fission chamber as compared to

the laboratory version is the ability to change out deposits but still have

a hermetic (no gas flow) detector. This is accomplished by use of a miniature
chamber valve and a secondary top-of-chamber seal. The secondary C-seal is

a commercially available component which seals the cover to the chamber flange
and is usable even after many deposit replacements. The C-seal is a lead coated,
stainless steel ring. The valve assembly consists of a threaded female opening
protruding from the side of the chamber. A small annealed copper seal is located
at the bottom of the protrusion. An allan set screw with a polished end is

used to close the gas flow opening - a small hole in the side of the valve
protrusion. Once a new set of deposits are in place inside the chamber, the
upper detector components are replaced and the chamber cover is loosely rein-
stalled. The chamber can then be purged with counting gas and sealed. If
operation of the chamber at temperatures greater than 100°C is anticipated,
bakeout at a more elevated temperature is necessary after a thorough cleaning

of the chamber internals.
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The individual fission chamber components were selected based on their excep-
tional tolerance to harsh environments. Gross component failure should not
prove to be the 1imiting factor for operation to temperatures of 540°C (1000°F).
The stem assembly is fabricated using parallel sections of commercial grade
5102-1nsu1ated, stainless steel sheath, coaxial cable. Satisfactory performance
of this component to temperatures of 600°C and radiation doses exceeding 10]6
nvt is believed possible. The alumina internal insulators should exhibit,
as a minimum, similar characteristic 1limits. The fissionable deposits are
fabricated by vacuum deposition of oxide or fluoride compounds which are charac-
terized by very high melting points. Deposits of both types have been heated

to 500°C or greater with no material loss detected.4 The deposits are discussed
in detail in the next section. For chamber use at temperatures greater than '

300°C, an uncoated stainiess steel C-seal is recommended.

Fission rate measurements using the double fission chamber are not exceptionally
sensitive to system gain changes because deposit events produce pulses of rela-
tively high pulse amplitude. As discussed in Reference 3 and in subsequent
sections of this report, the fission fragment differential pulse height distri-
bution is typified by the spectrum presented as Figure 3. The integrated count
rate above Vu is corrected to determine the absolute fission rate. Integral
pulse height curves, commonly referred to as integral bias curves, are often
used to compare the operational characteristics of commercially available fission
chambers and are particularly useful in judging gain stability. Curve A of
Figure 4 is the corresponding integral bias curve for the differential spectrum
of Figure 3. System gain changes can be thought to produce corresponding shifts
in Vu’ the upper discriminator level, along the abscissa of either graph. It
can be seen that with prudent selection of deposit thickness, large rate varia-
tions will not occur even for appreciable gain changes.

Gain stability is directly related to hardware (preamplifier-amplifier-discrim-
inator) stability, fill gas density changes, and outgassing from chamber inter-
nals. The first is secondary to this discussion. The latter two need to be
considered. The gas purge and fill procedure normally results in a slightly
greater-than-atmospheric pressure (density) fill. Gain shifts of less than -1%
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per week are not difficult to attain at room temperature with the valve and

seal designs previously described. Gain shifts many times greater can be com-
pensated for by shaping amplifier gain readjustments just perior to measurement.
Chamber outgassing problems can occur at elevated temperatures as will be dis-
cussed.

A prototype ruggedized chamber was extensively tested in simulated power reactor
environments with successful results. Studies of chamber performance under
conditions of vibrational loading, high gamma irradiation and high temperature
were completed. ’

The ruggedized chamber is very tolerant of microphonic environments. Curves
B, C, D, and E of Figure 4 illustrate the typical chamber response to various
levels of vibrational loading. These data are for the bottom detector, no
fission source present, vibrational direction perpendicular to chamber central
axis. Under 1g loading amplitude at 0 Hz (B), 15 Hz (C), 100 Hz (D) and 500
Hz (E), the noise level is increased but stays well below Vu/4. Fission rate
measurements using internal 252Cf deposits show equivalence to within a 0.2%

(10) counting statistical precision. Comparative tests using the chamber labora-
tory version often resulted in preamplifier pulse saturation. The ruggedized
chamber microphonic response is about the same as seen using sealed, commer-

cially available fission chambers.

The ruggedized fission chamber bias saturation response as a function of gamma
radiation dose rate is presented as Figure 5. The detector bias under optimum
conditions is set to 100-150 volts. From the O R/hr data, detector bias stability
is found to be good. However, in high gamma fields loss of ion pairs via recom-
bination with secondary electrons becomes significant and saturation is seen

to occur only at higher bias. It is evident that care must be expercised if

the chamber is used in fields above 1 X 106 R/hr.

Prototype fission chamber operation was tested at elevated temperatures by

thermal cycling and steady state measurements. Thermal cycling tests were
performed to check chamber hermeticity under rapidly varing conditions. The

10
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prototype chamber was cycled between 38°C and 323°C (100°F and 450°F) on a
period of approximately 20 minutes for ten repetitions. The fission fragment
differential distribution peak position was noted on the cool side of each
cycle. No peak shifting occurred, which indicated that no gain shifting
occurred due to chamber leakage.

Initial fission rate measurements in the laboratory at elevated temperature
yielded Tess than satisfactory results. In the range 120°C to 230°C, signifi-
cant degradation of the pulse height distribution occurred. However, the chamber
recovered after cooling. The effect was attributed to outgassing of adsorbed
impurities, probably dominated by H20, from chamber internals. A cleaning

and bakeout procedure was devised to correct this problem. These procedures
are summarized in Table II. Chamber performance improved dramatically at high
temperature with the implementation of the procedures.

Little or no fission fragment pulse distribution distortion occurred during
subsequent development tests. Laboratory absolute fission rate measurements
at room temperature and 204°C (400°F) produced equivalent results.

In summary, development of the ruggedized version of the NBS double fission
chambers was successful. Performance in the worst-case, FFTF-IRT environment
(204°C, 106 Rad/hr, 15-800 Hz at 1g) was checked and found to be satisfactory.
This effort has wider application, and it should prove straightforward to make
absolute fission rate measurements in thermal environments up to 540°C (1000°F).

B. Fissionable Deposits

A very important part of the FFTF-RCP absolute fission rate measurement effort
was the specification, procurement, and assay of the fissionable deposits.

A similar effort undertaken at Aerojet Nuclear Company, Coupled Fast Reactivity
Measurement Facility (CFRMF) is described in detail in Reference 3 and is indi-

cative of the consideration given to deposit use.

12
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TABLE 11
ABSOLUTE FISSION CHAMBER CLEANING, BAKEOUT AND PURGING PROCEDURES

Cleaning
1. Disassemble chamber completely except for gas valve seal.

2. Wash ceramic internals: soak in acetone for five minutes;
boil in distilled water for ten minutes;
wash with alcohol for five minutes;
blow dry with air gun immediately after
removal from wash.

3. Wash metallic internals: wash with acetone for five minutes;
ultrasonic wash with alcohol for five minutes;
blow dry with air gun immediately after removal
from last wash.

‘4. Fissionable deposits are not subjected to cleaning.

5. Reassemble chamber (including deposits) without tightening/sealing cover.

Bakeout and Purging

6. Purge with argon for 30-60 minutes at temperature 50-100°F higher than
anticipated operating temperature.

7. Turn off heater, continue argon purge until chamber is below 100°F.
8. Purge with P-10 for 20-30 minutes.

9. With P-10 purge continuing, seal chamber.

*for operation at room temperature, Steps 6 and 7 may be omitted, as well as
cleaning.

13



Fifteen deposits were employed for the FFTF measurements. Most were procured
from the Joint Research Centre, Central Bureau for Nuclear Measurements (CBNM),
Geel, Belgium. The choice of the Geel-CBNM laboratory was based on their ability
to make double-rotated vacuum evaporation deposits. The 238U deposits were

oxide deposits prepared at Los Alamos National Laboratory (LANL). One 239Pu
deposit and the 241Pu deposit were made at Oak Ridge National Laboratory (ORNL).
The fissionable material deposits purchased from Geel were in the form of anhy-
drous actinide fluorides. Fluorides have lower sublimation temperatures than
oxides. Fluorides also tend to deposit as single molecules while oxide mole-
cules tend to form clumps as they stream from the crucible to the backing.

For fluorides it is not necessary to heat the backings, and the singie molecules
adhere better than clumps. The preparation of such deposits at Geel is described
in Reference 4.

A Tisting of the deposits, their reference mass, and impurity content is included
as Table III. A complete set of backup deposits was provided by additional
inventory at NBS. Assay of the RCP foils was accomplished by comparison to
reference NBS deposits, using alpha counting and fission counting in benchmark
fields. An assay information summary is included in Appendix C. These data

were the result of assays and chemical analyses performed by at least two labora-
tories (NBS, ORNL and Geel). NBS obtained fissionable material from ORNL and
shipped it to Geel for deposition.

C. Data Acquisition System

The Data Acquisition System (DAS) was engineered to accommodate simultaneous

input of three double fission chambers, requiring six identical, chained counting
channels. A block diagram of the DAS is shown in Figure 6. A photograph of

the system is presented as Figure 7. A seventh channel was included for background
noise detection. The shaping amplifiers, ORTEC model 450, could also be used

in the differential input mode for common mode noise rejection, if needed.

Using 0.5 usec differentiation and integration time constants, the resulting
unipolar output pulse FWHM was typically 1.5 usec and the nominal counting

channel deadtime was less than 3 usec.

