

27
8-30-77
28 30715

SAND77-1165
Unlimited Release

3151

KSPTH: A Subroutine for the K Shortest Paths in a Sabotage Graph

Bernie L. Hulme, Diane B. Holdridge

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87115
and Livermore, California 94550 for the United States Nuclear
Regulatory Commission under ERDA Contract AT(29-1)-789.

Printed August 1977

Sandia Laboratories

Nuclear Fuel Cycle Programs

SF 2900 Q(7-73)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor the United States Nuclear Regulatory Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

SAND 77-1165
Unlimited Release
Printed August 1977

KSPTH: A SUBROUTINE FOR THE K SHORTEST PATHS
IN A SABOTAGE GRAPH

Bernie L. Hulme
Numerical Mathematics Division

Diane B. Holdridge[†]
Applied Mathematics Division

Sandia Laboratories
Albuquerque, New Mexico 87115

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ABSTRACT

Finding shortest paths in a weighted graph model is one way for a safeguards analyst to locate weaknesses in a facility's barrier and alarm system. KSPTH can be used to rank sabotage paths according to path length so that the K shortest paths can be studied by more detailed methods to see which possess additional properties attractive to an adversary. While emphasizing how to use KSPTH, this report explains the K-th shortest path algorithm of Hoffman, Pavley and Dreyfus and contains a sample problem, test results and program listings.

[†]Currently in Nuclear Waste Technology Division.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
Price: \$4.00 Microfiche \$3.00

MASTER

TABLE OF CONTENTS

	Page
1. Introduction	3
2. The Hoffman-Pavley-Dreyfus Algorithm	4
3. Description of KSPTH	6
4. How to Use KSPTH	8
4.1. The Call List	8
4.2. Input	8
4.3. Work Arrays	9
4.4. Output	10
5. Examples	11
5.1. A Sample Problem	11
5.2. Run Time and Array Storage Results . . .	13
6. Listings	15

1. Introduction

A sabotage graph is a network of nodes and arcs schematically representing a fixed-site facility. By weighting the nodes and arcs with some quantity to be minimized by an adversary (say, time or detection probability), a safeguards analyst can find shortest paths in the graph as a means of identifying possibly good attack routes for saboteurs. Such paths indicate where the barrier and alarm systems are weakest. A similar, but more difficult, problem is that of finding shortest theft paths, which must include escape routes. Graph-theoretic models for the theft problem were introduced in [6] and for the sabotage problem in [7].

The current shortest sabotage path code is SPTH3 [8]. This subroutine finds all the shortest paths from off-site to every node of the graph using the Dijkstra shortest path algorithm [3] as modified by Yen [10,9]. Those paths terminating at target nodes represent shortest routes for a simultaneous attack by several sabotage teams each having only one target.

Of course, near-shortest adversary paths are also important to the safeguards analyst. One reason is that the data are not known well enough to distinguish among paths of almost the same length. In addition, other factors such as the reliability of the communications systems and the ability of response forces to engage and defeat, or at least delay, the adversary also play an important role in finding "best" adversary paths. The idea behind the use of KSPTH is to rank sabotage paths according to length so that the K shortest can be further evaluated by techniques such as FESEM [2], the Forcible Entry Safeguard Effectiveness Model, or EASI [1], an Estimate of Adversary Sequence Interruption.

KSPTH begins by finding the shortest sabotage paths just as SPTH3 does. Then the Hoffman-Pavley-Dreyfus algorithm [4,5] is used to find the k-th

shortest paths from the boundary to all the nodes inside the facility, $2 \leq k \leq K$. The sabotage paths are those that lead to target nodes.

Although KSPTH is written to accept time weights (or any other weights for which normal addition is appropriate), a minor modification will allow it to accept detection probability weights and compute cumulative detective probabilities as path lengths. In the remainder of this report we think of the weights as time. Also we assume that the reader is familiar with [8].

2. The Hoffman-Pavley-Dreyfus Algorithm

In 1959 Hoffman and Pavley [5] gave a procedure for finding the k -th shortest paths between two specified nodes in a graph. In 1969 Dreyfus [4] analysed their scheme, compared it with others, and proposed an extention to the problem of k -th shortest paths from all nodes to a common terminal node. In KSPTH we use the Dreyfus modification of Hoffman and Pavley's method to find k -th shortest paths from the set of boundary nodes to all other nodes in a sabotage graph. This is akin to finding paths from a common source node to all the other nodes in a graph. However, instead of one source node, we have a set of boundary nodes which may be thought to be adjacent to a ficticious "off-site node." Consequently, the discussion here will differ from that of Dreyfus in that the common node is taken to be a source rather than a terminal.

To begin it must be noted that different paths can have the same length. Therefore, we must think in terms of a set of shortest paths, a set of second-shortest paths, etc. The problem is to find the K sets of shortest paths from a source node s to each of the other nodes in a graph G .

Let $x_{j,k}$ be the length of the k -th shortest paths from s to j , let $d_{i,j} \geq 0$ be the direct distance from node i to node j ($d_{i,i} = 0$ and $d_{i,j} = \infty$ if $(i,j) \notin G$), and let $n_{i,j,k}$ be the number of different-length paths among the k shortest from s to j which terminate with the arc (i,j) .

Assume that the shortest paths from s to all other nodes j have already been found and that the $x_{j,1}$ have been set to the corresponding shortest path lengths and the $n_{i,j,1}$ have been set to 1, if (i,j) belongs to a shortest path, otherwise to 0. Then, for $k = 2, 3, \dots, K$, let j be the node closest to s (along a shortest path), set

$$(1) \quad x_{j,k} = \min_{i \neq j} \left(x_{i,n_{i,j,k-1}+1} + d_{i,j} \right),$$

set $n_{i,j,k} = n_{i,j,k-1} + 1$ for each minimizing i and $n_{i,j,k} = n_{i,j,k-1}$ for all other i , let j be the next closest node to s , and repeat the procedure until all nodes j have received their k -th labels, $x_{j,k}$.

