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EXECUTIVE SUMMARY 

1. Introduction 

on Contract DOT-OS-40093, "Improved Wheel and Rail Performance via Control 
of Contact Stress." The general s t a t e  of the a r t  prior to  the beginning 
of the project has been summarized i n  the report " A  Review of Rail-Wheel 
Contact Stress Problems," by B. Paul, FRA-OR&D 76-141, PB251238IAS, April 1975. 
The present report gives the detailed mathematical theory of a new approach 
to  the higherto unsolved problem of f i n d i n g  the s t resses  between two closely 
f i t ted o r  ''worn-in" metall ic surfaces, such as a moderately worn wheel and r a i l .  
Before applying the general technique to  the wheel-rail problem i t  i s  essen- 
t i a l  to check i ts  val idi ty  w i t h  simpler geometries such as closely f i t t i n g  
cy1 inders and spheres, where previous experimental and approximate 
analytical solutions exis t .  

This i s  the f inal  report for  Phase I ( f i r s t  year) of a two year e f fo r t  

2.  Problem Statement 
The overall objective of the contact i s  t o  generate a method for  

calculating the contact s t resses  between a rb i t r a r i l y  profiled wheel and r a i l s .  
I n  this report a general approach t o  the problem is  formulated, and applied 
t o  two specif ic  geometries: ( a )  a cylinder pressed against a closely f i t t e d  
cylindrical seat  and ( b )  a sphere pressed against a closely f i t t e d  spherical 
socket. 
of a small defect such as a corrosion p i t  are calculated f o r  the case of 
a sphere. 

3. Results Achieved 

s t r e s s  theories fo r  nonconformal contact a re  not adequate. 
general numerical method of solution f o r  three "dimensional, f r i c t ion le s s ,  
conformal, e l a s t i c  contact problems is  presented fo r  the f i r s t  time. The 
method i s  used to  analyze the conformal contact of a sphere indenting a 
spherical seat  and a cylinder indenting a spherical seat .  The resu l t s  of the 
sphere-spherical seat  problem compared well w i t h  experimental data and are  
s ignif icant ly  more accurate than those of a previously published attempt t o  
solve the problem. Results of the cylinder-cylindrical sea t  problem were i n  
close agreement to  a known approximate solution o f  this problem and agree well 

In addition, the stress concentrations induced by the presence 

Since worn wheels and r a i l s  contact 'conformally, the existing contact 
I n  t h i s  report a 

EXEC. -1 



w i t h  an e x i s t i n g  p h o t o e l a s t i c  experiment. For both analyses, r e s u l t s  compared 
favorably  w i t h  Her tz ian  theory f o r  the  l i m i t i n g  case o f  smal l  con tac t  regions. 

A method i s  g iven f o r  d e f i n i n g  t h e  boundaries o f  t h e  l a r g e  contac t  regions, 
and f o r  s o l v i n g  the  associated governing s i n g u l a r  i n t e g r a l  equat ion o f  t h e  f i r s t  
k ind.  
t r u e  three-dimensional con tac t  reg ion.  

connected contac t  reg ion  i s  solved; namely, t h e  case o f  two spheres i n  con- 
t a c t  where one o f  them has a sur face d e f e c t  o r  p i t .  
capable o f  d e t e c t i n g  extremely steep grad ien ts  i n  s t r e s s  a t  t h e  de fec t .  

A general i t e r a t i v e  procedure i s  developed which converges t o  t h e  

I n  a d d i t i o n  t h e  s o l u t i o n  t o  a non-Hertzian contac t  problem w i t h  a m u l t i p l y  

The method developed was 

4. U t i l i z a t i o n  o f  Resul ts 

of  wheel and r a i l  could l e a d  t o  s u b s t a n t i a l  advances i n  t h e  s o l u t i o n  o f  several  
key problems i n  r a i l r o a d  technology. Examples i n c l u d e  wheel screech, f lange 
impact noise, wheel and t r a c k  wear and f a t i g u e  f a i l u r e s ,  d e t e r i o r a t i o n  o f  
r i d e  q u a l i t y  and poss ib le  dera i lment  due t o  l a t e r a l  and l o n g i t u d i n a l  s l ippage, 
increase o f  headway (and l o s s  o f  economic capac i ty )  due t o  adhesion l i m i t s  
i n  bra k i  ng and accel  era ti on. 

and those doing research and development work i n  t h e  areas o f  wheel and 
r a i l  f a i l u r e s ,  r a i l - c a r  dynamics, r ide-comfor t ,  and sa fe ty .  ' 

B e t t e r  understanding o f  t h e  contac t  s t r e s s  d i s t r i b u t i o n  a t  t h e  i n t e r f a c e  

The r e s u l t s  o f  t h e  research has p o t e n t i a l  f o r  wheel and r a i l  designers, 

5. Conclusions 

a d d i t i o n  t o  t h e  generat ion o f  a comprehensive survey r e p o r t  on w h e e l - r a i l  
con tac t  s t ress  phenomena, t h e  work repor ted  on h e r e i n  s u c c e s s f u l l y  t e s t e d  t h e  
v a l i d i t y  o f  a new method f o r  f i n d i n g  contac t  s t resses between c l o s e l y  f i t t e d  
curved surfaces such as c y l i n d e r s  and spheres. 
precursor  t o  t h e  s o l u t i o n  of t h e  more compl icated geometr ical  c o n f i g u r a t i o n  
o f  w h e e l - r a i l  in ter faces,  which i s  t h e  s u b j e c t  o f  Phase I o f  t h i s  research 
p r o j e c t .  

The o b j e c t i v e s  s e t  f o r  Phase I o f  t h e  research have been achieved. I n  

This  work i s  a necessary 

Q 

n 
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1.  INTRODUCTION 

The very large contact s t resses  which ex is t  between r a i l s  and conven- 

tional wheels may be calculated by Hertz's analysis when the wheels are  new, 

and  the area of contact i s  small. However, when the wheels are  worn, or are  

i n i t i a l l y  fabricated w i t h  so-called preworn prof i les ,  the contact area will 

be too large for  the Hertzian analysis to  be valid. 

l a t t e r  case of so-called conformal e l a s t i c  contact, there i s  no currently 

available method fo r  accurately pFedicting contact s t resses .  

therefore undertaken the task of developing general methods for the deter- 

mination o f  contact regions, surface deformations, approach', and interfacial  

pressures i n  conformal ( i .e .  closely f i t t i n g )  e l a s t i c  bodies. In this 

work we report upon the numerical method developed to  date,  and show how 

i t  may be applied t o  the case of conformal cylinders, o r  spheres. 

I n  f a c t ,  for  t h i s  

We have 

2 

Contact problems can be classif ied into the following two categories: 

i) 

i i )  

Problems where one body i s  e l a s t i c  and the other i s  rigid 

Problems involving two e l a s t i c  bodies 

In the f i r s t  c lass  of problems, termed "punch'' problems, the 

'The approach" i s  defined i n  contact mechanics as the displacement of 
a point i n  one body re la t ive  to  a point on the other body, where both.points 
a re  f a r  removed from the region of contact.  

'The essent ia ls  of this work const i tute  the Ph.D.  d isser ta t ion of 
W .  Woodward a t  the University of Pennsylvania, 1976. 

1 
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I n  t h e  second c lass,  termed e l a s t i c  con tac t  reg ion  i s  known a - p r i o r i .  

con tac t  problems, t h e  contact  reg ion  i s  i n i t i a l l y  unknown and must be 

determined. The f i r s t  w i d e l y  acclaimed s o l u t i o n  t o  a con tac t  problem 

was t h a t  publ ished by H. Her tz  [18811 i n v o l v i n g  t h e  e l a s t i c  con tac t  o f  

f r i c t i o n l e s s  bodies w i t h  quadra t i c  surfaces. H e r t z ' s  s o l u t i o n  i s  

centered around t h e  assumption t h a t  t h e  dimensions o f  t h e  con tac t  

reg ion  a re  small  compared t o  t h e  r a d i i  o f  cu rva tu re  o f  t he  bodies. 

Problems f o r  which t h i s  assumption i s  Val i d  a re  termed "nonconformal" 

o r  "counterformal"  con tac t  problems. 

found t o  date a re  o f  t h i s  type. 

t o  t h i s  assumption a r e  termed "conformal." Fo l lowing Hertz, s o l u t i o n s  

t o  punch problems were analyzed by several  Russian authors such as 

M u s k h e l i s h v i l i  [19633. For d e t a i l e d  accounts o f  these problems t h e  

reader i s  r e f e r r e d  t o  t h e  e x c e l l e n t  reviews o f  t h i s  work by L. A .  

G a l i n  [1961] and A. I .  Lure [1964]. Recently, e l a s t i c  con tac t  prob- 

lems i n v o l v i n g  f r i c t i o n  and dynamics have a l s o  been analyzed. I n  a 

recen t  p u b l i c a t i o n ,  Kalker [19751 categor izes t h e  s o l u t i o n s  t o  date 

and i d e n t i f i e s  t h e  areas w i t h i n  con tac t  mechanics which need 

i n v e s t i g a t i o n .  His  comparison reveals  t h a t  t h e  areas i n v o l v i n g  

f r i c t i o n ,  p l a s t i c i t y ,  v i s c o - e l a s t i c i t y  and l a r g e  deformat ions a r e  i n  

most need o f  study. 

contact  problems i n  h i s  survey. 

theorem o f  K i r c h o f f  ( n o t  intended f o r  con tac t  problems) was extended 

o n l y  r e c e n t l y  t o  i n c l u d e  general f r i c t i o n l e s s ,  e l a s t i c  con tac t  problems 

Most s o l u t i o n s  t h a t  have been 

I n  con t ras t ,  problems n o t  r e s t r i c t e d  

Kalker does n o t  rev iew t h e  a n a l y s i s  o f  conformal 

It should be noted t h a t  t h e  uniquerress 

by Kal ke r  [1971]. 
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This dissertation centers on providing a general numerical 

method o f  solution to conformal frictionless contact problems. The 

literature in the areas mentioned above is far too comprehensive to 

review in this brief introduction, instead the interested reader is 

referred to the aforementioned surveys. The remainder of this dis- 

cussion will be devoted to a more detailed discussion of the existing 

numerical solutions and the limited literature on conformal contact 

problems. 

With the advent o f  the digital computer several numerical 

techniques have been developed t o  analyze a more general class o f  con- 

tact problems. Conry and Seireg [1971] have examined elastic contact 

in terms of a linear programming model. 

scope, however, the only examples which were analyzed were Hertzian or 

one dimensional beam problems. 

Their method is general in 

Kalker and van Randen 119721 derived a variational principle 

for both linear and non-linear elastic contact problems. 

of linear elasticity the principle takes the form o f  an infinite 

dimensional convex quadratic programming problem. They successfully 

solved both a Hertzian and non-Hertzian problem. 

t h e  solution yielded accurate values of approach, maximum pressure and 

applied force; however, the actual contact area was not determined with 

great accuracy. 

For the case 

It was concluded that 

Finite element techniques have also been adapt+ to solve 

contact problems by Chan and Tuba [19711 and more recently by Chaud, 

Haug and Rim [19741. Both methods are general in that they are 



4 

reported to be able to handle problems which fall into the domain of 

finite element analysis such as analyzing non-isotropic, 

non-homogeneous media or problems with plasticity and creep, however, 

both works report only examples which are composed of isotropic 

materials stressed within the range of linear elasticity. 

Tuba and Chan compare their computed results to photo elastic 

studies and concluded that trends were identical but the results lacked 

close agreement. 

human knee joint and the contact between two half spaces where one 

half space has three bumps on the surface. 

Chaud et al, analyzed the non-Hertzian problem of a 

The contact area in the 

latter case found in photo elastic studies had good general agreement 

with their computed results. 

A general method of solution of non-Hertzian, non-conformal 

elastic contact problems was developed by Singh and Paul [19741. 

considered the. classical contact criterion (which includes that of 

Hertz) for arbitrary surface geometries. 

