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l. 'Introduction 

A sabotage graph is a network of nodes and arcs schematically 

representing a fixed-site facility. B,y weighting the nodes and arcs with 

some quantity to 'be minimized 'by an adversary (say, time or detection 

probability), a safeguards analyst can find shortest paths in the graph 

as a means of identifying possibly good attack routes for saboteurs. Such 

paths indicate where the barrier and alarm systems are weakest. A similar, 

but more difficult, problem is that of finding shortest theft paths, which 

must include escape routes. Graph-theoretic models for the theft pro'blem 

were introduced·in [6] and for the sabotage problem in [7]. 

·The current.shortest sabotage path ~ode is SPTH3 [8]. This subroutine 

finds all the ~hortest paths from off-site to ~very node of the graph 
. ,· 

using the Dijkstra shortest path algorithm [3] as modified by Yen {10,9]. 

Those paths terminating at target nodes represent shortest routes for a 
. . 

simultaneous attack by several sabotage teams each having only one target. 

Of course, near-sh~rtest adversary paths are also important to the 

safeguards analyst. One reason is that the data are not known well enough 

to distinguish among paths of almost the same length. In addition, other 

i'actors such as the reliability of the communications systems and the 

·ability of response forces to engage and defeat, or at least delay, the 
.. 

adversary also play an important role in finding "'best" adversary paths. 

The idea behind the use of KSPTH is to rank sabotage paths according to 

length so that· the K shortest can be further evaluated by techniques Rll~h a 

as.FESEM [2], the Forcible Entry Saf~guard Effectiveness Model, or EASI [1], 

an Estimate of Adversary Sequence Interruption. 
) 

KSPTH begins by finding the shortest sabotage paths just as SPTH3 does. 
•l. : 

Then the Hoffman-Pavley-Dreyfus algorithm [4,5] is used to find the k-th 
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shortest paths from the boundary to all the .nodes inside the facility, 

2 ~ k ~ K. The sabotage paths are those that lead to target nodes. 

Although KSPTH is written to accept time weights (or any other weights 

f'or which normal addition is appropriate), a minor modification will allow 

it to accept detection probability weights and compute cumulative 

detective probabilities as path lengths.· In the remainder of' this report 

we think of' the weights as time. Also we assume that the reader is familiar 

with [8]. 

~. 'l'he Ho:t':t'man-.Pav.Ley-lJreytus JUgcYtJ. 'tnnt 

In 1959 Hof':tman and Pavley [5 J gave a procedure for finding the k-th 

shortest paths between two specified nodes in a graph. In 1969 Dreyfus 

" '{4 J a.halyi:led their scheme·, :compa-red it· with othe:rs-, and proposed an 

extention to the problem, of' k-th shortest paths from all nodes to a corrn:non 

terminal node. In KSPTH we use the Dreyfus modification of Hoffman and 

Pavley's method to find k-th shortest paths from the set of boundary nodes 

to all other nodes in a sabotage graph. This is akin to finding paths 

from a common source node to all the other nodes in a graph. However, 

instead of' one source node, we have a set of' boundary nodes which may be 

thought to be adjacent to a f'icticious "of':f~-si te node. II Consequently' 

the discussion here will dif'f'er from that of Dreyfus in that the corrn:non 

node is taken to be a source rather than a terminal. 

' To begin it must be noted that different .Paths can have the same 

length~ Therefore, we must think in terms of a set of shortest paths, 

a set of' second-shortest paths, etc. The problem is to find the,K sets 

of shortest paths from a source node s to each of the other nodes in a 

graph G. 



Let x be the length of the k-th shortest paths from s to j, let j,k 

d·. . ::<: 0 be the direct distance from node i to node j (d .. = 0 and d. . = 
~,J ~,~ ~,J 

co if (i,j) J G), and let n. . k ·be the number of different-length paths 
~,J, 

among ~he k shortest from s to j which terminate with the arc (i,j). 

Assume that the shortest paths from s to all other nodes j have already 

been found and that the x. 
1 

have been set to the corresponding shortest 
J, . . 

path lengths and then .. 
1 

have been set to 1, if (i,j) belongs to a 
~ ,J' 

shortest path, otherwise to 0. Then, fork= 2,3, •.• ,K, let j be the node 

closest to s (along a shortest path), set 

. (1) X. k J, = ~~~(xi,n. . k 1+1 +di,j) 
~rJ ~,J, - . 

set n. . k = n ... k 1+ 1 fo:r each minimizing i and n. . k = n. . k 1 for 
~,J, ~,J, - ~,J, ~,J, -

all other i, let j be the next closest node to s, and repeat the procedure 

until all nodes j have received their k-th labels, xj,k' 

To partially.see why this procedure works, it is necessary to 

understand the role of the quantity n .. k' When k = 2, every node i 
~,J, 

adjacent to j is examined in (1). If n. . 1 = 0, then x. 1 + d. . is a 
~,J, ~, ~,J 

candidate for x. 
2 

because (i,j) does not belong to a shortest s - j path 
J' 

and hence a shortest s - i path followed by arc (i~j) is a possfbly second-

shortest s - j path. If n .. 1 = 1, however, then (i,j) belongs to a 
~,J' 

shortest s - j path and in this case x. 2 + d .. ' the length of a second-
~, ~,J 

shortest s - i path followed by (i,j), is a candidate for second-shortest 

s - j path. The x. 
1 

are determined before starting the k = 2 stage. 
~, 

Also, any x. 
2 

appearing on the right side of (1) is available when it is 
~, 

needed because i is necessarily closer to s than j arid therefore i receives 

its second label before j does. Similar remarks apply to the k-th stage. 

