

MASTER

PHYSICAL PROPERTIES AND SENSITIVITY
OF HMX/ESTANE 5713 AND HMX/ESTANE 5714

J. H. Van Velkinburgh

DEVELOPMENT DIVISION

OCTOBER - DECEMBER 1976

Normal Process Development
Endeavor No. 105

Mason & Hanger-Silas Mason Co., Inc.
Partex Plant

P. O. BOX 30020
AMARILLO, TEXAS 79177
806-335-1581

operated for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
under

U. S. GOVERNMENT Contract EY 76 C 04-0487

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PHYSICAL PROPERTIES AND SENSITIVITY OF HMX/ESTANE 5713 AND HMX/ESTANE 5714

J. H. Van Velkinburgh

DEVELOPMENT DIVISION

October-December 1976
Endeavor No. 105

C-1

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

EBB

ABSTRACT

Two small lots of LX-14 having the Estane 5702-F1 replaced with Estane 5713 and 5714 were formulated. The two formulations were subjected to skid tests, tensile tests, and drop hammer tests. These tests were intended as preliminary screening tests of the two Estanes to evaluate their potential as binder materials.

DISCUSSION

Estane 5713 and Estane 5714 were used as the binder material to formulate approximately 6.5 kg each of two lots of HMX based PBX's. The nominal by weight composition of both lots was 95.5/4.5 HMX/binder. The HMX used for both lots was a mixture of 65% Class A, 25% LX-04-1 type and 10% Class B by weight. Estane 5713, a polyester polyurethane elastomer, was used as the binder in Lot No. 6019-146-01 and Estane 5714, a polyether polyurethane elastomer, was used for Lot No. 6020-147-01. The lots were manufactured using the standard slurry technique. The manufacture was somewhat difficult due to the relative insolubility of both the Estane 5713 and 5714. The solubility of the Estane 5713 and 5714 is 5.8% and 3.4% by weight, respectively in ethylene dichloride at 60 C. In comparison, the solubility of Estane 5702-F1 is 8.0% in ethylene dichloride at 20 C.

One billet of each material was fabricated to provide parts for testing. The average density for all parts from Lot 6019-146-01 was 1.836 Mg/m³ and from Lot 6020-147-01 was 1.825 Mg/m³.

Skid testing was performed on both lots of material using the reduced charge skid test. Because of the limited amount of material available only a few skid tests were possible. The test results are shown in Table I. Included in the table are skid test results for two HMX/Estane 5702-F1 formulations with 5% and 4% binder by weight. The latter two sets of tests were done using full sized billets. As can be seen there is not a great deal of difference between Lot 6019-146-01 and Lot 6020-147-01. Both are just slightly more sensitive than the formulations containing 4% to 5% Estane 5702-F1 as a binder.

Tensile test results are given in Tables II through IV. The mean stress and strain at rupture for the tests are plotted in Fig. 1. Included in Fig. 1 for comparison is the rupture stress and strain at several different temperatures for LX-14, Lot 713-1. The plot shows that the two materials tested are stiffer than LX-14.

Drop hammer tests were made for these two materials using type 12A (sandpaper) tooling. The H₅₀ values for Lots 6019-146-01 and 6020-147-01 were 31 ± 9 cm and 39 ± 3 cm, respectively. For comparison, the H₅₀ for LX-14 is 35 ± 5 cm. These values indicate only a moderate sensitivity for either material and that they can be handled in accordance with standard high explosives procedures.

COMMENTS, CONCLUSIONS

Sensitivity testing (drop hammer and skid tests) show that both these materials have only a moderate sensitivity and that they can be handled using standard high explosives operating procedures. Mechanical properties testing were done to compare the materials with LX-14 and they were found to be slightly stiffer.

Table I. Skid Test Results

45°		14°	
<u>Height</u> <u>(m)</u>	<u>Reaction</u> <u>Level</u>	<u>Height</u> <u>(m)</u>	<u>Reaction</u> <u>Level</u>
Lot No. 6019-146-01			
1.52	NR	0.38	NR
		0.53	1
		0.76	3

Lot No. 6020-147-01			
1.52	NR	0.38	NR
		0.53	2
		0.76	NR, 3

HMX/Estane 5702-F1 (95/5)			
1.52	NR, NR, NR	0.53	NR, NR, NR
2.16	None Done	0.76	NR, NR, NR
3.05	NR, NR, 3	1.07	None Done
		1.52	1, 3

HMX/Estane 5702-F1 (96/4)			
1.52	NR, NR, NR	0.53	NR, NR, NR
2.16	NR, NR, NR	0.76	NR, NR, NR
3.05	5	1.07	4

Table II. Tensile Test at Constant Crosshead Speed
of 0.002 mm/s at 49 C

(Lot 6019-146-01, Density 1.836 Mg/m³)

<u>Piece Number</u>	<u>Rupture Mode</u>	<u>Initial Modulus^b</u> (GPa)	<u>Time</u> (sec)	<u>Rupture</u>	<u>Strain (%)</u>
24	4	2.4	194	1.71	0.295
26	5	2.7	181	1.62	0.260
Mean		2.5	188	1.67	0.278
Std. Dev.		0.3	9	0.07	0.025

^a1 and 7 are in the curved section, 2 and 6 are in the straight section outside the extensometer, 3 and 5 are at the knife edges and 4 is between the knife edges.

