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SUMMARY

The behavior of four types of TiBz-based materials exposed to molten Al
at 970°C was evaluated for time durations of up to 20 wk. These materials
are prime candidates for cathodes in advanced Al smelters and include
1) high-purity polycrystalline titanium diboride (TiBz), 2) TiBz-graphite
(TiBz-G) composites, 3) composites of woven ceramic fiber mesh coated with
high-purity TiBz, and 4) composites of 50 vol% T1B2—50 vol% aluminum nitride
(AIN). The evaluations primarily involved optical ceramographic comparisons
of samples before and after nonpolarized immersion in molten Al.

The samples of TiBz—A]N and high-purity TiB2 exhibited superior resis-
tance to chemical attack by molten Al; no visible microcracking or intergran-
ular penetration by Al was observed. A reaction layer grew to 20 im in
thickness at the surfaces of the TiBz—A1N after exposure to Al for 20 wk;
additional analyses are needed to determine the chemistry of the reaction
layer.

The TiBz—ceramic fiber mesh samples exhibited mixed results; the T1‘B2
coatings remained largely intact after 20 wk of exposure to Al, but the
SiC-based fibers were attacked within 4 wk of exposure to molten Al. Fiber
deterioration may be attributed to chemical reactions between molten Al and
reactive constituents of the SiC-based fibers. An evaluation of composites
with ceramic fibers that are less susceptible to degradation is recommended.

The TiBz-G composites exhibited poor resistance to chemical attack by
molten Al. The experiments indicate that the surfaces of the composites are
attacked by a three-step process: 1)} removal of graphite accompanied by
penetration of the T1'B2 pores by Al, 2) formation of Al-filled microcracks
along T1‘B2 grain boundaries, and 3) disruption of the microstructure by
extension of large Al-filled cracks. Samples that were exposed for 4 to
20 wk were completely disrupted by Al-filled crack systems and T1'B2 grain
boundary penetration by Al. Such catastrophic deterioration does not agree
with the satisfactory performance observed with TiBz-G cathodes during
Hall-Heroult cell electrolysis. Additional research is needed to elucidate
the chemical reactions causing the difference in performance during polarized
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INTRODUCT ION

The Inert Electrode Program is being conducted by Pacific Northwest
Laboratory (PNL)(a) for the U.S. Department of Energy, Office of Industrial
Programs. The purpose of the program is to develop long-lasting, energy-
efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells
used for commercial production of Al. The program is divided into three
tasks with the following objectives:

e Inert Anode Development - to improve the energy efficiency of
Hall-Heroult cells by development of inert anodes.

¢ Stable Cathode Development - to develop methods for retrofitting
commercial Hall-Heroult cells with titanium diboride (TiBz)-based
cathode materials.

e Sensor Development - to develop sensors to control the bath
chemistry of Hall-Heroult cells being operated with stabie anodes
and cathodes.

Enhanced energy efficiency during the electrolytic production of Al is
possible using Al-wetted, TiBz—based cathodes which reduce voltage drop
across the electrolyte by reducing the anode-cathode spacing. Several
previous attempts to develop practical cell designs have been unsuccessful
because of chemical attack of TiBz~based cathode materials and poor methods
of attaching these materials to the electrolysis cetl.(b)

This report summarizes molten Al immersion tests conducted under the
Stable Cathode Development task to evaluate the microstructural behavior of
TiBz-based materials. Abbreviated summaries of these experiments are
reported by Strachan et ai. 1988 (draft)(c) and Schilling (1988). Four types

(a) Operated for DOE by Battelle Memorial Institute under Contract
DE-AC06-76RLO 1830.

{b} Published research pertaining to Al cathodes for the Al industry is
?eviewed by Billiehaug and Oye {1980) and Schilling, Hagen, and Hart

1987).

