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Alfvén Instability and Micromagnetic Islands

*
in a Plasma with Sheared Magnetic Fields

J. Hsu, P. Kaw, and Liu Chen

Princeton University Plasma Physics Laboratory

Princeton, New Jersey 08540

ABSTRACT

The normal mode equation for coupled drift and Alfvén
waves in a‘finite-B nonuniform plasmé with a sheared mag-
netic field is solved, in the slab geometry, to investi-
gate the instability of slow Alfvén waves. It is shown,
that, besides having an appfeciable growth rate, the insta-
bility also produces microscopic "tearing" of the rational
surfaces which hés important implications for anomalous

-transport.



Traditionally, anomalous transport in magnetically confined
plasmas is ascribed to the presence of electrostatic drift-wave
fluctuations, which are driven to large amplitudes by the expan-
sion free energy associated with density and.temperature gradiénts
in the plasma. A mechanism of equally great interest, which seems
to have received much less attention, is the excifation of low-
frequency, short wavelength, predominantly electromagnetic fluc-
tuations by the same free energy source. These two kinds of fluc-
tuations can produce loss of confinement by fundamentally different
processes. The former is limited to an enhancement of transports
across the magnetic surfaces. The latter, on the other hand (in
the presence of dissipation), may produce local "tearing" and
break-up of magnetic surfaces and thus essentially permit transports
along newly "re-connected" field lines. This proccss is especially
significant for short-wavelength fluctuations, since the mode-
rational surfaces are densely packed and considerable overlap of
"magnetic islands" may readily occur.

In this letter, we examine the instability of slow Alfvén
waves in a finite-f nonuniform placma with sheared wmagnetic fields.
The local dispersion relation for coﬁpled drift and Alfvén waves

(which is relevant to the shear-free case) is well known,'2 viz.

*
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with - e < 0 and § > 0 represents the dissipation effect on elec-

trons. We have neglected the ion-sound and ion damping terms.



Equation (1) exhibits two instabilities:
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For mé < wp 1 Wy is -unstable. This is the usual electrostatic

drift instability. 1In this case w which corresponds to slow

2 ’
*

Alfvén waves, 1is stable. For Wy > w the Alfvén root w., is

A’ 2
unstable and the ﬁsual drift wave is stabilized. Note that the

introduction of @, terms in Eq. (1) can be considered as a finite-8

A
effect because wA/w: - o when g - 0.

The normal mode equations for coupied drift and Alfvén waves
in the presence of magnetic shear has been investigated previously.
However, this calculation restricts itself to an investigation of
the finite=-B stébilization of the usual electrostatic drift branch

Nobody seems to have recovered the branch w, from a nonlocal

wy - 5
trcatment, so far. It is this mnode that we shall be discussing
below.

Consider an inhomogeneous {(gradient along éx) plasma in a
sheared magnetic field B ¥ Bo(éz + éyx/Ls). We describe the elec-
trons by a drift kinetic equation with a Krook-type density con-
sefving collision operator. Ions are fully kinetic and collision-
less. Since R ='8ﬂn0(T; + Ti)/Bg << 1 and we restrict our atten-
tion to slow Alfvén waves which only "bend" the field lines, the

field perturbations can be described in terms of two scalar

potentials ¢,¢ defined by

3
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V,$ are related to the vector potential A ez(defined by ¢B, = V xA)
through the relation v = ¢ - wA/ﬁlc . Linearizing the kinetic
equations, solving for §f, integrating over the velocity space

and using the gquasineutrality condition 6ne = 6ni » we obtain the

eéduation
2 2
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and Z is the plasma dispersion function. We have assumed that

for ions,lm/ﬁlvi|> 1 is satisfied in the whole x-region of interest
and that]lirVil<< 1. Obtaining the peéerturbed Gj“ from the first
moments of Gfe i and using the Ampere's law we obtain a second

14

equation between ¢ and ¢ viz.

*
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where wz = k; Vi , VA being the Alfvén speed. Equations (4) and

(6) may be readily combined to give a fourth order differential
21 > k2
y

equation in ¢ . We now assume ldz/dx . Multiplying

the fourth order equation by x2 and integrating once, we obtain

a second order differential equation for E = d¢/dx :

2
2 4 ( dE/dx ) ( xA) C
A gl ———=|~|1l~-—=)E=—5 (7)
dx \e(w,x) 20T 2
: 2 * 2,2 .2 . . .
where Xp = w(@ + wet)Ls/ky VA and C is the constant of integration.