To partially see why this procedure works, it is necessary to understand the role of the quantity $n_{i,j,k}$. When $k = 2$, every node i adjacent to j is examined in (1). If $n_{i,j,1} = 0$, then $x_{i,1} + d_{i,j}$ is a candidate for $x_{j,2}$ because (i,j) does not belong to a shortest $s - j$ path and hence a shortest $s - i$ path followed by arc (i,j) is a possibly second-shortest $s - j$ path. If $n_{i,j,1} = 1$, however, then (i,j) belongs to a shortest $s - j$ path and in this case $x_{i,2} + d_{i,j}$, the length of a second-shortest $s - i$ path followed by (i,j) , is a candidate for second-shortest $s - j$ path. The $x_{i,1}$ are determined before starting the $k = 2$ stage. Also, any $x_{i,2}$ appearing on the right side of (1) is available when it is needed because i is necessarily closer to s than j and therefore i receives its second label before j does. Similar remarks apply to the k -th stage.

The quantity $n_{i,j,k-1}$ in (1) may be thought of as the number of labels

on node i that have already been used in determining the first $k - 1$ labels on j . Thus, the $(n_{i,j,k-1} + 1)$ -st label on i must be used in a candidate for the k -th label on j . By setting $n_{i,j,k} = n_{i,j,k-1} + 1$ for a minimizing i , the algorithm records the fact that one more label on i has been used in finding a label on j . For example, suppose that at the end of the fifth stage $n_{i,j,1} = 0$, $n_{i,j,2} = 1$, $n_{i,j,3} = 1$, $n_{i,j,4} = 1$, and $n_{i,j,5} = 2$. This means that (i,j) does not belong to a shortest $s - j$ path, a second-shortest $s - j$ path begins with a shortest $s - i$ path and ends with arc (i,j) , neither a third nor a fourth-shortest $s - j$ path contains (i,j) , and a fifth-shortest $s - j$ path begins with a second-shortest $s - i$ path and ends with (i,j) .

3. Description of KSPTH

Given an N -node sabotage graph [8, Sec. 3] and a value for K , KSPTH finds all the k -th shortest paths from the boundary to each target node, $1 \leq k \leq K$. In the process it finds k -th shortest paths to all the barrier nodes as well. The Dijkstra-Yen algorithm [8, Sec. 6.5] is used to obtain the shortest paths, and then the Hoffman-Pavley-Dreyfus method just described is used to produce the second through K -th shortest paths. In both methods the boundary nodes may be viewed as being connected by zero-length arcs to a single, fictitious, source node.

KSPTH does the same calculations as SPTH3 to find the shortest paths. In the same manner as explained in Section 6 of [8], KSPTH tests for triangle inequalities on arc weights, computes direct distances between node centers (using the full node weight for distances to and from boundary and target node centers since they are endpoints of sabotage paths), and stores and retrieves these distances from the arc weight input vector.

rather than from an extra matrix.

KSPTH differs from SPTH3 in two ways during the shortest path computation. Addressing of a distance $d_{i,j}$, stored in the arc weight vector, is done by a function subroutine IAD, which the user never calls. Also KSPTH does not retrace and count the shortest paths. Instead, KSPTH stores the predecessors $p_{j,k}$ of nodes j along the k -th shortest paths for $k = 1, 2, \dots, K$. These predecessors together with the indices $n_{i,j,k}$ described in Section 2 contain all the information needed for the subroutine LKSP to list the K shortest paths as node sequences.

When KSPTH returns, having produced in common working storage the path lengths $x_{j,k}$, the predecessors $p_{j,k}$, and the indices $n_{i,j,k}$, the user may then call LKSP. This subroutine prints the individual node sequences and lengths for each of the k -th shortest paths to each target, $1 \leq k \leq K$. A k -th shortest path from the boundary to target t is found by forming the backward node sequence

t, u, v, w, \dots, z ,

where

$$u = p_{t,k},$$

$$v = p_{u,n_{u,t,k}},$$

$$w = p_{v,n_{v,u,n_{u,t,k}}},$$

$$\vdots$$

$$z = \text{a boundary node}.$$

Users interested only in shortest paths may still want to use SPTH3.

It has slightly less overhead than KSPTH with $K = 1$, and it represents the set of shortest paths to all targets as an arc list rather than as individual node sequences.

4. How to Use KSPTH

4.1. The Call List

The call list for KSPTH is

KSPTH(N1,N2,N3,NA,W,MR,II,JJ,AWT,KBAR,IFLAG) ,

where the arguments have the following meanings:

N1 - the number of target nodes,

N2 - the number of barrier nodes,

N3 - the number of boundary nodes,

NA - the number of arcs,

W(·) - the node weight vector, dimensioned $N = N1 + N2 + N3$,

(the next four vectors, dimensioned NA, give the arcs as quadruples consisting of a region, two nodes, and an arc weight)

MR(·) - the region index vector,

II(·) - a node index vector,

JJ(·) - a node index vector,

AWT(·) - the arc weight vector,

KBAR - the upper limit K on k-th shortest paths,

IFLAG - 1, for normal return,

0, for return with no output. See the printed message. Either there is a triangle inequality failure, or some node is isolated from the boundary, or else two nodes which were adjacent no longer appear to be adjacent. The third difficulty should never arise. It implies that the array IREG has been inadvertently overwritten, perhaps because of exceeding another array dimension.

4.2. Input

First, construct a weighted sabotage graph as indicated in [8, Sec. 3] and decide on a value of K, the number of different-length paths to be found to each target. In the program which calls KSPTH dimension W by N and MR,II,JJ,AWT by NA. Then store the node weights in W and the arc data in MR,II,JJ and AWT.

The ordering of node and arc data is the same as for SPTH3 [8]. W(I)

is the weight of node I , $1 \leq I \leq N$. All the arcs of one region are listed consecutively in MR,II,JJ,AWT, and the regions may be given in any order. Within each region, however, the arcs must be listed as if they were taken row by row from the strictly upper triangular part of some node adjacency matrix. For example, if the nodes of one region are $\{16,9,21,4,7\}$, then an acceptable arc ordering based on the given node ordering is $(16,9)$, $(16,21)$, $(16,4)$, $(16,7)$, $(9,21)$, $(9,4)$, $(9,7)$, $(21,4)$, $(21,7)$, $(4,7)$. Notice that the arc ordering for a region may be based on any ordering of the region's nodes. This special arc ordering allows KSPTH to quickly address any arc weight in AWT and hence completely eliminates the need for the usual $N \times N$ direct distance matrix. The resulting storage economy is very significant for several hundred nodes.

