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ABSTRACT

Finding shortest paths in a weighted graph model is one way.for a
safeguards analyst to locate weaknesses in a facility's barrier. and
alarm system. KSPTH can be used to rank sabotage paths according

to path length so that the K shortest paths can be studied by more
detailed methods to see which possess additional properties attractive

to an adversary. While emphasizing how to use KSPTH, this report
explains the K-th shortest path algorithm of Hoffman, Pavley and

Dreyfus and contains a sample problem, test results and program listings,
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1l. ‘Introduction

A sabotage graph is a network of nodes and arcs schematically
representing a fixed-site facility. By weighting the nodes and arcs with
some quantity to be minimized:by an adversary'(say,.time or detection
probability), a safeguards analyst can find shortest paths in the graph
as a means of identifying possibly good attack routes for saboteurs. .Snch
paths indicate where-thetbarrier and alarm systems are Weakest, A similar,
but more difficult, problem is that of finding shortest theft paths, which
must include escape routes. Graph-theoretic models for the theft problem
were introduced in [6] and for the sabotage problem in [7] '

‘The current shortest sabotage path code is SPTH3 [81. This subroutine
finds all the shortest paths from off-s1te to every node of the graph
using the DiJkstra shortest path algorithm [3] as modified by Yen {10,9].

lThose paths terminating at target nodes represent shortest routes for a
simultaneous attack by several sabotage teams each haVing only one target.

Of course, near-shortest‘adversary paths are also important to the
safeguards analyst One reason.is that the.data-are not hnown well enough
to distinguish among paths of almost the same length ln addition, other
‘factors such as the reliability of the communications systems and the
'ability of response forces to engage and defeat, or‘at least delay, the
adversary also play an important role in finding "best" adversary paths.
The idea behind the use of KSPTH is to rank sabotage paths according to
length so that the K shortest can be further evaluated by techniques quoh a
as FESEM [2] the ForCible Entry Safeguard Effectiveness Model, or EASI [l],
an F'stimate of Adversary QPquence Interruption.

KSPTH begins by finding the shortest sabotage paths Just as SPTH3 does.

Then the Hoffman-Pavley-Dreyfus algorithm [U4,5] is used to find the k- th

¢



shortest paths from the boundary to all the nodes inside the facility,

2 <k é K. The sabotage paths are those that lead to target nodes.
Although‘KSPTH is written to accept time weights (or any other weights

for which normal addition is appropriate), a minor modification will allow

it to accept detection prdbability weights énd compute cumulative

detective probabilities as path lengths. ' In the remainder of this report

we think of the weights as time. Also we assume that the reader is familiar

with [87.

2. ''he Hof'tmaneFavley-Ureyius Algorithim

In 1959 Hoffman and Pavley [5] gave a procedure for finding the k-th
shortest paths between two spécified nodes 1n a graph. In 1969 Dreyfus
“[4] analysed theirischeme;Acompared it-with others., andfpfoposed.an
extention to the problem of k;thvshortest paths from all nodes to a common
terminal node. In KSPTH we use the Dreyfus modification of Hoffman and
Pavley's method to find k-th shortest paths from the set of'bouﬁdary nodes
to all other nodes in a sabotage graph. This is akin to finding paths
from a common source node to all the other nodes in a graph. However,
instead of one source node, we have a set of boundary nodes which may be
thought to be adjadent to a ficticious "off-site node.” Consequently,
the discussion here will differ from that of Dreyfus in that the common
node is takeﬁ to be a source rather than a terminal.

‘ Tdibegin it must be noted that different paths can héve the same
length. Therefore, we must think in terms of a set of shortest paths,
a set of second-shortest paths, etc., The problem is to findlthe,K sets
of shortest paths from a source node s to each of the other nédes in a

graph G.



Let xj " be the length of the k-th shortest paths from s to j, let
2 } .

di . 2 0 be the direct distance from node i to node j (di i
3 bl

=0 and d, , =
1,J

w if (i,j) £ G), and let n, . be the number of different-length paths
. >

Jok
among the k shortest from s to j which terminate with the arc (1,3).

Assume that the shortest paths from s to all other nodes j have already

been found and that the xj 1 have been set to the corresponding shortest
) . ’

path lengths and the n, have been set to 1, if (i,j) belongs to a

i,3,1
shortest path, otherwise to 0. Then, for k = 2,3,...,K, let J be the node

closest to s (along a shortest path), set

.(1) X, . = min{x, ' .+d. .) R
IH g\ Byt
set n, . =n,. . + 1 for each minimizing i and n. . =n, . for
i,J,k i,J,k-1 8 i,j,k i,j,k-1

all other i, let j be the next closest node to s, and repeat the procedure

until all nodes j have received their k-th labels, xj Xk’
H

To partially see why this procedure works, it is nécessary to

When k = 2, every node i

understand the role of the quantity n., . ..
i,j,k
R . . - _ . .
adjacent to J is examined in (1). It ng 51 0, then X5 1 di,j is a
candidate for x, , because (i,j) does not belong to a shortest s - j path

J,2
and hence a shortest s - i path followed by arc (i,j) is a possibly second-

shortest s - j path. If n, = 1, however, then (i,j) belongs to a

i,j,1

shortest s - j path and in this case X5 5 + di 3 the length of a second-
> 2
shortest s - i path followed by (i,j), is a candidate for second-shortest

s ~ J path, The x, are determined before starting the k = 2 stage.

i1

2

Also, any X 5 appearing on the right side of (1) is available when it is
b

needed because i is necessarily closer to s than j and therefore i receives
its second label before j does. Similar remarks apply to the k-th stage.
in (1) may be thought of as the number of labels

The quagtlty ni,j,k-l



on node i ‘that have already been used in determining the first k - 1 labels -

on j. Thus, the (ni +1)-st label on i must be used in a candidate

,j’k‘l

for the k-th label on j. By setting n, . . =n, . . .+ 1 for a minimizi

J ¥ g. i,j,k  1,3,k-1 . e
i, the algorithm records the fact that one more label on i has been used
in finding a label on j. For example, suppose that at the ‘end of the

2.