"The physical meaning of this constant can be underétood by passing
to the large x limit; the two dominant terms are E + C/x2 = 0 which
gives an ~ constant. This is the "constant-y" solution in usual
resistive instability theoriess, which then matches on to the out-
side long-wavelength MHD solutions. The mode of present interest
can be found without outside long-wavelength MHD support. So we
let C = 0.

The mode-structure of the usual electrostatic drift branch

is determined by the x,, term in e(w,x) so that one has to do the

T
ordering A ~ x5, >> X, . Note that X ~ x, gives (u - wye) w*Ln/Ls’
the well-known drift wave result. Note also that xT/xA >> 1 is
always satisfied as long as w/w, > 8. On the other hand, to

study the Alfvén branch, one has to order A ~ X, << ¥, So that

the mode-structure is decided by the Alfvén term. It is this

lack of proper ordering, which has prevented earlier workers3 from
recovering the Alfvén root. Note that A ~ X yields

e 12 2 12 402 .
w ky VA(AS/LS)/w* < w, as the root.



To the lowest order then, the Alfvén mode is simply described

by the equation

5 2.
'xz-d—E=_(1——A)E. (8)
2 2
dx X

In this limit, x,, and x_ are ordered large (-+«) and the electron

T I
inertia and electron dissipaﬁion are neglected. The solutions
1/2

are given by x Jn(ix/k) and xl/zYn(ix/A) where Jn and Yn are the

Bessel functions. The lowest order dispersion relation is yiven

by
2 . k2
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where n is an integer. The eigenfrequencies are given by
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The second root corresponds to the Alfvén branch and is the
only unstable branch as shown below. To construct outward propa-
gating (or decaying) solutions far awéy, we have to include combina-
‘tions of Jn and Yn functions. However, the Yn solution blows up
at x = 0, This pathology of the zeroth order eigenfunction is
associated with the absence, in the zeroth order equations, of a

4

"dissipative" force which may balance the parallel electric fields



generated at x = 0 by time—deéendent magnetic fluctuations. 1In
a collisional plasma, resistivity provides such a force whereas
in the collisionless problem, . electron inertia takes up that
role. We now show that it is possible to remove this pathology
by a proper matching ;olution near x = 0.

We first consider the collisional case Vg > W and Ve/lﬁllve
>> 1 in the x-region of interest. The equation we want to solve

is
x2 : | x2
A2 ad;[(l - -—23) gﬁ] - (1 - —72*) E =0 (11)
X X b'4
where Xp is the resistive layer thickness defined by xg = iwveLi/
2.2 ‘ ' _ L .
kyve . We assume A ~ X5 and treat xR/xA << 1 as a small parameter.

Introducing s = ix/\ as a new variable, the lowest order solution

in the outer region, describing outgoing waves, is given by

e® = 12 5P (s (12)
v
where Héz) is the Hankel function of second kind and
v = /e - xEnH . (13)

The first order equation in the outer region can be solved with

(1)

the boundary condition E (8 + @) = 0:
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where the Wronskian W = -2 sinmv/7 . In the inner region, we

introduce x = x/Xy as a variable and write the lowest order equa-

tion as
2,.2
affp - 1yee)_ %2
dx ~2 ] ax| - ~2 .
X X
Making the transformation ¢ = [(;{2 - 1) /%] (dE/d%), we get an equa-
tion which has the solution
_ L z2.1/2 1 ~ 1 >
o= (1 -x) el G0 v 0l ) (15)

where P& fQi are the assoclated Legendre functions. The dispersion

relation is obtained by imposing the parity conditions at x = 0

(viz. ¢'(0) = 0 for even parity and 4(0) = 0 for odd parity),
taking the asymptotic expansion of the Legendre functions (|§| + )
and matching the resultant solution E to small - "s" limits of