4.3. Work Arrays

The user must set the dimensions of several work arrays before running a job. The following arrays (in unlabeled common storage) must be dimensioned in the subroutines KSPTH, IAD, and LKSP:

IPERM,ITEMP,IPR - (N),
NODE - (N,4),
IREG - (NR,2), where NR = the number of regions,
X,IMP - (N,K),
NP - (2,NA,K),
ICSV,LSV,JSV,I2SV,IR3SV - (5), an unpredictable maximum number of branch points for alternate equal-length paths along a path being traced for output by LKSP. This value has been adequate for all our test problems.
NPOOL - (1000), an initially unpredictable total number of extra predecessors for nodes which have more than one predecessor along k -th shortest paths, $1 \leq k \leq K$. KSPTH prints a message when this dimension needs to be increased. In this case, the results should be viewed as incomplete, and the problem should be rerun with a larger dimension whose value is printed just before the return from KSPTH. With this dimension NPOOL is guaranteed to be exactly large enough because KSPTH finished solving the problem to see how large NPOOL should be.

4.4. Output

The only output variable in KSPTH's call list is IFLAG which must be tested to see if a normal execution took place. The settings of IFLAG are explained in Section 4.1. When IFLAG = 1, the K shortest sabotage paths and their lengths are stored in the work arrays X,IMP,NP and NPOOL. By calling the subroutine LKSP the user obtains a list of these paths and path lengths.

The call list for LKSP is

LKSP(N1,KBAR,MR,LAG) ,

where N1, KBAR and MR have the same meanings as for KSPTH. LAG is an input flag which gives the user two options:

LAG = 0, print all of the K shortest sabotage paths,
= 1, print only those K shortest sabotage paths which have no two adjacent arcs in the same region.

Often the user is uninterested in paths having two adjacent arcs in the same region because such a path differs only slightly from another path of the same or shorter length, namely the path obtained by deleting these two arcs and inserting the third side of the triangle. For each target node $t = 1, 2, \dots, N1$, LKSP prints the length and the backward node sequence for each of the K shortest sabotage paths, in order of increasing length. When LAG = 0 and some equal-length paths to the same target coincide near the end, the second and subsequent paths will have the coinciding nodes suppressed. For example, the three paths (152,34,31,5), (153,34,31,5) and (154,16,31,5) of length 975.3 would be printed as

975.3	5	31	34	152
975.3				153
975.3			16	154

In addition to these outputs, KSPTH prints the number of entries of NPOOL which were used. In the event that the dimension of NPOOL was exceeded and a corresponding message was printed, this number can be used to dimension NPOOL before rerunning the problem.

Like SPTH3, KSPTH changes W and AWT by

$$W(I) \leftarrow W(I)/2, \quad N1 + 1 \leq I \leq N1 + N2,$$

$$AWT(K) \leftarrow AWT(K) + W(II(K)) + W(JJ(K)), \quad 1 \leq K \leq NA.$$

In this way the direct distances between node centers are stored in AWT rather than in an $N \times N$ matrix.

5. Examples

5.1. A Sample Problem

Suppose that in the sabotage graph of Figure 1, in which the squares are boundary nodes, the circles are barrier nodes, and the shaded circles are target nodes, we seek the five shortest paths from the boundary to each target.

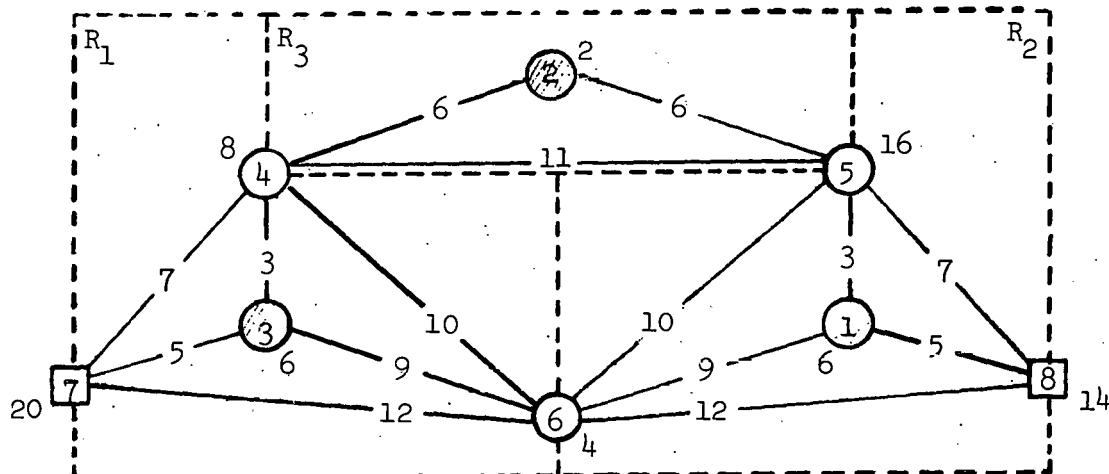


Figure 1
A Weighted Sabotage Graph

The input consists of

$N1 = 3, N2 = 3, N3 = 2, NA = 15, KBAR = 5$

$W = \{6., 2., 6., 8., 16., 4., 20., 14.\}$,

<u>MR</u>	<u>II</u>	<u>JJ</u>	<u>AWT</u>
1	3	4	3.
1	3	6	9.
1	3	7	5.
1	4	6	10.
1	4	7	7.
1	6	7	12.
2	1	5	3.
2	1	6	9.
2	1	8	5.
2	5	6	10.
2	5	8	7.
2	6	8	12.
3	2	4	6.
3	2	5	6.
3	4	5	11.

KSPTH returns with IFLAG = 1. A call of LKSP with LAG = 0 yields all five of the shortest paths to each target:

25. 1 8
45. 1 6 8
46. 1 5 8
51. 1 6 7
59. 1 5 1 8
59. 6 1 8
43. 2 4 7
45. 2 5 8
56. 2 4 3 7
56. 6 8
58. 2 5 1 8
62. 2 4 6 7
31. 3 7
44. 3 4 7
45. 3 6 8
51. 3 6 7
57. 3 4 3 7
57. 6 8.

Notice that there are two fifth-shortest paths to targets 1 and 3 and two

third-shortest paths to target 2. Also notice that path (8,6,1) is mathematically the second shortest path to target 1, yet, because it involves the needless penetration of node 6, it is physically uninteresting as a sabotage path. In order to automatically delete from LKSP's output any paths containing two consecutive arcs in the same region, the user may call LKSP with LAG = 1. This yields

25.	1 8
51.	1 6 7
43.	2 4 7
45.	2 5 8
56.	2 4 6 8
31.	3 7
45.	3 6 8 ,

the subset of potentially interesting sabotage paths.