The quantity n .. k 
1 

in (1) may be thought of as the number of labels 
. ~,J' -
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on node i 'that have already 'been used in determining the .first k - 1 labels 

on j. Thus, the (n. . k 1+1)-st label on i must be used in a candidate 
~,J' -

for the k-th label on j. By setting n .. k = n .. k 
1

+ 1 for a minimizing 
~,J, ~,J,- . 

i, the algorithm records the fact that one more label on i has been used 

in finding a label on j. For example, suppose that at the ·end of the 

fifth stage n· .. 1 = 0, n. ·. 
2 

·= 1, n ... 
3 

= 1, n .. 4 = l., and n .. 
5 

= 2. 
~,J, 1,J, 1,J, 1,J, 1,J, 

This means that ( i.,j) does not belong to a shortest s - j pa,th, a second-

shortest R - j pA,tb. bl9ginE with a o~ortest t=. • J . .P~;~.l..h aw1 ends wi.th arc 

(i,j), neither a third nor a fourth-shortest s - j path contains (i,j), 

and a fifth-shortest s - j path begins with a second-shortest s - i path 

aqd ends with (i,j). 

3. Description of KSPTH 

Given an N-node ~abotage graph [8, Sec. 3 J and a value for K, KSPTH 

finds all the k-th shortest paths from the boundary to each target node, 

1 :::;; k :::;; K. In the process it find~? ~-th shorteRt. pA.t.hs t..o al.l the bo.rricr. 

nodes as well. The Dijkstra-Yen algorithm [8, Sec. 6.5] is used to o'btain 

the shorte.st paths; and then the· Hofftnan-Pavley-Dreyfus method just 

described is· used to produc·e the second. through K-th shortest paths. In 

both methods the boundary nodes may be v;iewed as beine; rnnn.Pr?ted by :zero-

length arcs to a single, fictitious, source node, 

ICSPTH U.u~o the aa.mc c·alcul.ations z:t::; SPTH3 to find the shortest paths. 

In the same manner as explained in Section 6 of [8], KSPTH tests for 

triangle inequalities on arc weights, computes direct distances 'between 

node centers (using the full node weight for distances to and from 'boundary 

and -target node centers since they are endpoints of sabotage paths), and. 

stores and retrieves these distances from the arc weight input vector · 



rather than from an extra matrix. 

KSPTH differs from SPTH3 in two ways during the shortest path 

computation. Addressing of a distance d .. , stored in-the arc weight 
~,J . 

vector, is.done by a function subroutine IAD, which the user never calls. 

Also KSPTH does not retrace and count the shortest paths. ·Instead, KSPTH 

stores the predecessors p. k of nodes j along the k-th shortest· paths for 
J, 

k =. 1,2, ••. ,K. These pred.ecessors together with the indices n. . k 
~,J; 

described in Section 2 contain all the information needed for the subroutine 

LKSP to list the K shortest paths as node sequences. 

When KSPTH returns, having produced ,in common working storage the 

path lengths x. k' the predecessors.p. k' and the indices n .. k' the user 
J, J, ~,J, 

may then call LKSP. This subroutine prints the individual node sequences 

and lengths for each of t~e k-th shortest paths to each target, 1 ~ k ~ ~· 

A k-th shortest path from the boundary to target t, is found by.forming the 

backward node sequence 

t,u,v,w, ••• ,z 

where 

.u = Pt k· 
' 

v ;;; p 
u,n t k 

. u, ' 

w = pv n 
'.v,u,n t k 

. u, ' 

z = a boundary node 

Users interested only in shortest paths may still want.to use SPTH3. 

It has slightly less overhead than KSPTH with K = 1, and it represents. 

the set of shortest paths to all targets as an arc list rather than as 

individual nodE;:: sequences. 
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4. How to Use KSPTH 

4 .l. The Call List 

The call list for KSPTH is 

KSPTH(Nl,N2,N3,NA,W,MR,II,JJ,AWT,KBAR,IFLAG) , 

where the arguments have the following meanings: 

Nl - the number of target nodes, 

N2 - the nuniber of barrie·r nodes, 

N3 - the nwril.Jer of boundary nodes~ 

NA the nunibeL: u.r 1:U't!S, 

W ( · ) - the node weight vector~ dimemd.onen N ;;;;; 1\11. + N2 +- N3, 

(the next four vectors, dimensioned NA, give the arcs as quadruples 

consisting of a region, two nodes, and an arc weight) 

MR(•)- the region index vector, 

II ( · ) - a node index vector, 

JJ(·)- a node index vector, 

AWT(•)- the arc weight ver.t.or, 

KBAR - the upper limit. K on k for k-th flhortcst paths, 

IFLAG - 1, 
o, 

4.2. Input 

.ror normal return, 
for return with no output. See the p:r·i.nted message. Either 
there .i.::; ct Ldangie inequa.Lity failure, or some node is isolated 
from the boundary, or else two nodefl which were adjacent no 
longer appear to ·be adjacent. The third difficulty should 
never arise. It implies that the array IREG has been 
inadvertently overwritten, perhaps because of exc.~r=-eding A.not.hPr 
array dimension. 

First, construct a weighted sabotage graph as indicated in [8, Sec. 3] 

and decide on a value of K, the number of different-length paths, ~o. "be 

found to each target. In the program which calls KSPTH dimension W "by N 

and MR,II,JJ,AWT by NA. Then store the node weights in Wand the arc data 

in MR,II,JJ and AWT. 

The ordering of node and arc data is the same as for SPTH3 [8]. W(I) 

I 



I is the weight of node I, 1 ~ I ~ N. All the arcs of one region are listed 

consecutively in MR,II,JJ,AWT, and the regions may be given in any order. 

Within each region, however, the arcs must 'be listed as if they were taken 

row by row from the strictly upper triangular part of some node adjacency 

matrix. For example, if. the nodes of one region are [16,9,21,4,7}, then 

an acceptable arc ordering based on the given node ordering is (16,9), 

(16,21), (16,4), (16,7), (9,21), (9,4), (9,7), (21,4), (21,7), (4,7). 