Fifth stagen, . . = O, =

l,J,l = l’ n h = l,'and ni

n., .. . . =
’ 71,3,3 1,J, 3d 5D

This means that (i,j) does not belong to a shortest s - j path, a second-

n, .
i,j,2

shortest s - j path hegine with o ghortest s = I palh and ende with arc
(i,3), neither a third nor a fourth-shortest s - j path contains (i,3),
and a fifth-shortest s -4j path begins with a second-shortest s - i path

and ends with (i,j).

3. Description of KSPTH

Given an N-node sabotage graph [8, Sec. 3] and a value for K, KSPTH
finds all the k-th shbrtest ﬁaths from the boundary to'each-target node,
1 <k <K. In the process it finds k-th shortest paths to all the barricr
nodes as well. The Dijkstra-Yen algorithm [8, Sec. 6.5] is used to dbﬁain
the shortest paths, and then the Hofiman—ngley-Dreyfus method jﬁst
described is used to produce the second through K-th shorteét paths. :In
both methods the boundary nodes may be viewed as being connected by zero-
length arcs to a'single, fiétitious, source node, |

KSPTH doss the same calcuiations as SPTH3 to find the shdrtést paths.
In the same mariner as explained in Section 6 of [8], KSPTﬁ tests for 4
triangle inequalities on arc weights, computes direcﬁ diétances between
node centers (using.thé'full node weight for distances.to and ffomlboundary .
and target node centers since they are endpoints of sabotage péths), and

stores and retrieves these distances from the arc.weight input vector



rather than from an extfa.matrix.
KSPTH differs from SPTH3 in two ways during the shortest path

computation. Addressing of a distance di 5° stored in-the arc weight
s )

vector, is .done by a function subroutine IAD, which the user never calls.
. Also KSPTH dpeé not retrace and count the shortest paths. 'Insfead, KSPTH
stores thé predécessors pj,k of nodes j glpng the k-th shortest paths for
k =,l?2,;..,K. These predecessors together with the indices ni,j,k
described.in Section 2 contain all the information needed for thé subroutine .
ILKSP to list the K shortest paths as node sequences.

When KSPTH returns, having produced in coﬁmon'working'storage the

path lengths x, " the predecessors.p.‘ , and the indices n. . ,, the user
. J J,k i,J.k’ -

K’

may then call LKSP. This subroutine prints the individual node sequences

and lengths for each of the k-th shortest paths to each target,'l <k < 5.
A k-th shortest~path from the boundary to target t is found by.forming the

~

backward node sequence

LUy VyWyese,y2

where
u =
pt,k"
V= u,n 2
’Tu,t,k
i pv,nv u,n ’
: B 3t:k
z = a boundary node .

Users interested only in shortest paths may still want to use SPTHS3.
It has slightly less cverhead than KSPTH with K = 1, and it represents.
the set of shortest paths to all targets as an arc list rather than as

individual node sequences.



4. How to Use KSPTH

L,1, The Call List

The call list for KSPTH is
KSPTH(Nl,N2,N3,NA,W,MR,II,JJ,AWT,KBAR,IFLAG) R

where the arguments have the following meanings:

N1 - the number of target nodes,
N2 - the number of barrier nodes,
N3 = the nunber of boundary nodeé,
NA - the numbeg ul ares, '

W(-) - the node weight vector, dimensioned N = WL + N2 + N3,
(the next four vectors, dimensioned NA, give the arcs as quadruples
consisting of a region, two nodes, and an arc weight)

MR(+) - the region index vector, ‘ .

II(*) -~ a node index vector,
JJ(+) - a node index vector,
AWT(+) - the arc weight vector,
KBAR - the upper limit K on k for k-th shortcst paths,

IFLAG - 1, for normal return, )

0, for return with no output. See the printed message. LEither
there is a Lrlangle inequaltity tailure, or some node is isolated
from the boundary, or else two nodes which were adjacent no
longer appear to be adjacent. The third difficulty should
never arise. It implies that the array IREG has been
inadvertently overwritten, perhaps because of exceeding another
array dimension. ' ‘

4.2, Input

First; construct a weighted sabotage graph as indicated in [8,4Sec. 3]
and decide on a value of K, the number of different-length'pathszpo,be
fouﬁd to each target. 1In the program which célis KSPTH dimension Wby N
énd MR,II;JJ,AWT by NA. Then store the node weights in W and the arc data
in MR,II,JJ and AWT. - | |

The ordering of node and arc data is the same as for SPTH3 [81. w(1)




is the weight of nodé I, 1 <I <N. All the arcs of one région are listed
consecutively ip MR,II,JJ,AWT, and the regions may be given in any order.
Within each region, however, the arcs must be listed as if they were taken
row by row from the strictly upper triangular part of some node adjacency
matrix. For example, if.the nodes of one region are {16,9,21,4,7}, then
an acceptable arc ordering based on thé given node ordering is (16?9),
(16,21), (16,4), (16,7), (9,21), (9,4), (9,7), (2L,4), (21,7), (&,7).
Notice that the arc ordering for a region may be based on any ordering of
the region's nodes. This special arc Qrderingvallows KSPTH to quickly
address any arc weight in AWT and hence completely eliminates the need for
the.usuél N x N direct distance matrix. The resulting storage eéonomy is

very significant for several hundred nodes.