{c) Strachan, D. M. et al. Inert Anode/Cathode Program Fiscal Year 1987
Annual Report. Pacific Northwest Laboratory, Richiand, Washington.
Draft report to sponsor.




of TiBz—based materials were evaluated before and after nonpolarized exposure
to molten Al at temperatures encountered in Hall-Heroult cells. Three of the
materials, TiBz—graphite (TiBz-G) composites, TiBz—aluminum nitride (AIN)
composites, and high-purity T182 sintered from halide plasma reduction
powders, were chosen because they are prime candidates for Al-wetted cathode
applications, based on a literature review {Schilling, Hagen, and Hart 1987)
and previous experimental research at PNL (Hart et al. 1987). Ceramic fiber
mesh coated with chemical-vapor-infiltrated TiB2 was also evaluated, based on
the expected wear resistance of the high-purity TiB2 coatings and the pos-
sibility of designing advanced celis with complex cathode shapes that are not
possible using traditional powder-sintering techniques.

Nonpolarized exposure tests, although not representing actual service
conditions for Hall-Herouit cell cathodes, are useful for analyzing possible
attack mechanisms that are related to chemical reactions between molten Al
and cathode constituents.

In the following sections, the experimental procedure for the immersion
tests is described and test results are discussed.



EXPERIMENTAL PROCEDURE

Four types of TiBz—based materials were examined optically before and

after nonpolarized exposure to moiten Al at 970°C for time periods of 4, 10,
and 20 wk. The four materials are listed beiow:

1.

Woven preforms of SiC-based fibers coated with chemical-vapor-
infiltrated TiBz.(a) Test samples were provided by T. Besmann of
Oak Ridge National Laboratory.

Single-phase polycrystailine T1'B2 sintered from high-purity powders
produced by the Alcoa halide vapor-reduction plasma process (Hoejke
1981; Baumgartner 1984a and 1984b; Baumgartner and Steiger 1984).

Test samples were provided by R. Baumgartner of Alcoa Laboratories.

Composites of 50 vol% TiBz-EO vol% AIN. These samples were pro-
duced at PNL by hot pressing a mixture of TiB2 and AIN powder.(b)
Uniaxial hot pressing was performed using 5000 psi die pressure at
1850°C under a flowing Ar atmosphere.

Composites of TiBz-G Type B, which were provided by L. Joo of Great
Lakes Research Corporation.

Samples from the Type 2, 3, and 4 materials were cut with a diamond saw

into 1 em-by-1 cm pieces. The Type 1 material was cut into samples by the

supplier. The samples were then prepared for ceramographic polishing and
optical photomicrography.

The Al used for the immersion tests came in the form of pellets measur-

ing approximately 8 mm in diameter.{€) The purity of the as-received Al was
evaluated by M. Johnson and H. Hillegass of the Alcoa plant in Wenatchee,

{a)

(b)

{c)

The chemical vapor infiltration process is described by Caputo and
Lackey (1984), Caputo, Lackey, and Stinton (1985), and Stinton et al.
(1986). Samples contained Nicalon SiC-based fibers produced by Nippon
Carbon Co., Tokyo, Japan.

The T1‘B2 powders were 1 to 5 um in diameter, the AIN powders were less
than 44"um in size. The powders were supplied by Aremco Corp.,
Ossining, New York.

J. T. Baker Chemical Co., purified Al shot #0456-1, Phillipsburg, New
Jersey.



Washington, using spark emission spectroscopy. Results of this analysis are
indicated in Table 1. Major impurities were Fe, Si, Ga, and V, at concen-
trations of 0.05, 0.029, 0.018, and 0.012 wt%, respectively. Purity analyses
were not performed on individual Al samples after high-temperature exposure
to the TiBz-based samples in the immersion tests.

The TiBz-based samples were cleaned with three, 10-min ultrasonic washes
in acetone; the Al pellets were cleaned with a 10-min ultrasonic wash in
methanol. The test samples and Al peliets were subsequently oven-dried for
12 h at 40°C under a mechanical pump vacuum. After drying, the test samples
were placed in individual alumina (A1203) crucibles. Approximately 50 g of
the cleaned Al pellets were subsequently placed into each crucible.