Notice that the arc ordering for a region may 'be based on any ordering of 

the region's nodes. This special arc ordering allows KSPTH to quickly 

addre.ss any arc weight in AWT and hence completely eliminates the need· for 

the usual N x N direct distance matrix. The resulting storage economy is 

very significant for several hundred nodes • 

. 4.3. Work Arrays 

The user must set the dimensions of several-work arrays 'before running 

a jo'b. The following arrays (in.unlabeled common storage) must be 

dimensioned in the subr9utines KSPTH, IAD, and LKSP: 

IPERM,ITEMP,IPR- (N), 

NODE - (N ,4), 

IREG (NR,2), where NR = the number of regions, 

X, IMP - (N,K), 

NP- (2,NA,K), 

ICSV, LSV, JSV, I2SV, IR3SV - ( 5), an unpredictable maximum number of branch 
points for alternate equal-length paths along 
a path being traced for output by LKSP. This 
value has been adequate for all our test . 
problems. 

NPOOL - (1000), an initially unpredictable total number of extra 
predecessors for nodes which have more than one predecessor along 
k-th shortest paths, 1 ~ k ~ K. KSPTH prints a message when this 
dimension needs·to be increased. In this cas;, the results should 
be viewed as incomplete, and the problem should be rerun with a 
larger dimension whose value is printed ,;ust before the return 
from KSPTH. With this dimension NPOOL is guaranteed to be exactly 
large enough because KSPTH finished solving the problem to see 
how large NPOOL should be. 
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4.4. Output 

The only output variable in KSPTH's call list is IFL.AG whi'ch must be 

tested to see i~ a normal execution took place. The settings o~ IFLAG are 

explained in Section 4.1. When IFLAG = 1, the K shortest sabotage paths 

and their lengths are stored in the work arrays X,IMP,NP and NPOOL. B,y 

calling the subroutine LKSP the user obtains a list o~ these paths and 

path lengths. 

The call list ~or LKSP is 

LICSP(Nl,KBAR,MR,LAG) 

where RJ .. , ICBAR and MR have the same meanings as ~or KSPTH. LAG is an 

input ~lag which gives the user two options: 

LAG = o, print all o~ the K shortest: sabotage paths, 

= 1, print only those K shortest sabotage paths which have no two 
adjacent arcs in the same region. 

O~ten the user is unintere:;;ted in pathR having.two adjacent arcs in the 

same region because such a path di~ferR nn].y slightly ~rom another pa.'Ll1 uf 

the same or shorter length, namely the path obtained by deleting these two 

arcs an·d inserting the third side o~ the triangle. For each target node 

t = 1,2, .•. ,Nl, LKSP pri~t·s the length and the backward node sequence ~or 

each o~ the K shortest sabotage paths, in order o~ increasing length. When 

LAG = 0 and some equal-length paths to the same target coincide near the 

end, the ~econli a.nd subsequent paths will have the coinciding nodes 

suppressed. For example, the three paths (152,34,31,5)'. (153,34,31,5) an'd 

(154,16,31,5) o~ length 9?5.3 would be printed as 

975-3 5 31 34 152 

975-3 153· 

W5-3 16 154 . 



In·addition to ~hese outputs, KSPTH prints th~ number of entries of 

NPOOL which were used. In the event that the dimension of NPOOL was 

exceeded and a corresponding message was .printed, this number can be used 

to ·dimension NPOOL before rerunning the problem. 

Like SPI'H3, KSPTH changes W and AWT by . 

w (I) ...... w (I) I 2 • ' Nl + 1 ~ I ~ Nl + N2 ' 

AWT(K) ...... AWT(K) + w(II(K)) + w(JJ(K)) , 1 ~ K ~ NA. 

In this way the direct distances between node ·centers are stored in AWT 

· rather than in an N .X N matrix. 

5. · Examples 

5 .1. · A Sample Problem 

Suppose that in the sabotage graph of' Figure 1, in which the squares 

are boundary nodes,.the circles are barrier nodes, and the shaded circles 

are target nodes, we seek.the five shortest paths from the boundary to 

each target. 

Figure 1 •. 

A Weighted Sabotage Graph 

I • 
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The input consists of 

Nl = 3, N2 = 3, N3 = 2, NA = l5, KBAR = 5 

W= [ 6 . '2. '6 . '8. 'l6. '4. '20. 'l4. } ' 

MR II JJ AWT 

l 3 4 3. 
l 3 6 9. 
l 3 7 5. 
l 4 6 lO. 
l 4 7 7. 

r; 'l 12. 
~ l 5 3. 
2 l 6 9. 
:! J. 8 ). 
2 5 6 lO. 
2 5 8 7. 
2 6 8 l2. 
3 2 4 6. 
3 2 5 6. 
3 4 5 lL 

KSPTH returns with IFLAG = l. A call of LKSP with LAG = 0 yields all five 

of the shortest pat'hs to each target: 

25. l 8 
45. l 6 8 
46. l 5 8 
5l. l 6 7 
59. l 5 l 8 
59. 6.1 R 
43. 2 4 7 
45. 2 5 8 
56. 2 4 3 7 
56. 6 8 
58. 2 5 l 0 
62. 2 4 6 7 
3l. 3 7 
44. 3 4 7 
45. 3 6 0 
5l. 3 6 7 
57. 3 4 3 7 
57. 6 8 . 

Notice that there are two fifth-s'hortest paths to targets l and 3 and two 

l2 



third-shortest paths to target 2. Also notice that path (8,6,1) is 

mathematically the second shortest path to target 1, yet, 'because it 

involves the needle~s penetration of node 6, it is physically uninteresting 

as a sabotage path. In order to automatically delete from LKSP's output 

any paths containing two consecutive arcs in the same region, the user may 

call LKSP with LAG = 1. 'l'his yields 

25. 1 8' 
51. 1 6 7 
43. ' 2 4 7 
45. 2 5 8 
56. 2 4 6 8 
31. 3 7 
45. 3 6 8 ' 

the subset of potentially interesting sabotage paths . 

.L.:.,g_._Run Time and ArrA.y Rt.nrage Roaultu 

KSPTH is both fast and storage efficient. The Dijkstra-Yen shortest: 

path algorithm·has a run time of 0(~), ahd the Hoffman-Pavley-DreyfUs 

K-th shortest path algorithm is O(NK). The array storage is 

2(N+NA)K + 8N + 4NA + 2NR + NPL + 25 , 

where NPL is the dimension needed for NPOOL. For a given graph, then, both 

the run time and the array storage exclusive of NPOOL vary linearly with K. 