4.3. Work Arrays

The user must set the dimensions of several -work arrays before running
a job. The following arrays (in.unlabeled common storage) must be

dimensioned in the subroutines KSPTH, IAD, and LKSP:

IPERM,ITEMP,IPR - (N),

NODE - (N,4), ,

IREG - (NR,2), where NR = the number of regions,

X,IMP - (N,K),

NP - (2’NASK)3

. ICSV,LSV,JSV,I2SV,IR3SV - (5), an unpredictable maximum number of branch

.points for alternate equal-length paths along
a path being traced for output by LKSP. This

value has been adequate for all our test .
problems.

NPOOL - (1000), an initially unpredictable total number of extra
predecessors for nodes which have more than one predecessor along
k-th shortest paths, 1 < k < K. KSPTH prints a message when this
dimension needs to be increased. In this cas?, the results should
be viewed as incomplete, and the problem should be rerun with a
larger dimension whose value is printed just before the return
from KSPTH. With this dimension NPOOL is guaranteed to be exactly
large enough because KSPTH finished solving the problem to see
how large NPOOL should be. o
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L.4. Output

The only putput variable in KSPTH's call list is IFLAG which must be
tested to see if a nérmal execution took place. The settings of IFLAG are
explained in Section L4.l. When IFLAG = l; the K shortest sabotage paths
agd their lengﬁhs are étored in the work arrays X,IMP,NP and NPOQL. By

calling the subroutine LKSP the user obtains a list of these paths and

'path lengths.

The call list for LKSP is
LK3P(N1,KBAR,MR,LAG) ,

where NL, KBAR and MR have the same meanings as for KSPTH. LAG is an

input flag whigh gives the user two optionsi

LAG = O, print all of the K shortest sabotage paths,

1l

1, print only those K shortest sabotage paths which‘have no two
adjacent arcs in the same region.

Often the user is uninterested in paths having two adjacent arcs in the
same region because such a path differs nnly slightly from another palli ul
the same or shorter length, namelyvthe path obtained by deleting these two
arcs and inserting the third side of the triangle. For each target node

t =1,2,...,N1, LKSP prints the length and the backward node sequence for °
each of the K shortest sabotage paths, in order of increasing length. When
LAG = O and some equal-length path; to the same target coincide near the
end, the sécond and subsequent paths will have the coinciding nodeg
suppressed. For example, the three paths (152,34,31,5),  (153,34,31,5) and

(154,16,31,5) of length 975.3 would be printed as

¢

975.3 5 31 3k 152
975.3 : 153-
975.3 , 16 15k .



In addition to tﬁese outputs, KSPTH prints the number of entries of
NPOOL which were used. In the event that the dimension of NPOOL was
"exceedéd and a correéponding message Qas‘printed, this number can be used
to dimension NPOOL before rerunning the problem.

Like SPTH3, KSPTH changes W and AWT by

w(I) - W(r)/2. , N1 +1<I<NL+N2,

AWT(K) « AWT(K) + w(II(K)) + W(JJ(K)) , 1<K < NA.

_In‘this wdy the direct distances between node centers are stored in AWT

rather than in an N ¥ N matrix.

5. Examples

5.1.- A Sample Problem

Suppose that in the sabotage graph of Figure 1, in which the squares
are boundary nodes,Athe circles are barrier nodes, and the shaded circles
are target nodes, we seek the five shortest paths from the boundary to

each target.

Figurebl .

A Weighted Sabotage Graph

11



The input consists of

Nl =3, N2=3, N3=2, NA =15, KBAR = 5

W= {6.,2.,6.,8.,16.,4.,20.,14.} ,

E
5

-

= -
N~ OWIOWR ~3 0 VoW
] [] ) . L) - . . . ] . L]

WWWMPPDNDR VMDD —
FOoMOMONVV\N A FOWW
'_J

VIV EooOoNDmAT <~ 03 0\ &

E ovon

KSPTH returns with IFLAG = 1. A call of LKSP with LAG = 0 yields all five

of the shortest paﬁhs to each target:

£5.
45,
ué.
51.
59.
59.
43.
45,
56 .
56.
58.
62.
31.
Ly,
Ls.
51.
57.
57.

= =

U1 &= 0N O\ O\ Qo

W10~ OHOW M~ ~ H-~J o
' 2 o

NN
~ O~

wWwwwwm N
FONONFEF W

7
8 .

Notice that there are two fifth-shortest paths to targets 1 and 3 and two



third-shortest paths to target 2. Also notice that path (8,6,1) is
~mathematically the second shortest path to target 1, yet, because it
involves the needless penetration of node 6, it is physically uninteresting
as a sabotage path. In order to éutomatically delete from LKSP's output
any paths containing‘two consecutive arcs in the same region, the user may’
call IKSP with LAG = 1. This yields
25.
51.
L3,
L5,

56.

31.
L5.

WWMND NN

O\~ £\ Oy

© O3~
Co

>

the subset of potentially interesting sabotage paths.