5.2 Run Time and Array Storage Results

KSPTH is both fast and storage efficient. The Dijkstra-Yen shortest path algorithm has a run time of $O(N^2)$, and the Hoffman-Pavley-Dreyfus K-th shortest path algorithm is $O(NK)$. The array storage is

$$2(N+NA)K + 8N + 4NA + 2NR + NPL + 25 ,$$

where NPL is the dimension needed for NPOOL. For a given graph, then, both the run time and the array storage exclusive of NPOOL vary linearly with K. Because of the coefficient $2(N+NA)$, however, the storage increase with K can be rather rapid.

Table I presents the run times for problems with different sized graphs and $K = 1, 5, 10, 20$, and Table II gives the corresponding array storage requirements for the larger problems. The sample problem above is Problem 2.

Table I
CDC 6600 Run Times for KSPTH

Problem	N1-N2-N3	Nodes N	Arcs NA	Regions NR	Run Times (seconds)			
					K=1	K=5	K=10	K=20
1	1-5-1	7	13	4	0.004	0.014	0.030	0.055
2	3-3-2	8	15	3	0.003	0.014	0.028	0.055
3	5-1-2	8	16	2	0.005	0.013	0.026	0.052
4	2-6-2	10	23	5	0.006	0.022	0.042	0.084
5	4-8-2	14	34	6	0.009	0.032	0.068	0.130
6	1-8-8	17	32	8	0.011	0.035	0.072	0.132
7	1-10-8	19	40	8	0.015	0.043	0.089	0.164
8	1-31-14	46	112	20	0.060	0.167	0.321	0.508
9	20-58-4	82	514	35	0.223	0.534	0.971	1.748
10	30-120-5	155	656	82	0.637	1.061	1.686	2.752

Table II
Array Storage Requirements

Problem	NPL, dimension of NPOOL				Array Storage (decimal)			
	K=1	K=5	K=10	K=20	K=1	K=5	K=10	K=20
7	40	93	222	492	511	1036	1755	3205
8	40	417	945	1886	1237	2878	4986	9087
9	40	191	409	913	4039	8958	15,136	27,560
10	40	121	297	822	5715	12,284	20,570	37,315

6. Listings

```
SUBROUTINE KSPTH(N1,N2,N3,NA,W,MR,II,JJ,AWT,KBAR,IFLAG)
DIMENSION W(1),MR(1),II(1),JJ(1),AWT(1)
COMMON IPERM(155),ITEMP(155),NODE(155,4),IPR(155),ICSV(5),
1 LSV(5),JSV(5),I2SV(5),IR3SV(5),NPOOL(1000),IREG(82,2),
2 X(155,20),IMP(155,20),NP(2,656,20)
COMMON / A / IR,IR2,LJ,LJ2,M,M2,I12
COMMON / B / NMX(25),LOW,ISHFT,N12
DATA NMX / 10H001X,25I4,,10H005X,24I4,,10H009X,23I4,,  

1 10H013X,22I4,,10H017X,21I4,,10H021X,20I4,,10H025X,19I4,,  

2 10H029X,18I4,,10H033X,17I4,,10H037X,16I4,,10H041X,15I4,,  

3 10H045X,14I4,,10H049X,13I4,,10H053X,12I4,,10H057X,11I4,,  

4 10H061X,10I4,,10H065X,09I4,,10H069X,08I4,,10H073X,07I4,,  

5 10H077X,06I4,,10H081X,05I4,,10H085X,04I4,,10H089X,03I4,,  

6 10H093X,02I4,,10H097X,01I4, /
C K-TH SHORTEST PATHS, 1 LE. K LE. KBAR
C SIMULTANEOUS SABOTAGE--ONE TEAM PER HARDWARE NODE.
C GIVEN UNDIRECTED NODES AND ARCS WITH TIME WEIGHTS, KSPTH FINDS THE
C SHORTEST PATHS FROM OFF-SITE TO ALL NODES IN THE SABOTAGE GRAPHS
C USING AN INWARD DIJKSTRA-YEN SEARCH. THEN THE HOFFMAN-PAVLEY-
C DREYFUS ALGORITHM IS USED TO OBTAIN K-TH SHORTEST PATHS TO ALL
C NODES FOR K=2,3,...,KBAR. WHEN KBAR=1, ONLY SHORTEST PATHS ARE
C OBTAINED.
C INPUT.
C   N1  NO. OF HARDWARE NODES.
C   N2  NO. OF BARRIER NODES.
C   N3  NO. OF BOUNDARY NODES.
C   NA  NO. OF ARCS.
C   W  NODE WEIGHT VECTOR, DIMENSIONED N=N1+N2+N3.
C   W IS CHANGFD.
C ARC DATA--FOUR NA VECTORS. ARCS MUST BE LISTED REGION BY REGION.
C   FURTHERMORE, WITHIN EACH REGION HAVING P NODES THERE MUST
C   BE P*(P-1)/2 ARCS LISTED ROW BY ROW IN STRICTLY UPPER
C   TRIANGULAR FORM. THAT IS, (I1,I2), (I1,I3), ..., (I1,IP),
C   (I2,I3), ..., (I2,IP), (I3,I4), ..., (I3,IP), ...
C   (IPM1,IP).
C   MR  REGION INDEX VECTOR.
C   II  NODE INDEX VECTOR.
C   JJ  NODE INDEX VECTOR.
C   AWT ARC WEIGHT VECTOR. AWT IS CHANGED.
C   SUBROUTINE IAD MAPS NODE INDICES I AND J INTO THE ADDRESS IAD
C   OF ARC(I,J) IN THE ARC LIST, THUS AVOIDING THE STORAGE OF AN
C   N BY N DISTANCE MATRIX.
C   KBAR MAXIMUM VALUE OF K.
C OUTPUT.
C   IFLAG = 0, NO OUTPUT, SEE MESSAGE.
C   = 1, NORMAL RETURN.
C   THE FOLLOWING ARRAYS X, IMP, NP AND NPOOL CONTAIN THE
C   ANSWERS. X HAS THE PATH LENGTHS AND THE OTHER THREE ARRAYS
C   ARE USED TO CONSTRUCT THE PATHS. SUBROUTINE LKSP WILL
C   PRINT THE PATHS TO EACH HARDWARE NODE AND THEIR LENGTHS.
C   X DISTANCE LABELS. THE LABEL X(J,K) IS THE LENGTH OF THE
C   K-TH SHORTEST PATHS FROM OFF-SITE TO NODE J.
C   DIMENSIONED (N=N1+N2+N3,KBAR).
C   IMP(J,K) IS THE IMMEDIATE PREDECESSOR OF NODE J ALONG A K-TH
C   SHORTEST PATH FROM OFF-SITE TO NODE J.
```