Because of the coefficient 2(N+NA), however, the storage increase with K 

can be rather rapid. 

Table I presents the run·times for problems with different sized 

graphs and K = 1,5,10,20, and Table II gives the corresponding array storage 

requirements for the larger problems. The sample problem above is PI:oblem 2. 

13 



Table I 

CDC 6600 Run Times for KSPTH 

Nodes Arcs Regions Run Times (seconds) 
Problem Nl-N2-N3 N NA NR K=l 'K=5 K=lO K=20 

1 1-5-1 7 13· 4 o.oo4 0.014 0.030 0.055 

2 3-3 ~2 8 15 3 0.003 o.oi4 0.02~ 0.055 

3 5-1-2 8 16 2 0.005 0.013 0.926 0.052 

4 2-6-2· 10 23 5 0.006 0.022 0.042 o.o84 

5 4-8-2 14 34 6 0.009 0.032 ·o.o68 0.130 

6 1-8-8 17 32 8 
. 

0.011 0.035 ·o.o72 0.132 

7 1-10-8" 19 4o 8 0.015 0.043 0.089. 0.164 

8 1-31-14 46 112 20 o.o6o 0.167 0.321 0.508 

9 20-58-4 82 514 35 0.223 0.534 0.971 1.748 

10 30-l20-5 155 656 82 0.637 1.061 1.686 2.752 

Table II 

Array Storage Requirements 

NPL, dimension of NPOOL Array Storage (decimal) 
Problem 

K=l K=5 K=lO K=20 K=l K=5 K=lO K=20 

7 40 93 222 492 511 1036 1755 3205 

8 40 417 945 '1886 '1237 2878 4986 9087 
;:.1 4u lYl ~oy 913 4039 8958 15,136 27,566 

10 40 121 297 822 5715. .12,284 20,570 37:,315 
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· 6. Listings 

SUBROUTINE KSPTH!N1tN2tN3,NA,WtMR,II,JJ,AWT,KBAR,IFLAGl 
D T M F N S I 0 N W I 1 l ' ~1 R I 1 l , T I I 1 l ' J J I 1 l ' A. W T I 1 l 
C0Mf\10N I PERM ( 1 55 ) , I TEMP I 1 55 l , NODE ( 1 55 , 4 l , I P R ( 1 55 l ' I C S V ( 5 l ·, 

1 LSV(5) ,JSVI5l d2SV!5l tiR3SV!5l ,NPOOL!1000l .IREG!82t2l, 
2 X ( 155t2Cll, IMP( 155,20) tNP( 2t656t20l 
COM~ON I A I IR,IR2~LJ,LJ2,M,M2,Il2 
COMMON I B I NMX!25ltLOW,ISHFTtN12 
DATA N~X I· 10H001Xt25I4ttlOH005Xt24I4ttlOH009Xt23I4,, 

1 1 0 HO 13 X, 2 2 I 4, , 1 0 HO 1 7 X, 2 1 I 4, , 1 OHC 21 X , 2 0 I 4, , 1 OHO 2 5 X.' 1 9 I 4 ' , 
2 10HC29Xt1814tt10H033Xt17!4,,JOH037X,16I4tt10H041X•15I4tt 
3 10H045X,14T4tt10H049Xt13I4,,10H053Xt12!4tt10H057Xt11I4,, 
4 10H061Xt10I4tt10H065Xt09I4tt10H069X,Q8I4••10H073Xt07I4tt 
5 10H077X,06I4ttl0H081Xt05I4,,l0H085X,04I4,,10H089Xt0314tt 
6 10.H093X,n2I4,,10H~97X,Oli4o I 

K-TH SHORTEST PATHS, 1 LF. K Lf. KP~R 
S I MlJL TANEOUS SABOT AGE--ONE T EA:\1 PER HI\ RDWARE r-!ODE • 
GIVFN UNDIR~CTED NODES AND ARCS WITH TIMF WEIGHTS• KSPTH FINDS TH~ 
SHORTEST PATHS FROM OFF-SITE TO ALL NODES IN THE SABOTAGE GRAPHS 
lJS ING AN INWARD DI JKSTRA-YEN SEARCH •. THEN THE HOFFMAN-P/\VLEY­
DREYFUS ALGORITHM IS USED TO OBTAIN K-TH SHORT~ST PATHS TO ALL 
NOD~S FOR K=2•3•••••KBAR. WHEN KBAR=l• ONLY SHORTEST PATHS ARE 
ORTAINED. 
H.IPUTe 

Nl 
N2 
N3 
NA 

NO. OF HARDWARE NODES. 
NO, OF RARRTFR NODFS, 
NO. OF RO~NDAPY NODF5. 
NO. OF ARr::S. 

w NODE WEI~HT VECTOR, DIMENSIONFD N=Nl+N2+N3. 
. 1-J IS CHl1NGFD • 

ARC 

MR 
II 
jj 

AWT 

KRAR 

DATA--FOUR NA VECTORS. ARCS MUST BE LISTED REGION BY REGION. 
FURTHERMORE, WITHIN EACH REGION HAVING P NODES THERE MUST 
RE P*!P-11/2 ARCS LISTED ROW BY ROW IN STRICTLY UPPER 
TRIANGULAR FORM, THAT IS• !Ilti2lt !Ilti3lt ••• ·, (ll•IPJ, 
!I2tl3lt •••' II2,IPl, !I3,I4lt •••• !I3,IPlt •••• 
!IPMl.IPl. 

REGION INDEX VECTOR. 
NODF INDFX VECTOR. 
NODE INDEX VECTOR. 
ARC WEIGHT VECTOR. AWT IS CHANGED.· 
S lJ R R 0 U T I N F I A I) f'.1 A P .S N 0 DE I N D I C E S I AN[) J I N T 0 T HE A D DR E S S I A D 
OF ARC! I,J) IN THE ARC LIST, THUS AVOIDING THE STORAGE OF AN 
N AY N DISTANCE M~TRIX. 
MAXIMUM V~LUE OF K. 