The 1oaded crucibles were placed into three separate vacuum furnaces
designated for the 4-wk, 10-wk, and 20-wk immersion tests. The furnaces were
then evacuated with a mechanical pump and backfilled with 99.99% pure Ar to
approximately 1 atm absolute pressure. After repeating the evacuation/
backfilling sequence three times for each furnace, Ar was passed through each

TABLE 1. Results of Spark Emission Spectroscopy Analysis for
As-Received Al Used in Immersion Tests

Concentration, Concentration,

Element wit% Element _wi%
Fe 0.050 ‘ Pb 0.001
Sq 0.029 Sn 0.001
Ga 0.018 B 0.0006
v 0.012 cd 0.000
Ni 0.003 Co 0.000
Zn 0.003 Li 0.000
Ti 0.003 Sr 0.000
ir 0.002 Ca 0.000
Bi 0.001 Be 0.000
Cu 0.001 Na 0.000
Mn 0.001 Cr 0.000
Mg 0.001



furnace at 4 to 5 L/h. The furnaces were then heated to a peak temperature
of 970°C at approximately 3°C/min. Two additional immersion tests were
performed to evaluate early-stage processes of degradation in the TiBz-G
samples; the aforementioned experimental procedures were used to heat these
samples in separate furnaces at a peak temperature of 970°C for 1-h and 8-h
durations. A11-T1B2-based samples were submerged in Al during the immersion
tests.

Twenty-six days after the furnaces were started, a heating element
failed in the furnace used for the 20-wk test. The furnace had to be cooled
to room temperature and the heating element replaced. The sampies, already
heated at 970°C for 26 d, were reheated. The crucibles used for the 26-d
period were replaced to avoid fracturing the A1203 crucibles upon reheating.
The contents, which had cooled to form Al ingots, were removed intact from
the crucibles by gently tapping the side of each crucible with a hammer to
crack open the A1203. The ingots were placed in new crucibles and returned
to the furnace. The furnace was purged and reheated by the aforementioned
procedures. The samples remained at 970°C for the balance of the 20-wk
period.

Each furnace was slowly cooled at approximately 3°C/min after its
respective test duration, and the loaded crucibles were sectioned with a
diamond saw, metallographically polished, and then photographed with an
optical microscope. Oil-based liquids were used during polishing. Samples
of TiBz-G were analyzed by x-ray diffraction (XRD) to examine the cut sur-
faces before and after the 4 wk of exposure to molten Al. All samplies were
subsequently stored in a vacuum desiccator to minimize moisture absorption.






RESULTS AND DISCUSSION

This section describes the results of the immersion test experiments.
0f the four materials analyzed, the TiBz-G exhibited the least desirable
characteristics. Both the high-purity TiB2 and the TiBz-A]N exhibited high
resisted to chemical attack. The TiBz-ceramic fiber mesh exhibited mixed
results.

GREAT LAKES TITANIUM DIBORIDE GRAPHITE TYPE B COMPOSITES

Great Lakes TiBz—G Type B composites exhibited poor resistance to
chemical attack by molten Al. The TiBz—G materials were composed of a porous
continuous Ti32 matrix, which exhibited intergranular penetration by Al after
exposure to moiten Al. Experimental results indicate that the composites are
attacked by a three-step process during nonpolarized exposure to molten Al:

1. Within 1 h of exposure to molten Al at 970°C, Al penetrates the
sample surfaces through the TiB2 pores; Al reacts with graphite to
form AT4C3 in the T1‘B2 pores, resulting in removal of the graphite
phase. Although the exact mechanism of graphite removal has not
been confirmed, the following processes are expected to play a
role: aluminum carbide (A14C3) formation and subsequent dissolu-
tion of A14C3 into Al, and A14C3 formation and subsequent movement
of A14C3 crystals into the Al.

2. Within B h of exposure, the same pattern of Al penetration con-
tinues to deeper levels in the sample, and Al-filled microcracks
appear along TiB2 grain boundaries at the outer edges of the Al
penetration zones. The intergranular penetration appears to be
time dependent, as the microcracks do not always appear at the
deeper layers of the Al penetration zones.

3. The intergranular penetration develops into large, Al-filled crack
systems that disrupt the outer edges of the penetration zones
within 8 h of exposure. Within 1 wk of exposure, entire samples
are disrupted by intergranular penetration and large, Al-filled
crack systems. Although the exact mechanisms causing the



microcracking and development of large cracks have not been
confirmed, the volumetric expansion associated with the formation

of A14C3 from graphite appears to play a role by exerting stresses
on the TiB2 pore walls.

Microstructures of Great Lakes TiBZ—G Type B composites before and after
exposure to Al at 970°C for 4, 10, and 20 wk are shown in Figures 1 and 2.
In the unexposed condition, the TiB2 phase appears Tight-colored and inter-
connected; the dark-colored phase, distributed throughout the pores of the
TiBz, consists of graphite and open porosity. The unexposed sample contains
crack patterns in the TiB2 which are related to materials processing. The
source of the cracks and the impact on test behavior are not known.