NP DIMENSIONED (N,KBAR).
 NUMBER OF PATHS (OF DISTINCTLY DIFFERENT LENGTHS) AMONG THE
 K SHORTEST PATHS FROM OFF-SITE TO NODE J THAT END WITH
 ARC(I,J). DIMENSIONED (2,NA,KBAR). SUBROUTINE IAD MAPS
 I AND J INTO THE FIRST TWO SUBSCRIPTS OF NP(I12,IAD,K).
 NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECESSORS MAY BE
 STORED WHEN NODE J HAS MORE THAN ONE. THE LINK FROM
 IMP(J,K) TO NPOOL(LINK) IS STORED IN THE LEFT 51 BITS OF
 IMP(J,K). SIMILARLY, IF THERE IS A THIRD PREDECESSOR OF
 J, THEN LINK1 FROM NPOOL(LINK) TO NPOOL(LINK1) IS STORED
 IN THE LEFT 51 BITS OF NPOOL(LINK), ETC. DIMENSIONED 100C
 IF THE DIMENSION OF NPOOL IS CHANGED, THEN THE THIRD
 STATEMENT WHICH DEFINES NPLDP MUST BE CHANGED. NPLDP
 IS THE NPOOL DIMENSION PLUS ONE. IF THE DIMENSION N IS
 INCREASED TO MORE THAN 511 NODES, THE VALUES OF LTEST,
 LOW AND ISHFT MUST BE CHANGED TO ALLOW MORE THAN 9 BITS IN
 THE RIGHT OF EACH MASK.

WORK ARRAYS

IPerm NODES WHERE DISTANCE LABELS X(J,1) HAVE BEEN MADE PERMANENT.
 ITemp NODES WHERE DISTANCE LABELS X(J,1) ARE STILL TEMPORARY.
 Node REGION AND LOCAL NODE NUMBERS FOR EACH NODE.
 DIMENSION (N,4).
 NODE(I,1), NODE(I,3) ARE REGION NUMBERS FOR NODE I.
 NODE(I,2), NODE(I,4) ARE CORRESPONDING LOCAL NODE NUMBERS.
 IReg REGION DATA CONCERNING ARCS. DIMENSIONED (NO. REGIONS, 2).
 IReg(R,1) IS THE FIRST WORD ADDRESS MINUS ONE IN THE ARC
 LIST OF THE ARCS OF REGION R.
 IReg(R,2) IS THE NUMBER OF NODES IN REGION R, IMPLYING
 THERE ARE IReg(R,2)*(IReg(R,2)-1)/2 ARCS IN REGION R.

```
DATA EPS,RIG / 1.0E-13,1.0E321 /  
DATA LTEST,LOW,ISHFT / 1000B,777B,9 /
```

DATA NPLPP / 1021 /

TELAG=1

WERS = 0.0

OPFPS=1.

$$N12 = N1 + N2$$

$$N_{12} = N_1 + N_2$$

NM1 = N = 1

$$N1R = N1 \pm 1$$

N1P=N1+1

CHECK EACH REGION FOR TRIANGLE INEQUALITY ON ARC WEIGHTS

$$|CT|=0$$

REF ID: A

5 IBEGP=IBEG+1

IE (MR (IBEG))

LIKE=II(TBEG)

DO 10 1=1,BEGP

IE(11111) • NE • LIKE) GO TO 15

10 CONTINUE

CONTINUE
GO TO 52

15 NM=1-1BEG

TECHNICAL

20 12=IRFG+NN

IFEND=12 -

$$NMT = NM - 1$$

3

```

DO 50 I1=IBEG,IEND
AWTOM=AWT(I1)*OMEPS
I3=I1+1
DO 45 J=1,NMT
IF(AWT(I2)+AWT(I3) .GE. AWTOM) GO TO 35
25 FORMAT(* TRIANGLE*3I3* FAILS. ARC WEIGHTS--*3E15.5)
30 PRINT 25,II(I1),JJ(I1),JJ(I3),AWT(I1),AWT(I2),AWT(I3)
ICT=1
GO TO 40
35 IF(AWT(I1)+AWT(I2) .LT. AWT(I3)*OMEPS) GO TO 30
IF(AWT(I1)+AWT(I3) .LT. AWT(I2)*OMEPS) GO TO 30
40 I2=I2+1
45 I3=I3+1
50 NMT=NMT-1
NM=NM-1
IREG=IEND+2
IF(NM .GE. 2) GO TO 20
52 IREG=IBEG+1
IF(IREG .LT. NA) GO TO 5
IF(ICT .EQ. 0) GO TO 55
IFLAG=0
RETURN
C. COMBINE NODE WEIGHTS INTO ARC WEIGHTS
55 DO 65 I=N1P,N12
W(I)=0.5*W(I)
65 CONTINUE
DO 68 IA=1,NA
I=II(IA)
J=JJ(IA)
AWT(IA)=AWT(IA)+W(I)+W(J)
68 CONTINUE
C. SET THE ARRAYS NODE, IREG.
DO 70 I=1,N
NODE(I,1)=0
70 NODE(I,3)=0
L=1
72 K=1
IR=MR(L)
IREG(IR,1)=L-1
I=II(L)
IF(NODE(I,1) .EQ. 0) GO TO 73
NODE(I,3)=IR
NODE(I,4)=K
GO TO 74
73 NODE(I,1)=IR
NODE(I,2)=K
74 K=K+1
J=JJ(L)
IF(NODE(J,1) .EQ. 0) GO TO 75
NODE(J,3)=IR
NODE(J,4)=K
GO TO 76
75 NODE(J,1)=IR
NODE(J,2)=K
76 IF(L .EQ. NA) GO TO 77