They 

In order to solve the 

governing integral equation of the first kind, which belongs to the 

class of " i l l  posed" or "Hadamard incorrect'' problems, they introduced 

three different numerical schemes. The first "simply-discretized, 

method" was found to be relatively unstable for the particular problems 

they investigated. In order to overcome this difficulty, Singh and 

Paul [1973-741 introducedtwo other methods of solving i l l  posed 

integral equations, called the "Redundant Field Point method" and 

the "Functional Regularization method"; the latter of which is based 

on Tychonov's regularization procedure. 



i n t e g r a l s  o f  t he  

5 

I n  c o n t r a s t  t o  counterformal problems a r e  those of t he  

"conformal" type; i.e., those where the  dimensions o f  t he  contac t  

reg ion  can be l a r g e  compared t o  the  smal les t  r a d i i  o f  curva ture  o f  t h e  

con tac t i ng  bodies. R e l a t i v e l y  few s o l u t i o n s  t o  conformal cQn tac t  

problems have been publ ished. 

problems, known t o  the  author,  fo l lows.  

A b r i e f  summary o f  a l l  e l a s t i c  conformal 

An e l a s t i c  sphere i nden t ing  an e l a s t i c  seat has been so lved by 

Goodman and Keer [19651. 

contac t  up t o  20 degrees and prov ide  exper imental  r e s u l t s  which 

genera l l y  agree w i th  t h e i r  so lu t ions .  Improvements t o  the  Her t z ian  

theory  a re  d iscussed-- in  p a r t i c u l a r ,  t he  problem which a r i s e s  when one 

t r i e s  t o  i nc lude  terms o f  h igher  o rder  than those used i n  the  " h a l f  

space s o l u t i o n "  ( o f  Boussinesq) which i s  fundamental t o  the  Her t z ian  

s o l u t i o n .  I t  i s  noted t h a t  t he re  a re  h igher  o rder  terms i n  the  exact  

f o rmu la t i on  o f  t he  sphere problem which do n o t  appear i n  the  formula- 

t i o n  if the  h a l f  space assumption i s  used w i thou t  t r u n c a t i n g  terms. 

These terms a r e  p a r t i c u l a r  t o  the  spher ica l  geometry. 

j u s t i f y  t h e i r  extens ion o f  the  Her tz ian"  theory  through ana lys i s  o f  

these second order  terms. 

They present  r e s u l t s  f o r  the  h a l f  angles of 

Goodman and Keer 

7 .  

The conformal contac t  o f  an e l a s t i c  c y l i n d e r  i nden t ing  a 

c y l i n d r i c a l  seat was f i r s t  analyzed by Sjtaerman [1940] and more 

r e c e n t l y  by Persson [1964]. 

t i c a l  "con tac t  c r i t e r i o n "  b u t  both proceeded i n  d i f f e r e n t  ways t o  so l ve  

the  equation. 

Sjtaerman and Persson der ived  the  iden- 

Sjtaerman formulated t h e  displacements i n  terms of 

n f luence func t i ons  and used f i n i t e  d i f f e r e n c e  
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techniques t o  so lve  the  r e s u l t i n g  i n t e g r a l  equat ion f o r  t he  unknown 

pressure d i s t r i b u t i o n .  On the  o the r  hand, Persson assumed the  con tac t  

reg ion  t o  be c y l i n d r i c a l  i n  shape and formulated the  c r i t e r i o n  as an 

i n t e g r o - d i f f e r e n t i a l  equat ion from which he found a n a l y t i c  expressions 

f o r  the  pressure f i e l d .  

be l ess  accurate, poss ib l y  because he pub l ished be fore  t h e  d i g i t a l  

computer was invented and may have been ‘ forced t o  use a too  crude 

f i n i t e  d i f f e r e n c e  mesh. 

The e a r l i e r  s o l u t i o n  o f  Sjtaerman appears t o  

Recently, a number o f  problems i n v o l v i n g  a d i sc  i n  an i n f i n i t e  

p l a t e  under tens ion  have been so lved by f i n i t e  element techniques. 

Chan and Tuba [1971] analyzed a p l a t e  under tens ion  w i t h  a sh r ink  f i t  

d i sc  l oca ted  i n  the  center .  

agreement between t h e i r  computed values o f  c i r c u m f e r e n t i a l  s t ress  and 

t h e  exact  so lu t i on ,  however, t h e r e  i s  a l a r g e r  discrepancy between the  

computed va lue of compressive s t ress  and the  exact  s o l u t i o n .  

t he  compressive s t ress  on each body f o r  any one angle does n o t  i n  

general agree. 

They present  r e s u l t s  which show good 

I n  f a c t  

Chaud e t  a1 [1974] have analyzed the  problem o f  a p l a t e  under 

tens ion  w i t h  e i t h e r  a loose o r  f u l l  i nc lus ion .  They show good agree- 

ment between t h e i r  p red ic ted  contac t  s t ress  and exper imental  r e s u l t s  

f o r  a contac t  angle o f  20 degrees. 

The goal o f  t h i s  research i s  t o  develop a general method o f  

ana lys i s  fo r  f r i c t i o n l e s s ,  conformal contac t  problems. I n  p a r t i c u l a r ,  

t h e  method developed i s  t o  be used i n  f u t u r e  research on the  ana lys i s  

o f  i n t e r f a c i a l  con tac t  s t resses between a r a i l w a y  wheel and r a i l .  The 
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concepts o f  Her tz 's  c l a s s i c a l  geometric fo rmula t ion  o f  t h e  contac t  

c r i t e r i o n  a r e  extended t o  non-pl anar surfaces r e s u l  t i ng i n  a s i n g u l a r  

i n t e g r a l  equat ion o f  t h e  f i r s t  kind. 

i d e n t i f y i n g  t h e  i n f l u e n c e  func t ions  f o r  sur face p o i n t  displacements 

i n  t h e  r e g i o n  o f  t h e  contac t  area. 

i n f l u e n c e  f u n c t i o n s  i s  developed and t h e  accuracy o f  t h e  generated 

f u n c t i o n s  i s  shown t o  be good f o r  those cases where a n a l y t i c  s o l u t i o n s  

The s o l u t i o n  i s  dependent on 

A numerical appraoch t o  generat ing 

a r e  known. The simply d i s c r e t i z e d  method o f  Singh 

used f o r  s o l u t i o n  o f  t h e  i n t e g r a l  equation. The s 

fo rmula t ion  were compared t o  H e r t z ' s  s o l u t i o n s  f o r  

v o l v i n g  small  con tac t  regions. 

The r e s u l t s  o f  t h e  present general method 

a v a i l a b l e  a n a l y t i c  s o l u t i o n s  t o  s p e c i f i c  problems 

and Paul [19731 was 

l u t i o n s  us ing t h i s  

l i m i t i n g  cases i n -  

a re  compared t o  

n v o l v i n g  t h e  contac t  

o f  an e l a s t i c  c y l i n d e r  i n  seat and a sphere i n  seat. 

I n  add i t ion ,  a s o l u t i o n  was found t o  a noncomformal problem 

w i t h  a m u l t i p l y  connected contac t  region. The proper boundary 

i t e r a t i o n  which i s  necessary t o  a r r i v e  a t  a unique s o l u t i o n  i s  

developed and discussed. 

sphere i n  contac t  w i t h  a sphere. 

on t h e  contac t  s t r e s s  are  i - l l u s t r a t e d .  

The s p e c i f i c  example analyzed i s  a p i t t e d  

The s i g n i f i c a n c e  o f  p i t  geometries 

I n  summary, t h e  main .cont r ibu t ions  o f  t h i s  d i s s e r a t i o n  are:  

1. A general numerical method f o r  s o l u t i o n  o f  f r i c t i o n l e s s  conformal 

e l a s t i c  con tac t  problems i s  presented 
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2. Numerical i n f l u e n c e  func t i ons  needed f o r  s o l u t i o n s  o f  problems 

w i t h  c y l i n d r i c a l  and spher ica l  sur face geometries were generated 

and t h e i r  accuracy was v e r i f i e d  by comparison t o  exact  a n a l y t i c  

so lu t i ons  when they e x i s t e d  

I n  i t s  a p p l i c a t i o n  t o  the  s p e c i f i c  problems o f  a sphere i nden t ing  

a spher ica l  seat and a c y l i n d e r  i nden t ing  a c y l i n d r i c a l  seat, i t  

was shown t h a t  t h i s  method produces accurate values o f  con tac t  

pressure approach, displacements, s t r a i n s  and app l i ed  f o r c e  

The problem o f  a p i t t e d  sphere i nden t ing  a sphere was solved f o r  

the  f i r s t  t ime and the  appropr ia te  boundary i t e r a t i o n  f o r  

mu l t  p l y  connected con tac t  reg ions was es tab l i shed  

3. 

4. 

Chapter 2 conta ins  a b r i e f  rev iew o f  t he  prev ious non- 

conforma methods o f  s o l u t i o n  presented by Singh and Paul [1973-743. 

The conformal contac t  theory  which i s  t h e  bas is  o f  t h i s  work i s  

formulated i n  chapter  3. 

a r e  necessary t o  the  s o l u t i o n  o f  t he  sphere and c y l i n d e r  problems i s  

discussed i n  chapter  4. 

examples o f  a sphere i nden t ing  a conformal spher ica l  seat and a c y l -  

i nde r  i nden t ing  a conformal c y l i n d r i c a l  seat  respec t i ve l y .  A con tac t  

problem i n v o l v i n g  a m u l t i p l y  connected con tac t  reg ion  i s  so lved i n  

chapter 7. The conclusions o f  t h i s  work a r e  presented i n  chapter  8. 

The generat ion o f  i n f l u e n c e  func t i ons  which 

Chapters 5 and 6 con ta in  s o l u t i o n s  t o  the  

Q 

r 



2. FORMULATION AND SOLUTIONS FOR NON-CONFORMAL CONTACT PROBLEMS 

2.1 Introduction 

The basic equation for non-conformal contact theory is 

developed in this chapter along with a method of solution. 

[18811 has shown that the governing equation is an integral equation 

of the first kind. 

equation for the special case where the surfaces may be modelled as 

Hertz 

Hertz found an analytical solution to this 

locally quadratic; however, the integral equation itself applies to 

any non-conformal contact problem and has been solved by Singh and 

Paul 119743 for non-conformal , non-Hertzian contact problems. The 

method of solution outlined here is that developed by Singh and Paul 

and is termed the "Simply-Discretized" or "S.D." method. 

that the S.D. method can become unstable; they applied a stabilizing 

technique termed the "Functional Regularization" or "F.R." method, 

when the S.D. method proved unstable and successfully solved several 

problems. The "Functional Regularization" method is also summarized 

in this chapter. 

They proved 

In addition to presenting the basic integral equation for 

non-conformal contact, the material in this chapter introduces the 

concepts of contact theory which will be used in the development of 

the governing integral equation for conformal contact in chapter 3. 

Furthermore, the "Simply-Discretized" method of solution will be used 

9 



10 

insolving the conformal contact problems presented i n  chapters 5 and 

6 and i n  the non-conformal contact problem w i t h  a multiply connected 

contact region i n  chapter 7. 

2.2 The Governing Equation for  Non-conformal Contact Theory 

Consider two f r ic t ion less  non-conforming bodies i n i t i a l l y  i n  

contact a t  a single point. Loading each body such that  the resultant 

force acts  through the i n i t i a l  point of contact produces deformations 

i n  the neighborhood of the i n i t i a l  p o i n t  of contact. The area of 

contact'between the bodies will increase from a single point t o  a 

f i n i t e  area. I n  non-conformal contact theory i t  i s  assumed t h a t  the 

dimensions o f  the contact area a re  small compared to  the local radi i  

of curvature of the two contacting surfaces. After deformation, the 

two bodies undergo a localized e l a s t i c  deformation and a r i g i d  body 

displacement. The rigid body displacement i s  referred t o  as the 

"approach" i n  contact mechanics. 