14
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TABLE III
FFTF-RCP ABSOLUTE FISSION CHAMBER REFERENCE FISSION FOILS

Principle Isotope Batch Impurity Composition

Isotope  Deposit ID Mass (atom percent)
232Th 02N-9 621 ug = 2% -
237Np 37K-05-1 68.3 + 1.1% -
233y 23K-02-8 30.71 + 1.5% 232y  <0.6 ppm

233y 99.76
234y 0.018
235y 0.009
236 <1.0 ppm
238y 0.21
235y 25A-03-1 30.96 + 0.77% 234y 0.1822
25A-03-2 30.91 =+ 0.77% 235y 99,0829
236y 0.0353
238y 0.6996
238DU 28G-5-1 735.7 +1.2% 234y 0.00016
235y 0.01755
238y  <0.00001
238y 99,9823
238NU 28NC-5-1 651.7 + 0.9% 234y 0.0054
235y 0.7194
238y 99.2752
233py 49K-005-1 0.0983 = 0.8% 238py  <0.001-
49K-001-3F 1.788 + 0.6% 23%py 99,978
49K-0-3F 4.893 =+ 0.6% 24 0py 0.021
49K-02-3F 25.33 + 0.5% 2%1py  0.0005
49K-03-2F 35.10 + 0.5% 242py 0.0005
49K-4-1 468.1 + 0.6% 24tpy <0.0002
2h0py 40L-2-3F 221.4 + 0.8% 238py 0.0109
239y 0.6727
240py  98.5191
241py 0.4289
2h2py 0.3679
244py  0.0006
» . 2%1am 0.17
241py 41K-03-1(L) 8.71 + 2.5% 238py  0.001
(10/13/80) 23%py  0.972
2%0py  0.255
241py  98.653
2%2py  0.118
2h4py 0.002
2%1pm  15.0

15
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Each channel was modeled after the triple scaler system employed by the NBS for
similar measurements in the past.3 The count rate above the lower discrimination
level VL (see Figure 3) is called SL and above the upper discriminator VU’

is called SU. These two independent integral discriminators set in the valley
of the pulse height distribution gave redundant records of the number of fissions,
reducing the possibility of error due to scaler malfunction. Under normal
conditions (maximum noise amplitude well below VL), the difference in the counts,
SL and SU, was used to infer the number of valid fission counts between VL

and zero, on the basis of the assumption that the pulse height distribution

U The estimated fraction of the fission pulses in the
range Ofyﬁvu is termed the extrapolation-to-zero (etz) correction. The etz
correction was taken from (1-SU/SL) data as will be discussed with the results
analyses in Section IV. The reproducibility of the (1-SU/SL) data under normal
conditions was good enough that this quantity provided a reliable indicator

of any significant electronic noise above VL. The counting window of the single-
channel analyzer was set on the peak of the pulse height distribution so that
the count SGC (GC = gain check) was a sensitive monitor of gain stability.

The pulse height analyzer was used to set up the triple scaler systems, particu-
larly to adjust the émp1ifier gain so that the relative position of the dis-
criminators and the peak of the fission fragment pulse height distribution
corresponded to the specification given in Figure 3. The distribution was

was flat between 0<V<V

also monitored to determine overall chamber performance. The use of multi-
channel analyzers for primary data acquisition was not considered prudent due
to the large deadtimes associated with such units.

The DAS assembled for the FFTF-RCP measurements was comprised of seven NIM
standard scaler systems chained in series and connected to a PDP 11/05 as well
as a TTY/papertape unit. Thumbwheel data tagging modules were fabricated so
all data output would be jdentifiable. The PDP 11 configured by Tennecomp

Inc. into their Model TP 5/11 operated in a foreground/background mode. Thus,
simultaneous pulse height spectrum compilation and data acquisition program
operation was possible. The DAS was set up to collect fission fragment pulse
height spectra from all six channels during a measurement, as well as accept,
format and store scaler count data and other dimportant information (date, time,
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etc.). The software written to perform these tasks was named NIMIN and is
included in Appendix A. Software written to perform preliminary, near real-
time data analyses (program AFR and AFRS1) is included in Appendix B and will
be discussed in Section III.

D. Experiment Insert

The experiment insert (EI) was used to place and position the absolute fission
chambers, accompanying thermocouples, and signal cables into the IRT. The

EI was composed of two sections: the upper instrument stalk and the Tower
instrument canister. A simplified drawing of the stalk is presented as Figure
8, and the canister as Figure 9. The canister held three detectors at any
one time at the following core axial locations:

0" (core midplane)
+21.25" (upper axial reflector)

-14.75" (lower core, monitor
chamber position).

The stalk was the tubular extension for handling the canister, routing signal
cables, locating cable penetration seal plug, and locating a sodium seal plug
(in case of IRT rupture). The assembled EI was approximately 40-feet Tong
terminating at one end on IRT bottom and the other end at the operating

deck Tlevel.

The coaxial signal cables in the canister were metal-sheathed, S1‘02 insulated,
therefore radiation and temperature tolerant. The cables in the stalk were
teflon insulated, having adequate radiation and temperature (250°C) tolerance
for out-of-core use. The characteristics of these cables, including the short
sections comprising the absolute fission chamber stem, are listed in Table

Iv.
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TABLE IV
DESCRIPTIVE SUMMARY OF RCP-AFCS SIGNAL CABLES

Capaci-

tance Impedance
Location/Use Type/Description Insulation  (pf/ft) (ohms)
detector stem hardline coaxial 3.91 mm 0D S1’02 16 97
assemblies
instrument hardline coaxial 3.91 mm QD 51'02 16 97
canister
instrument RG 180B/U Teflon 15 ' 95
stalk 3.68 mm OD x 13.7 m Tong

(0.145" 0D x 45 ft long)

The EI was assembled and tested under prototypic conditions prior to use in the
FFTF. The results of these tests are discussed in Reference 5. This effort

was useful in that two problems were shown to exist: 1) RF and ground Toop
noise rejection methods had to be incorporated into the system, and 2) allowance
for differential linear expansion of stalk and cable had to be made even though
teflon and stainless steel expansion coefficients are nearly equal.

III. MEASUREMENT PLAN AND PROCEDURE

Two considerations in planning the measurements were deadtime and statistical
uncertainty minimization. In order to achieve overall measurement uncertainty
of about 2% in a situation where deposit mass uncertainty may approach this
magnitude, a goal of 0.1% or Tess for deadtime and statistical uncertainties

was established. With regard to deadtime losses, using a system of nominal re-
solving time of 3 upsec, deposit masses were selected and reactor power specified
to keep counting rates below ~2500 cps. The goal statistical uncertainty was
achieved by specifying counting time to accumulate several million counts.

The strategy devised to use all isotopes at both core midplane and upper axial
reflector in Experiment 5, and appropriate monitor chambers for Experiments

2, 3, 5, 8, and 10, is summaried in Table V. Eight fission chambers, as des-
cribed in Section II A., were fabricated and assembled in order to implement
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the plan with minimum reactor down time. The corresponding chamber identifica-
tion numbers are included in the table. As indicated in Section II C, six
identical channels were included in the DAS for simultaneous counting using
three double fission chambers.

Considerable effort was expended before, during, and after the FFTF measurements,
to measure counting channel deadtime accurately. NBS normally employs a varia-
tion of the two-source method using a source attenuator in an access port to
their research reactor. The analyzer-pulser method was successfully applied

at HEDL. A third, much simpler method was later devised based on a dual delayed-
pulse generator (Canberra 1407P or equivalent). Dual-pulser results agreed

with the two more involved methods. Because deadtime depends on discriminator
level in RC-shaped, leading edge discrimination networks and because in this
experiment optimization required non-normal discriminator level settings, the
dua1-pulsé? method proved useful. The procedure employed using the double
pulser to measure deadtimes is outlined in Table VI. The final results were
corrected by 0.31%, a factor calculated by comparing the dual-pulser-measured

T and the deadtime determinable by the two-source method combining results

from Experiments 8 and 10.

IV. MEASUREMENT RESULTS

The results presentation is divided into three sections. The results from
Experiment 5, the actual isotopic fission rate measurement experiment, are
presented in Section IV A and IV B. The normalization measurements, using

the monitor chambers, are presented in Section IV C. The preliminary results
were calculated using the DAS computer and the analysis code AFR (and subroutine
AFRS1) as Tisted in Appendix B. AFR took raw total count data from up to ten
determinations, computed a mean rate, corrected it for deadtime and added the
etz correction. In order to determine the absolute fission rate and its asso-
ciated uncertainty, further corrections to the preliminary data were required.
The statistical uncertainty computed using AFR was included, as were the deposit
mass measurement uncertainties, the correction for fissions in minor isotopic
constituents of each deposit, and the deposit self-absorption correction. These
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TABLE v

ABSOLUTE FISSION CHAMBER USE STRATEGY FOR FFTF-RCP

Experiment Run Chamber Location Chamber 1D Isotope-1D-Mass Reactor Power Expected Count Rate Counting Time
2-3 - monitor (+21") RCP 7 239p{49K-4-1)468.1 19 subcritical 1-10 -
blank
5 1 reflector (+21") 4 240py(a0L-2-3F)221.4 0.9 kW ‘ 536 105 min
Z“‘Pu(4]K—03—l(L))8.7l(]O/]3/8]) 351
midplane (0") 1 235(4(25A-03-1)30.96 1310
239py(49K-03-2F)35.10 1394
monitor (-15") 8 239py(49K-02-3F)25.33 830
233py(49K-0-3F)4.893 160
2 reflector 5 237Np(37K-05-1)68.3 2 kW 445 60 min
238NU(ZBNC-5—1)651.7 1090
midplane 3 238p (28G-5-1)735.7 2846
2327l (g20-9)621 545
monitor 8 3320
641
3 reflector 2 2350{264-03-2)30.91 0.65 kW 827 105 min
233()(23k-02-8)30.71 1200
midplane ) 1910
483
monitor 8 830
160
4 reflector 1 0.65 kW 830 60 min
190
midplane 2 1310
1890
monitor 8 830
160
5 reflector 3 462 150 min
83
midplane 5 2050
3263
ito 8 3320
monitor &l
8810 - monitor {-15") 6 239py (49K-001-3F)1.788 100 kW(8) 8500(8) 2 hour (8)
200 kW{10) 17,000(10) 4 hour (10)
23%pu(49K-005-1)0.0983 640(8)

1300(10)



TABLE VI
DUAL DELAYED PULSER DEADTIME MEASUREMENT PROCEDURE

Display detector pulse-height spectrum and adjust gain
to optimize according to Figure 3.