```

```

L=L+1
IF((I .EQ. II(L)) .AND. (IR .EQ. MR(L))) GO TO 74
IREG(IR,2)=K
L=L-K+K*(K-1)/2+1
IF(L .LE. NA) GO TO 72
77 IREG(IR,2)=K
C DIJKSTRA-YEN SEARCH INWARD.
C INITIALIZE.
DO 125 I=1,N12
X(I,1)=BIG
ITEMP(I)=I
125 CONTINUE
DO 127 I=N12P,N
X(I,1)=0.0
ITEMP(I)=I
127 CONTINUE
IPL=1
L=1
C PERMANENTLY LABEL NODE N.
IPERM(1)=N
I=N
IR=NODE(I,1)
LJ=NODE(I,2)
M=IREG(IR,1)+(LJ-1)*IREG(IR,2)-LJ*(LJ+1)/2
IR2=0
K=N12
V=BIG
C TREAT EACH TEMPORARILY LABELED NODE.
C V IS THE SMALLEST SUCH LABEL.
130 DO 140 IT=1,K
J=ITEMP(IT)
IAR=IAD(J)
IF(IAR .EQ. 0) GO TO 135
DIJ=AWT(IAR)
Z=X(I,1)+DIJ
XJPEPS=X(J,1)*OPEPS
IF(Z .GT. XJPEPS) GO TO 135
XJMEPS=X(J,1)*OMEPS
IF(Z .GE. XJMEPS) GO TO 300
X(J,1)=Z
IMP(J,1)=I
GO TO 135
300 IF(IPL-NPLDP) 305,302,340
301 FORMAT(* NPOOL NEEDS TO STORE MORE LINKS*)
302 PRINT 301
GO TO 340
305 NPRED=IMP(J,1)
310 IF(NPRED .LT. LTEST) GO TO 320
LINK=SHIFT(NPRED, -ISHFT)
NPRED=NPOOL(LINK)
GO TO 310
320 NPOOL(IPL)=I
I1=SHIFT(IPL, ISHFT) .OR. NPRED
IF(NPRED .EQ. IMP(J,1)) GO TO 330
NPOOL(LINK)=I1

```

```

      GO TO 340
330  IMP(J,1)=I1
340  IPL=IPL+1
135  IF(X(J,1) .GE. V) GO TO 140
      V=X(J,1)
      IP=J
      IQ=IT
140  CONTINUE
      IF(V .NE. BIG) GO TO 155
      IFLAG=0
145  FORMAT(*OSOME NODE HAS NO PATH FROM THE BOUNDARY.*)
      PRINT 145
      RRETURN
C   NODE IP IS TO BE PERMANENTLY LABELED.
155  V=BIG
      L=L+1
      IPERM(L)=IP
      I=IP
      IR=NODE(I,1)
      LJ=NODE(I,2)
      M=IREG(IR,1)+(LJ-1)*IREG(IR,2)-LJ*(LJ+1)/2
      IR2=NODE(I,3)
      LJ2=NODE(I,4)
      IF(IR2 .NE. 0) M2=IREG(IR2,1)+(LJ2-1)*IREG(IR2,2)-LJ2*(LJ2+1)/2
      ITEMP(IQ)=ITEMP(K)
      K=K-1
      IF(K .GT. 0) GO TO 130
C   ALL NODES ARE PERMANENTLY LABELED.
C   STORE THE SHORTEST PATH DATA.
      DO 225 I=1,2
      DO 225 IA=1,NA
225  NP(I,IA,1)=0
      DO 235 J=1,N12
      IR=NODE(J,1)
      LJ=NODE(J,2)
      IR2=NODE(J,3)
      LJ2=NODE(J,4)
      M=IREG(IR,1)+(LJ-1)*IREG(IR,2)-LJ*(LJ+1)/2
      IF(IR2 .NE. 0) M2=IREG(IR2,1)+(LJ2-1)*IREG(IR2,2)-LJ2*(LJ2+1)/2
      NJ=IMP(J,1)
      I=NJ .AND. LOW
      IAR=IAD(I)
      IF(IAR .NE. 0) GO TO 232
231  FORMAT(*DIR OR IR2 IS WRONG IN FUNCTION IAD*12I5)
      PRINT 231,IR,IR2,I,J,LJ,LJ2,M,M2,(NODE(I,L),L=1,4)
      IFLAG=0
      RETURN
232  NP(I12,IAR,1)=1
      IF(I .EQ. NJ) GO TO 235
      LINK=SHIFT(NJ, -ISHFT)
      NJ=NPOOL(LINK)
      GO TO 230
235  CONTINUE
      IF(KBAR .LT. 2) RETURN
C   K-TH SHORTEST PATHS, K GT. 1.  HOFFMAN-PAVLEY-DREYFUS ALGORITHM.

```

```

DO 370 K=2,KRAR
C INITIALIZE FOR K-TH STAGE.
  KM1=K-1
  DO 237 I=1,2
  DO 237 IA=1,NA
237  NP(I,IA,K)=NP(I,IA,KM1)
  DO 240 J=1,N
240  X(J,K)=BIG
C TREAT NODES J IN ORDER OF INCREASING DISTANCE FROM OFF-SITE.
  L=N3+1
245  J=IPERM(L)
C STORE ALL NEIGHBORS OF J IN ITEMP.
  IR2=NODE(J,1)
  NN=0
  DO 260 KK=1,2
  IF(IR2 .EQ. 0) GO TO 260
  IBEG=IREG(IR2,1)+1
  IEND=IBEG+IREG(IR2,2)-2
  IF(II(IREG) .EQ. J) GO TO 250
  NN=NN+1
  ITEMP(NN)=II(IREG)
250  DO 255 KKK=IREG,IFND
  IF(JJ(KKK) .EQ. J) GO TO 255
  NN=NN+1
  ITEMP(NN)=JJ(KKK)
255  CONTINUE
260  IR2=NODE(J,3)
  IR=NODE(J,1)
  LJ=NODE(J,2)
  LJ2=NODE(J,4)
  M=IREG(IR,1)+(LJ-1)*IREG(IR,2)-LJ*(LJ+1)/2
  IF(IR2 .NE. 0) M2=IREG(IR2,1)+(LJ2-1)*IREG(IR2,2)-LJ2*(LJ2+1)/2
C USE EACH NEIGHBOR OF J TO ATTEMPT A REDUCTION OF X(J,K).
C WHENEVER A REDUCTION OCCURS STORE THE NEIGHBOR I IN IMP(J,K) OR
C NPOOL.
  DO 355 IT=1,NN
  I=ITEMP(IT)
  IAR=IAD(I)
  IF(IAR .NE. 0) GO TO 262
  PRINT 231,IR,IR2,I,J,LJ,LJ2,M,M2,(NODE(I,L),L=1,4)
  IFLAG=0
  RETURN
262  I2=NP(I12,IAR,K)+1
  Z=X(I,I2)+AWT(IAR)
  XJPEPS=X(J,K)*OPEPS
  IF(Z .GT. XJPEPS) GO TO 355
  XJMFPS=X(J,K)*OMEPS
  IF(Z .GE. XJMFPS) GO TO 265
  X(J,K)=Z
264  IMP(J,K)=I
  GO TO 355
265  IF(X(J,K) .EQ. BIG) GO TO 264
  IF(IPL-NPLDP) 275,270,295
270  PRINT 301
  GO TO 295