5.2 Run Time and Array Storage Rooults
KSPTH is both fast and storage efficient. The Dijkstra-Yen shortest
path algorithm has a run time of O(N2), and the Hoffman-Pavley-Dreyfus

K-th shortest path algorithm is O(NK). The array storage.is
2(N+NA)K + 8N + LNA + 2NR + NPL + 25 ,

where NPL is the dimension needed for NPOOL. .For a given graph, then, both
the run time and the array storage exclusive of NPOOL vary linearly with K.
Because of the coeffiﬁient 2(N+NA), however, the storage increése with K
can be rather rapid.

Table I presents the run times for problems with different sized
graphs and K = 1,5,10,20, and Tabie II gives the corresponding array storage

requirements for the larger problems. The sample problem above is Problem 2.

13
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Table I

CDC 6600 Run Times for KSPTH

_ : . Run Times (secon&s)
Problem | NL-N-N3 | 05°% | ATes | Reglons :
- : , =1 | k=5 | K=10 | K=20
1 1-5-1 7 13- L 1 o.00k o.oiLL 0.030 | 0.055
2 3-3-2 8 | 15 3 |o0.003]0.014 | 0.028 | 0.055
3 5-1-2 8 16 2 10.005}0.013}0.026 | 0.052
4 2-6-2-| 1w 23 5 0.006 | 0.022 | 0.0k2 {0,084
5 4-8-2 | 14 | 3u 6 | 0.009]0.0320.068 |0.130
6 1-8-8 | 17 32 8 "] 0.011]0.035 | 0.072 | 0.132
7 1-10-8 19 Lo 8 0.015 { 0.043 | 0.089 {0.164
8 1-31-14 | 46 |} 112 20 0.060 | 0.167 | 0.321 [ 0.508
9 20-58-4 | 82 514 35 | 0.223]0.534 |0.971 | 1.748
10 30-120-5 | 155 | 656 82 ]0.637|1.061|1.686 |2.752
Table II
Arré.y ‘Storagé Réquirements
o NPL, dimension of NPOOL ' i
Problem Array Storage (decynal)
K=1 | kK=5| K=10 | k=20 K=1 K=5 K=10 K=20
7 4o 93 | 222 | ko2 511 1036 1755 3205
8 4o fu17 | 945 ['2886 | 1237| 2878 L4986 | 9087
Y ho 1yl | oy | 913 | k039 | 8958 |15,136 | 27,560
10 o 121 | 297 | 822 | 5715 {12,284 | 20,570 | 37,315




a¥alaXaNaXaNaXaaXeXeatatala¥eaNakeXa e iaNalaNaaNealaReaNa¥ataNaXaXa e NaXa Xa¥aNae!

6. Listings

sAWT yKBARS IFLAG)

)
4)9IPR(155)sI1CSVI(5)Y
1000) s IREG(8242) s

SUBROUTINE KSPTH(N1sN2sN3sNAsWsMRsI]
DIMENSTION W(1)sMR(I1)sTI(1)eJU(1)sAWT

[ ]
(
 COMMON IPERM(155)sITEMP(155) sNODE (155
1 LSVI(5)sJSVI(5)9125V(5)sIR3SV(5) 4NPOOL
2 X{(155420)sIMP(155420)sNP(29656+20)
" COMMON / A / IRsIR2sLJsLI2sMyM24112
COMMON / B / NMX(25)sLOWsISHFTsN12
DATA NMX /. 10H001X925149910H005X 92414 9910H009X 92314
10H013X922149910HC17X7211‘+9910H021X920149910H025X'9191499
10HC29X 91814991 0H033Xs1714s910H03TXs161499s10HN41X 1514,
10H045X 914149 910H049X 913149 910HO53X 912149 910HN5TX 91114y
1CHO61Xs1014ss10HD65X909T4s 910HO69X 908149 510H0T3X 0714
10HCGT7XsN6T4s s 10HOBLIX 905144931 0H085Xs0414s 310HOB89X 03145
1NH093X sN2 T4y s LOHNOTX 01144 /
K=TH SHORTEST PATHSs 1 LF. K LE. KRAR
SIMULTANEOUS SABOTAGE--ONE TEAM PER HARDWARE NODE.
GIVFN UNDIRECTED NODES AND ARCS WITH TIMF WEIGHTSs KSPTH FINDS THE
SHORTEST PATHS FROM OFF-SITE TO ALL NODES IN THE SABOTAGE GRAPHS
USING AN INWARD DIJUKSTRA-YEN SEARCHe = THEN THE HOFFMAN-PAVLEY-
DREYFUS ALGORITHM IS USED TO CBTAIN K~TH SHORTEST PATHS TO ALL
NODES FOR K=293seee sKBARs WHEN KBAR=1s ONLY SHORTEST PATHS ARE
OBTAINED. : :
INPUT ,
N1  NO. OF HARDWARF NODESe
N2 NO. OF RARRTFR NODFS.
N3 NO. OF BOUNDARY NODFES,
NA NOe OF ARCSe.
W NODF WEIGHT VECTORs DIMENSTIONFD N=N1+N2+N3,
"W IS CHANGFDe :
ARC DATA--FOUR NA VECTORSes -ARCS MUST BE LISTED REGION BY REGION.
FURTHERMOREs WITHIN EACH REGION HAVING P NODES THERE MUST
RE P#(P-1)/2 ARCS LISTED ROW BY ROW IN STRICTLY UPPER
TRIANGULAR FORM, THAT ISs (I1sI2)s (I1513)s eees (I1sIP),
(12913)' ee o (IZ’IP)’ (13914)9 o0 e 9 (IB,IP)' eo 0o .
(IPM1,1P),
MR REGION INDEX VECTOR.
IT NODF INDFX VECTOR.
JJ NODF INDEX VECTOR.
AWT ARC WEIGHT VECTORe AWT IS CHANGED. "
SUBROUTINF ITAD MAPS NODFE INDICES I AND J INTO THE ADPDRESS IAD
OF ARC(I,J) IN THE ARC LISTs THUS AVOIDING THE STORAGE OF AN
N BY N DISTANCE MATRIXe -
KRAR MAXIMUM VALUE OF Ke
OUTPUT
IFLAG

J
1
’
(

[0, 3NN I - UVRLN e

Ny NO OUTPUTs SEE MESSAGE.