After exposures of 4, 10, and 20 wk, all of the TiBz-G samples were
penetrated by large Al-filled cracks; in addition, the samples showed exten-
sive penetration of TiB2 grain boundaries by Al. Nearly identical features
were seen in TiBz—G Type B samples that were exposed to Al at 970°C for 1 wk,
as reported in Hart et al. (1987). Another feature common to the samples
exposed for 1, 4, 10, and 20 wk is that dark, faceted crystals appear
throughout the Al penetrating the TiBZ-G. To simplify the discussion, these
dark, faceted crystals will be referred to as "Phase A" (Figure 1}. Phase A
is expected to be A14C3 because its formation from elemental Al and C is
thermodynamically favored at 970°C; -35.1 kcal is the standard Gibbs free

energy for the formation of 1 mol of A14C3 at 970°C (Kubaschewski and Alcock
1979).

In addition, XRD analysis of cut surfaces of the unexposed and 4-wk
samples of TiBz-G suggests consumption of graphite by formation of A1463
during exposure to molten A1 (Figure 3}. On the exposed sample, A14C3 was
detected along with TiB2 and A1, but graphite was not detected. In contrast,
graphite and TiBZ were the only phases detected on a sample of the unexposed
TiBz-G. 0f course, the XRD experiment does not reveal the physical location
of the A14C3; therefore, microchemical analysis is needed to confirm whether
Phase A is indeed A]4C3.

Additional soak tests were performed in Al at 970°C for 1 h and 8 h to
evaluate the time sequence of early-stage degradation processes in TiBz—G
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APPENDIX

ALUMINUM CARBIDE IA14Q3) MOLAR VOLUME ANALYSIS DURING
NONPOLARIZED EXPOSURE OF TITANJUM DIBORIDE-GRAPHITE

TO ALUMINUM AT 970°C

Sample calculations are presented to estimate the volumetric amount of
A14C3 formed by direct reaction between graphite and elemental Al, and the
minimum amount of Al required to uniformly dissolve A14C3 that forms by all
of the graphite originally available in a TiBz—G immersion test sample. The
following properties are assumed:

e The A14C3 mass density = 2.36 g/cm3 and molecular weight = 143,96
g/mo1{a)

e The Al liquid mass density = 2.385 g/cm3 and molecular weight =
26.98 g/mol(b)

e The graphite mass density = 2.25 g/cm3 and molecular weight =
12.0 g/mo1(3)

o Apparent volume of each TiBz-G sample = 1 cm3

e Amount of Al originally present = 50 g {approximately 21 cm3)

e Saturation solubility of 0.04 wt% A14C3 in Al (Dorward 1973a and
1973b)

e Amount of graphite originally present = 17% by volume (Tabereaux
1987).

3
cm A14C3 N 143.96 g AI4C3 N mole A14C3 ) 2.25gC ) mole C
2.36 g A14C3 mole A14C3 3 mole C cm3 graphite 12 g C

3
_ 3.813 cm A14C3

cm3 graphite

{a) Weast, Astle, and Beyer 1985.
(b) Brandes 1983.

A.l



0.17 cn’graphite  3.813 em® A1,C, 2.36 g Al,C;  99.06 g Al em® Al
X X X X
cnTiB, -6 cm’ graphite o’ Al,C;  0.04 g Al,C,  2.385 g Al

_ 1588.5 cn®

cm3 TiB

Al
-G

2

3

The former equation suggests that 3.8 c¢m™ of A14C3 are formed by each

cubic centimeter of graphite consumed in the 4A1 + 3C - A14C3 reaction.

The latter equation suggests that a minimum of approximately 75.6 times
the original mass of Al is needed in each test crucible to uniformly dissolve
A]4C3 formed by all of the C originally available. Therefore, it may be sug-
gested that A14C3 saturation was reached within the Al-filled TiB2 pores near
graphite-Al interfaces during the immersion tests. As a result, dissolution
rates would approach zero in these regions, and A14C3 crystals would be
expected to accumulate and remain inside the T1'B2 pores.

A.2
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