Adjust discriminator levels as would be accomplished for
an actual rate measurement using analyzer.

Determine mean pulse height for particular spectrum.

Adjust both primary and delayed pulse to mean pulse
height Tevel.

Starting with delayed pulse widely separated from primary
pulse, decrease pulse separation until counting rate de-
creases by one half.

Measure this delay between beginning of two pulses at
input of shaping amplifier.

Measure width of primary pulse at discriminator level
at output of shaping amplifier.

Average of time delay and pulse width a good measure of
system mean deadtime. Former will be greater than latter.
The preamp pulse time delay is believed to be too con-
servative an estimate because it does not take into account
possibility of very large pulse starting after a small
pulse tripping the discriminator first. The pulse width
measurement with the double pulser yields a value somewhat
shorter than found using more sophisticated methods in

some cases. *
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all will be discussed in more detail in Section IV.B. Note that
free-field rates were also determined by including a chamber scattering correc-
tion. The goal accuracies relate, however, to the in-situ results.

A. Data and Preliminary Analyses

Data acquisition according to the experiment plan outlined in Table III necessi-
tated data set identification coding and deposit identification coding. For
further reference, the coding descriptions are reported here. With regard

to the fissionable deposits, the thumbwheel data identification modules were
numeric only, so the alphanumeric deposit ID numbers were converted as listed

in Table VII. With regard to the data sets, which were stored on diskettes
with backup and archived, the ID codes were formulated according to a Month-
Day-R-Sequence-# Determinations. Corresponding spectra sets replaced R with

an H and deleted the number of determinations. The data sets obtained during
the FFTF-RCP are described and identified in Table VIII (refer to Table III).

The DAS program NIMIN facilitated data acquisition, labeling, and storage.
Between experiment runs, the program AFR and its detached subroutine, AFRST,

were used to perform preliminary data analyses. AFR/AFRST output for Experiment
5, Run 1, is included in Appendix B as a sample. The output consists of a
listing of the important measurement parameters, deadtime-corrected rates,

count rate ratios for each determination, the deadtime correction used, and
experimental and theoretical standard deviations. The mean rate is corrected

for etz and the "corrected" fission rate is presented. The preliminary rates

are corrected only for deadtime and etz. The associated uncertainty results

from combining the Targer of the mean experimental or theoretical standard
deviation, the uncertainty due to deadtime determination uncertainty, and the
calculated etz uncertainty. In dividing total counts, CK, (K=L,U,GC) by counting
time, T, to yield a rate, any uncertainty in specified counting time was neglected
as it was less than 0.001%.

The mean deadtime, T} determined for each channel (component serial numbers
on record) are listed in Table IX. These values were determined using the
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TABLE VII

RCP ABSOLUTE FISSION CHAMBER DEPOSIT IDENTIFICATION

Chamber Numeric
NBS ID Isotope Mass Placement ID

25A-03-1 235y 30.96 ug RCP 1 top 925031
49K-03-2F 233py 35.10 1 bottom 949032
25A-03-2 233 30.91 2T 925032
23K-02-8 233y 30.71 2B 923028
28G-5-1 238p), 735.7 3T 928851
02N-9 232Th 621 3B 999029
40L-2-3F 240py 221.4 41 994023
41K-03-1(L) 241py 8.71(10/13/80) 4B 941031
37K-05-1 237Np 68.3 5T 937051
28NG-5-1 238y 651.7 5B 992851
49K-001-3F 233py 1.788 6T 490013
49K-005-1 233py 0.0983 6B 490051
49K-4-1 233py 461.8 T 994941
(blank) - 999999
49K-02-3F 233py 25.33 8T 949023
49K-0-3F 239py 4.893 8B 994903
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TABLE VIII

RCP EXPERIMENT 5 DATA FILE IDENTIFICATION

Archived Data ID Number

Description]

012RP1D5 +

012RpP2p5
012RP319

012R21p6

012R2219
013R31P5

013R3219
013R33P5

013R4105

013R4205
0T4R51P5

014R5219
014R5319
014R5419

10/12/81 Run 1
CMP: 235/239 UAR: 240/241
first accumulation, 5 determinations

second accumulation of Run 1
third accumulation of Run 1

10/12/81 Run 2
CMP: 238D/232 UAR: 237/238N
first accumulation, 6 determinations

second accumulation of Run 2

10/13/81 Run 3
CMP: 240/241 UAR: 235/233
first accumulation, 5 determinations

second accumulation Run 3
third accumulation Run 3

10/13/81 Run 4
CMP: 235/233  UAR: 235/239
first accumulation, 5 determinations

second accumulation Run 4

10/14/81 Run 5
CMP: 237/238N  UAR: 238D/232
first accumulation, 5 determinations

second accumulation, Run 5
third accumulation, Run 5
fourth accumulation, Run 5

TRefer to Table III for additional information.
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procedure described in Section III. Data pertaining to three additional channels
assembled for use during Experiments 8 and 10 are also included. An estimated
uncertainty of +0.2 usec was assigned to these values. Because all the measured
rates were Tow (<5000 cps) a linear approximation for the deadtime correction
was applied to determine the corrected count rate Sy:

SK = RK (1 + RKTK) (1)
where RK denotes the uncorrected count rate, CK/T. A1l rates were calculated
and the deadtime correction was applied before averaging. For Experiment 5,
deadtime corrections were 1% or less; thus the maximum expected uncertainty

contribution to the final absolute fission rate data was about 0.1%.

Several standard deviations were calculated for N repetitions and included
in the preliminary data output. They are defined as follows:

1/2
N
- . . _ =12

experimental standard deviation A_S(SK) = 2{: (SKJ'SK) (2)

J=1

N-1
predicted standard deviations A_SIGMA, where
SIGMA(S;) =5 (CT}) (3)
S 75,5751 |/
SIGMA(S, /S) = — (4)
Cy
= = 75 = 1/2
[C,-(C;;*Ran/RN] (T -Ran /R )
STGMA(S../S,,) = Uy G U- "U G U : (5)
GC’'-U c 3
U
and mean values of the above, where
s(SK)
s Mean = (6)
/N
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TABLE IX
RCP ABSOLUTE FISSION CHAMBER DAS DEADTIMES

Channel T &7, W& (1)) LUt -0031((c#e")/2 6 T'ac ((v'+v)y2)  Tae1-0031((x'+r")/2)
1 2.15 ysec  2.32 2.235 2.24 1.62  1.94 1.780 1.78
2 2.05 2.30 2.175 2.18 1.62  1.92 1.770 1.78
3 2.18 2.41 2.295 2.30 1.64  1.92 1.780 1.78
4 2.08 2.31 2.195 2.20 1.58 1.88 1.730 1.74
5 2.10 2.36 2.230 2.24 1.61 1.92  1.765 1.77
6 2.10 2.30 2.200 2.21 1.61 1.92 1.765 1.77
X1 2.02 2.28 2.150 2.16
X2 2.07 2.32 2.195 2.20
HP 2.08 2.28 2.180 2.19

' = measured at VL v VU Tevel using output pulses from shaping amplifier.
" = measured at V=0 Tevel using input pulses to shaping amplifier.



SIG Mean = SliﬁAj (7)
N

Before the corrected (preliminary) rates were calculated using the AFCS DAS
program AFR, the etz correction and associated uncertainty were determined.
The etz correction, ETZ, is described in Reference 3, and was calculated using

ETZ = 1 + V /V (S /Sy-1). (8)

For these measurements VL/VU = 0.80. The statistical uncertainty in specifying
ETZ was taken as five times the larger of either s Mean of SIG Mean of the

SL/SU set of any set of determinations. In computing the total ETZ uncertainty,
27% of the final correction was summed in quadrature with the statistical part
in order to account for systematic error (to be consistent with Reference 3).

The preliminary corrected rates were then calculated from the expression:
Preliminary corrected rate A CR = ETZ-§h (9)

for each accumulation set. The total uncertainty associated with the prelim-
inary corrected rates was calculated by taking the square root of the sum of
the squares of uncertainties associated with statistical uncertainty (larger
of s Mean or SIG Mean of SU), the etz correction, and the deadtime correction.

Sample output of the AFR analysis code is presented in Appendix B, in the form
of output for the 012R@105 measurement. Data from the complete preliminary
analysis set will be used in the next section, where appropriate, to explain
and present the calculation of the final results.