I n  general the geometry o f  the surfaces before deformation 

and the applied thrust i s  known, while the actual contact area, the 

pressure dis t r ibut ion w i t h i n  this area, and  the approach 6 a re  unknown. 

The governing equation fo r  non-conformal contact re la tes  the approach, 

the contact area, the surface geometry and the interfacial  pressure 

di s tr i  b u t  i on. 

Consider body 1 and body 2 i n i t i a l l y  i n  non-conformal contact 

' a t  a point 0. ( F i g .  2.1) Let a right-hand Cartesian coordinate sys- 

- y1 plane l i e s  
h 

i t s  origin. Let z1 be 

h h h  

tern ( x l ,  ylY z l )  be constructed such that  the x 

tangent t o  body 1 a t  point 0 and has p o i n t  0 as 
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' 2  

Fig.  2.1. Coordinate systems for non-conformal contact 
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the  u n i t  inward normal t o  body 1. A lso de f i ne  a le f t -handed 

coord ina te  system (x2, y2, z2)  such t h a t  x2 = xl, y2 - - yl, and 

z 2 = - z 1 .  

t he  p o i n t  0 as shown i n  f i g u r e  2.2. 

surfaces o f  bodies 1 and 2 which merge a f t e r  deformat ion a re  l oca ted  

a t  the  same (x ,  y )  coord inates.  

phenomena o f  a p o i n t  A on body 1 and B on body 2 which merge a f t e r  

deformation, w i l l  be examined c l o s e l y  i n  the  f o l l o w i n g  paragraphs. 

A A A  A A r l  A 

A A 

Now examine a cross sec t i on  o f  t he  con tac t i ng  bodies through 

I t  i s  assumed t h a t  p o i n t s  on the  

The displacements due t o  the  contac t  

Consider the  change i n  the  p o s i t i o n  o f  p o i n t  A on body 1 

a f t e r  a l oad  F i s  appl ied.  

surface, p o i n t  A moves the  d is tance A ' A "  i n  t he  z1 d i r e c t i o n .  

e l a s t i c  deformat ion w i l l  be l abe led  wl. 

FA' due t o  r i g i d  body motion, l abe led  A1. 

B d isp laces  an amount B I B "  o r  w2 due t o  e l a s t i c  deformat ion and 

d isp laces  f rom B t o  B '  due t o  a r i g i d  body mot ion A2.  

s i d e r i n g  the  t o t a l  mot ion of p o i n t s  A and B, p o i n t  A moves a t o t a l  

d is tance w1 + Al and p o i n t  B moves w2 + A2. 

Due t o  the  e l a s t i c  deformat ion o f  t he  
- 

This 

Also p o i n t  A moves a d is tance 

S i m i l a r l y  on body 2 a p o i n t  
- 

Therefore,  con- 

Having t raced  t h e  mot ion o f  p o i n t s  on the  sur faces o f  t he  

con tac t i ng  bodies, these motions may be r e l a t e d  t o  the  sur face-  

geometry t o  o b t a i n  a necessary c o n d i t i o n  f o r  con tac t  o f  t he  two sur -  

faces. 

equal t o  fl (x ,  y) + f2 (x, y )  where fl ( x ,  y )  and f 2  (x ,  y )  a re  

termed the  " p r o f i l e  func t i ons "  o f  the  two sur faces.  

Note t h a t  p o i n t s  A and B a re  i n i t i a l l y  separated by a d is tance 

fl ( x ,  y )  
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I I 

Fig. 2.2. Kinematics o f  surface point displacements in non- 
conformal contact. 
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represents t h e  i1 coordinate o f  a p o i n t  (x ,  y, .zl) on the  sur face o f  

body 1, w h i l e  f2 (x, y )  i s  t he  ;2 coord inate o f  a p o i n t  (x, y, z2 )  on 

the  sur face o f  body 2. A f t e r  deformat ion the  i n i t i a l  separat ion 

changes. 

de f o rma t i on 

Consider the  f i n a l  separat ion,  S, o f  p o i n t s  A and B a f t e r  

Def ine a f u n c t i o n  f (x, y )  and a s c a l a r  6 such t h a t  

and 

The sca la r  6 i s  termed the  "approach" and p h y s i c a l l y  represents  t h e  

d is tance t h a t  p o i n t s  on one body move p a r a l l e l  t o  the  zlaxis towards 

p o i n t s  on the  o t h e r  body due t o  r i g i d  body movement. 

equat ion (2-1) by s u b s t i t u t i n g  equat ions (2-2) and (2-3), 

Rewr i t i ng  

By assumption i n  non-conformal contac t  theory,  t he  contac t  area i s  

small compared t o  the  l o c a l  r a d i i  o f  curva ture  o f  t h e  con tac t i ng  
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bodies. Therefore, it is appropriate to replace these displacements 

with the displacement field o f  an elastic half space due to some 

pressure distribution p (x, y) over an area R i .  Hence, 

where Ei and vi are the Young's modulus and Poisson's ratio for 

body i. 

plane and assume that points A and B ,  located at equal xlYylcoordi- 

nates, will merge after deformation since the displacements in the 

It is reasonable to neglect the displacements in the (xl - y,) 
* *  

(xl- 4 )  plane on each body are nearly equal in magn 
The pressure distribution in equation (2.5) is over 

region Ri on body i, however R1 = R2. Furthermore, 

curvature o f  the bodies are large compared to the d 

tude and direction. 

the contact 

since the radii of 

mensions of the 

contact area and the radius o f  curvature o f  the contact patch is still 

larger owing to the non-conformal nature o f  the contact, the contact 

area may be represented by R,'the projection o f  R1 onto the x., - y1 
plane. 

5 '  

Substituting equation (2.5) .into equation (2.4) the separation 
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becomes : 

where 

I f  R i s  known then equat ion ( 2 . 6 )  i s  an i n t e g r a l  equat ion o f  

t he  f i r s t  k i n d  and i s  t h e  governing equat ion f o r  non-conformal contact. 

The separat ion o f  two p o i n t s  w i t h i n  t h e  con tac t  r e g i o n  has t o  be zero 

w h i l e  t h e  pressure has t o  be p o s i t i v e ,  i.e., t h e  bodies can o n l y  e x e r t  

compressive forces on one another w i t h i n  t h e  con tac t  region. Outside 

t h e  contact  region, S must be p o s i t i v e  w h i l e  t h e  pressure d i s t r i b u t i o n  

must equal zero. 

These boundary condi t ions.may be summarized as fo l l ows :  

tMsjbE n (2.7a) 

OVrSfPE IL (2.7b) 

INSIDE ( 2 . 7 ~ )  

OUTSlDE n (2.7d) 
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The s o l u t i o n  o f  a non-conformal contac t  problem f o r  a g iven t h r u s t  

requ i res  t h e  de terminat ion  o f  the  unknown contac t  reg ion  R,  t he  

pressure d i s t r i b u t i o n  p (x, y ) ,  and the  approach 6 .  These q u a n t i t i e s  

must a l l  s a t i s f y  equat ion (2.6) and the  boundary cond i t i ons  (2.7).  

General numerical s o l u t i o n s  t o  equat ion (2-6) a re  expla ined i n  

sec t ions  2.3 and 2.4. 

2.3 The "Simply-Discret ized"  Method o f  So lu t i on  o f  Singh and Paul 

The general  non-conformal contac t  problem as posed i n  equat ion 

(2.6) and boundary cond i t i ons  (2.7)  has been so lved by Singh and Paul 

by t h e  "Simply-Discret ized"  method. This  method i s  a semi inverse  

s o l u t i o n  which w i l l  be expla ined i n  the  f o l l o w i n g  paragraphs. 

Given t h a t  two bodies o f  known shape are  brought i n t o  contac t  

w i t h  one another and h e l d  the re  by a f o r c e  F, the  task remains t o  

l o c a t e  the  boundary o f  t he  contac t  reg ion  52 and t o  f i n d  the  i n t e r f a c i a l  

pressure d i s t r i b u t i o n  p (x,  y) and the  approach 6 .  

D i sc re t i zed"  method i s  c a l l e d  a semi inverse  method because the  contac t  

area i s  assumed t o  be some l o g i c a l  "candidate" reg ion  whereupon the  

pressure d i s t r i b u t i o n  and approach are  then found v i a  equat ion (2.6).  

The "Simply- 

The f o r c e  F i s  then ca l cu la ted  f rom the i n t e g r a l  o f  t h e  pressure d i s -  

t r i b u t i o n  over the  area R .  The i n i t i a l  guess o f  t he  l o g i c a l  

"candidate" contac t  regiol: 52 i s  then checked t o  see i f  the  values o f  

t he  separat ion s a t i s f y  equi i t ion (2.7a) and (2.7b). 

t he  ' 'candidate' ' r eg ion  can be mod i f ied  t o  b e t t e r  approximate the  t r u e  

I f  they do no t ,  



contact region and the solution procedure is  repeated. 

the de t a i l s  of t h i s  solution. 

Now consider 

The f i r s t  step i n  solving equation (2 .6)  by the "Simply- 

Discretized" method i s  t o  find a n  approximation to  the contact 

region R. 

"interpenetration curve" formed by the in t e r sec t im  of the two 

surfaces when one body was allowed to  mathematically interpenetrate 

the other. Increasing the depth of interpenetration would increase 

the contact area. 

"candidate" contact area corresponding to  one loading F on the bodies. 

This concept of interpenetration i s  physically meaningless in a con- 

t a c t  problem since the bodies can not actually interpenetrate one 

another; i t  i s  only a method which enables one to  f i n d  an approxima- 

tion to  the contact area. 

S ingh  and Paul used the xl - y, plane projection of an 

Each interpenetration depth would provide one 

Having found a "candidate" contact region the next task i s  to  

find the pressure dis t r ibut ion and approach i n  equation (2 .6 ) .  A 

"Simply-Discretized" solution i s  obtained by assuming a piecewise 

constant pressure dis t r ibut ion over the area R. Dividing up the 

r 
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contact area R into N c e l l s  and assuming the pressure p ( x ,  y)  to  be 

1 

, 

constant within each cel l  equation (2 .6)  becomes 



where 
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( 2 . 9 )  

and 

Pi i s  the constant  pressure i n  c e l l  i. 

I n  equat ion (2.8) t he re  a re  N unkown Pi's and 1 unknown 6, thus a 

t o t a l  o f  N + 1 unknowns. However, equat ion (2.8) app l i es  t o  every 

p o i n t  (x, y) i n s i d e  R, thus i t  can be w r i t t e n  f o r  N + 1 " f i e l d  p o i n t s "  

i n s i d e  the  contac t  reg ion.  Singh and Paul chose the cen t ro ids  o f  the  

N c e l l s  as N o f  the  f i e l d  p o i n t s  and p icked a l a s t  f i e l d  p o i n t  a t  t he  

i n t e r s e c t i o n  of severa l  c e l l s .  

be evaluated numer ica l l y  t o  p rov ide  the c o e f f i c i e n t s  f o r  t h i s  s e t  o f  

l i n e a r  equat ions.  

The i n t e g r a l s  i n  equat ion (2.8) can 

Thus equat ion (2.8) can be expanded t o  t h e  form 

where 

P .  i s  the pressure i n  c e l l  j 

fi i s  the  i n i t i a l  separat ion o f  t he  c e n t r o i d  o f  c e l l  i 
J 

R. i s  the area o f  c e l l  j 

(xi, yi) are the  coord inates o f  the c e n t r o i d  c e l l  i 
J 

(2.10) 
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and 

(2 .11 )  

where 

(xo,  uo) are the coordinates of the N + 1 f i e l d  point 

f N  + 1 i s  the i n i t i a l  separation of the N + 1 f i e ld  point 

Combining equations (2.10) and (2.11) into one s e t  o f  l inear  equations 

i n  Pi and 6 ,  the unknown Pi  and 6 can be found,  i n  principle,  by u s i n g  

s t a n d a r d  Gaussian elimination. 

equation ( 2 . 1 1 )  from equation (2.10), thus eliminating 6 from a 1 

equations. 