OUTPUT. 
I FLAG 

X 

= ~' NO OUTPlJTt SEE MESSAGE. 
= 1, NOR'ML RETURN. 
THE FOLLOWING ARRAYS x, IMP, NP AND NPOOL CONTAIN THC 
/\1\!ShtER:,. X HAS THE PATh LENGTHS AND THE OT.HER THI~EE ARRAYS 
.A.RE USED TO CONSTRUCT THE P.A.TH~. SUHROUTINE LKSP l•IILL 
PRINT THE PATHS TO EACH HARDWARE NODE AND THEIR LENGTHS• 
niSTANCE L~9ELS. THE LA9~L X(J,Kl IS THF LENGTH OF THF. 
K-TH SHORTEST PATHS FROM OFF-SITE TO NODF J. 
DIMFNSTONED !N=Nl+N2+N1,KRAR). 

C H1P(J,Kl IS THE IMMEDIATE PREDECF.S<;OR OF- NOUE J ALONG A K.-TH 
SHORTEST PAT~ FRO~ OFF-SITE TO NODE J. ( 
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C D.IMENSIONEn (N,KRARI. 
C NP NUMBER OF PATHS !OF DISTINCTLY DIFFERENT LENGTHS! AMONG Tt 
C K SHORT~ST PATHS FROM OFF-SITE TO NODE J THAT END WITH 
C ARC(J,J). nJMENSIONED (2,NA,KBARI~ SUBROUTINE lAD MAPS 
C I AND J INTO THE FIRST HJO SUBSCRIPTS OF NP!Il2dADtKI• 
C NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECESSORS MAY BE 
C STORED WHEN NODE J HAS MORE THAN ONE. THE LINK FROM 
C I M P (J , K I T 0 f\1 P 0 0 L ( LI N K I I S S T 0 R f D I N THE L E F T 5 1 8 I T S 0 F 
C IMP(J,KI• SIMILAR~Y, IF THERE IS A THIRD PREDECESSOR OF 
C J, THEN LINKl FROM NPOOULINKl TO NPOOULINK1l IS STORED 
C IN THE LEFT 51 BITS OF NPOOL!LINKJ, ETC. DIMENSIONED 100C 
C IF THE DIMENSION OF NPOOL IS CHANGED, THEN THE THIRD 
C STATEMENT WHICH DEFINES NPLDP MUST BE CHANGED. NPLDP 
C IS THE NPOOL DIMENSION PLUS ONE. IF THE DIMENSION N IS 
C INCREASED TO MORE THAN 511 NOI)fS• THE VALUf::s OF LTEST, 
C L 0 W A N D I S H F T f.l\ U S T BE CHANGE D T 0 A L L 0 W i'-1 0 R [ THAN <.J B I T S 1 N 
C THF. RIGIIT OF EACH ~.11\SK. 

C WORK ARRAYS 
C !PERM NODES WHERE DISTANCE lABELS X(J,ll HAVF RFFN MADE PERMANEN 
C ITEMP NODES WHERE DISTANCE LABELS X(J,11 ARE STILL TEMPORARY. 
C NODE REGION AND LOCAL NODE. NUMBERS FOR EACH NODE· 
C ·DIMENSION 1Nt4! •. 
C NODE!I,llt NODE(I,31 ARE·REGTON NUMBERS FOR NOnE I. 
C NODE( r,zl, NODE!It4l ARE CORRESPONDING .LOCAL NODE NUMBERS. 
C !REG REGION DATA CONCERNING ARCS. DIMENSIONED !NO. REGIONS• 21 
C IREG(Rdl IS THE FIRST \r,iOR~ ADDRESS MINUS ONE IN THE ARC 
C LIST OF THE ARCS OF RFGION R. 
C I R E G ( R , 2 I I S T HE NUMB E R 0 F N 0 I) E S If' I R E G I 0 N R , I M P L Y I N G 
C THERE ARE IREG(R,2l*!IREG(R,2l-Il12 ARCS IN REGION R. 

DATA EPS,RIG I l.OE-13,l.OE321 I 
DATA LTESTtLOWtiSHrT I 10008,7778,9 I 
DATA NPLOP I 10~1 I 
TFLAG=l 
0.'-1 E P S = 1 • 0- F P S 
OPEPS=l.0+EPS 
Nl2=NlHP 
N=NJ?+N~ 

W11 :::f\\-1 
NlP=f\.!1+1 
Nl2P=Nl2+1 

C CHECK FACH REGION FOR TRIANGLE INEQUALITY ON ARC WEIGHTS 
ICT=O 

· TPFG=l 
5 IPEGP=IBEG+l 

IF!MR( I9F.Gl .NE. f'.1R( IPEGPI l GO TO 52 
LIKE=! I ( IRF.Gl 
DO 10 I=I8EGP,NA 
IF!II(Il .NE. LIK.I:I GO TO 15 

10 CONTINUE 
GO T0-52 

1 5 . NM = I- I REG 
IF(NM ~LE. ll GO TO 5?. 

2n I2=YREG+NM 

16 

IFNI')=f2-? 
NMT=NM-1 



DO 50 Il=IBEG,IEND 
AWTOM=AWTCill*OMEPS 
D=Il+l 
DO 45 J=l ,NMT 
IFCAWTCI2l+AWTCI31 .GE. AWTOMi GO TO 35 

25 FORMAT!* TRIANGLE*3I3* FAILS. ARC WEIGHiS--*3El5.5J 
30 PRINT 25,IICill•jJ(Jll,JJCI3l•AWTCill•AWTCI2l•AWTCI3l 

ICT=l 
GO TO 40 

3S IFCAWT!Ill+AWT!I2l .LT. ~WTCI3l*OMEPSl GO TO 30 
IF!.I\I,JT( Il J+A\I!T! I3l .LT. A.'rJT! I2l*OMEPSl· GO' TO 30 

40 I2=I2+1 
45 13=13+1 
50 NMT=NMT-1 

NM=NM-1 
IREG=IFND+2 
IFINM .GE. 2l GO TO 20 

52 IREG=IREG+l . 
IFIIREG .LT. NAl GO TO 5 
IF( ICT .EO. 01 GO TO 55 
I FL.A.G=O 
RETl!RN 

C. COMRINE NODE WEIGHTS INTO ARC WFIGHTS 
55 00 65 J=N1P•N12 

W! I l =0. 5*h'! I l 
65 CONTINUE 

DO 6 8 I A.= 1 , NA 
l=llCIAl 
J=JJ!IAl 
A \·1/T C T A l = 1l \tJT C I A l +'tJ ! I l +'tJ ! J l 

6f3. CONTINUF 
C SET THE ARRAYS NODE, IREG. 