B. Absolute Isotopic Fission Rate Results

The work sheets used to generate the final results from the AFR analyses and
foil assay data are included in Appendix C. In generating the final results,
the mean uncorrected (except for deadtime) rates from the AFR code were averaged
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and the statistical uncertainty in the mean value was taken as the mean predicted
standard deviation. It was considered inappropriate to use the experimental
uncertainty values, which were generally greater due to fluctuations in reactor
power.

The data and expressions used to generate the statistical uncertainties, dead-
time corrections and uncertainties, and etz corrections and uncertainties
(included as part of the AFR code) were presented in the previous section.

In order to compute the final results, corrections and uncertainties for deposit
self-absorption and fissions in impurity constituents were made, and the deposit
mass assay uncertainties were factored in.

The correction for fission ffégmeht absorption in the deposit was taken to

be t/2R, where t is the thickness of the deposit in ug/cmz, and R is the average
fission fragment range in the deposit material. The reference range used was
that for U308’ 7.74 £ 0.90 ug U308/cm2.3 In Reference 3, this value was corrected
for the difference in oxygen content for actinide dioxide by assuming that

the range is proportional to vA where A is the effective atomic mass evaluated

according to the expression /A = & nJAJ/Z n A : (nj are the atom fractions).
J

The resulting corrections were found to be 0. 69% per 100-ug U/cm2 for U02,

and 0.66% per 100-ng Pu/cm for PuO2 The values were not corrected for the
lighter fluoride deposits used in the FFTF-RCP because the difference was con-
sidered negligible. In the case of the thicker 232Th, 237Np, and 240Pu deposits,
the effective atomic mass used was calculated using fluoride parameters. These
corrections were 0.96% per 100-ug Np/cm2 for NpFg and per 100-ug Th/cm2 for
ThF4, and 0.80% per 100-ug Pu/cm2 for PuF3. The estimated uncertainty in the
absorption correction is taken to be 25% of the correction or 0.35%, whichever
is larger. The non-zero floor on this uncertainty is necessary because surface
roughness and diffusion of fissionable material into the platinum substrate
could dominate the fragment absorption processes for 1light deposits. A signifi-
cant fraction of the fragments that are emitted nearly parallel to the deposit
plane may be scattered enough to affect the absorption probability and the
fission pulse-height distribution in the very lTow pulse-height range. However,
only the difference in the in-scatter and out-scatter would affect the absolute
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efficiency. The net scattering effect is expected to be slightly biased toward
scattering into the active volume of the chamber, but this is compensated for
by flat extrapolation of the pulse-height distribution. Hence, no adjustment
for fragment scattering was made. The self-absorption correction for each
deposit is listed in Table X.

Before the correction for fissions in minor isotopic constituents was performed,
the preliminary rates (corrected for deadtime and etz) were corrected for self-
absorption and normalized to the deposit absolute mass. The associated uncer-
tainties in these corrections plus the counting statistical uncertainty were
combined to determine the total uncertainty (square root of the sum of the
squares).

The results were then corrected for impurity fissions using an iterative process.
The correction factor for fissions for impurity isotopes 1 for a deposit of
primary isotopic composition PI was found using the expression

.F

impurity fissions _ npGp (10)
correction factor 5 f f

n.c. +ngo

; 11 pp

where n represents atom fraction and o the microscopic fission cross éections.
Deposit composition data are listed in Table III. The cross sections used
are listed in Table XI. The iterative process was begun by calculating the
correction factors for 233U, 235U, and 239Pu. Rates for threshold isotopes
were then calculated, with experimental rates for fissile constituents. This
process was then repeated at least twice, always using current values for each
calculation. The final impurity correction results are summarized in Table

XII (see Appendix C for details).

The final absolute isotopic fission rate results as measured during RCP Experi-
ment 5 are presented as spectral indices in Table XIII for core midplane (CMP)
and Table XIV for the upper axial reflector (UAR). These values are in-situ
values, that is, they have not been corrected for chamber scattering of reactor
neutrons. The spectral index is a spectrum averaged microscopic cross section
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TABLE X

FFTF-RCP ABSOLUTE FISSION RATE DEPOSIT
SELF-ABSORPTION CORRECTIONS

Self-Absorption

Deposit Fission Chamber Correction
25A-03-1 RCP 1T 1.0017
49K-03-2F 1B 1.0018
25A-03-2 2T ©1.0017
23K-02-8 2B 1.0017
28G-5-1 3T 1.0401
02N-9 38 1.0471
40L-2-3F 47 1.0140
41K-03-1(L)1 48 1.0054

© 37K-05-1 © 5T 1.0052
28NC-5-1 5B 1.0358
49K-001-3F 6T 1.0001
49K-005-1 6B 1.0000
49K-4-1 7T 1.0246
49K-02-3F 8T 1.0013
49K-0-3F 8B 1.0003

]se1f-absorption relatively high due to gold cover layer.
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TABLE XI

FISSION CROSS SECTIONS USED TO DETERMINE
IMPURITY FISSION CORRECTION FACTORS!

i Isotope og (CMP) og (UAR)

j 233y 2.72  +10% barns  6.33 * 20%

; 234 321+ 208 0.1999 + 30%
235 2.02 + 5% 3.98  + 10%
236y, 0.101 + 20% 0.0466 + 30%
238, 0.0446 + 10% 0.0214 + 20%
239p,, 1.915 + 5% 3.826 + 10%
240p,, 0.381 <+ 10% 0.287 =+ 20%
241p,, 2.57 +10% 5.93  + 20%
242p,, 0.297 + 20% 0.187 + 30%
244p, 0.4+ 100% 0.3+ 100%
28T py 0.276 + 20% 0.191 =+ 30%

1Cr'oss sections are FFTF spectrum averaged and were used for the

initial part of an iterative procedure as explained in the text.

TABLE XII
DEPOSIT BATCH IMPURITY FISSION CORRECTION FACTORS

Batch CMP Correction Factor UAR Correction Factor
23K 0.99989 + .001% 0.99992 = .001%
25A 0.99954 + ,006% 0.99987 + .002%
286G 0.99203 + .014% 0.97105 = .051%
28NC 0.7502 + .49% 0.4330 = 3%
40L 0.9368 =+ .12% 0.8477 + .26%
41K 0.9765 =+ .35% 0.9885 =+ .18%
49K 0.99995 + <.001% 0.99998 =+ <.001%
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TABLE XITI

FINAL RESULTS: IN-SITU ABSOLUTE ISOTOPIC FISSION
RATES AS REFERENCED TO 2°°PU FISSION RATE AT THE
FFTF CORE MIDPLANE

Spectral Index p
239 Total ercent
Isotope Of(I)/Gf( Pu) Uncertainty Fractional Uncertainties!

233y 1.513 £1.7% (1s)  0.09 statistical
: 0.05 deadtime

0.16 etz
0.35 self-absorption
1.5 mass
0.001 1impurity fission
T.55 subtotal

235

U 1.038 £1.1% -03-1
(25A-03-1) 0.05
0.06

0.14

0.35

0.77

0.006

.86

238, 0.0227 +1.6%

O—~0O00O0O0OO O
(o]
el

Normal U 0.0226 +1.8% 0.04

239, 1. 0.05

1

Summed in quadrature with +0.63% uncertainty of 49K-03-2F at CMP. Note that
quadrature sum of fractional errors is not truly independent of 2%°Pu total
error, so the total spectral index error reported here is an upper bound value.
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Isotope

TABLE XIII
(continued)

FINAL RESULTS: = IN-SITU ABSOLUTE ISOTOPIC FISSION
RATES AS REFERENCED TO 23°PU FISSION RATE AT THE

FFTF CORE MIDPLANE

Spectral Index

0¢(1)/0¢(#3%Pu)

Total
Uncertainty

Percent

240Pu

241Pu

237

232Th

0.2018

1.36

0.1828

0.00556

+1.4%

+2.7%

£1.3%

+2.7%
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TABLE XIV

FINAL RESULTS: IN-SITU ABSOLUTE ISOTOPIC FISSION
RATES AS REFERENCED TO 23°PU FISSION RATET AT THE
FFTF UPPER AXIAL REFLECTOR
Spectral Index
oo(1)/c (239Pu) Total Percent
Isotope f f Uncertainty Fractional Uncertainties?

233y 1.513 £1.7% (1)  0.06 statistical
0.05 deadtime
0.12 etz
0.35 self-absorption
1.5 mass
0.001 dimpurity fission
1.55 subtotal

U 1.015 +1.1% -03-1

235

238, 0.00598 £3.47

O—O0OO0O0OO0O O
o
ad

Normal U 0.00561 +4.4%

MMOOoOOOO -
~l
~

23%,, 1. 0.11

1 23

The ratio of the UAR reference 9Pu rate to that used in Table XI at core
midplane equals 0.671 = 0.91%.

Not Tisted is +3.0% estimated fractional systematic error in fertile isotope
measurements in UAR included in total uncertainty values.
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TABLE XIV
(continued)

FINAL RESULTS: IN-SITU ABSOLUTE ISOTOPIC FISSION
RATES AS REFERENCED TO 23°PU FISSION RATE? AT THE
FFTF UPPER AXIAL REFLECTOR
Spectral Index ¢
cf(I)/of(ZBQPu) Total Percen

Isotope Uncertainty Fractional Uncertainties

240p,, 0.0761 +3.3% 0.06 .