This i s  done by f i r s t  substract  n g  

The new s e t  o f  N equations formed can be written as 

where 

( 2 . 1 2 )  
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Equation (2.12) i s  a s e t  of N l i n e a r  equat ions i n  N unknown Pi's. 

A f t e r  s o l v i n g  t h i s  s e t  o f  equat ions f o r  t h e  pressure f i e l d ,  t h e  

approach 6 may be found by back s u b s t i t u t i o n  o f  these pressures i n t o  

equat ion (2.11). 

Having obta ined t h e  pressure d i s t r i b u t i o n  and approach t h e  

o r i g i n a l  "candidate" contac t  reg ion  R can be v e r i f i e d  v i a  t h e  boundary 

c o n d i t i o n s  (2.7a, b ) .  

if the pressure i s  l e s s  than zero a t  the  boundary o f  R o r  i t  can be 

extended if t h e  separat ion i s  negat ive o u t s i d e  t h e  boundary o f  R. 

problem can be so lved again i f  necessary t o  f i n d  t h e  pressure d i s t r i -  

The "candidate" contac t  r e g i o n  can be reduced 

The 

b u t i o n  i n  t h e  connected r e g i o n  Q. 

t h e  t o t a l  f o r c e  a p p l i e d  t o  t h e  bodies can be computed by i n t e g r a t i n g  

t h e  pressure over t h e  contac t  area, i.e., 

When t h e  t r u e  contac t  area is found 

. (2.13) 

where 

Ai i s  the-area o f  c e l l  i. 

I n  app ly ing  t h e  S.D. method t o  a v a r i e t y  o f  problems, Singh 

hnd Paul found t h a t  i t  was numer ica l l y  Unstable i n  t h e  general case. 

For smal l  c e l l  d e n s i t i e s  the  s o l u t i o n s  obta ined were good; however, as 

t h e  c e l l  d e n s i t y  was increased, the  s o l u t i o n s  broke down. 

d i s t r i b u t i o n  became very e r r a t i c ,  changing f rom p o s i t i v e  values t o  

The pressure 



for  eliminating the 

"Functional Regular 

2.4. 

recorded by S ingh  [1972] and Singh and Paul [1973] [1974] .  

problem of ill-conditioning i s  known as 

zation" method which will be explained 
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The de ta i l s  of these resul ts  were negative values from ce l l  to  c e l l .  

One method 

the 

n section 

2.4 "Functional Regularization" 

The "Functional Regularization" method i s  a technique of 

s tabi l iz ing an ill-conditioned s e t  of l inear  equations. 

was developed by S ingh  and Paul [1973] i n  order t o  extract  a sensible 

This method 

solution from the unstable "Simply-Discretized" method o f  solving non- 

conformal contact problems. 

The "Simply-Discretized" method yields  solutions which have 

wide variations i n  the pressure f ie lds .  Furthermore, i t  was observed 

that  small perturbations i n  the coeff ic ient  matrix B o f  equation (2 .12)  

produce completely d i f fe ren t  pressure f i e l d s  which also vary radically 

from ce l l  to  c e l l .  Although the determinant of the coefficient matrix 

was not singular, i t  appeared tha t  there were many solutions t o  the 

s e t  of equations generated by the "Simply-Discretized" method of 

exP 

F. R 

wh i 

solution. 

number of  vectors t ha t  s a t i s fy  the l inear  equation s e t ,  the F.R.  method 

I n  order t o  find the correct solution vector of a large 

o i t s  the "smoothness" property of  the pressure dis t r ibut ion.  The 

method seeks to  approximately solve the original s e t  of equations 

e i t  simultaneously minimizes the difference between the pressure 

i n  neighboring ce l l s .  T h i s  i s  accomplished by introducing a function@ 

n 
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such t h a t  
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(2.14) 

So lv ing  the  equat ion s e t  (2.12) i s  equ iva len t  t o  f i n d i n g  a s o l u t i o n  

t o  equat ion (2.15) which produces an o f  e x a c t l y  zero. 

(2.15) 

"Funct ional  Regu lar iza t ion"  seeks an approximate s o l u t i o n  t o  equat ion 

(2.15) such t h a t  bo th  F Mathemat ica l ly ,  

t h i s  i s  equ iva len t  t o  min imiz ing  a f u n c t i o n a l  

2 and Q are  small q u a n t i t i e s .  

(2.16) 

where 

U i s  a smal l  parameter which c o n t r o l s  the i n f l u e n c e  o f  the  

c o n s t r a i n t  f u n c t i o n  Q. 

vec tor  Pi such t h a t  n----] )= O o r  s o l v i n g  the  equat ion s e t  

Min imiz ing  $ imp l i es  f i n d i n g  the  
d$ (P -  

i 

Gul Bounds f o r  the parameter u have been given by Singh and Paul 119731. 



The solution to equation (2.17) is stable in that it yields 

a smoothly varying positive pressure distribution which is physically 

realistic. Singh and Paul [1973-741 have shown that it closely agrees 

with the exact solution for several Hertzian contact problems. 



3.  FORMULATION OF CONFORMAL CONTACT PROBLEM 

3.1 Introduction 

The development of nonconformal contact theory was based on 

the assumption tha t  the dimensions of the contact area are small 

compared t o  the local radii  of curvature of the contacting surfaces. 

This assumption i s  no longer valid i n  conformal contact. 

very nature, conformal contact can produce contact areas with 

By i t s  

dimensions as large as the r a d i i  of curvature of the surfaces. 

Because of this assumption in the nonconformal theory i t  was 

appropriate t o  approximate the contacting surfaces by two el a s t i c  

half spaces and t o  use the Boussinesq displacement function for a 

point load on a plane as the influence function' necessary for the 

calculation of the displacement f ie ld .  I n  conformal contact theory 

the contact region cannot be approximated by a plane, and a l ternat ive 

influence functions for  the surfaces must be found.  

Furthermore, no longer can the displacements tangent t o  the 

surface be considered small as was the case i n  nonconformal theory. 

A solution procedure must incorporate b o t h  the normal and tangential 

displacements of the contacting surfaces in the solution. 

Presented i n  the fo l lowing  sections of th i s  chapter i s  a 

'The "influence function" relates  the surface tractions to 
the displacement f i e ld .  
f unc t i  on. I '  

I t  may be sometimes referred to  as a "Green's 

25 
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formulation for  conformal contact theory which not only incorporates 

the true influence function for  conformal surfaces b u t  also accounts 

for the surface displacements both normal and  tangent to the surface. 

3.2 Assumptions i n  Conformal Contact Theory 

Consider two contacting bodies, labeled 1 and  2 ,  which have 

closely conforming surfaces, i .e. ,  they exhibit  conformal contact. 

The i n i t i a l  p o i n t  of contact will be labeled 0. Figure 3.1 represents 

a cross section through 0 of  the two surfaces. A coordinate system 

is constructed such tha t  2 i s - the  inward u n i t  normal to  body 1 a t  0 

and u n i t  normal G l ies  i n  the plane o f  the cross section a t  90' 

clockwise of 2. 
planes through the 2 axis will be termed the "contour curves'' of 

the respective surfaces. The following assumptions will be made: 

1 .  The surfaces are assumed to  be f r ic t ion less  

2.  

The intersection of the surfaces of body 1 and 2 w i t h  

The l ine of the applied load on the bodies i n  contact passes 

through 0 ( f i g .  3.1) 

Considering only f r ic t ion less  surfaces reduces the complexity 

o f  the contact problem signif icant ly ,  ye t  i t  does not destroy the 

usefulness of the solution. I t  i s  often desirable t o  have fr ic t ion-  

less  surfaces i n  contact applications. For example, i n  the s i t u a -  

tions involving bearing surfaces, such as ball bearings o r  ball 

jo in ts ,  the surfaces are machined and lubricated t o  minimize surface 

f r ic t ion .  This assumption dictates  t h a t  no shear tractions can be 

applied to the surface of e i ther  body within the contact region. 

L . .  



Fig.  3.1.  Cross sect ion of bodies i n  conformal contact  

27 
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Hence, the normal i n t e r f a c i a l  pressures w i l l  be the on ly  sur face 

t r a c t i o n s  a l lowed w i t h i n  the  contac t  area. 

Assumption ( 2 )  requ i res  t h a t  the  r e s u l t a n t  app l i ed  fo rce  

passes through 0. Mathemat ica l ly  t h i s  assumptjon requ i res  t h a t  

the f o l l o w i n g  r e l a t i o n s h i p  ho ld:  

Where R .  i s  t he  contac t  area on body i, 'r i s  a vec tor  extending from 

the o r i g i n ,  0, t o  a p o i n t  w i t h i n  the con tac t  area, ni i s  t h e  u n i t  

normal t o  body i o f  the  p o i n t  de f ined by F, and p i s  t he  i n t e r f a c i a l  

pressure a t  t he  p o i n t  l o c a t e d  by 'r. This  assumption i s  n o t  requ i red  

i n  the  analys is ,  r a t h e r  i t  i s  made t o  s i m p l i f y  t he  ana lys is .  I t  

h 
1 

should be poss ib le  t o  extend the  present  ana lys i s  t o  i nc lude  moments 

and r i g i d  body no ta t i ons .  

3.3 Formulat ion o f  Conformal Contact C r i t e r i o n  

Consider two conforming f r i c t i o n l e s s  bodies i n  contac t .  Body 

1 w i l l  be c a l l e d  the  " i nden to r "  w h i l e  body 2 w i l l  be termed the 

"seat . "  In the  undeformed s t a t e  these bodies contac t  a t  a p o i n t  0. 

F igure 3.2 represents  a cross sec t i on  through 0 o f  t y p i c a l  conformal 

contac t  surfaces. A g loba l  coord inate system (x,y,z) i s  const ructed 
A A A  

such t h a t  t he  x-y plane i s  tangent t o  p o i n t  0 on body 1 w i t h  0 as 

i t s  o r i g i n  and z i s  d i r e c t e d  i n s i d e  body 1. 
A 

One o f  the d i f f i c u l t i e s  i n  t h i s  c lass  o f  problems i s  the  
n 
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F i g .  3.2 Definition of coordinate systems i n  conformal 
contact theory. 
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identification of  points on each body which come 

deformed s t a t e .  

introduce an i t e r a t ive  scheme termed the "point-mating procedure." 

The de ta i l s  of this scheme will he discussed l a t e r .  

into contact i n  the 

In  order to f i n d  the se t s  of mat ing points we 

Consider two points, A on body 1 and B on body 2 ,  which come 

into contact a f t e r  deformation. I t  will be i n i t i a l l y  assumed that  

points A and B l i e  a t  equal distances along the i r  respective contour 

curves from the i n i t i a l  point of  contact. Figure 3.1 i l l u s t r a t e s  

th i s  concept. 

contour curve of body 1 i s  s1 while the distance between 0 and B 

The distance between 0 and A measured along the 

measured along the contour curve o f  body 2 i s  s2. 

ulate the contact cr i ter ion i t  will be i n i t i a l l y  assumed that  

In order t o  form- 

Let Til and i2 define the outward u n i t  normals to the surfaces 

of bodies 1 and 2 respectively. 

normal vectors a t  points A and B. ;, i s  directed $ degreesclockwise 

of the 2 direction while Ti2 is directed $ degrees counter clockwise 

of the ^z direction. For extremely conforming bodies i2 -i1. A 

local coordinate system will be assigned to each s e t  of points which 

contact a f t e r  deformation. T h i s  local coordinate system will have 

a u n i t  vector r̂ defined as the mean of ;2 and - G 1 ,  i . e . ,  the angle 

between ;- and ^z is  defined by c1 measured counter clockwise, where 

Shown in figure 3.2 are the 
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(3.3a) 

A A 

A u n i t  vector t will be defined as being 900 clockwise o f  r in the 

y-z plane, and a 6 unit  vector will be defined by 

(3.3b) 

The displacement of point A (and B )  due t o  conformal contact 

Point A ( B )  undergoes as i l l u s t r a t ed  in figure 3.3 will be traced. 

a r igid body translation Al (A,)  which carr ies  i t  in the direction 

of z ( - 2 )  t o  point A '  ( B ' ) .  

an amuntwl in the -nl  direction (from A '  t o  A " )  due to e l a s t i c  

deformation. 

of points A and B in the tangent plane. 