DO 70 T=1 ,N 
NOfJFCI,1l=O 

70 NODFCI,1.l=O 
L=l 

72 K= 1 . 
IR=MRCLl 
I R f.(; I I R , 1 l = L -1 
I=IICLl 
IFCNODECidl .EO. Ol GO TO 73 
NODE C I '3 l =I R 
NODF! l•4l=K 
GO TO 74 

71 ~ODF!I,1l=IR 

NODF!I,2l=K 
74 K.=K+1 

J=JJ(L} . 
IFINODE(J,1l .EO. Ol GO TO 75 
NODF.: CJ, 3 l =I R 
"l0DECJ,4l=K 
GO TO 76 

75 NODE(J,ll=IR 
NODE!J,2l=K 

.76 TFIL .~="0. NAl GO TO 77 
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L=L+l 
IF<<I .F.:Q. IICL)l .AND. <IR .Fa. MR.<Llll GO TO 74 
IREG<IRt2l=K 
L=L-K+K*CK-1l/2+1 
IFCL .LEe NAl GO TO 72 

77 IREGCIRt2l=K 
C DIJKSTRA-YEN SEARCH INWARD. 
C INITIALIZF.:. 

DO 1 2? I = 1 ' N 1 2 
XCitll=RIG 
ITEMP( I l =I 

1?.5 CONTINUE. 
DO 1.27 T=N12P,N 
XCit1l=O.O 
ITEMD(Il=l 

127 CONITINUE 
IPL=1 
L=l 

C PFRMANENTLY LAREL NODE N. 
l1-'l:.f-.1M(lJ=N 

·I =N 
IR=NODF. ( T, 1 l 
LJ=NODFCI;2l 
M=IRFG<TRt1l+(LJ-1l*IRFG<IRt2l~LJ*CLJ+1l/2 

IR2=0 
K.=NMl 
V=RIG 

C TREAT EACH TEMPORARILY LABELED NODE· 
C V I S THE . SMA L !:F. .S T S I.J C H L 1\ R F L • 

130 DO 140 IT=l•K 
J= I TEMP C IT l 
IAR=IADCJ) 
IFCIAR .~Q. 0) GO TO 13~ 
f)J J=AWT ,c I .AR) 
Z=XCitl!+DIJ 
XJPEP~=XCJtll~OP~PS 
IFCZ .GT. XJPEPSl GO TO 135 
XJMFPS=X(J,1!*0MEPS 
11-!l. .r.i~. XJfv)FPS) (';0 TO 300 
XC .J • 1 l = Z 
IMPCJtll=I 
GO TO 135 

300 JFCIPL-NPLDP) 305t302t340 
301 FORMATC* NPOOL NEEDS TO STORE MORE LINKS*l 
'3 0 2 1-' R I N T ~~ 0 l 

GO TO 3t+0 
30~ NPRED=IMPCJt1l 
310 IFCNPREn. .LT. LTESTl GO TO 32n 

LINK=SHIFTCNPREDt -ISHFTl 
NPRED=NPOOLCLINKl 
GO TO 310 

320 NPOOLCIPL!=I 
I1=SHIFT<IPL, ISHFT! .oR. NPRED 
IF<NPRED .EQ. IMP<Jtll i GO TO 330 
NPOOL( LINK l =I r 

I 



I 

330 
340 
13'5 

140 

145 

c 
1"i5 

GO TO 340 
IMP'( J, 1 l =I l 
IPL=IPL+1 
IF(X(Jdl .GF. Vl GO TO 140 
V=X(J,ll 
IP=J 
JQ= IT 
rONTINUf: 
IF(V .NE~ BJGl GO .TO 155 
IFLAG=O 
FORMAT(*0SOME NODE HAS NO PATH FROM THE BOUNDARY.*) 
PRINT 145 
RFTURN 

NODE IP IS TO RE PERMANENTLY LARFLED. 
V=R.!G 
L=L+1 
IPERM(Ll=IP 
l""IP 
IR=NODF( T, l l 
LJ=NOOE!J,?.l 
M=IREG( JR,l l+(LJ-] l*IREG( IR,2l-LJ*!LJ+l l/2 
IR2=NOOF (I' 3l 
LJ2=NODE!I,4l 
IF! IR2 .NE. Ol M2=IREG!·IR2•1l+(LJ2.-ll*IREG( IR2,2l-LJ2*!LJ2+1l/2 
ITFMP(IOl=I·TEMP!Kl 

'K=K-1 
IF!K eGT. 0) GO TO 130 . 

C ALL NODES ARE PERMANENTLY LABELED. 
C STORE THF SHORTEST PATH DATA. 

DO 2 2 5 I= 1, 2 
DO 2 2 5 I .A= 1 ' N !\ 

2?5 NP(J,YAdl=O 
DO 235 J=1•N12 
IR=NOOF! Jd l 
LJ=NODE!J,2l 
IR2=NODE!J,3l 
LJ2=NODE!J•4l 
M=IREG!JR,ll+(LJ-ll*IREG!IR,2l-LJ*!LJ+ll/2 
IF!IR2 .NE. Ol M?.=IREG!IR2dl+(LJ2-ll*IREG!IR2,2l-LJ2*(LJ2+1l/2 
NJ=IMP(J,1l 

230 I=NJ .ANO. LO\Ai 
IAR=IA[)(Jl 
IF(JAR ."'!~. ~~ GO TO 232 

!J' 

231 FORMAT!*0IR OR IR2 IS WRONG IN FUNCTION IAD*12I5l 
PRINT 23l,IR,IR2,I,J,LJ,LJ2,M,M2,(N0pE(I,Ll ,L=1,4l 
IFLAG;;O 
RETURN 

??? NP!J1?.TARt1);:;:1 
IF!I eFQ. NJl GO TO 235 
LINK=SHIFT!NJ, -ISHFTl 
NJ"""'POOL ( L I Nl( l 
GO TO 2'30 

235 .CONTINUE 
IF(KF3AR .LT. 2l ReTURN 

·C K-TH SHORTEST PATHS, K GT. 1. HOFFMAN-PAVLEY-DREYFUS ALGORITHM. 
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DO 370 K=2tKRAR 
C INITIALIZE FOR K-TH ~TAGE. 