```

```

275  NPRED=IMP(J,K)
280  IF(NPRED .LT. LTEST) GO TO 285
     LINK=SHIFT(NPRED, -ISHFT)
     NPRED=NPOOL(LINK)
     GO TO 280
285  NPOOL(IPL)=I
     I1=SHIFT(IPL,ISHFT) .OR. NPRED
     IF(NPRED .EQ. IMP(J,K)) GO TO 290
     NPOOL(LINK)=I1
     GO TO 295
290  IMP(J,K)=I1
295  IPL=IPL+1
355  CONTINUE
C   ADD ONE TO NP FOR EACH NEIGHBOR I THAT MINIMIZED X(J,K).
     NJ=IMP(J,K)
360  I=NJ .AND. LOW
     IAR=IAD(I)
     IF(IAR .NE. 0) GO TO 362
     PRINT 231,IR,IR2,I,J,LJ,LJ2,M,M2,(NODE(I,L),L=1,4)
     IFLAG=0
     RRETURN
362  NP(I12,IAR,K)=NP(I12,IAR,K)+1
     IF(I .EQ. NJ) GO TO 365
     LINK=SHIFT(NJ, -ISHFT)
     NJ=NPOOL(LINK)
     GO TO 360
365  IF(L .GE. N) GO TO 370
     L=L+1
     GO TO 245
370  CONTINUE
     RETURN
     END

```

```

FUNCTION IAD(I)
COMMON IPERM(155),ITEMP(155),NODE(155,4),IPR(155),ICSV(5),
1 LSV(5),JSV(5),I2SV(5),IR3SV(5),NPOOL(1000),IREG(82,2),
2 X(155,20),IMP(155,20),NP(2,656,20)
COMMON /A/ IR,IR2,LJ,LJ2,M,M2,I12
C I IS AN ARGUMENT TO FUNCTION IAD. J IS AN IMPLICIT ARGUMENT--IR,
C IR2, LJ, LJ2, M AND M2 ARE DETERMINED BY J AND SET BEFORE CALLING
C IAD.
C IF NODES I AND J ARE NOT ADJACENT, THEN IAD=0. OTHERWISE, IAD IS
C THE ADDRESS OF ARC(I,J) IN THE ARC LIST. IN ADDITION, THE INDEX
C I12 OF COMMON /A/ IS SET TO 1 IF THE LOCAL NODE NUMBERS SATISFY
C LI LT. LJ AND 2 OTHERWISE.
    IF(NODE(I,1) .NE. IR) GO TO 5
    LI=NODE(I,2)
    GO TO 10
5   IF(NODE(I,3) .NE. IR) GO TO 20
    LI=NODE(I,4)
10  IF(LJ .GT. LI) GO TO 15
    IAD=M+LI
    I12=2
    RETURN
15  IAD=IREG(IR,1)+(LI-1)*IREG(IR,2)-LI*(LI+1)/2+LJ
    I12=1
    RETURN
20  IF(NODE(I,1) .NE. IR2) GO TO 25
    LI=NODE(I,2)
    GO TO 30
25  IF(NODE(I,3) .NE. IR2) GO TO 50
    IF(IR2 .EQ. 0) GO TO 50
    LI=NODE(I,4)
30  IF(LJ2 .GT. LI) GO TO 35
    IAD=M2+LI
    I12=2
    RETURN
35  IAD=IREG(IR2,1)+(LI-1)*IREG(IR2,2)-LI*(LI+1)/2+LJ2
    I12=1
    RETURN
50  IAD=0
    RETURN
    END

```

```

SUBROUTINE LKSP(N1,KBAR,MR,LAG)
COMMON IPERM(155),ITEMP(155),NODE(155,4),IPR(155),ICSV(5),
1 LSV(5),JSV(5),I2SV(5),IR3SV(5),NPOOL(1000),IREG(82,2),
2 X(155,20),IMP(155,20),NP(2,656,20)
COMMON / A / IR,IR2,LJ,LJ2,M,M2,I12
COMMON / B / NMX(25),LOW,ISHFT,N12
DIMNSION IVAR(4),MR(1)
DATA IVAR / 32H(1X,F12.5,           / (14X,25I4)) /
DATA LTOP,ICTOP / 5,155 /
C LIST THE K-TH SHORTEST PATHS, 1 LE. K LE. KBAR, FROM OFF-SITE TO
C EACH HARDWARE NODE. PATHS ARE GIVEN AS A NODE SEQUENCE FROM
C HARDWARE THROUGH BOUNDARY.
C LAG = 0 MEANS TO PRINT ALL THE KBAR PATHS.
C           1 MEANS TO PRINT ONLY THE PATHS WHICH CONTAIN NO TWO ADJACENT
C           ARCS IN THE SAME REGION.
DO 25 IH=1,N1
DO 20 K=1,KBAR
L=0
I=IH
IC=1
IP=0
IPR(1)=I
I2=K
IR4=0
5  IR3=IR4
J=I
NPRED=IMP(J,I2)
10 I=NPRED .AND. LOW
IC=IC+1
IF(IC .LE. ICTOP) GO TO 9
8  FORMAT(* PATH LONGER THAN*I5* INCREASE DIMENSION OF IPR AND VALUE
1 OF ICTOP*)
PRINT 8,ICTOP
GO TO 18
9  IPR(IC)=I
IF(I .EQ. NPRED) GO TO 11
L=L+1
IF(L .LE. LTOP) GO TO 35
30 FORMAT(* STACKING REQUIRES MORE THAN*I5* INCREASE DIMENSION OF IC
1SV, LSV, JSV, I2SV, IR3SV AND VALUE OF ITOP*)
PRINT 30,LTOP
RETURN
35 JSV(L)=J
LSV(L)=SHIFT(NPRED,-ISHFT)
ICSV(L)=IC-1
I2SV(L)=I2
IR3SV(L)=IR3
11 IR=NODE(J,1)
LJ=NODE(J,2)
IR2=NODE(J,3)
LJ2=NODE(J,4)
M=IREG(IR,1)+(LJ-1)*IREG(IR,2)-LJ*(LJ+1)/2
IF(IR2 .NE. 0) M2=IREG(IR2,1)+(LJ2-1)*IREG(IR2,2)-LJ2*(LJ2+1)/2
IAR=IAD(I)
IF(IAR .NE. 0) GO TO 13