A h  

As shown i n  figure 3 . 3 ,  point A displaces 
A 

Not shown in figure 3 . 3  are the e l a s t i c  displacements 

These displacements 

will be i n i t i a l l y  neglected in the formulation o f  the contact 

cr i ter ion.  

Similarly point B rdisplaces t o  B" due t o  an e l a s t i c  displace- 
A 

ment w2 in the -n2 direction. 

po in t s  A and B i s  labeled "f and. is  a function of the georretry of the 

contour curves. 

deformed s ta te )  'is therefore given by the vector relation 

The.origina1 vector separation of 

. I  ' A  

The vector separation S, between A" and B"  ( in  the 



32 

Fig. 3.3 Kinematics of surface point displacements in 
conformal contact. 
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h 

Only the components o f  displacement along the r axis will 

be considered i n  the formulation of the contact c r i te r ion .  The 

e l a s t i c  displacements, w1 and w2 form angles of A and IT-A respectively 

w i t h  the r direction where 
A 

a - Y - 4  A =  (3.5) 

The r i g i d  body displacements Al  and A2 form angles -a and TT-a 

respectively w i t h  the r direction while f forms an angle 5 with the 

r direction. 5 is  determined by the shape of the contour curve a t  

points A and B. 

A L 

A 

A h 

The projections of S i n  the r direction may be 

written as 

where 6 = - ( A l  + A 2 ) .  6 i s  termed the approach and represents the 

distance tha t  points on one body move along the z axis towards 

points on the other body due to r i g i d  body movement. 

In general the displacement w, and w2 may be written i n  

terms o f  the inteffacial  pressure p ( x ' , y I , z ' )  a n d  an influence 

function G1 ( x , x '  ,y,y' ,z,zI ) as 
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where Qi i s  t he  area of con tac t  of  body i. 

G~ (x ,x 'y ,y 'z ,z ' )  represents the  e l a s t i c  displacement i n  the  -ni 

d i r e c t i o n  a t  p o i n t  (x,y,z) due t o  a u n i t  l o a d  a t  p o i n t  ( x ' , y ' , z ' )  i n  

the -ni d i r e c t i o n .  

w r i t t e n  as. 

P h y s i c a l l y  the f u n c t i o n  
A 

L. 

I n  the most general form equat ion (3.6) may be 

( 3 . 8 )  

42 

I n  o r d e r  t o  so l ve  the  conformal con tac t  problem i t  i s  

necessary t o  f i n d  t h e  i n t e r f a c i a l  pressure P (x '  ,y' , z ' ) ,  the approach 

6, and t h e  f i n a l  con tac t  area R ,  a l l  of which s a t i s f y  equat ion (3.8) 

and the  fo l l ow ing  boundary cond i t i ons :  

s, '-0 INSIDE n (3.9a) 

P(XA,i) =Q d w S r P E  =f2 (3.9d) 

Furthermore, i t  i s  requ i red  t o  v e r i f y  t he  accuracy o f  equat ion 

(3.2), i .e.,  t h a t  t he  p o i n t s  w i t h i n  the con tac t  area s a t i s f y  the  

re1 a t  i onsh i  ps : 



$4 =o I#S/PP n 

s, = 0 iCvstoE n 

where St and S 

res pec t i ve 1 y . 
represent the separation w 
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(3.9e) 

(3.9f) 

h A 

i n  the t and w directions 

Conditions (3.8) and (3.9a-f) represent the contact 

c r i t e r ion  fo r  conformal contact. They are  analogous to  equations 

(2.6) and (2.7a-d) f o r  nonconformal contact. Equations (3.8) and 

(3.9a-d) may be solved in a s imilar  manner as equations (2 .6 )  and 

(2.7a-d) using the "Simply-Discrezized" method of solution. 

However, this solution only guarantees the displacements be compat- 

ib le  in the r direction since only Sr  was involved in equation (3.8) .  

Therefore i t  is  necessary t o  examine the components of the displace- 

ments i n  the t and w directions to  insure tha t  A and B merge as 

or iginal ly  assumed. An i t e r a t ive  scheme, termed the "point-mating 

procedure ,'I i s  out1 ined which shows how successive""Simp1y-Discretized" 

solutions may be u t i l i zed  t o  converge upon a f inal  solution in which 

merging points on each body have been ident i f ied.  

A 

h A 

Consider the "point-mating procedure" on the f i r s t  attempt 

a t  solution. As shown in figure 3.1 

A, = &,A, (3.10) 

where k, = 1 .  

equation (3.8) i s  written f o r  N + 1 f i e l d  points,  thus f o r  each 

With the "Simply Discretized" method of solution, 



36 

f i e l d  p o i n t  equat ion (3.10) must be assumed. This can be r e s t a t e d  as 

I 

A f  = kl AIi (i= lJ N t i )  (3.11) 

The f i r s t  s o l u t i o n  o f  equat ion (3.8) y i e l d s  a pressure f i e l d ,  

approach and a con tac t  reg ion R. The e l a s t i c  displacements w1 and 

w2 a t  each f i e l d  p o i n t  may be ca l cu la ted  v i a  equat ion (3.7).  

i t  remains t o  see i f  indeed the f i e l d  p o i n t s  on each body merge. 

Now 

I n  order  t o  check t h e  f i n a l  separat ion i t  i s  necessary t o  compute 

t h e  displacements i n  bo th  the w and t d i r e c t i o n .  

placements o f  a f i e l d  p o i n t  on body i i n  the tangen t ia l  p lane o f  body 

i by ui and vi respec t i ve l y ,  they may be determined as i n  equat ions 

(3.12a,b), whereui l i e s  i n  the  plane o f  t he  contour curve and vi i s  

i n  the d i r e c t i o n  o f  w. 

h A 

Denoting the d i s -  

A 

In equations (3.12a,b) H~ and zi represent  the i n f  

f o r  body i which r e l a t e  t h e  displacements ui and v 

a t  a p o i n t  (x,y,z) t o  the  normal pressures exer ted 

r e s p e c t i v e l y  

a t  a p o i n t  

( x '  ,y' , z ' ) .  

Ri are known from t h e  s o l u t i o n  o f  equat ion (3.8) .  

The pressure f i e l d  P ( x '  ,y' ,z '  ) and the  con tac t  areas 

Examining one s e t  o f  po in ts ,  A on body 1 and B on body 2, 



which are assuliled t o  nerge a f t e r  d e f c m a t  

may be w r i t t e n  as: 

on, the t o t a l  separat  
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on 

where 

and 

(3.13b) 

( 3 . 1 3 ~ )  

Equation (3.8) which was o r i g i n a l l y  so lved by t h e  "Sim!Jly-Discretized" 

method represents t h e  r components o f  equat ion (3.1 3) . 
A 

I n  the  f i r s t  s o l u t i o n  o f  equat ion (3.6) i t  was assunied t h a t  

- - u, - u2¶ v, - v2, f = 0. 

prov ided values f o r  ul, u2, vl, v2, and 6 .  

geometry o f  t he  undeformed surfaces and 6 may be decorr;posed i n t o  &r 

and 6t.  

t o  a f i r s t  approximation a f t e r  t he  f i r s t  s imply d i s c r e t i z e d  s o l u t i o n .  

The separat ion a f t e r  t h e  f i r s t  s o l u t i o n  may be computed and i n  general 

i t  w i l l  be non-zero. I t  w i l l  be shown how the  separat ion may be 

u t i  1 i zed t o  b e t t e r  approximate equat ion (3.11 ) sc t h a t  the separat ion 

However, t he  f i r s t  s o l u t i o n  has now 

f i s  a func t i on ,  of the 
w 

L 

Therefore a l l  the q u a n t i t i e s  i n  equat ion (3.13)  are kncjwn 

t .  

' . I  ~ 

o f  a second s o l u t i o n  t o  the same problec! w i l l  be much s n a l l e r .  
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In order to  simplify the i l lus t ra t ion  of the point-mating 

procedure, i t  will be assumed that  for  the problem a t  hand v1 and v 2  

are zero for  a l l  f i e l d  points. This i s  the case for  axisymmetric 

bodies. Furthermore, consider the sea t  to be fixed a t  some point 

well removed from the contact area (where the e l a s t i c  deformation 

i s  negligible),  thus a f t e r  the deformation the indentor will have 

displaced the en t i re  amount 6 due to rigid body displacement. Typi- 

cal displacements for  points A and B, including the u1 and u2  

displacements found via the f i r s t  simply discretized solution, are 

i l l u s t r a t ed  in figure 3.4. 

only tha t  the separation St  in the r direction would be zero. 

shown, the points A and B will in general be separated by a distance 

The solution to equation (3.8) guaranteed 
h 

As 

Si. Equation (3.11) may now be modified such that  

where 

(3.14) 

(3.15) 

and subscript j refers to the number of the i te ra t ion .  

This modification compensates for  the e r ror  in the original 

assumption (3.11). Using relationship (3.14), the calculation may 

be performed a second time. The value of S i  in the second solution 

will be much smaller than t h a t  of the f i r s t ,  however, i f  i t  is  
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Fig .  3.4. Displacements od typ 
conformal contact. 

. .  

\ 

tal fi,e d points i n  
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s t i l l  t o o  large,  a new value o f  k 2 ,  may be computed f o l l o w i n g  

equat ion (3.15). 

Equations (3.14) and (3.15) may be genera l ized as 

where 

(3.16a) 

(3.16b) 

and j denotes values associated w i t h  the j t h  "Simply D isc re t i zed"  

s o l u t i o n  [kl = 11. The value o f  k! i n  equat ion (3.16) i s  used 

i n  p lace o f  ki 

i t e r a t i v e  scheme can be repeated u n t i l  t h e  des i red tolerances cn Si 

are  met. 

J 
f o r  t he  j t h  "Simply D isc re t i zed"  s o l u t i o n .  The j - 1  

and v2 are n o t  equal, p o i n t s  A and B may n o t  

curve a f t e r  deformation. This can be determ 

separat ion,  Sk, i n  t he  (11 d i r e c t i o n .  I t  must 

.. 

Also o f  concern i s  t he  separat ion i n  the (A) d i r e c t i o n .  It 

was assumed t h a t  p o i n t s  along contour curves merge, however, if v1 

e contour 

ng the 

t h a t  the 

l i e  on the sal 

ned by exanin 

be remembered 

s o l u t i o n  a t  hand i s  an i t e r a t i v e  one and therefore,  the separat ion 

o f  f i e l d  p o i n t s  w i l l  i n  general never be zero. The separat ion can 

o n l y  be reduced t o  an acceptable amount. 

I n  summary, a mathematical model o f  f r i c t i o n l e s s  conformal 

contact  theory has been presented. The model takes t h e  form of 
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equations (3.8) and (3.9a-d). Since there is no knowledge a priori  

o f  which points on each surface merge, i n i t i a l l y  points located by 

equation (3.71) are assumed to merge. The contact c r i te r ion  of 

equations (3 .8)  and (3.9a-d) only insure t h a t  two f i e ld  points, 

assumed t o  merge, have zero separation i n  t h e ' ?  direction. In order 

to  guarantee the absence o f  separation between two f i e ld  points 

in the contact region, the i t e r a t ive  scheme termed the "point-mating 

procedure'' must be applied. 



4. GENERATION OF INFLUENCE FUNCTIONS 

. 
4.1 I n t r o d u c t i o n  

I n  t h e  formulat ion o f  both the  nonconformal and conformal 

contact  theor ies ,  t he  i n f l uence  f u n c t i o n  p lays  a c r u c i a l  r o l e .  

P h y s i c a l l y  t he  i n f l uence  f u n c t i o n  r e l a t e s  the  e l a s t i c  d i s -  

placement a t  a g iven p o i n t  t o  the  a p p l i e d  f o r c e  a t  some o the r  p o i n t .  