241, 1.50 +2.7%

OMNOOOO -
— AW OO W
T W~ B

[o0]

273\ 0.0604 +3.3%

— o000 N
— WWOoOO u
(.l'l-l>k0‘?iI ~

l.

232

Th 0.00145 +4.3%

NN - —
WO — 00— N
00 ~N~NOY —

[e0]




ratio, that is, a rate normalized to a reference rate but compensated for differ-
ences in deposit mass and atomic weight. The spectral index of isotope 1
referenced to isotope 2 is found from the measured fission rate FR] and FRZ’

as follows:

. ) FR] A1/M2
spectral index = g« gyt (11)
2 2'2

where A is the atomic weight and M the deposit mass. In Appendix C, the results

239Pu fission rate

were computed in terms of a calibration factor relating
to reactor power. This value is imprecise at this time, therefore, the alter-
nate form of reporting was chosen. In Table XIII and XIV, the total uncer-

tainty components have been broken down.

As is seen from the Experiment 5 plan outlined in Table V, the runs within
this experiment were performed at various reactor power levels. The monitor
chamber count rates were used for run-to-run power level normalization.

238U and Normal U in the upper axial reflector (Table XIV)

The results for
differ from each other by more than the reported fractional uncertainty sum.

The midplane results from the two deposits are in agreement, however. The
possibility of radial and axial gradients combined with different chamber place-
ment in the upper axial reflector for the two deposits was investigated. Reaction
rate gradients from a three-dimensional diffusion theory calculation performed
during pre-experment planning were examined, and the calculated reaction rate
gradients were too small to explain the discrepancy. As of this writing, the
disagreement is not completely resolved. There is the possibility that signi-
ficant streaming may have occurred vertically along annular gaps between IRT
and/or EI walls, something not determinable via diffusion theory calculations.

A +£3.0% fractional systematic error was thusly figured into the fertile isotope
total uncertainty for the UAR results. For comparison purposes with other

IRT experiments requiring fissions/gram for 238U, the results from the depleted

uranium will be used.
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In-situ fission rate data were required to provide the absolute basis for passive
dosimeter fission rate determination using dosimeters in dummy chambers. To
compare results with future reactor neutronics calculations, which may be unable
to model the fission chamber, the fission rates must be corrected for neutron
scattering in the chamber material. Scattering correction factors were calcu-
lated using a Monte Carlo code (see Appendix D for details) for 239Pu and 238U
at the midplane and upper axial reflector locations. The 239Pu factors were
applied to all fissile deposits, and the 238U factors were applied to all other
(threshold reaction) deposits. Table XV 1lists the multiplicative correction
factors and associated uncertainties from the Monte Carlo runs. Spectral indices

corrected for chamber scattering are presented in Table XVI and XVII.

C. Normalization of Results to Other RCP Measurements

Just as the runs within Experiment 5 were normalized to one another using the
monitor chamber, so too were the various experiment measurements listed in
Table I. Monitor chambers were used (1) to normalize proton recoil experiment
data (IRT Experiments 2 and 3) to 239Pu fission rate, and (2) to normalize
passive fission dosimeter irradiations (IRT Experiments 8 and 10) to 239Pu
total fissions/gram.

Fission chamber RCP 7 was used in the +21" UAR position for monitoring during
Experiment 2. 239Pu deposit 49K-4-1 (mass 468.1 pg + 0.6%) was loaded in the

top position, and a blank in the bottom (for background noise detection). The
corrected measured rate data for this experiment are provided in Table XVIII.
Chamber RCP 7 was used in the same manner during Experiment 3 and the results

are similarly reported in Table XIX. Because of the low counting rates in

both these experiments, the ETZ correction was deduced from a weighted average
over all four runs according to the inverse square of the mean standard deviation
in SL/SU for each run, and the systematic part of the associated error was

taken as 40% of the correction.

Fission chamber RCP 6 was used in the -15" (core bottom) monitor position for
Experiments 8 and 10. Monitor-chamber-determined 239Pu fission rates were
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TABLE XV
FREE-FIELD FISSION RATE CORRECTION FACTORS*

Isotope Core Midplane Upper Axial Reflector
233 1991 = 1.2% (10) 972 = 1.4%
235y .991 + 1.2% 972 + 1.4%
238y, 1.017 + 1.1% 1.033 + 1.3%
239%,, .991 + 1.2% 972 + 1.4%
240p,, 1.017 + 1.1% 1.033 + 1.3%
241y .991 + 1.2% 972 + 1.4%
237Np 1.017 + 1.1% o 1.033 £ 1.33
232y, 1.017 + 1.1% 1.033 = 1.3%

*Multiply in-situ isotopic fission rate by correction factor
to obtain free-field fission rate.
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TABLE XVI

FREE-FIELD ABSOLUTE ISOTOPIC FISSION RATES
AS REFERENCED TO 23°PU FISSION RATE AT FFTF
CORE MIDPLANE
Spectral Index

Isotope 0f(I)/cf(239Pu) Total Uncertainty

233 1.513 £1.7% (10)

235 1.038 £1.1%

238y, 0.0233 2,34

Normal U 0.0232 12.3%

239Pu 1.

240p, 0.2071 £2.1%

241py 1.36 2.7%

237yp 0.1876 +2.19

2321 0.00571 +3.2%
TABLE XVII

FREE-FIELD ABSOLUTE ISOTOPIC FISSION RATES
AS REFERENCED TO 23°PU FISSION RATE AT FFTF
UPPER AXIAL REFLECTOR
Spectral Index

Isotope Gf(I)/Gf(239Pu) Total Uncertainty
233y 1.513 +1.7% (10)
235 1.015 +1.1%

238y, 0.00636 +3.9%

Normal U 0.00596 + 4.8%

239Pu 1.

240p,, 0.0809 +3.89%

241p,, 1.50 +2.7%

237p 0.0642 +3.8%

2327, 0.00155 +4.7%
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TABLE XVIII

FFTF-RCP EXPERIMENT 2 - PROTON RECOIL CHAMBER SPECTROMETER
MONITOR CHAMBER NORMALIZATION DATA

~
B~

Control Rod Mean Absolute Total : Percent Fractional
Configuration Run ID Fission Rate!s? Uncertainty Correction Factors Uncertainties
3 primaries 023.5 in. 2271A140 2.63x107 3f/s/ug?3?° +2.1% (o) deadtime: 1.0000026 0.87 statistical
6 secondaries fully ETZ: 1.0437 - deadtime
inserted self-absorption: 1.0246 1.75 ETZ
impurity fissions: 0.9999 0.62 self-absorption
0.6 mass
<.001 impurity fissions
3 primaries @36 in. 2281B156 2.06x107%f/s/ug??° +2.0% deadtime: 1.0000207 0.22 statistical
6 secondaries @ 12 in. - ETZ: 1.0437 - deadtime
self-absorption: 1.0246 1.75 ETZ
impurity fissions: 0.9999 0.62 self-absorption

1
2Mom’tor chamber position at +21" above core midplane (upper axial reflector).
Deposit used was 49 K »4-1 @468.1 ng + 0.6% 23°Pu.

0.6 mass
<.007 impurity fissions
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TABLE XIX

FFTF-RCP EXPERIMENT 3 -.PROTON RECOIL EMULSIONS
MONITOR CHAMBER NORMALIZATION DATA

Control Rod Mean Absolute Total Percent Fractional
Configuration Run ID Fission Rate Uncertainty Correction Factors Uncertainties
primaries fully in- 2282B18 1.69x1073F/s/ug?®® + 3.4% (1s)  deadtime: 1.0000018 2.7 statistical
serted ETZ: 1.0437 - deadtime
. self-absorption: 1.0246 1.79 ETZ
gecongag1es fully impurity fissions: 0.9999 0.62 self-absorption
inserte 0.6 mass
<.001 impurity fissions
3 primaries @36" 2282C53 5.21x1073f/s/ug?3° + 2.1% deadtime: 1.0000052 0.87 statistical
daries full ETZ: 1.0437 - deadtime
secon "”df‘es utly self-absorption: 1.0246 1.75 ETZ
inserte impurity fissions: 0.9999 0.62 self-absorption

Ead = x 4 P P

0.6 mass
<.007 impurity fissions
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then normalized to those obtained using RCP 8 during experiment 5. This quanti-
tative comparison was used to specify the total fissions/ug for all isotopes

at the CMP and UAR positions for the passive irradiations. RCP 6 was loaded

with 23%pu deposits 49K-001-3F (1.78 ug + 0.6%) and 49K-005-1 (0.0983 ug

+ 0.8%), top and bottom, respectively. The AFCS data acquisition system described
earlier in this report was augmented with eight-decade scalers which were not
interrupted during the entire irradiation in order to determine total fissions.
The final results for these two measurements are presented as Table XX and

XXI.

V.  RESULTS, DISCUSSION AND CONCLUSIONS

Absolute fission rate measurements, using modified NBS absolute fission chambers
with isotopic fissionable deposits, were successfully comp1eted’in the FFTF

IRT during acceptance testing. The goal of 2-5% accuracy fission rate mapping
in special characterizer assemblies in later phases of the Reactor Character-
ization Program required a careful serijes of passive dosimeter calibration
measurements in the IRT.