1y NORMAL RETIRNS
THE FOLLOWING ARRAYS X IMP, NP AND NPQOL CONTAIN THC
ANSWERS. X HAS THE PATHK LENGTHS AND THE OTHER THREE ARRAYS
ARF USED TO CONSTRUCT THE PATHS. SUBROUTINE LKSP WILL
PRINT THE PATHS T0O EACH HARDWARFE NODE AND THEIR LENGTHS.

X DISTANCE LARELSe THE LARFL X(JsK) IS THFE LENGTH CF THF.

K-TH SHORTEST PATHS FROM OFF-SITE TO NODF J.
DIMENSTIONED (N=NI1+N2+N34XKRAR) o

IMP (JeK) 1S THE IMMEDIATE PREDECFS<SOR OF NODLDE J ALONG A K-TH
SHORTEST PATH FROM OFF~SITE TO NODE Je

15
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C .

10

15°

20

16

CHECK EACH REGION FOR TRIANGLE

DIMENSIONED (NsKBAR).

NP  NUMBER OF PATHS (OFf DISTINCTLY DIFFERENT LENGTHS) AMONG Tt
K SHORTEST PATHS FROM QFF-SITE 7O NODE J THAT END WITH

ARC(TI9J)e DIMENSIONED (24NASKBAR) S

SUBROUTINE IAD MAPS

I AND J INTO THE FIRST TWO SUBSCRIPTS OF NP{I12sIADsK)e
NPOOL A LINKED LIST IN WHICH ADDITIONAL PREDECESSORS MAY Bt

STORED WHEN NODE J HAS MORE THAN ONE.

THE LINK FROM

IMP(JsK) TO NPOOL(LINK) IS STORED IN THE LEFT 51 BITS OF

IMP(JsK)e SIMILARLYs IF THERE

Js THEN LINK1 FROM NPOOL (LINK)

IS A THIRD PREDECESSOR OF
TO NPOOL(LINK1) IS STORED
IN THE LEFT 51 BITS OF NPOOL(LINK])
I1F THE DIMENSION OF NPOOL IS CHANGED,

DIMENSIONED 100C

THEN THE THIRD

STATEMENT WHICH DEFINES NPLDP MUST BE CHANGED. NPLDP

IS THE NPOOL DIMENSION PLUS ONE. -
INCREASED TO MORE THAN 511 NODES,

IF THE DIMENSION N IS
THE VALUES OF LTEST,

. LOW AND ISHFT MUST BE CHANGLD TO ALLOW MORL THAN 9 BITS IN

" THE RIGHT OF fACH MACK-

WORK ARRAYS
IPERM  NODES WHERE DISTANCE LABELS X (Js1)
ITEMP NODES WHERE DISTANCE LARELS X{Jsl)

HAVE REFN MADF PERMANEN
ARE STILL TEMPORARY.

NODE REGION AND LOCAL NODE.- NUMBERS FOR FACH NODE.

DIMENSION (N+4) .

NODE(Is1)s NODE(I43) ARE- REGTON NUMBERS FOR NODE I,

NODE(I42)s NODE(I44) ARE CORRESPONDING LOCAL NODE NUMBERS.‘
DIMENSTONED

IREG REGION DATA CONCERNING ARCSe

(NOe REGIONSs 2)

IREG(Rs1) IS THE FIRST WORD ADDRESS MINUS ONE IN THE ARC

LIST OF THE ARCS OF RFGION R.

IREG(Rs2) IS THE NUMBER OF NODES
THERE ARE TREG(Rs2)*(IREG(Rs2)~1)/72 - ARCS

DATA EPSSRIG / 1e0F=13,1.0E321 /

DATA LTESTsLOWSISHIT / 10008777849 /

DATA NPLDP , 10901 /
TFLAG=1
OMEPS=1.0~-FPS
OPEPS=140+EPS
N12=N1+NMN2

N=N12+N?3

NMT =N-1

N1P=N1+1

N12P=N12+1

1CT=0
CTRFG=1

IREGP=18EG+1 .

IF(MR(IREG) oNFe MR(IREGP)) GO TO 52
LIKE=II(IREG) '

DO 10 1=1REGP,NA ,
IF(II(I) oNEe LIKE) GO TO 15
CONTINUF

GO TO 52

NM=1-1REG

IF(NM JLEes 1) GO TO 52
[12=TREG+NM

[END=12~)