The e l a s t i c  displacements due t o  a g iven pressure d i s t r i b u t i o n  can be 

found by i n t e g r a t i n g  t h e  product  o f  pressure and the  i n f l uence  

f u n c t i o n  over the  contac t  area. This  i s  i l l u s t r a t e d  by equat ion 3.7. 

I n  any g iven problem i t  i s  necessary t o  know the  i n f l u e n c e  

func t i ons  which a r e  approp r ia te  f o r  t he  g iven surfaces i n  contac t .  

I n  nonconformal theory  the  con tac t  area i s  approximated by a p lane 

making i t  appropr ia te  t o  use the  Boussinesq i n f l u e n c e  func t i on ,  f o r  a 

p o i n t  l oad  on a h a l f  space, as t h e  i n f l u e n c e  f u n c t i o n  f o r  a l l  sur-  

face geometries. However, i n  conformal theory,  where t h e  contac t  

sur face can n o t  be approximated by a plane, i t  i s  necessary t o  f i n d  

the  i n f l uence  func t i ons  e x p l i c i t l y  f o r  each o f  t he  bodies i n  contac t .  

For some problems a n a l y t i c  i n f l u e n c e  f u n t i o n s  may be found; 

however, i n  the  event t h a t  no a n a l y t i c  funct ions a re  a v a i l a b l e ,  they 

may be generated numer ica l l y .  The f o l l o w i n g  two sect ions,  4.2 and 

4.3, present  t h e  c l a s s i c a l  s o l u t i o n s  o f  a h a l f  space loaded under a 

p o i n t  l oad  and l i n e  load respec t i ve l y .  I n  sec t i on  4.4 the  p r i n c i p l e s  

42 
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i nvo lved i n  the  numerical generat ion o f  i n f l u e n c e  func t i ons  a r e  

developed. 

func t i ons  generated w i t h  f i n i t e  element techniques. 

f eas ib le ,  a n a l y t i c  so lu t i ons  are  compared t o  the  numerical in f luence 

func t i ons  . 

The remainder o f  chapter  4 conta ins  examples o f  i n f l u e n c e  

Wherever 

4.2 In f l uence  Funct ion f o r  a Po in t  Load on a H a l f  Space 

The problem o f  a h a l f  space loaded w i t h  a normal concentrated 

l oad  was f i r s t  so lved by J .  Boussinesq [18851 .' Consider the  h a l f  

space and coord ina te  system i l l u s t r a t e d  i n  f i g u r e  4.1. 

A concentrated l oad  F i s  app l i ed  a t  p o i n t  0 and p o i n t  A i s  

l oca ted  on t h e  sur face  o f  t h e  h a l f  space a t  a d is tance 111 from 0. 

u represents  the  e l a s t i c  displacement o f  p o i n t  A i n  the  d i r e c t i o n  of 

r w h i l e  w represents  the  e l a s t i c  displacement i n  the  f d i r e c t i o n .  
1 

Boussinesq found u and w t o  be g iven by 

u s -  
29r E J r ' /  

( I  - Y') F 
7TE IF1 w =  

(4.1 1 

(4 .2)  

where E and v a r e  Young's modulus and Poisson 's  r a t i o  r e s p e c t i v e l y  f o r  

t he  h a l f  space. 

Equation (4.2) forms the  bas is  o f  t he  i n f l u e n c e  f u n c t i o n  used 

'See Timoshenko and Goodier [1970], pp. 398-402. 



Fig .  4.1. P o i n t  load on h a l f  space 
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in nonconformal contact theory. We wish t o  generate a function 

G (x ,  X I ,  y ,  y ' f  which re la tes  the normal displacement a t  ( x ,  y )  

t o  a u n i t  load a t  ( x ' ,  y ' ) .  

portional t o  l / \ ? l ,  where [ P i  i s  the distance between points ( x ,  y)  

and ( X I ,  y ' ) ,  the influence function for  the normal surface dis- 

placement on a half space may be written as 

Noting t h a t  in equation ( 4 . 2 )  w i s  pro- 

Similarly, for  the displacements 

H ( x ,  X I ,  y,  y ' )  may be defined 

tangent t o  the surface, a function 

S 

If  a pressure f i e ld  p ( X I ,  y ' )  were considered t o  ac t  over 

the surface of a half space within,a region R ,  the displacements w 
I 

and  u due to  th i s  pressure f i e ld  can be calculated by the following 

equations: 

(4 .5)  

(4 .6 )  
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(1.. 

.. x 

Both G and 

in f l uence  func t i ons  which w i l l  be expla ined i n  sec t i on  4.4. 

p l a y  an impor tant  r o l e  i n  the  generat ion o f  numerical 
I 

' i  1 

4.3 A n a l y t i c  So lu t i on  f o r  a L ine  Load on a Plane 

Consider a l i n e  l o a d  a c t i n g  on the  edge o f  a s e m i - i n f i n i t e l y  

It i s  des i red  t o  f i n d  the  displacement f i e l d  i n  the  p l a t e  due p la te .  

t o  the  g iven loading. (see f i g .  4.2) 

As posed the  problem i s  one o f  p lane s t ress  and was o r i g i n a l l y  

solved by Flamant [1892]. For boundary cond i t ions ,  i t  i s  assumed t h a t  

p o i n t s  a long t h e  y a x i s  have no mot ion i n  the  x d i r e c t i o n  w h i l e  a p o i n t  

A, loca ted  a long t h e  y a x i s  a t  a d is tance d f rom the  surface, i s  f i x e d  

r i g i d l y .  1 The displacement f i e l d  then becomes 

where E and v are  the  Young's modulus and Poisson 's  r a t i o  r e s p e c t i v e l y  

o f  t he  p l a t e .  

t he  va lue of d chosen i n  the  boundary cond i t i on .  

The s o l u t i o n  i s  n o t  unique i n  t h a t  i t  i s  dependent on 

'See Timoshenko and Goodier [1970], p. 103. 
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Fig. 4.2. Plate loaded under line load 
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L e t  8 be ~ / 2 .  The sur face displacements f o r  the plane s t ress  

problem become 

(4.9) 

(4.10) 

For the case o f  p lane s t r a i n ' e q u a t i o n s  (4.9) and (4.10) may be w r i t t e n  

s u b s t i t u t i n g  v by < and E by E where 

(4.11) 
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The proof of this substitution is shown in appendix 1. 

strain the surface displacements at 8 = n/2 become 

For plane 

(4.12) 

(4.13) 

Equations (4.12) and (4.13) form the basis of an influence 

function for a line load on a plane. 

Parallel to the z axis at X I ,  then the displacements along a line at 

coordinate x becomes 

Consider a unit line load. 

(4.15) 

where G (x, x') and ~ ( x ,  x ' )  represent the influence functions for 

displacements u and v respectively for 0 = n/2. 

(4.15) are essential to the numerical generation of influence functions 

Equations (4.14) and 

when line loads are involved. These results will be used in sections 

4.7 and 4.8 for line loads on bodies with cylindrical surfaces. 
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4.4 Numerical Generation of Influence Functions 

Consider a three dimensional body whose surface is defined 

by z = I$ (x, y), as illustrated in figure 4.3. 

material, the influence function for the surface point displacements 

will be of the form 

For a linear isotropic 

c 
(4.16) 

where F is a unit load acting normal to the surface at point 

( X I ,  y', z ' )  and 

defined direction at some other surface point (x, y, z ) .  

Young's modulus of the material and v is Poisson's ratio. 

function 

has dimensions of [l/L]. 

( x ,  x', y, y') represents the displacement in a 

E is the 

The 

g(x, x', y, y', v)  depends on the geometry of the body and 

In some cases g may be found analytically 

however for more complicated geometries the task may be impossible. 

When g can not be derived by analytic means, it can in principle be 

constructed from a set of finite element solutions. 

follows which demonstrates this numerical procedure. 

A simple example 

Consider the region ( z  < 0) defined by the curvilinear 

coordinate system illustrated in figure 4.4. 

A unit load F is applied to point (x', y') normal to the 

surface and it is desired to find the displacement Gin a specified 

direction at a point (x, y). For the purpose of finding finite 
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Fig. 4.3. Three dimensional surface $ ( x ,  y) under point load 

d 

Fig. 4.4. Curvilinear coordinate system on three dimensional surface 
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element so lu t i ons ,  a model o f  the  body i s  d i v ided  i n t o  "elements." 

r 

The sur face of the  body i s  de f ined by the  top  s ides o f  some o f  those 

elements. The i n t e r s e c t i o n  o f  more than two elements de f ines  a node. 

F igure 4.4 i l l u s t r a t e s  a t y p i c a l  d i s c r e t i z a t i o n  o f  the sur face o f  

some t y p i c a l  body i n t o  elements. 

I n  order  t o  f i n d  G a t  (x,  y )  due t o  F a t  ( X I ,  y ' )  i t  w i l l  be 

necessary t o  so lve a number o f  f i n i t e  element problems w i t h  the  above 

model. Consider t h a t  a s e t  o f  so lu t i ons  i s  known v i a  f i n i t e  element 

techniques w i t h i n  the  reg ion  o f  i n t e r e s t  around (x ,  y )  and ( X I ,  y ' ) .  

Each s o l u t i o n  corresponds t o  a problem where the p o i n t  load  i s  

app l i ed  t o  a d i f f e r e n t  node. 

ment a t  each node i s  known due t o  a p o i n t  load  a t  any o f  the  o the r  

nodes. 

Thus from these so lu t i ons  the  d isp lace-  

Now consider  i n  f u r t h e r  d e t a i l  elements i and j which 

con ta in  p o i n t s  ( X I ,  y ' )  and ( x ,  y )  r e s p e c t i v e l y .  (see f i g .  4.4) 

L e t  us approximate element 1, 2, 3, 4 as a p lane face t ,  then 

a s e t  of four fo rces  l oca ted  a t  nodes 1, 2, 3 and 4 may be found 

which i s  e q u i p o l l e n t  t o  F a t  ( X I ,  y ' )  i .e . ,  i f  i t  i s  requ i red  t h a t  

the  fo rces  a t  nodes 1, 2, 3 and 4 sum t o  F and t h a t  t h e i r  moment about 

( X I ,  y ' )  i s  zero then F may be rep laced by forces F 1 ,  Fs, F,, and F, 

a t  nodes 1, 2, 3, 4 respec t i ve l y .  

element so lu t i ons ,  the displacement a t  node 5 may be found due t o  the 

s e t  of fo rces  F l y  F2, F 3 ,  Fq. S i m i l a r l y  the  displacement a t  nodes 6, 7, 

8 may be found. One f i n a l  i n t e r p o l a t i o n  may be made between these d i s -  

placements a t  nodes 5, 6, 7 and 8 t o  o b t a i n  the displacement G a t  (x, y )  

By superpos i t ion  o f  t he  f i n i t e  

L. . . 
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due t o  F. The above scheme, involving the interpolation between 

f i n i t e  element solutions, i l l u s t r a t e s  how an influence function can 

be generated numerically for  arbi t rary surfaces. 

I t  must be noted that  f i n i t e  element solutions for  a point 

load applied to  a node will yield a f in i te  displacement d i rec t ly  

under the load. 

and (4 .2)  which predict i n f in i t e  displacements under a point load on 

a plane. 

from the point load. 

T h i s  i s  inconsistent w i t h ,  a t  l ea s t ,  equations (4 .1 )  

The f i n i t e  element displacement function i s  only valid away 

In the neighborhood of the load, the appropriate 

s ingular i t ies  must be identified as described i n  sections 4.5--4.8. 

The following sections contain examples of the generation of 

influence functions v i a  the method described above. They deal with 

b o t h  p o i n t  and l ine  loading on spherical and cylindrical surfaces 

respectively. I n  a l l  b u t  one of the examples analytic solutions a re  

compared to  the numerically generated influence functions. 