The core mid-plane results, extrapolated to power levels in passive sensor
experiments (Table XX and XXI), had final uncertainties in the range 0.9% to
2.7%. This range of uncertainties is small compared with other uncertainties
inherent in passive dosimeter radiometric fission rate determinations. The
results obtained in the upper chamber, which was in a relatively softer neutroh
spectrum, were in the same range as the core midplane results for the fissile
deposits, but were larger (3-5%) for the threshold type deposits. The larger
uncertainties are a result of a measured discrepancy between the 238U fission
rate results obtained from two deposits. However, the primary purpose of the
upper chamber measurements was to investigate possible neutron spectrum depen-
dence of the fission product yields. Threshold type‘fissionab1e isotopes are
not expected to exhibit neutron energy dependence, so the midplane results
satisfy programmatic requirements for non-fissile samples.
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[sotope
233

235
238

239Pu

24OPu

241Pu

237

232Th

TABLE XX

FFTF-RCP EXPERIMENT 8 - FISSION YIELD EXPERIMENT
MONITOR-CHAMBER-DERIVED TOTAL FISSIONS (IN SITU)

CMP Total In-Situ
Fissions

UAR Total In-Situ
Fissions

1.284
8.734
1.882
8.270
1.662
1.113
1.525

x 108 f/ug + 1.8% (1o)

x 107 = 1.29
6

x 108 + 1.7%
x 107 + 0.9%
x 107 = 1.5%
x 108 £ 2.79
x 107 + 1.5%
x 10° + 2.6%

*Data from depleted uranium deposit.
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8.611 x 107

I+

1.8%
5.74 x 107 +1.2% | .

3.33 x 10° £ 3.4%
5.548 x 107 + 0.9%
4.203 x 10% £ 3.49
8.252 x 107 + 2.7%
3.381 x 10% + 3.49
8.31 x 10% + 4.2%

¥
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238

FFTF-RCP EXPERIMENT 10 - SSTR AND PASSIVE DOSIMETER CALIBRATIONS

Isotope
233U

235U

U*

239Pu

24OPu

241Pu

237Np

232Th

TABLE XXI

MONITOR-CHAMBER-DERIVED TOTAL FISSIONS (IN SITU)

CMP Total In-Situ

Fissions

3.974 x 108 f/ug + 1.8%
2.704 x 108 + 1.2%

5.83 x 10% + 1.7%
2.560 x 108 + 0.9%
5.146 x 107 + 1.5%
3.447 x 108 + 2.7%
4.721 x 107 £ 1.5

1.47 x 10% + 2.6%

*Data from deplieted uranium deposit.
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UAR Total In-Situ

Fissions
.666 x 10% + 1.8%
772 x 108 £ 1.2%
.03 x 108 £ 3.49
717 x 108 £ 0.9%
.301 x 107 + 3.4%
555 x 10° + 2.79%
.047 x 107 + 3.4%
57 x 10° + 4.5%



The free-field results (Table XVI and XVII) will be used to compare with future
neutronics calculations. The core midplane free-field uncertainties lie in

the 1.4% to 2.7% range, while the upper Tocation results have uncertainties
from 1.4% to 4.2%. Spectral index comparison with calculations will be Timited
accordingly. It is possible that results from passive dosimeter measurements
in the IRT will resolve the 238U discrepancy and consequently reduce the final
uncertainties on all non-fissile results.

In conclusion, the primary purpose of the absolute fission chamber measurements
was achieved, and the results will be used in analysis of other IRT fission
rate measurements using radiometric techniques. Comparison of spectral indices
results with neutronics calculations will be performed in the future, and other
IRT fission rate measurements may be used to reduce uncertainties in this com-
parison.
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ER AHD DISFLAVED FOR HERDCORY .,

£.18 T “THE HISTOGRAM DATA 1S ALSO DISPLAYED FOR HARDCOPY. DEAD TIME
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€0.23 T1, ;A 15 PRINTER READYCYES/NO)?
60.30 1CO1-BYESIEN . 28, 66,32, 66, 28
60.32 @ "15 DAaTa DISC IH LTL7 AHD ON-LIME? " 0z
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60.40 ¥ 1~3606 |
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65.58 T 1,"S MEAH: ", %5. 84, MLCKD, ™ ", M2(KH, " aHECK D, L MLCK+3, M
";MH{K+3)," “SMICK+3D
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UNITED STATES DEPARTMENT OF COMMERCE

National Bureau of Standards
Washington, BD.C. 20234

Ca
"’A'rts o’

April 8, 1981

John A. Rawlins

Core Physics

Hanford Engineering Development Co.
Westinghouse Hanford Company
Richland, WA 99352

Dear John,

Enclosed are my 2nd level analysis work sheets for Experiment 5. In-Situ and
Free-Field Fission Rates with estimated uncertainties (lo) are given in Tables 2
and 3. The work sheets which lead to these results are discussed briefly below.

Pages 5-1 through 5-5 1ist data from the program AFR along with weighted averages
for the quantities Sy and ETZ. The ETZ data from AFR was supplemented and/or
replaced by revised results from the recorded pulse-height distribution in a

few cases where amplifier saturation noise obscured the scaler results. On pages
5-2 and 5-5 the U-238 Etz's from AFR are replaced by 'best guess' values derived
from detailed analysis of the pulse height distributions. Additional special
treatment of U-238 was also required to justify a lower error estimate for the
results from these heavy deposits. The basis for this special treatment is that
the effective masses of the heavy U-238 deposits used in the FFTF experiment
were derived from fission-counting comparisons with standard deposits which are
much lighter. To a large extent, the higher uncertainties in the ETZ and self-
absorption corrections for the heavy deposits in the FFTF runs are cancelled out
by almost identical corrections applied in the fission counting comparisons to
the standard deposits at NBS. The residual uncertainty then becomes primarily
dependent on the thickness of the standard deposits rather than that of the
working deposits. Pages 5-5 through 5-8 show the deviation of the 'best guess'
ETZ's and the reduced error estimates.

In Table 1 are listed the In-Situ results prior to correction for fission in
minor isotopic constituents. Table 1 includes error estimates for the following
factors: statistics, dead-time, self-absorption, mass assay, and ETZ.

Pages MIC-1 through MIC-14 give the derivation of the correction for fission in
minor isotopic constituents and the derivation of the errors in these corrections.
This correction requires an iterative process in principle, but in fact the
process converges in one step. The case of the normal uranium deposit again
requires special treatment. Here the special treatment is required because of the
correlation with the U-235 fission rate.
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In Table 2 the results from Table 1 are corrected for fission in minor isotopic
constituents and the complete In-Situ results and errors are given. In Table 3
the Free-Field results are given, based on Table 2 and Core Physics Memo of

February 24, 1981.

The results in Tables 2 and 3 are little changed from the 1st level analysis.
The largest changes are due to the revised scattering calculations from L. L.
Carter. These scattering calculations changed the power level normalization
uniformly for all the In-Situ results. The changes cancel out for the Free-
Field results for the fissile isotopes. The revised ETZ's for U-238 made
changes of up to 0.7% in the U-238 fission rates. The discrepancy in the U-238
fission rates in the upper axial reflector was not resolved. I continue to
believe that the possibility of unexpectedly large gradients in the fast neutron
flux should be checked if possible. The revised Am-241/Pu-241 cross section
ratio gave a change of 1.44% in the CMP fission rate of Pu-241. OQOverall, the
many refinements that Fuller and I have labored over have produced little
change in the results. The errors in the In-Situ results are within the goal
accuracy limits for all the CMP fission rates.

The 2nd level analysis for Experiments 8 and 10 should be ready very shortly.
Sincerely,

David M. Gilliam
Nuclear Radiation Division

Enclosures

cc: Jd. A. Grundi
E. D. McGarry
J. L. Fuller
K. 5. Caswell




U-233

U-235

U-238 (depleted)
U-238 (norm. uran.)

Pu-239.

Pu-240

Pu-241

Np-237

Th-232

TABLE 2.
EXP. 5: IN SITU FISSION RATES

CMP
fissions/{s-ug-kw)

124 .85
+ 1.55%

84.94
0.86 %

1.834
+1.45 %

.827
J2 %

0.43
+ 0.63 %
6
1

.166
.24 %

108.27
2.58 %

14.83
1.18 %

0.461
2.63 %

C-4

UAR
fissions/ (s ug-kw)

83.74
+1.55 %

55.67

.87 %

.324
45 %

|+
—_ O oo

| +

.304
A7 %

|+
w O

.95
.66 %

.088
34 %

|+ f -+
—h oW

.25
.57 %

|+

.288
21 %

|+
- W

.0808
.98 %

|+
o



TABLE 3.
Exp. 5: FREE-FIELD FISSION RATES v
CMP UAR

fissions/(s-ug-kw) fissions/(s-ug-kw)
U-233 123.73 ' ‘ 81.40
+1.96 % +2.09 %
U-235 84.18 54,11
+ 1.48 % +1.65 %
U-238 (depleted) 1.865 0.335
+1.88 % +1.95 %
U-238 (norm. uran.) 1.858 0.314
+2.04 % + 3.43 %
Pu-239 79.71 52.44
+1.36 % +1.55 %
Pu-240 16.44 4.223
+ 1.66 % +1.87 %
Pu-241 107.30 78.00
+2.85 % +2.93 %
Np-237 15.08 3.397
+ 1.61 % +1.78 %
Th-232 0.469 0.0835
+2.93 % +3.25 %

