

ZPR-I Memo No. 430

March 15, 1983

APPLIED TECHNOLOGY

Any Further Distribution, by any Holder of this Document or of the Data
Therein to Third Parties Representing Foreign Interests, Foreign Govern-
ments, Foreign Companies and Foreign Subsidiaries or Foreign Divisions
of U. S. Companies Should Be Coordinated with the Deputy Assistant
Secretary for Breeder Reactor Programs, Department of Energy

ZPR-I-Memo--430

DE83 025894

To: ZPR-I Distribution (Limited)
From: S.B. Brumbach **SBB** ZPPR-13 Assembly Coordinator
Subject: ZPPR Assembly 13 - Detailed Work Plan No. 18:
Transformation From 13B/1 to 13B/2

SBB:dbr

Distribution:	<u>Idaho</u>	<u>Illinois</u>
	P.I. Amundson	L.G. LeSage
	S.B. Brumbach	E.F. Bennett
	S.G. Carpenter	Y.I. Chang
	P.J. Collins	H. Henryson II
	J.M. Gasidlo	F.H. Martens
	R.W. Goin	R.D. McKnight
	G.L. Grasseschi	D.C. Wade
	H.A. Harper	
	T.S. Huntsman	
	R.E. Kaiser	
	M. Kawashima	
	J.M. Larson	
	M.J. Lineberry	
	D.W. Maddison	
	P.B. McCarthy	
	H.F. McFarlane	
	D.N. Olsen	
	J.R. Ross	
	F.W. Severn	
	P.L. Schaffer	
	R.W. Schaefer	
	K.S. Smith	
	S. Suzuki	

Additional

S. Stewart (GE)
P. Choong (GE)
J. Lake (W)
E. Specht (AI)

WP-A1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

Released for announcement
in ATF Distribution Limited to
participants in the LMFBR
program. Orders request from
BSP DOE.

[Handwritten signature]

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ZPPR Assembly 13
Detailed Work Plan No. 18
Transformation From 13B/1 to 13B/2

All experiments and geometry changes described herein are subject to safety review and approval by the Reactor Manager. Additional measurements may be added at his request to satisfy safety or operational requirements.

I. Introduction

At the end of the 13B/1 experimental program, the broken-circular-blanket configuration of ZPPR-13B/1 will be converted to the broken-hexagonal-blanket configuration of ZPPR-13B/2. This conversion will consist of interchanging blanket drawers and fuel drawers with a net addition of fuel drawers and a radial expansion of the reactor core. Interchanges will be made in a series of steps, and flux distribution measurements will be made at each step using the 64 in-core fission counters. It is anticipated that the final hexagonal configuration will be approximately 3% subcritical.

II. Reactor Configuration

The reactor configuration for the beginning of the transformation will be the ZPPR-13B/1 reference subcritical configuration as established in loading 125.

III. Sequence of Configuration Changing Steps

Configuration changes will be made ring by ring starting with fuel ring 3, followed by fuel rings 1 and 2. In each ring, the negative reactivity changes (substitution of blanket for fuel) will be made before the positive changes (substitution of fuel for blanket). The following steps are planned:

1. Substitute Blanket for Fuel in Fuel Ring 3.

Replace 104 fuel drawers in fuel ring 3 with blanket drawers and measure the subcriticality of this configuration with the 64 in-core fission counters.

2. Substitute Fuel for Blanket in Fuel Ring 3.

- a. Replace 104 blanket drawers with fuel drawers in fuel ring 3 and measure the subcriticality of this configuration.
- b. If the subcriticality measured in step 2a is sufficiently negative, replace 56 radial blanket drawers with fuel drawers along the outer boundary of fuel ring 3. Measure the subcriticality of this configuration.
- c. If the subcriticality measured in step 2b is sufficiently negative, replace 56 additional radial blanket drawers with fuel drawers along the outer boundary of fuel ring 3. Measure the subcriticality of this configuration.

The estimated subcriticality at the end of step 2c is approximatley 1\$. If the estimated reactivity additions in either of the steps 2b or 2c are more than one-half of the value of the subcriticality measured in the previous step, then add fewer drawers than indicated above, and increase the number of steps.

3. Replace 24 fuel drawers with blanket drawers in fuel ring 1 and measure the subcriticality of this configuration.

4. Replace 24 blanket drawers with fuel drawers in fuel ring 1 and measure the subcriticality of this configuration.

5. Replace 80 fuel drawers with blanket drawers in fuel ring 2 and measure the subcriticality of this configuration.

6. Replace 48 blanket drawers with fuel drawers in fuel ring 2 and measure the subcriticality of this configuration.

7. Move 168 radial reflector drawers from the inner edge of the reflector to the outer edge. Add 40 additional reflector drawers to the outer edge of the reflector.

8. Add 168 blanket drawers to the positions vacated in Step 7. Measure the subcriticality of this configuration.

IV. Measurement Methods

All subcriticality measurements will be made using the subcritical source multiplication method. All measurements will be made with all shim rods, and PSRs 30 and 31 fully withdrawn. Wait 10 min after achieving stable power before acquiring data. Count statistics should be within \pm 1%, but count times should not exceed 30 min.