```

```
12  FORMAT(*0FROM LKSP IR OR IR2 IS WRONG IN FUNCTION IAD*12I5)
PRINT 12,IR,IR2,I,J,LJ,LJ2,M,M2,(NODE(I,LL),LL=1,4)
RETURN.
13  IF(LAG .EQ. 0) GO TO 14
IR4=MR(IAR)
IF(IR4 .EQ. IR3) GO TO 18
14  IF(I .GT. N12) GO TO 15
I2=NP(I12,IAR,I2)
GO TO 5
15  IPP=MIN0(IP+1,25)
IVAR(2)=NMX(IPP)
PRINT IVAR,X(IH,K),(IPR(KK),KK=IPP,IC)
18  IF(L .EQ. 0) GO TO 20
J=JSV(L)
LINK=LSV(L)
IC=ICSV(L)
I2=I2SV(L)
IR3=IR3SV(L)
IP=IC
IF(LAG .NE. 0) IP=0
NPRED=NPOOL(LINK)
L=L-1
GO TO 10
20  CONTINUE
25  CONTINUE
RETURN
END
```

Acknowledgements

We want to thank S. L. Daniel, 5411, and G. B. Varnado, 5412, for supplying us with some of the test problems.

REFERENCES

- [1] H. A. Bennett, The "EASI" Approach to Physical Security Evaluation, SAND76-0500, Sandia Laboratories, Albuquerque, New Mexico, January 1977.
- [2] L. D. Chapman, Effectiveness Evaluation of Alternative Fixed-Site Safeguard Security Systems, SAND75-6159, Sandia Laboratories, Albuquerque, New Mexico, July 1976.
- [3] E. W. Dijkstra, A Note on Two Problems in Connexion with Graphs, *Numer. Math.* 1, 269-271 (1959).
- [4] S. E. Dreyfus, An Appraisal of Some Shortest-Path Algorithms, *Operations Res.* 17, 395-412 (1969).
- [5] W. Hoffman and R. Pavley, A Method for the Solution of the Nth Best Path Problem, *J. Assoc. Comput. Mach.* 6, 506-514 (1959).
- [6] B. L. Hulme, Graph Theoretic Models of Theft Problems. I. The Basic Theft Model, SAND75-0595, Sandia Laboratories, Albuquerque, New Mexico, November 1975.
- [7] Pathfinding in Graph-Theoretic Sabotage Models. I. Simultaneous Attack by Several Teams, SAND76-0314, Sandia Laboratories, Albuquerque, New Mexico, July 1976.
- [8] and D. B. Holdridge, SPTH3: A Subroutine for Finding Shortest Sabotage Paths, SAND77-1060, Sandia Laboratories, Albuquerque, New Mexico, July 1977.
- [9] T. A. Williams and G. P. White, A Note on Yen's Algorithm for Finding the Length of All Shortest Paths in N-Node Nonnegative-Distance Networks, *J. Assoc. Comput. Mach.* 20, 389-390 (1973).
- [10] J. Y. Yen, Finding the Lengths of All Shortest Paths in N-Node Nonnegative-Distance Complete Networks Using $\frac{1}{2}N^3$ Additions and N^3 Comparisons, *J. Assoc. Comput. Mach.* 19, 423-424 (1972).

DISTRIBUTION:

USNRC Distribution Section
 Attn: Robert Wade
 Washington, DC 20555
 NRC-13 (208)

1000 G. A. Fowler
 1140 W. D. Weart
 1141 L. R. Hill
 1141 D. B. Holdridge (10)
 1230 W. L. Stevens
 1233 R. E. Smith
 1233 M. D. Olman
 1310 A. A. Lieber
 Attn: W. F. Roherty, 1311
 1700 O. E. Jones
 1710 V. E. Blake
 1712 J. W. Kane
 1738 J. Jacobs
 1739 J. D. Williams
 1739 D. L. Mangan
 1750 J. E. Stiegler
 1750A M. N. Cravens
 1750A J. M. Demontmollin
 1751 T. A. Sellers
 1751 J. L. Darbey
 1751 B. R. Fenchel
 1751 L. C. Nogales
 1751 A. E. Winblad
 1752 M. R. Madsen
 1754 J. F. Ney
 1754 J. L. Todd, Jr.
 1758 T. J. Hoban
 1758 D. D. Boozer
 1758 R. C. Hall
 1758 G. A. Kinemond
 1758 W. K. Paulus
 1758 I. G. Waddoups
 1758 R. B. Worrell
 4010 C. Winter
 5000 A. Narath, Attn: Directorates 5200, 5800
 5100 J. K. Galt
 5110 F. L. Vook
 5120 G. J. Simmons
 5121 R. J. Thompson
 5121 P. J. Slater
 5122 L. F. Shampine
 5122 B. L. Hulme (50)
 5130 G. A. Samara
 5150 J. E. Schirber
 5160 W. Herrman
 5400 A. W. Snyder
 5410 D. J. McCloskey
 5411 S. L. Daniel

5412 J. W. Hickman
 5412 D. E. Bennett
 5412 D. M. Ericson, Jr.
 5412 G. B. Varnado
 5700 J. H. Scott
 5740 V. L. Dugan
 5741 L. D. Chapman
 5741 K. G. Adams
 5741 H. A. Bennett
 5741 D. Engi
 5741 L. M. Grady
 5741 R. D. Jones
 5741 R. G. Roosen
 5741 D. W. Sasser
 5741 A. A. Trujillo
 5742 S. G. Varnado
 8300 B. F. Murphey
 8320 T. S. Gold
 8321 R. L. Rinne
 8266 E. A. Aas (2)
 3141 C. A. Pepmueller (Actg.) (5)
 3151 W. L. Garner (3)
 For ERDA/TIC (Unlimited Release)
 3171-1 R. Campbell (25)
 For ERDA/TIC