C-5
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TABLE 1.
- IN SITU -

PRIOR TO CORRECTION FOR FISSION IN MINOR ISOTOPES

CMP UAR
Principal Deposit fissions/(s-ug-kw) + combined errors fissiony/(s-ug-kw) + combined errors
Isotope Label C v ot s . o
statistical err. % self-abs. err. % statistical err. %* self-abs. err. %
dead-time err. % mass err. % dead-time err. % mass err. %
ETZ . % ' ETZV err. %
U-233 23K-02-8 124.86 + 1.55% 83.742 + 1.55%
0.09 0.35 0.06 0.35
0.05 1.5 0.05 1.5
0.16 0.12
U-235 25A-03-1 85.117 + 0.86% 55.742 + 0.87%
0.05 0.35 0.1 0.35
0.06 0.77 0.03 0.77
0.14 0.18
U-235 25A-03-2 84.851 + 0.86% 55.613 + 0.85%
0.10 0.35 0.07 0.35
0.04 0.77 0.04 0.77
0.11 0.1
U-235 Average of Above 84.984  + 0.86% 55.678 + 0.87%
U-238 28G-5-1 1.8483  + 1.45% .33354 + 1.45%
0.05 0.35 0.07 0.35
0.07 1.15 0.07 1.15
0.81 0.81 ,
Norm. U 28NC-5-1 2.4355  + 1.27% 70275 + 1.27%
0.04 0.35 0.08 0.35
0.09 0.95 0.09 0.95
, 0.77 0.77
Pu-239 49K-03-2F 80.438 + 0.63% 53.953 + 0.66%
0.05 0.35 0.11 0.35
0.06 0.5 0.03 0.5
0.15 0.22




TABLE 1. (continued)

L-)

CMP "~ UAR
Principal ~ Deposit fissions/(s-ug-kw) + combined errors fissions/(s-pg.kw) + combined errors
Isotope Label statistical err. %* self-abs. err. %TL statistical err. %* = self-abs. err. %+
dead-time err. % mass err. % dead-time err. % mass err. %
ETZT err. % ETZY err. %
Pu-240 40L.-2-3F 17.257 + 1.24% 4.8227 + 1.32%*
0.06 0.35 0.06 0.35
0.07 0.8 0.04 0.8
0.88 0.99
Pu-241 41K-03-1(L) 110.88 + 2.56% ' 81.184 + 2.56%
0.08 0.35 0.07 0.35
0.04 2.5 0.03 2.5
| 0.44 0.43
Np-237 37K-05-1 14.831  + 1.18% 3.2883 + 1.21%
0.04 0.35 0.085 0.35
0.08 1.1 0.09 1.1
0.22 0.34
Th-232 02N-9 0.4608 + 2.50% 0.08083 + 2.87%
| 0.095 1.18 0.16 1.18
0.09 2.0 0.07 2.0
2.63 2.98

* Includes statistical part of ETZ error.

+ . .
Self Abs. Err = 25% of corr. or 0.35% whichever is larger \ : ,
T ETZ Err = 27% of correction EXCEPT FOR U-238 SAMPLES
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Isotope

q-233
U235
U-238
Pu-239
Pu-240
Pu-241
Np=237

Th-232

CEXP 8

10T§ﬁ%/g

(in situ)

12.838
£1.79%

- B8.734
+1.,24%

0.1882
£1.70%

8.270
+0,.89%

C-33

UAR

- 1013—?79
"{in situ)

8.611

v 21,79%

5,724
:1.24%

0.0330
+5,66%

5.548

+0.89%

0.4196

+1.,61%

8.252

22,723

0.3376
£1,50%

0.00821
+3.00%
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QQ{E

EXP 10
- | | Isotope Mp UAR
S 101%‘1'/9 1013 /g
' (in situ) (in situ)
U=233 39.743 26,657
£1,79% £1L79%
U»235 . 27.039 17.721
£1.24% L 21.24%
y-238 0.583 . 0,1020
£1.70% | +5,66%
Py-239 | 25,603 17,174
+0.89% £0,89%
£1,53% +1.61%
Pu-241 34,47 75.55
. +2,73% +2.72%
Np-237 4,714 1,0451
. +1.,48% +1.50%
Th-232 0.145 0.0254
£2 .65% +3,00%
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May 23, 1980

Dr. John Rawlins :
FFTF Project :
Hanford Engineering Development Lab. ' Z
Westinghouse Hanford Corporation N
Richland, WA 99352 : : -
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Dear John:

Jim Fuller suggested that I send you some documentation on the mass assay of
the deposit 49K-4-1 which was used as a monitor durlng the neutron spectrometny

tests at the FFTF in February. This information is summarized below. -

‘l"jj"'j

Deposit Label: 49K-4-1 T
Backing: Platinum Disk, 0.75 in.DIA X 0.005 in. thick. :

Deposit Geometry: 0.50 in.disk centered on backing

Has not been measured. Color of deposit is uniform ™~

Uniformity of Thickness:
across diameter, indicating uniformity within + 10%.

‘Batch Label and Isotopic Composition: Batch ORNL 277A
Atom Percent

Isotope
239 99.978 + 0.002
240 0.021 + 0.002
241 0.0005 + 0.0003
242 0.0005 + O. 0003
244 < 0.0002

239py Alpha Activity:
(a) 1.082 X 10% sec™! by NBS Radioactivity Section
(b) 1.071 X 10° sec! + 0.8% by NBS Neutron Field Standards Group (Gilliam)

C-35
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Alpha Activity Ratio £6. Reference Deposit:

) 4.500 + .27% ‘
Fission Counting gétigwto Reference Deposit in Thermal Neutron Field:
‘ 4.492 + .7%
Published Reference Deposit (491-1-2) Mass:
104.8 pg Pu-239 + 1.0%
Derived Mass Va]ués:

(1) Alpha act1v1ty (b) above and half-1ife value of 24,119 + 26 yr
(Int. Jour. of App. Rad1at1on and Isotopic, 29 No. 8, Aug. 1978.):

© 466.8 ug Pu-239 + 1%
(2) Ratio to NBS Reference Deposit
471.6 ug Pu-239 + 1%

(The mass assay of the reference deposit is discussed in the 1975
paper by Grundl, et al: "Measurements of Absolute Fission Rates,"
Nucl Tech, 25, No. 2, p. 237.

The second value of 471.6 ug Pu-239 + 1% is the currently recommended value.
However, a revision of our reference deposit mass assay is underway at the
present time, and it looks probable that the reference deposit mass will be
revised downward by 0.5% to 1.0%, which will bring the two results above into
better agreement.

On another matter, the déta processing for the February tests, I have a few
comments to make. dJim Fuller and I have discussed the fission chamber results.
I had only one minor reservation about the results: that the S; /Sy ratio was

higher than would be expected for a flow chamber. This deviation is caused
(at least in part) by compression of the gas in the sealed chamber, but it is
possible that the S /Sy ratio was also increased by noise pick-up. Fuller is
checking to see how the peak/valley ratios from runs at the gamma pit compare
to those from runs at the FTR. If we are to keep the full usefulness of the
SL /Sy ratio as a noise diagnostic, then we are going to have to find a way to
account for the 1nf1uence of chamber filling pressure. We are working on the
problem jointly.

Sincerely,

D SERTNR L

D. M. Gilliam
Center for Radiation Research
Neutron Field Standards
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Pu=239

Reference Deposit Assay
(LASL)

Techniques Employed: ilg IDMS (Isotope Dilution Mass Spectrometry) :
2) Absolute alpha countng with Spec1f1c activity from o

ia Titerature half-life S | S

b) quantitative depos1ton . ,'» o

Accuracy: * 0.4% - - o : _ - ' A ﬁff‘
Working Deposit Assay - - -

Comparison to Reference Depos1t by: 51; é}ph? count12?
ssion counting

Estimated Errors ~ + 0.3% to + 0.4% in comparisons. Assessed errors

s1ightly larger than initial estimate if fission and alpha comparisons
were not consistent within estimated uncerta1nty.

U-235

Reference Deposit Assay
Techniques: Same as for Pu-239 (except 1DMS @ NBS)
Accuracy: * 0.5%

Horking Deposit Assay

Comparison to Reference Deposit: i% R{Sﬁion cog?tin? (i 25??%’
, pha counting A

(given low weighting) . f L

l

Pu=240
Working Deposit Assay
IDMS (CBNM Geel) %= 0,9%

2.} Absolute alpha activity with literature ha1f 11fe + 0.8%
- (agreement better than * 0.1%)
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Np=237
Reference Daposit Assay

Technique: Absolute alpha counting with specific activity by
&1; Literature half-1ife :
2} Quantitative deposition

Accuracy: +1.0%

Working Deposit Assay

Comparison to Reference Deposit: (1) Alpha countn 0.3% _
P P 'izg Fi§s1on cOung1§b in I%NF ( 0.3%)

Agreement of fission & alpha ratios:
0.44% _

Natural Uranium

Reference Deposit Assay _ - j | , 1'7
|

Techniques: 213 IDMS (NBS) :
' 2) Fission comparison to 235y Ref, Dep. with thermal neutrons

+ 28/25 1sotope ratio
(3) Absolute alpha counting with specific activity by
quantitative deposition

Accuracy: * 0.7% [(3) given low weight]
Working Deposit Assay

Comparison to Ref, Dep by thermal-neutron 1nduced fission count1ng + 0.64%

Depleted Uranium

Reference Deposit Assay

Techniques: (1) oS (NBS) -
Fission ratio to Nat. Uran. Ref. Dep in Cf-252 Neutron field

(3) Absolute alpha activity with specific activity from 1iterature
half-life ,

|

Accuracy: ¢ 1.0%
Working Deposit Assay

Comparison to Reference Deposit in Intermediate-Energy Standard Neutron
Field (ISNF): ¢ 0.74%
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Techniques: (1) Absolute alpha counting using 1iterature half-life
for specific activity ’