4.5 Influence Function fo r  a Point Load on a Sphere 

Sternberg and Rosenthal [1952] have found the solution fo r  

the s t r e s s  dis t r ibut ion i n  an e l a s t i c  sphere under two equal and  

diametrically opposed point loads. Guerrero and Turteltaub [19?2] 

have analyzed a similar problem of a sphere under a f i n i t e  number of 

concentrated surface loads of a rb i t ra ry  orientation. 

solutions are  useful i n  providing an analytic influence function fo r  

a point load on a sphere. The resu l t s  tha t  follow are  from the 

analysis of Sternberg and Rosenthal. 

Both of these 

Consider a sphere compressed by two concentrated forces F as  
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shown in figure 4.5. From dimensional considera ions, symmetry 

considerations and the fact that the displacements must be proportion- 

al to loads in classical problems o f  elasticity, it follows that 

displacements on the surface o f  a sphere must be o f  the form 

(4.17) 

It is shown in Lure' [1964] that the displacements ur (radial) and uB 

(meridional) on the surface of the sphere are as follows: 

(4.18) 

Q 

n 



Fig. 4.5. Sphere under diametrically opposed p o i n t  loads 
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I f  
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where m i s  t h e  r e c i p r o c a l  o f  Poisson's r a t i o ,  G i s  t h e  modulus o f  

r i g i d i t y  and Ppk (cos 0 )  a r e  t h e  Legendre polynomials i n  cos 0 .  The 

c o e f f i c i e n t s  a r e  g iven as 

(4.20) 



+ 

+ 
where 
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(4.21) 

(4.22) 

The influence functions for a point load on a sphere may be 

obtained by considering a unit load F in equations (4.18, 4.19) and 

letting 8 represent the angle between the vectors describing the 

position of the load and the point A where the displacements are 

desired. This is illustrated in figure 4.6. 

Consider points A and B on the surface of a sphere. 

Cartesian coordinate system ( G ,  r ; ,  Y,) is constructed with the origin, 

0, at the center of the sphere. The vectors O'A and $B form an angle 8 

between them. 

A 
A h  

If loads F are applied at point B and at a point diametrical- 

ly opposite D then the displacements ur and u8 at A are defined by 

equations (4.18) and (4.19) respectively. It is important to note 



lo 

Fig. 4.6. Coordinate system for influence functions for a 
p o i n t  load on a sphere. 
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o f  u8 i s  not only a function of 0 b u t  a l so  of the 

spherical coordinates ($, 6 )  of D and those ( $ I ,  B ' )  of A. 

measured along the tangent t o  the great c i r c l e  a t  D which passes 

through p o i n t  A. 

u B  i s  

The influence functions f o r  a point load on a sphere may be 

written as  

tha t  

1 where 

(4.24) 

1 1 1  
'From spherical law of cosines or  from cos 8 = OA OD/ l O A l  

l$I. 
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G and H represent  t h e  in f luence funct ions f o r  ur and u8 r e s p e c t i v e l y  

which are  g iven by equations (4.18) and (4.19) r e s p e c t i v e l y .  

displacements ur ( 9 ,  6) and u0 (9 ,  €3) a t  p o i n t  ( J I ,  8) due t o  a d i s -  

t r i b u t e d  load p ( $ I ,  8 ' )  over reg ion  R can be c a l c u l a t e d  r e s p e c t i v e l y  

The 

and 

func t ions .  It i s  known from symnetry t h a t  t h e  

are  r e l a t e d  t o  R, 0 ,  v and E .  Furthermore t h e  

G i s  always r a d i a l l y  inward whereas t h a t  o f  ti 

face i n  t h e  d i r e c t i o n  away from t h e  u n i t  load. 

Now consider  t h e  numerical generat ion o f  these i n f l u e n c e  

magnitudes o f  G and H 

o r i e n t a t i o n  o f  p o s i t i v e  

s tangent t o  t h e  sur-  

Therefore i t  i s  

necessary t o  f i n d  funct ions gr ( 0 ,  v) and go ( e ,  v) i n  equat ions 

(4.23) and (4.24). 

from one f i n i t e  element s o l u t i o n  o f  a p o i n t  l o a d  on a sphere. 

1 These funct ions can be cons t ruc ted  i f  des i red  

'The a n a l y t i c  s o l u t i o n  o f  Sternberg and Rosenthal [19521 w i l l  
serve as a check on t h e  f i n i t e  element development which w i l l  then be 
app l ied  t o  t h e  spher ica l  seat and o t h e r  problems w i t h o u t  a n a l y t i c  
so lu t ions .  
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Consider the  sphere under the  l oad ing  i n  f i g u r e  4.5. Th is  

problem can be modeled f o r  f i n i t e  element ana lys i s  w i t h  the  g r i d  

shown i n  f i g u r e  4.7. 

program f o r  ax isymnet r ic  problems, descr ibed i n  Wilson [19651. The 

g r i d  i n  f i g u r e  4.7 represents  a cross sec t i on  o f  r i n g  elements which 

The present  ana lys i s  was made w i t h  t h e  computer 

a re  axisymmetric about the  z ax i s .  Because o f  t he  symmetry o f  t h e  

loading, p o i n t s  l oca ted  on the  x a x i s  were r e s t r i c t e d  t o  move o n l y  

i n  t h e  x d i r e c t i o n  w h i l e  p o i n t s  on the  z a x i s  were f i x e d  from moving 

i n  the  x d i r e c t i o n .  The ou tpu t  data o f  i n t e r e s t  a r e  t h e  displacements 

o f  t he  sur face po in ts .  

sphere where E = 30 x 10 ps i ,  v = 0.3, R = 1 i n .  which i s  compressed 

between two fo rces  F, where F = 30 x 10 l b .  From equat ion (4.17) i t  

Consider t h e  f i n i t e  element ana lys i s  o f  a 
6 

7 

f o l l ows  t h a t  

(4.28) 

(4.29) 

and the  f u n c t i o n  hr and he a re  e x a c t l y  those, gr and ge, i n  equat ions 

(4.23) and (4.24). 

The func t i ons  hr ( e ,  v) and he ( e ,  v) a r e  non-dimensional 

f unc t i ons  o f  displacement which a r e  known a t  t h e  nodes i n  f i g u r e  4.7 

f rom t h e  f i n i t e  element ana lys is .  Knowing the  displacements a t  the  
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Fig. 4.7. Axisymmetric finite element model o f  a sphere under 
two diametrically opposed point loads. 



ler, 

n 

R; 

Fig.  4.8. Matching of  a n a l y t i c  s i n g u l a r i t y  t o  numerical 
( f i n i t e  element) in f luence funct ion.  
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surface nodes, the displacement a t  any surface point may be obtainea 

through interpol ation. 

The computed displacements under the load are f i n i t e  and the 

numerical resul ts  mus t  be matched a t  some point near the load w i t h  the 

s ingular i ty  of the function. 

dominant s ingular i t ies  i n  the displacements under a point load on a 

sphere are indeed those of  equations (4 .1)  and (4.2).  

I t  i s  shown i n  appendix A t ha t  the 

I t  was found that  w i t h  an appropriately dense mesh, such as 

t h a t  shown i n  figure 4.7,  the numerical influence function h r  ( 8 ,  v )  

would merge w i t h  i t s  analytic singularity over a region near the load. 

This is  i l l u s t r a t ed  i n  figure 4.8 where the numerical influence func- 

tion h r  merges w i t h  the singular function i n  the region between A and 

B. The s ingular i ty  was matched t o  the numerical function a t  A ,  thus 

between 0 and 8 the behavior of the generated influence function was 

taken to be tha t  of the singularisy while for 8 greater than OA the 

numerical values of h r  were ut i l ized to  describe the influence 

function gr  ( e ,  v) .  

A 

Similar treatment was used to  generate 

( 8 ,  v > *  

A comparison of the displacement functions given by "analytic" 

equations (4.18) and  (4.19) w i t h  the displacement function h r  ( e ,  v)  

a t  the node points of f i n i t e  element analysis are given i n  table 4.1. 

I t  can be concluded that  the numericaJ influence functions are accurate 

representations of the analytic ones. 

4.6 Influence Function for a Point Load on a Spherical Cavity 

The displacements due to  a point load on a spherical cavity 
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have n o t  been publ ished t o  date. An i n v e s t i g a t i o n  by Sternberg e t  a1 

[1951], which deals w i t h  the  s o l u t i o n  t o  t h e  axisymmetric problem o f  

a reg ion  bounded by two concent r i c  spheres, could be used under 

c e r t a i n  l i m i t i n g  cond i t ions  t o  produce t h e  i n f l u e n c e  func t ion ;  how- 

ever, t h e  l i m i t  process i s  very invo lved and has n o t  been performed. 

For t h e  purposes o f  t h e  present research, t h e  i n f l u e n c e  f u n c t i o n  f o r  

a p o i n t  load  on a spher ica l  c a v i t y  i s  der ived  numer ica l l y  as o u t l i n e d  

i n  t h i s  sect ion.  

Consider a spher ica l  c a v i t y  o f  Radius R under two d iamet r i -  

c a l l y  opposed p o i n t  loads, F. The m a t e r i a l  has e l a s t i c  moduli  E and 

v. (see fig. 4 . 9 )  

The displacements ur and u8 are  des i red  as a f u n c t i o n  o f  R ,  

0 ,  E, v, and F. 

spher ica l  seat, we note t h a t  t h e  displacements must be a t  t h e  form 

From equat ion (4.17) which i s  a l s o  v a l i d  f o r  a 

and 

(4.30a) 

(4.30b) 

n 
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Fig. 4.9. Spherical cavity under diametrically opposed point loads 

Grs 
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Now consider a (q2 ,  c2, y2 ) coordinate system as shown in figure 4.11. 

The influence function for radial and tangential displace- 

ments respectively due to loads, diametrically opposed on a spherical 

cavity, may be expressed in terms o f  a (q2 ,  c2, y2) spherical 

coordinate system as 

(4.31) 

and 

(4.32) 

We seek to find the functions gr and go which are the 

displacements on the internal spherical boundary surface of an infinitc 

region under a loading condition such that F/ER = 1. These displace- 

ment functions can be easily found using a single finite element 

analysis. 

Consider the discretized model of a spherical cavity in an 

infinite medium as shown in figure 4.11. 

loading illustrated in figure 4.9. 

axisymmetric about the z axis. 

The model represents the 

Each element is a ring, 

The boundary conditions for the model 

restrict the nodes on the z axis to move only in the z direction while 

those on the x axis are allowed to move only in the x direction. The 



Fig. 4.10. Coordinate system for influence functions f o r  a 
point load on a spherical seat. 
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h 



Infinite region less insert a Insert a less insert b Insert b 

Fig. ,4.11. Axisymetric finite element model of a spherical cavity in an 
infinite region under diametrically opposed point loads. 
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nodes on the outer boundary were free.  

rad i i ,  Poisson's Ratio and Young's modulus used i n  the f i n i t e  element 

The values of the Force F ,  

analysis were as follows 

7 F = 30 x 10 lb.  

R = 10 in. 

R = 200 i n .  

v = 0.3 and 0.25 

E = 30 x 10 psi 

0 

6 (4.33) 

The solution of the f i n i t e  element analysis gives the values of the 

displacements on the surface of the cavity a t  the nodal points in 

figure 4.11. These displacements, u r  and u e ,  under conditions where 

F/ER = 1 ,  actual ly  represent the values of the functions gr (8 ,  v)  and 

go (8,  v). 

approximation of gr  ( e ,  u) and g8 ( e ,  v)  i s  known for  a l l  8. 

the influence functions for  the sphere, the s ingular i t ies  of equations 

(4.31) and (4.32) near 'the p o i n t  .load were represented by equations 

( 4 . 1 )  and  ( 4 . 2 ) .  

4.7 

Therefore by interpolating between these values an 

As with 

Influence Functions fo r  a Cylinder Under Concentrated Line Loads 

Consider a long cylinder under two concentrated l ine  loads as  

shown i n  f igure 4.12. 