NMT =NM-1

INEQUALITY ON ARC

IN REGION Rs IMPLYING

IN REGION R

WETGHTS



DO 50 I11=IBEG,IEND
AWTOM=AWT ( 11)*OMEPS
I13=11+1
DO 45 J=1sNMT
IF(AWT(I2)+AWT(I3) «GEe AWTOM) GO TO- 35 ‘
25  FORMAT(#* TRIANGLE#313% FAILS. ARC WEIGHTS-~%3E1545)
30 PRINT 255 T1(I1)sJJ(T1)sJdJ(I3)sAWT(IL1) sAWT(I2)sAWT(I3)
1CT=1 ) ’ .
GO TO 40
35 IF(AWT(I1)+AWT(I2) «LTe AWT(I3)*¥OMEPS) GO TO 30
IF(AWT(T1)+AWT(I3) «LTe AWNT(I2)#OMEPS)- GO TO 30
40 12=12+1 '
45 13=13+1
50 NMT=NMT=1
NM=NM-1
IREG=TEND+2
IF(NM +GEe 2) GO TOQ 20
52 IREG=IREG+]1
IF(IRER «LTe NA) GO TO 5
IF(ICT «EQe D) GO TO 55
IFLAG=0
RETURN :
C  COMRINE NODE WEIGHTS INTO ARC WFIGHTS
55 DO 65 T=N1PsN12 . '
W(TI)=0e5%¥W(I)
65 CONTINUE
DO 68 IA=14NA
I=11(1A)
J=JJ(1A) ‘
AWT(TAY=AWT (TAY+W{T)+W(J)
68. CONTINUF
C SET THE ARRAYS NODEs IREGe
DO 70 T=1,N
NODF (I151)=0
70 NODF (153)=0
L=1
72 K=1"
IR=MR (L)
IREG(IR,1)=L~-1
I=11(L)
IF(NODF(Is1) +FQe 0) GO TC 73
NODE(1+3)=1IR ,
NODF (T1s4)=K
GO TO 74
73 NODE(TI,1)=1IR
NODF (T'92) =K
74 K=K+1
J=JJlL)y
IF(NODE(Js1) «EQe 0) GO TO 75
NODE(Js3)=1R
NODE( Js &) =K
GO TO. 76
75 NODE(Js1)=1R
NODE (Js2)=K
76 © TF(L «FQe NA)Y 6O TO 77
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77

L=L+1

IF((]I «FQe II(L)) 4ANDs (IR oFQe MR(L))) GO TO 74

IREG(IR»s2) =K
L=L=K+K*(K-1)/2+1

IF(L «LEe NA) GO TO 72
IREG(IRs21)=K

C DIJKSTRA-YEN SEARCH INWARD.‘
C INITIALIZF,

125

127

DO 125 1=1sN12
X(I+1)=BIG
ITEMP(T1) =1

CONT INUE

PO 127 T=N12P,N

X(Te1)=0Ce0

ITEMP(1)=1
CONT INUE
IPL=1

L=1

c PERMANENTLY LAREL NODE Ne

IPERM({1) =N

~I=N

IR=NODE(T41)

LJ=NODE(142)

M=TREG(TIRs1)+(LJ~ 1)*IRFP(IR 2)—LJ*(LJ+1)/2
IR2=0

K=NM1

V=B16

C TREAT EACH TENPORARILY LABELED NODE.

C v
130

300
301
302

305
310

320

IS THE SMALLEST SUCH LAREL.
DO 140 IT=1sk

J=ITEMP(IT)

IAR=IAD( J)

IF(IAR «FQe. 0O) GO TO 1735
DTJ=AWT (TAR)

Z=X{1s1)4DIJ
XJPEPS=X(Jys1)*0OPEPS

IF(Z «GTe XJPEPS) GO TO 135
XJIJMFPS=X(Js1)*#OMEPS

[F{Z «thFe XJMFPS) GO TO 300
X(Jel)=Z :

IMP(Js1)=1

GO TO 135

"IF(IPL-NPLDP) 305,+302+340

FORMAT (* NPOOL NEEDS TO STORE MORE LINKS*)
PRINT 301

GO TO 340

NPRED=IMP(Js1)

IF(NPRED «LTe LTEST) GO TO 329
LINK=SHIFT(NPREDs ~1SHFT)
NPRED=NPOOL (L INK)

GO 70 310

NPOOL(IPL) =1

I1=SHIFT(IPLy ISHFT) «ORe NPRED
IF(NPRED «EQe IMP(Js1l)) GO TO 320
NPOOL{(LINK)=T1




C

C

330
340
135

140

145

155

C.

225

230

231

237

C

235

GO TO 1347

IMP(Jsl)=11

IPL=IPL+1

IF(X(Js1l) o«GEe V)Y GO TO 140
V=X(Js1)

IP=J

IQ=1T

CONTINUE .

IF(V «NEes BIG) GO TO 155
IFLAG=0

FORMAT ( #*NSOME NODE HAS NO PATH FROM THE BOUNDARY.*)
PRINT 145

RFTURN

-

NODE IP IS TQ BE PERMANENTLY LABELED.

v=RIG

L=L+1

IPERM(L)=IP

1=1P

IR=NODF(T41)

LJ=NODE(T42)
M=IREG{IR1)+(LJ-1)*IREG(IRy2)-LJI*(LI+1) /2
IR2=NODF (T1+3)

LJ2=NODE(Is4) .

IF({IR2 «NEe 0) M2=IREG(IR2 1)+ (LJ2-1)*IREG(IR2s2)-LJ2*(LI2+1)/2
ITEMR(IQ)Y=TTEMP(K)

K=K-1

IF(K «GTe 0) GO TO 130

ALL NODES ARE PFRMANENTLY LABELED.
STORE THF SHORTEST PATH DATA,.