^bInitial Modulus: (20% Rupture Stress)/Strain

Table III. Tensile Test at Constant Crosshead Speed
of 0.002 mm/s at 21 C

(Lot 6020-147-01, Density 1.825 Mg/m³)

Piece Number	Rupture ^a Mode	Initial ^b Modulus ^b (GPa)	Rupture		
			Time (sec)	Stress (MPa)	Strain (%)
28	6	4.9	170	3.75	0.142
23	6	4.7	166	3.74	0.136
24	2	5.2	183	3.72	0.131
22	2	4.8	192	3.92	0.160
Mean		4.9	178	3.78	0.143
Std. Dev.		0.2	12	0.09	0.013

^a1 and 7 are in the curved section, 2 and 6 are in the straight section outside the extensometer, 3 and 5 are at the knife edges and 4 is between the knife edges.

^bInitial Modulus: (20% Rupture Stress)/Strain

Table IV. Tensile Test at Constant Crosshead Speed
of 0.002 mm/s at 49 C

(Lot 6020-147-01, Density 1.825 Mg/m³)

Piece Number	Rupture ^a Mode	Initial Modulus ^b (GPa)	Rupture		
			Time (sec)	Stress (MPa)	Strain (%)
27	2	5.1	152	2.23	0.113
26	6	2.8	177	2.42	0.177
21	6	3.5	166	2.22	0.125
Mean		3.8	165	2.29	0.138
Std. Dev.		1.2	12	0.11	0.034

^a1 and 7 are in the curved section, 2 and 6 are in the straight section outside the extensometer, 3 and 5 are at the knife edges and 4 is between the knife edges.

^bInitial Modulus: (20% Rupture Stress)/Strain

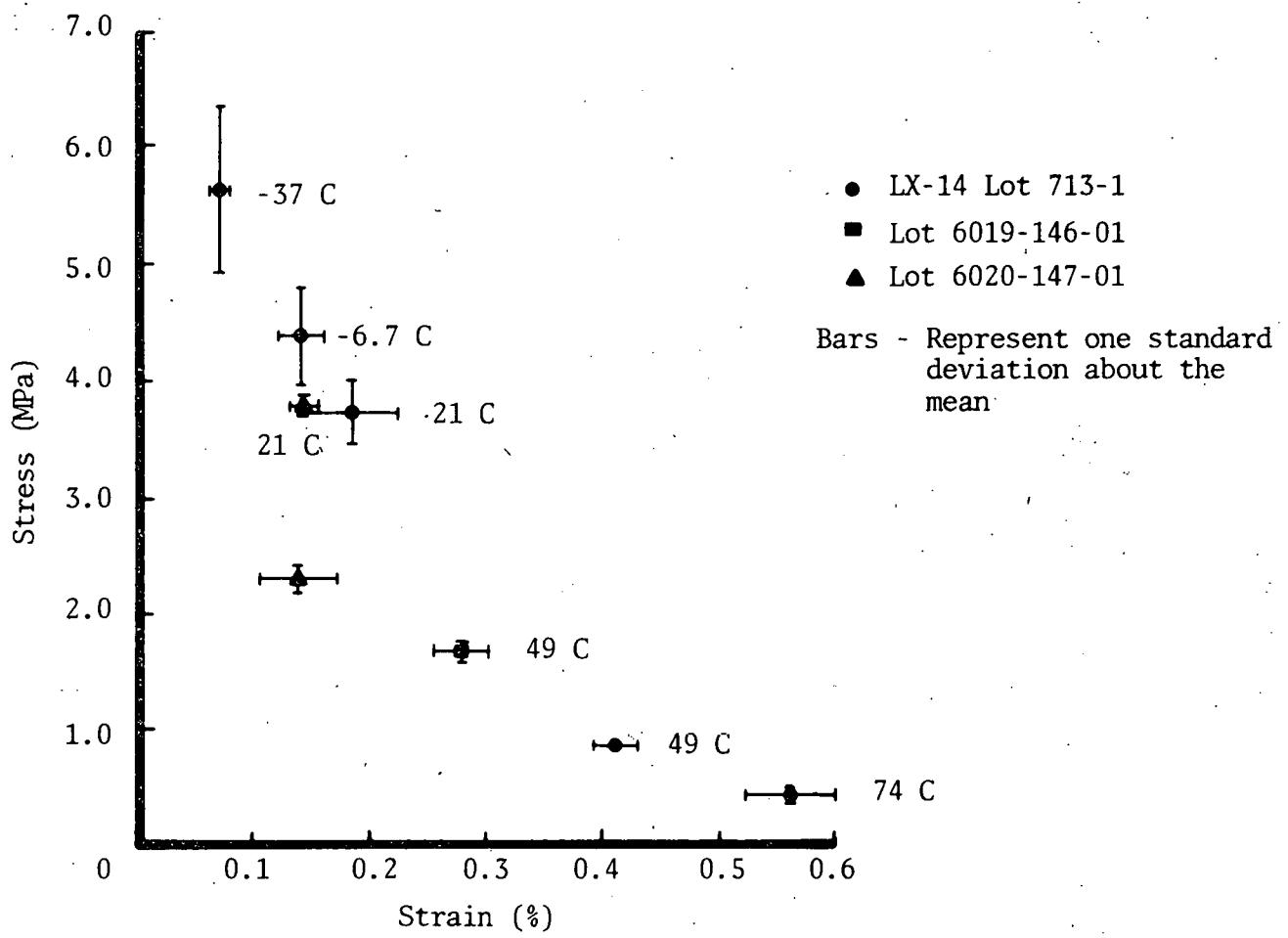


Fig. 1. Stress/Strain at Failure