(0) (1)

the outer region solution E + E . The dispersion relation

takes the rather simple form

X2 X2
1 .
\)2 = n2 - %—? = :1— - ——? (16)
A A

Equation (16) differs from the zeroth order Eq. (9) only in the

first order correction term-uxg/kz . This result can also be



obtained by a regular perturbation treatment. Equation (16) can
be solved to give an Alfvén root with a frequency w0,2 < w, [de-
fined in Eq. (10)] and a growth rate = (m/M)(vei/ZB). Note that
this growth rate ‘has an upper limit ?Véi/Z (because B > m/M) and
is larger by a factor B-l from that of dissipative drift”waves..
Furthermore, unlike drift waves, there is no shear damping term
involved because the wave ﬁuﬁction is localized deep inside the
sound turning point. Note also that for even parity modes

§B_ |

x ' x=
component at the rational surface. The instabilitvaill thus

0 # 0 i.e., the magnetic field perturbation has a tearing

lead to the formation of microscopic magnetic islands on mode-
rational surfaces.

The normal mode equation for the collisionless case w > vé"is

2
2 4 dE X
A '&( » /dx ')-<l~—%)E=O (17)
l-#xez(xe/|x|)/|x| X
where X, = st/kyve . Assuming X <<XA,’ the outer region equation

is the same as before. The inner region equation is harder to
solve in fhis case. However, an approximate dispersion'relation
can be thained by a regular perturbation theory. It is of the
form

.2

o 2,2 -1/2
2. 1/4 -5/, = n

v - inm (xe/k?ln(xl/l). (18)
Equation (18) differs from Eg. (16) in the form of the perturba-
tion term (xe/A)Qn(xI/A) replacing x;/xz . The reason for this
difference is that the Landau damping term goes as x,/x for large

. 2 C . . .
X (as against xi/x for resistive case). To avoid the logarithmic
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singularity at large x, we have to introduce a cutoff at the ion-

Landau resonance point x = X - This explains the X; in the

logarithm. Equation (18) leads to the growth rate

(n/2)w-l/2(Ln/sLs)(m/M)l/zw*zh(l//E) which is again a significantly
large fraction of w, . Further, in this case also a "tearing"
component of magnetic field fluctuation is finite for even modes,
electron inertia removing the singularity at x = Q.

Two conditions necessary for the validity of above analysis

were m < w, and ]dz/dle o k§ . The two may be combined to give

(n/m)(Ln/Ls)(Ln/ks) > B >'ﬁ2(L§/L§) where m is azimuthal mode

number and n the integer in Eg. (9). We have also assumed xi,
xg << xi << x%.which requires w/w, , v/w, << (fM/m) and w/w, > B

respectively, conditions which may be readily satisfied.
We now specnlate on the coenssquenvey of micioscopic maghietic
islands of the type generated by this instability, on anomalous

transport. The typical width w of an island is given by (GBXLS/

kyBo)l/2 . Using the linear relation between 6Bx and Gné , we get

2 T A Y 4 s .
- - B’l'/"(f’é)wl ('_Xﬁ)l’r‘ (5_n> L2 (19)
n Ln Ln ng
For L_/T._ ~ 15, A /L - ]0-2 B - L'I.O-2 Sn/n, ~ 1092 this gives
78’ 'n s’ Tn ) ! ! 0 !
w/Ln ~ 10-2 . Thus, the size of the island can become comparable

to the Larmor radius for the typical density flcutuations observed
in toroidal devices. We also know that the distance between mode

rational surfaces is given by
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{

Ar A

s v~—1 s gR ‘ -1 -2
— ~ (k. X)) — = (k. A) 10 .
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Thus for kyks ~1,- we.ﬁave W o~ Ars i.e., ﬁhere will be a

strong overlap of magnetic islands on neighboring rational sur-
faces. It is quite likely then that the loss of heat and particles
from the "confined" élasma is governed by a parallel floﬁ‘along
newly re-connected field lines. Taking a parallel collisional

" random walk mddel along field lines, which are themselves randomly
going in and out due to ergodicity arising due to overlapping
magnetic islands, one éomes up with an energy confinement time

T ~_(ve/vi)(qR Li/li)z which has the correct ofder’of‘magnitude‘

E
for typical tokamaks and also gives the observed scaling Tg ~ D
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