NO 225 1=142
DO 225 TA=1sNA

"NP(TslAs1)=0

DO 235 J=1sN12

"IR=NODE(Js1)

LJ=NODE (Js2)

IR2=NODE (Js3)

LJ2=NODE(J &) :
M=IREG(IRs1)+(LJ-1)*#TREG(IRs2)=LJI*(LLU+1)/2 A
IF(IR2 oNEe Q) MP2=IREG(IR2s1)+{(LJ2-1)*¥IREG(IR2,42)-LJ2¥(LJI2+1)/2
NJ=IMP(Js1) -

I=NJ «ANDe LOW

[AR=IAD(T) ‘ 6

IF(TAR «NF, N) GO TO 232 '

FORMAT(#NIR OR IR2 IS WRONG IN FUNCTION IAD#1215)
PRINT 2319IReIR29sT9JslLJsLJ29MsM29(NODE(TsL)oL=194)
IFLAG=0 » . )

RE TURN

NP{T172«TARs1)=1

IF(I «FQe NJ) GO TO 235

LINK=SHIFT(NJy —-ISHFT)

NJ=NPOOL (L INK)

GO TO 230

CONTINUE

IF(KBAR «LTe 2) RETURN

‘K=TH SHORTFST PATHS, K GTe 1le HOFFMAN—PAVLEY-DREYFUS.ALGORITHM.
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PO 370 K=2,KRAR
C INITIALIZE FOR K-TH STAGF.
KM1=K-1
NO 237 I=1,2
DO 237 IA=1,NA
237 NP(IlsIAsK)I=NP(IsIAsKM1)
DO 240 J=1sN
240  X(JsK)=BIG
C TREAT NODES J IN ORDER OF INCREASING DISTANCE FROM OFF-SITE.
L=N3+1
. 245  J=IPERM(L)Y
C STORE ALL NEIGHBORS OF J IN ITEMP.
IR2= NODF(J;I)
NN=0
DO 260 KK=142
IF(IR2 +EQs 0) GO TO 260
IREG=IRFG(IR2s1)+1
IEND=IREG+IREG(IR242) =2
IF(TTUIRFG) oFD. -J) 6O TO 250
NN=NN+1
IvaP(NN)-IT(IHFh)
250 DO 255 KKK=IRFGsIFND
IF(JJ(KKK) «EQe J) GO TO 255
NN=NN+1 , '
ITEMP (NN)=JJ(KKK)
255 CONTINUE
260 IR2=NODE(Js3)
.. IR=NODE(Js1)
LJ=NODF(Js2)
LJ2=NODE(Js4)
M=IREG(IRs1)+(LJI- 1)*IRFG(IR,2)—LJ*(LJ+1)/2
IFIIR2 o«NF, 0) M2=IREG(IR2s1)+(LJ2~ 1)*IREG(IR292)—LJ2*(LJ2+1)/2
C USE EACH NEIGHBOR OF J TO ATTEMPT A REDUCTION OF X(JsK)e -
C WHENEVER A REDUCTION OCCURS STORE THE NEIGHBROR I IN IMP(JsK) OR
C NPOOL o .
NN 35% TT=1«NN
I=ITEMP(IT)
IAR=TIADI(T) _ :
IF(IAR oNE. 0) GO TO 262
PRINT 231sIRsIR29T9J9LJalLJ2aMeM23 (NODE(]sL)sL=154)
IFLAG=0
. RETURN
262 12=NP(I112+s1ARsK)+1
Z=X(TsI2)+AWT(IAR)
XJPEPS=X(JsK)*OPEPS
TF(7 aGTa XJPFPS) GO TO 355
XJMFPS=X(JsK)*OMFPS
IF(Z «GEe XJMFPS) GO TO 265
X(JaK)=2Z :
264 IMP(JsK)=1
GO TO 355 .
265 " IF(X(JsK) +FQe BIG) GO TO 264
IF(IPL=NPLDP) 2754270295
270 . PRINT 301
A0 TO 295

20



275
280

290

295

255
C

360

365

370

NPRED=IMP(JyK) o
IF(NPRED oLTe LTEST) GO TO 285
LINK=SHIFT(NPREDs —ISHFT)
NPRED=NPOOL (L INK) S

GO TO 280N

NPOOL (IPL) =1 .
I1=SHIFT(IPLsISHFT) «ORe NPRED

"IF(NPRED «EQ. IMP(JsK)) GO TO 290
‘NPOOL(LINK)=T1 "~
‘GO TO 295 L

IMP(JsK)=11
IPL=IPL+]
CONTINUE

ADD ONE TO NP FOR EACH NEIGHBOR I THAT MINIMIZED X(JsK) e

NJ=IMP({JsK)

I=NJ «ANDS LOW

IAR=TAD(])

IF{TAR «NFE, N) GO TC 1362 .

PRINT 2319IR9IR29I9J9LJ9LJ2;M9M?9(NODE(I9L)9L 194)
IFLAG=0O.