Kf'Al=K-1 
DO 23 7 I= 1, 2 
DO . 2 3 7 I A= 1 , N A 

237 NPCI.ZAtKl=NPCidAtKMll 
DO 240 J=l•N 

240 XCJ,Kl=BTG 
C TREAT NODES J IN ORDER OF INCREASING DISTANCE FROM OFF-SITE. 

L=WHl 
245 J=IPF.RMCLl" 

C STORE ALL NEI~HRORS OF J IN ITEMP •. 
IR2=NODECJdl 
NN=n 

. DO 260 KK=l •2 
IFCIR2 .EQ. Ol GO TO 260 
!REG= I RFGC I R2 t1 I +1 
IEND=IREG+IR~GCIR2t2l-2 
I F ( I T ( I R F r; ) • ~=' 0 • · J l G.O T 0 2 ? 0 
NN=NN+l 
(rFMP(NN)~TT( IRFGI 

250 DO 255 KKK=IRFGtiFNO 
IF(.J.J(KKKJ aEO. JJ GO TO 255 
NN=NN+l 
TTF~PCNN)=JJCKKKJ 

255 CONTINUE 
260 IR2=NODECJ,3J 

IR=NODECJtll 
LJ=NODF(J,Zl 
LJ2=NODECJt4l 
M=IREGCTRtll+CLJ-ll*IREGCTR,?J-LJ*CLJ+ll/2 
IFC tR2 .NE. 0) M~=JREGCJR2tli+CLJ2-ll*IREGClR2t2l-LJ2*CLJ2+1)/2 

C USE EACH NEIGHROR OF J T0'1\TTE:'-1PT A REDUCTION OF XCJtKI. 
C WHENEVER A REDUCTION OCCURS STORE THE NEIGHROR I IN IMPCJ,KJ OR 
C NPOOL. 

f"\() ~ 5 'j T T = 1 • N N 
I=ITF.MPC TTl 
I A R = I AD ! I l· 
IFC IAR .• NE. 01 GO TO 262 
PRINT 23ltiR,yRz,r,J,LJ,LJ~,M,M2,(N0DE(I,Ll ,L=l,4l 
IFLAG.,O 
RFTURN 

262 I2=NPCI12ti~R;Kl+l 

Z=XC Tti21+AWTC IARI 
XJPFPS=X(J,KJ*OPEPS 
TFC7 .GT. X.JPFPSl GO TO 3'55 
XJMFPS=XCJtKl*OMFPS 
IFCZ .GE. XJMFPSl GO TO 265 
XCJtKl=Z 

264 IMPCJtKl=I 
GO TO 355 . 

265 IFCXCJtKl .EC~. BIGl GO TO 264 
IFCIPL-NPLDP) 27~t270t295 

. 270 PRINT 301 
r,o TO /91) 
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27~ NPRF~=IMP(J;Kl 
2 8 0 IF < N PRE D • LT •. L TEST l GO T. 0 2 8 5 

LINK=SHTFTCNPREOt -ISHFTl 
NPRE~=NPOOL<LINKl .. 
GO T·o zs0 

285 NPOOL(IPLl.=I 
Il=SHIFTCIPLtiSHFTl .OR~ NPRE~ 

. IF<NPRF.O ~EQ •. IMP(J,Kl l GO TO 290 
· NPOOL< LINK l = T 1 
·c;o TO 295 

290 I~P(J,Kl=Tl 

29~ IPL=IPL+l 
~c:;_c; \ONTINUE 

C ADD ONE TO NP FOR EACH NEIGHROR I THAT MINIMIZED X(J,K>• 
NJ =IMP ( J' I( ) 

360 I=NJ .ANIJ. L0 1tl 
IAR=I.A.D< I l 
IF( TAR .NF. 0) GO TO 362 . 
P R I NT 2 '3 1 , I R , I R 2 ' I , J , L J , L J 2 , .M , M 2 , < N 0 DE .( I , L l , L = ,1 , 4 ) 
I FLAG=O. 
RFTlJRN 

362 NP( Il2tTfi.RtKl=NP< Il2t I.A.R,Kl+l 
IF( T eFO~ NJ) GO TO 365 
LINK=SHIFT<NJ, -ISHFTl 
NJ=NPOOL<LINKl 

-,65 TF(l .GF. N) GOT() '-37.0 
L=L +1 
GO TO 245 

370 CONTINUE 
RFTllRf\1 
END 
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FUNCTION IAD(Jl 
COMMON JPERM<l55l ,YTEMP!155l ,NODE(155,4i dPR!155l dCSV!5l, 

1 LSV!5J,JSV(5lti2SV(5ltiR3SV(5ltNP00L(1006l tiREG!82t2lt 
2 X! 155t20l, IMP( 155,201 tNP( 2t656,20l 

COMMON I A /'JR,JR2,LJ,LJ2,M,M2,I12 
C I IS AN ARGUMENT TO FUNCTION lAD. J IS AN IMPLICIT ARGUMENT--IR, 
C JR2t LJ~ LJ2, M AND· M2 ARE DETERMINED RY J AND SET BFFORE CALLING 
C lAD • 

. C IF NODES I AND J ARE NOT A~JACENT, THEN IAD=0. OTHERWISE• IAD IS 
C THE ADD R E S S 0 F ARC ( I , J l I N T 1:i E ARC L I .S T • I N ·ADD I T I 0 N , T HE I N DE X 
C I12 OF COMMON /A/ IS SET TO 1 IF tHE LOCAL NODE NUMBERS SATISFY 
C LI LT. LJ AND 2 OTHERWISE• 