(2) Thermaleneutron induced fission ratio to Pu-239 deposit
ig; maxwelliam spectrum :

monoenergetic neutrons with 35 milli-electron volt
“energy ! ~

(}) and (2) differed by 0.84%
Accuracy: *1.5%

Reference Deposit Assay

Working Deposit Assa
Comparison to Reference Deposit: (1) Thermal-neutron induced |fission
counting (¢ 0.31%) |
(2) Alpha counting (% 0,5%)

(1) and (2) differed by 0.23%
Accuracy: * 0.3%

Th-232

Reference Deposit Assay

Technique: Absolute alpha counting using 1iterature half=1ife for specific
activity

Accuracy: * 27

Working Deposit Assay

Comparisons to Reference Deposit: Alpha counting
Fission counting in ISNF

Accuracy: * 2% : - | '
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Working Deposit Assay

Techniques: (1) Absolute alpha counting of Am-241 bufld-up over
five month period, beginning 22 months after
separation . o |
(2) Thermal-neutron induced fission comparison to'Pu-239
deposit in a 35mmeV monoenergetic beam '

(1) and (2) differed by 2.4% : :
Equally weighted average used, Estimated accuracy * 2.5%

Choice of Geel - CBNM laboratory: No U.S. laboratory was equiped.toimake double-
-rotated vacuum evaporation depositions. (LASL

used to have this capability, but not now - at

least, not for outside purposes.)

Choice of Fluoride as Chemical Form: Has lower sublimation temperature than
oxides. Fluorides tend to deposit as
single molecules while oxide molecules
tend to condensé into clumps as they
stream from the crucible to the backing.
For fluorides 1t 1s not necessary to heat
the backings, and the single-molecules
adhere better than c¢lumps.
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“ HEDL-CALCULATED FREE-FIELD SCATTERING CORRECTIONS
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From: Radiation and Shield Analysis Hanford Engineering Development Laboratory
Phone: 6-5193 and 6-0153 W/B-47 _
Date:  February 18, 1981
Subject: PERTURBATION IN FISSION CHAMBER MEASUREMENTS

DUE TO NEUTRON SCATTERING WITHIN CHAMBER

To:  wosAIYRawTifs

cc: RA Bennett
WL Bunch
JW Daughtry
RS McBeath
FS Moore
PA Ombrellaro
LLC - File/LB
SAS - File/LB

Ref: (1) DSI, JA Rawlins to LL Carter, November 21, 1980.

(2) LL Carter and ED Cashwell, "Particle Transport Simulation With The
Monte Carlo Method," TID-26607, ERDA Critical Review Series, U. S.
Energy Research and Development Administration, Technical Information
Center, Oak Ridge, TN (1975).

Monte Carlo calculations have been made to determine fission rate changes
due to the perturbation caused by the presence of the fission chamber at
two axial locations within the IRT. The axial locations considered were
core midplane and 80 cm below core midplane with the pristine spectra

obtained from Ref. 1. Fission rates were calculated for 238y and 23°%Pu.

The calculations summarized in Table 1 are for infinitely dilute concen-
trations of 238U and 23%%Pu, and hence, do not include self-shielding due
to the fissionable materials. Difficulties were experienced in obtaining
good precision in the calculations so that the ratios given in Table 1
are only accurate to about one percent (one standard deviation). The
largest statistical errors resulted for the calculation of the 23°Pu
fission rate with the softer spectrum, even though more computer time

was expended on this case. For this case more than 75% of the fissions
occur in the resonance range below 1 keV, and the random walk integration
over the resonances increases the statistical error substantially.

The source was biased (Ref. 2) in both energy and angle to improve the
precision of the Monte Carlo calculations. To obtain greater precision
one would need to make longer computer runs or possibly utilize more
sophisticated biasing techniques.
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J. A. Rawlins
Page 2

The computer drawn model of the fission chamber is shown in Figure 1. The
materials utilized for the main portion of the chamber are shown in the
expanded view of Figure 2. Both materials and dimensions were utilized

as specified in Reference 1.

Neutrons were started uniformly on the spherical surface (radius=3.84 cm)
shown in Figure 1 with a cosine inward distribution. The source strength
was normalized to yield a unit flux everywhere within the sphere for the
pristine configuration with detector absent.

ENDF/B-1V neutron cross sections were utilized in the calculations.

L Gt 4G Ll

L. T. Carter S. A. Schenter

11r

Attachments: Table 1
Figures 1 and 2
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FISSION RATES FOR UNIT EXTERNAL FLUX

Table 1

Core Midplane Spectrum

- Detector Included

v Detector Materials
Treated as Zero Density

Ratio

80 cm Below Core Midplane

Fissjon Rate (fissions/g)

ZSBU

239Pu

Detector Included

Detector Materials
Treated as Zero Density

Ratio

9.711x107°(0.91%)*

9.883x107°(0.60%)
0.983 (1.1%)

8.441x107¢(0.96%)

8.719x107¢(0.79%)
0.968 (1.3%)

*One standard deviation statistical error in the

Monte Carlo calculation.
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4.552x1073(1.05%)*

4.511x10°3(0.62%)
1.009 (1.2%)

2.002x1072(1.2%)

1.945x1072(0.79%)
1.029 (1.4%)
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Figure 2. Expanded View of Calculational Model Showing Materials

ﬂ{“"‘l""’f “(‘1
:’:l. T '““ YT i AT N S,

“.1,,.,, b S
[(Yiew i o USRS o% -}
CRy ' L7
f‘:)?":‘ R n o Y e =y R 6 VI /jfm St
’
2 | Z
[R—— F‘/ . -
g }//7/*7 W/
1
' reed WWXYY)(X POARKT VXY YSAE / /
;%3""/,// 122 ,i,i
AR - i
- ,ﬁ@ | 3” W
S : fi
" tf | i/ f
! ‘// /////,r//]///”///////////7//,////, / ////7/7////////
A SRR AR e A S AL DA it 0 a8 T S s inrevarie rroton

gy SS .
| 90777, A1203

K Zone for Fission Rate.



HEDL (41)

Bennett
Bunch

Cox
Daughtry
Dobbin
Doran
Fuller (3)
Harris
Kaiser
Laidler
Lucoff
McBeath
McElroy
McNeece
McShane
Nagamoto

W/B-43
W/B-47
W/E-2
W/B-45
W/B-45
W/A-57
W/E-19
W/B-45
W/A-56
W/JAD-8
W/B-45
W/B-45
W/C-39
W/A-56
W/B-12
W/C-28

DISTRIBUTION

BD

Central Files(5)

Omberg
Peterson
Rathbun
Rawlins (3)
Rothrock
Schively
Schmittroth
Scott
Sheen
Sloan
Wootan
Yatabe
Ziff
Zimmerman

TC-1963

W/E-8
W/C-80
W/B-45
W/B-45
W/B-45
W/B-48
W/A-4
W/C-37
W/A-56
W/B-45
W/B-45
W/C-22
W/B-75
W/B-45
W/C-110

Publ. Services(2) W/C-115



DISTRIBUTION

Argonne National Laboratory (4)
9700 South Cass Avenue
Argonne, IL 60439

EF Bennett
LG LeSage

D Meneghetti
Td Yule

Argonne National Laboratory (2)
P.0. Box 2528
Idaho Falls, ID 83401

SG Carpenter
FS Kirn

Brookhaven National Laboratory (3)
Upton, Long Island, NY 11973

WY Kato
BA Magurno
S Pearlstein

Combustion Engineering, Inc. (1)
Advanced Development Department
1000 Prospect Hil1l Road '
Windsor, CT 06095

-SA Casperson

DOE/RL "(4)
P.0. Box 550
Richland, WA 99352

Chief Patent Attorney
AR DeGrazia

TL King

RP Carter

DOE-HQ/Office of Basic Energy
Sciences -~ ER-10 (1)
Washington, DC 20545

DOE-HQ/Office of Reactor Research
and Technology - NE-530 (5)
Washington, DC 20545

RG Staker, Director

H Alter, Safety & Physics

PB Hemmig, Safety & Physics
JW Lewellen, Safety & Physics
DR Magnus, Fuels

EG&G Idaho, Inc. (1)
P.0. Box 1625
Idaho Falls, ID 83401

Manager, Physics Division

Exxon Nuclear Idaho Co. (2)
P.0. Box 2800 )
Idaho Falls, ID 83401

WA Emel
WJ Maeck

General Electric Company
Advanced Reactor Systems (2)
310 DeGuigne Drive
Sunnyvale, CA 94086

W Harless
S Stewart

Los Alamos Scientific Laboratory (3)
P.0. Box 1663
Los Alamos, NM 87544

Theoretical Division, MS-210
G Hansen
L Stewart



DISTRIBUTION

National Bureau of Standards (6)
Center of Radiation Research
U.S. Department of Commerce
Washington, DC 20234

DM Gilliam (3)
JA Grundl (3)

Oak Ridge National Laboratory (3)
P.0. Box Y
Oak Ridge, TN 37830

DE Bartine
WW Engle, Jr.
CR Weisbin

Rockwell International
Energy Systems Group (2)
P.0. Box 309

Canoga Park, CA 91304

HA Farrar, 1V
ER Specht

‘Westinghouse Electric Corporation (3)
Advanced Reactors Division

P.0. Box 158

Madison, PA 15663

K Disney
RA Doncals
J Lake