" RFTURN

NP(T112sTARY K)-NP(I]79IAR9K)+1
IF(1 «FQ. NJ) GO TO 365
LINK=SHIFT(NJy —ISHFT)
NJ=NPOOL {LINK) =

GO TO 36N

TF(L «GFe N) GO TO 37D

=L+

GO TO 245
CONTINUE

RFTURN

END
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FUNCTION IAD(I) A
COMMON TPERM(155) s 1TEMP(155) sNODE(15544)sIPR({155)9ICSV(5),
1 LSVI5)sJSVI5)s125VI(5)9IR3SV(5)sNPOOL(1000) sIREG(82+2)
2 X(155+20)9IMP(155+20) sNP(2+656+20) ‘
COMMON / A 7/ TRsIR2sLJsLJI29MsM2,4112
I IS AN ARGUMENT TO FUNCTION IADe J IS AN IMPLICIT ARGUMENT--IR,

IR2y LJs. LJ2s M AND M2 ARE DETERMINED RY J AND SET BFFORE CALLING

IAD. ,
IF NODES I AND J ARE NOT ADJACENT, THEN IAD=0es OTHERWISEs IAD IS
THE ADDRESS OF ARC(I14J) IN THE ARC LIST. IN ADDITION, THE INDEX
112 OF COMMON /A/ 1S SET TO 1 IF THE LOCAL NODE NUMBERS SATISFY
LI LTe LJ AND 2 OTHERWISE.
IF(NODE(Is1) «NEe IR) GO TO 5
"LI=NODE(1,42) ’ '
GO TO 10
IFINONF(T43) ¢NEe IR) GO TO 20
LY=NODF (] +4)
IF(LJ «GTe LIY GO TU 15
IAD=M+L1
112=2
RF TUIRN :
IAD=TREG(IRs1)+(LI-1)*IRFG(IRs2)~LI*(LI+1)/2+LJ
112=1 ’
RETURN o
IF(NODE(Is1) oNFEe IR2) GO TO 25
LI=NODE(142)
GO TO 30
IF(NODE(Is3) «NEe IR2) GO TO 50
IF(IR2 «FQe 0) GO TO 50
LI=NODE(1s4) :
IF(LJ2 «GTe LI) GO TO 35
IAD=M2+L1 :
[12=2
RE TURN ,
TAD=IREG(TR2s1)+(LI-1)*#IREG(IR292)-LI*(LI+1)/2+LJ2
112=1 S ‘
RETURN
IAD=0
RE TURN
END
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SUBROUTINE LKSP(N1sKBARSMRILAG)
COMMON IPERM(155)sITEMP(155) sNODE(15594) 9 IPR(155)sICSVI(5)
1 LSV(5)sJSVIB)sI25VIH)sIR3S5V(5)sNPOOL(1000) sIREG(82+2)
2 X(155420)sIMP(155420)sNP(2+656420)
COMMON / A / IRIR2sLJsLI2sMsM2,112
COMMON / R / NMX(ZS),LOV9ISHFT9N12
DIMFNSION TVAR(4) sMR(1)
DATA IVAR / 32H(1XsF1245, 714X s2514)) /
DATA LTOP,ICTOP / 54155 / : :
LIST THE K-TH SHORTEST PATHSs 1 LEe K LEe KBARs, FROM OFF-SITE TO
EACH HARDWARE NODEe PATHS ARE GIVEN AS A NODE SEQUENCE FROM
HARDWARE THROUGH BOUNDARY.
LAG = 0 MEANS TO PRINT ALL THE KBAR PATHS.
1 MEANS TO PRINT ONLY THE PATHS WHICH CONTAIN mo TWO ADJACENT
: ARCS IN THE SAME REGION.
NO 25 IH=14N1
DO 20 K=1,KRAR
L=0
I=1H
1C=1
1P=N
IPR(1)=1
12=K
IR4=0
IR3=[R4
J=1
NPRED=IMP({Js12)
[=NPRED +ANDes LOW
1C=1C+]
[F(IC «LFe ICTOP) GO TO 9
FORMAT(* PATH LONGER THAN*Is* [INCREASE DIMENSION. OF IPR AND VALUE
1 OF 1CTOP*) ~
PRINT B41CTOP
GO TO 18
IPR(IC) =1
IF(I «EQe NPRED) GO TO 11
=L+1
IF(L oLEes LTOP) GO TO 35
FORMAT (* STACKING REQUIRES MORE THAN%I15% INCREASE DIMENSION OF IC
1SVs LSVs JSVs 125V, [R3SV AND VALUE OF | TOP¥)
PRINT 30,LTOP
RETURN
Jsvi(L)=J :
LSVIL)Y=SHIFT(NPREDs —ISHFT)
ICSVIL)Y=1C-1
125VI(LY=12
IR3SV(L)=IR3
IR=NODFE(Js1)
LJ=NODE(Js2)
IR2=NODE (Js3)
LJ2=NODE(Js4)
M=TREG(IRs1)+(LJ- 1)*IREG(IR’2)—LJ*(LJ+1)/2
IF(IR2 oNEe 0) MP=IREG(IR2 1)+ (LJ2-1)#*IREG(IR242)-LJ2*(LI2+1)/2
IAR=TADI(1) -
IF{IAR «NFes 0) GO TO 13
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FORMAT (*OFROM LKSP IR OR IR2 IS WRONG IN FUNCTION IAD¥*1215)
PRINT 125IRsIR2sTsJsLJslJ2sMeM2y (NODE(TsLL) sLL=154)

RETURN, .
IF(LAG +EQe 0) GO TO 14
IR4=MR(TAR)

JF(IR4 «FQe IR3).GC TO 18

IF(T «GTe N12) GO TO 15
I2=NP(112+1ARsI2)

GO TO 5 :
TPP=MINQO{IP+1,425)
IVAR(2)=NMX(TPP)

PRINT IVARSX(THsK) s (IPR(KK)9sKK=IPP,IC)
IF(L «F@s 0) GO TO 20
J=JSVI(IL)

LINK=LSVI(L)

[C=1C5V (L)

[2=125VvI{L)

IR3=IR35VI(L)

IP=1IC '
NPRED=NPOOL (L INK)

L=L-1

GO TO 10

CONTINUE

"CONTINUE

RETURN -
END
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