IF!NODE!Itll .NE. IRl GO TO 5 
· L I =NODE ( I·' 2 l 

GO TO 10 
5 IF(f\1nnrtT~3l .NE. IRl GO TO 20 

l.. f =NODF ( 1 , 4 l 
10 JF(LJ .GT. L!) GO TU 15 

IAD=M+LI 
!12=2 
RFTtJRN 

15 IAD=IREG(TRtl)+(LJ-1l*IRFG(IR,2J-LI*!LI+ll/2+LJ 
Tl2=1 
RETLJRN 

20 IF!NODE! I tl l .NE. IR2l GO TO 25 
LI=NODE!It2l 
GO TO 30 

25 IF!NODE!I,"3l .NE. IR2l GO TO 50 
IF! JR2 .EQ• Ol GO "TO 50 
L I =NODE ( I , '' l 

30 IF!LJ2 .GT. L!l GO TO 35 
IAD=:M2+LI 
IJ.2m2 
RETlJRN 

3 5 TAD= I R F G ( I"R 2 t 1 l + ( L I -1 l * IRE G ( I R 2 t 2 l - L I * ( L I+ 1 l I 2 + L J 2 
Il2=1 
RETURN 

50 IAQ=O 
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SUBROUTINE LK.SPCN1tKBARtMRtLAGJ 
C 0 M MO N I P E R t-1 C 1 5 5 J , I T EM P C 1 5 5 J , N 0 DE C 1 5 5 ' 4 l ' I P R C 1 5 5 l ' I C S V C 5 J t 

1 LSVC5l ,JSVC5l 'I2SVC5l tiR3SVC5l ,NPOOLC1000l tiREGC82,2l, 
2 X C l 55 , 2 f) l , IMP C 1 55 , 2 0 l , N P ( 2, 6 56, 2 0 l 
CO~MON I A I IR,IP?tLJ,LJ2tM,M2,Il2 
COMMON I A i NMXC25ltLOW,ISHFTtN12 
DP'H=NSION TVARC4l ,MRC1 l 
DATA IVAR I 32HC1XtF12.5, 1Cl4X,?5I4l J I 
DATA LTOP,ICTOP I 5t·l55 I 

C LIST THE K-TH SHORTEST PATHS, 1 LE •. :K LE. KBAR, FROM. OFF-SITE TO 
C EACH HARDWARE.NODE. PATHS ARE GIVEN AS A NODE sEQUENCE FROM 
C HARDWARE THROUGH ROUNDARY. 
C LAG = 0 MEANS TO PRINT ALL THE KBAR PATHS. 
C 1 MEANS TO PRINT ONLY THE PATHS WHICH CONTAIN NO TWO ADJACENT 
C ARCS IN THE SAME R~GION. 

DO 25 IH=l,Nl 
DO 20 K=l.tKRAR 
L=IJ 
T=TH 
TC=l 
JP=0 
IPRCll=I 
I 2 = 1(. 

IR4=0 
5 IR3=IR4 

J=I 
NPRED=IMPCJti2l 

10 I=NPRED .AND. LOW 
TC=!C+l 
IFC IC .LF. ICTOPl GO TO 9 

R F 0 R M A T C * P A. T H L 0 N G E R T H A N * I 5 * I NCR E A S E D II_, ENS I 0 N 0 F I P R A N D VAL U E 
1 OF ICTOP* l 

PRJNT R•ICTOP 
GO TO 18 

9 IPRCICl=I 
IFC I •. EQ. NPRFDl GO TO 11 
L=L+l 
IFCL .LE. LTOf?l GO TO 3? 

30 FORMATC* STACKING REQUIRES MORE THAN*I5* INCREASE DIMENSION OF IC 
lSVt LSV, JSV, I2SV, IR3SV AN) VALUE OF I TOP*l 

PRTNf 30,LTOP 
RETl!RI\J 

35 JSVCLl=J 
L.<:;VCLJ.=<:;HTFTCNPRF.:Dt -I.SHFTl 
ICSVCL.l =IC-1 
T2SVCLl=T2 
IR3SVCLl=IR3 

11 IR=NODECJtll 
LJ=NODE'CJ,2l 
IR~=NODECJt3l 

L.) 2 = N 0 DE C J , '+ l 
M=IREGCIRtll+CLJ-ll*IREGCIRt2l-LJ*CLJ+ll12 
IFCIR2 .NE .• Ol 1'-1?.=IREGCIR2tll+CL.,J2-1l*IREGCIR2,2l-LJ?*CLJ?.+1JI?. 
IAR=IADC I l 
IFC II\R .NE. Ol GO TO 13 

23 
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12 FORMAT!*OFRO~ LKSP IR OR IR2 IS WRONG I~ FUNCTION IAD*1215l 
PRINT 12•IR,I1~2,J,J,LJ,LJ2,~~,M2,!NODECI,LL.),LL=1,4l 

RETURN. 
13 IF!LAG .EQ. Ol GO TO 14 

IR4=MR!IARl . 
. IF! I R4 • FQ. I R 3 l GO T 0 18 

14 IF! T eGT. N12l GO TO 1'? 
I2=NP!I12,IAR,I2l 
GO TO 5 

15 TPP=1v1INO! TP+l ,?51 
IVAR!2l=N"1X!JPP) 
PR IN T I VA R , X! I H, K l , ! I P R ! K K l , K K = I P P, I C J 

10 IF!l ,FQ• 0) GO TO 20 
J=J.SV(l.) 
LINK=LSV!Ll 
IC=Ic:,vrL) 
I2=I2SV!Ll 
IR3=IR3SV!Ll 
IP=IC 
IF(LAG .NE. OJ IP=O 
NPRED=NPOOL!LINKJ 
L=L-1 
GO TO l 0 

2 0 (0"1 TI NUE 
'?.5 ·coNTINUE 

RETURN· 
END 
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