The problem is  one of plane s t ra in  and has been solved i n  

Muskhelishvili [19631. The displacements a t  the point Q ,  in terms of 
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F i g .  4.12. Geometry o f  a cylinder under two l i n e  loads 



quantities labeled in figure 4.12, are 
Ls 

and 
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(4.34) 

(4.35) 

Y where F i s  a line load expressed in units o f  force/length, ux and u 

are the displacements in the x and y directions respectively, andXand 

p are the Lame’ constants of the cylinder. 

(4.35) may be combined to find the displacement field in polar 

cordinates o f  a cylinder under two diametrically opposed line loads, 

as illustrated in figure 4.13. 

Equations (4.34) and 

The derivation o f  ur and u8 is performed in appendix B.  

The results are as follows: 
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h 

Q 

Fig .  4.13. Polar coordinate system f o r  a cylinder under two 
diametrically opposed line loads. 
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and 

where 

and 

2 ( I -  v 2 )  x =  

( i t  v)(1-2 v )  /Y2 = 
2E 

The i n f l u e n c e  fun  t i o n  f o r  a l i n  1 

(4.37) 

(4.38) 

(4.39) 

n a cy1 i nde r  may be fornied 

from equations (4.36) and (4.37) by consider ing 8 t o  be the angle 

between the vector  desc r ib ing  the  p o s i t i o n  o f  t h e  u n i t  l oad  F and the 

p o i n t  Q. The in f l uence  func t i ons  i n  the  r a d i a l  and tangen t ia l  

d i r e c t i  on s respect  i ve 1 y a r e  

(4.40) K2 f -A& (e-e') rr 



and 

(4.41) 

where 0 and 0 '  are illustrated in figure 4.14. 

It is important to note that equations (4.40) and (4.44) 

represent the influence function for two diametrically opposed line 

loads. They may be integrated as shown below to find the displace- 

ments ur (0, R )  and Ue 

where p (0) = p (e + T )  

8 ,  R )  due to two symmetric loadings p ( e ) ,  
The displacements may be calculated by 

4 

and 

(4.42) 

(4.43) 

Now consider the numerical generation o f  equations (4.40) and 

It is known that the displacements ur and uB due to diametri- (4.41). 

cally opposed point loads, F are functions of 8 ,  F, E, v and R ,  where 



F i g .  4.14. Coordinate system f o r  the inf luence functions o f  
a c y l i n d e r  under two d i a m e t r i c a l l y  opposed l i n e  loads. 

77 
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E and v a r e  t h e  e l a s t i c  constants  o f  t he  c y l i n d e r  o f  rad ius  R. From 

dimensional ana lys i s  the  displacements u, and ue may be expressed i n  

the  forms 

and 

(4.44) 

(4.45) 

Furthermore, because o f  t he  l i n e a r i t y  o f  t he  problem, t h e  
F 

r a t i o  ER must appear l i n e a r l y  i n  t h e  above equat ions;  hence u, and 

ue may be expressed i n  t h e  form: 

and 

(4.46) 

(4.47) 

Q We t h e r e f o r e  seek t o  f i n d  t h e  dimensionless f u n c t i o n s  g, (e, U) and 
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go ( 0 ,  v )  which represent the displacements u r  and u8 under the 

conditions t h a t  F/E = 1. These functions may be found w i t h  one f i n i t e  

element analysis of a cylinder under two diametrically opposed l ine  

1 oads. 

Consider the model of a cylinder given by the f i n i t e  element 

representation in figure 4.15. 

The l i ne  load per unit thickness, F ,  i s  applied and due t o  the 

symmetry of loading only the upper-right quarter of the cylinder i s  

considered. 

the x axis and nodes on the z axis are  res t r ic ted to  move only along 

the z axis. 

P ,  E ,  v and R were taken as 

The  elements a re  plane s t r e s s  elements. 

Nodes on the x a x i s  are  res t r ic ted t o  move only along 

For the solution a t  hand the values of the parameters 

7 P = 3x10  lb/in. 

E = 32.967 x lo6 psi 

( 4.48) 

v = 0.42857 

R = 1 i n .  

The values of E and I, used above represent the moduli i n  plane s t r e s s  

which a re  equivalent to  the values o f  E = 30 x lo6 psi and v = 0.3 i n  

plane s t ra in .  These values were determined via equation (4.11) and 

the resu l t s  are  appropriate for  the plane s t ra in  model w i t h  the noted 

values of E and v. 

ments¶ ur and ue a t  the surface nodes i n  f igure 4.15. 

The solution yields the values of the displace- 

These 



1 

80 

F 
tj  

Fig. 4.15. Plane s t r e s s  f i n i t e  element model of a cylinder 
under l i ne  loads. 
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displacements represent the values of g r  ( e ,  v )  and ge ( e ,  v )  a t  the 

nodal points i n  the f i n i t e  element model. 

and ge ( e ,  v )  can therefore be approximated by interpolating between 

these Val ues. 

The functions gr  ( e ,  v )  

The s ingular i t ies  for  the functions g r  and g e  a re  given by 

equations (4.14) and (4.15), t h a t  i s ,  those s ingular i t ies  appropriate 

t o  the l ine  load on a plane. I t  i s  shown in Appendix C t h a t  these 

are indeed the correct s ingular i t ies  since the functions in equations 

(4.12) and (4.13) approach inf in i ty  in exactly the same manner as 

equations (4.36) and (4.37), respectively. 

I t  may be concluded t h a t  by knowing values of gr ( e ,  v )  and 

g e  (e ,  v )  a t  the nodal points in figure 4.15 and by having correctly 

identified the s ingular i t ies  of those functions, the influence 

functions for  l i ne  loads on a cylinder have been determined. As a 

f inal  check on the accuracy of such a function the values of the 

displacements 9, and go from the f i n i t e  element analysis have been 

compared to  those of equations (4.12) and (4.13) in table 4.2. 

clearly indicated that  the f i n i t e  element solution gives a very 

accurate representation of the displacements up  to  within a half 

degree from the applied force. 

I t  i s  
i 

4.8 Influence Function for  a Line Load on a Cylindrical Cavity 

Consider a cylindrical cavity within an i n f in i t e  solid body. 

Given that  two l ine  loads, F ,  diametrically opposed, are  applied to  

the cavity surface, the displacements ur and u e  a re  derived from known 

e l a s t i c i ty  solutions in Appendix D. (see figure 4.16) 



33 

Fig. 4.16. Cylindrical cavity under two diametrically 
opposed line loads. 



They are as follows: 

c 
0 

J 

and 

where 

and 
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(4.49) 

(4.50) 

(4.51) 

( 4 . 5 2 )  

The influence functions for ur and uo can be derived simply from 

equations (4.49) and (4 .50) .  By considering F to  be a unit load per 

unit width and by replacing 9 by 9-9 '  as i l lustrated in figure 4.17. 

n 



I 

iu 

Fig.  4.17. Coordinate system f o r  the  inf luence funct ions o f  
a cy1 i n d r i c a l  c a v i t y  under two diametr ica l  l y  opposed 1 i n e  loads. 
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the influence function for two line loads on a cylinder become 

- 4 4cM (0-6') (4.54) 

It is interesting to note that the influence functions for 

both the cylinder and cylindrical seat are independent of the radius 

R ,  since the dimensional analysis leading to equations (4.44) and 

(4.45) are valid for the cylindrical cavity as well as for the solid 

cylinder. Accordingly,the displacement functions for the cylindrical 

seat are: 

E 
(4.55) 

and 

(4.56) 



87 

where + represents t h e  d i f f e r e n c e  between t h e  angular p o s i t i o n  o f  t h e  

f o r c e  and t h e  displacement, i.e., 0 - 8 '  i n  f i g u r e  4.17. The f u n c t i o n s  

gr (@, v )  and go ( @ ¶  v )  represent  t h e  displacement on a c y l i n d e r  where 

t h e  r a t i o  F/E = 1. An approximation t o  these f u n c t i o n s  may be obta ined 

through f i n i t e  element analys is .  

see t h a t  t h e  requ i red  i n f l u e n c e  func t ions  a r e  found by d i v i d i n g  gr and 

From equat ions (4.55) and (4.56) we 

99 by. E *  

Consider t h e  model o f  a c y l i n d r i c a l  c a v i t y  as i l l u s t r a t e d  i n  

f i g u r e  4.18. The model represents t h e  loadings i l l u s t r a t e d  i n  f i g u r e  

4.17. 

t h e  z a x i s  and l i k e w i s e t h e  p o i n t s  on t h e  x a x i s  a r e  r e s t r i c t e d  t o  move 

on t h e  x axis .  

removed from t h e  c a v i t y  t o  consider i t  a t  i n f i n i t y .  

c a l  problem both t h e  stresses and displacements vanish a t  i n f i n i t y .  

Therefore, two cases o f  boundary cond i t ions  w i l l  be considered a t  t h e  

ou ts ide  rad ius  i n  t h e  d i s c r e t i z e d  model. I n  t h e  f i r s t  case those 

p o i n t s  a r e  f r e e  w h i l e  i n  the  second they w i l l  be f i x e d  r i g i d l y .  

The p o i n t s  a long the  z a x i s  a r e  r e s t r i c t e d  t o  move o n l y  a long 

The ou ts ide  rad ius  i s  thought t o  be s u f f i c i e n t l y  

I n  t h e  mathemati- 

For t h e  example a t  hand t h e  values o f  E, c ,  R,  R, and F were 

as fo l lows:  

7 F = 3 x l O  l b  

E = 32.967-x l o 6  p s i  

v = 0.'42857 

R = l  i n  

- 

- 

R, = 20 i n  (4.57) 
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The resu l t s  of the surface nodal point displacement f o r  the 

f r ee  and fixed boundary conditions a re  compared to  the analyt ic  

solutions i n  tables 4.3 and 4.4 respectively. The resu l t s  indicate 

tha t  the boundary condition a t  the outside radius which most closely 

models the true condition i s  when those points a re  considered to  be 

free.  T h e  f i n i t e  element data in table  4.3 shows good agreement 

between the numerical and analyt ic  solutions.  While the data i n  

table  4.4 a lso indicates a close correspondence i t  does not agree as 

well as the resu l t s  i n  table  4.3. 

Again there i s  the problem of finding the appropriate 

singularity.  As m i g h t  be expected, the Flamant solution fo r  a l i n e  

load on a plane, represents the s ingular i ty  fo r  the case o f  a 1 

load on a cylindrical  cavity.  This i s  proven i n  appendix E .  

From the above f i n i t e  element analysis ,  the functions 

gr (+, v) and g ( 4 ,  u) may be evaluated away from the applied 

by interpolating between the nodal displacements. The Flamant 
+ 

ne 

oads 

s ingular i ty ,  given by equation ( 4 . 1 4 ) ,  may be  used as  the s ingular i ty  

of the function (4.55), while the constant i n  equation (4.15) may be 

substituted f o r  the l imi t  of equation (4.56) near the applied loads. 

Having constructed equations (4.55) and (4.56) , the displacements u r  

and ue due t o  distributed l i ne  loads p ( e )  and p ( e  + IT) ,  where 

p ( e )  = p (0  + IT) ,  may be calculated from equations (4.42) and (4.43) 

respect i vel y . 



90 

w
 
I
 

I- 
O
 

I- I- 
L

>
-
 

0
-
1
 

<
 

z
z
 

O
Q

 
v, 
Y

 

N
N

O
-

 

+
+

+
*

 
O
f
3
0
 

C
r

(
f

-
N

 

&
Y

*
I

-
 

c
c

4
4

 
m
a
c
u
 

e
 
-OI 

c
 

0
.3

 \D
O

 
0

.
4

-
n

 
0

.d
o

l-
I 

0
0

0
0

 

0
0

3
5

 

-n
*

o
m

 

.... 

r
(
d

H
 

0
0

0
 

+
+

+
 

, 1
0
 0

 
m
a
c
 

o
n

-
 

u
 u. 0

 

C
 

L
T

E
 

2
n
d
 

N
N
N
 

n
e
-
 

a
t
a

l
 

4
4

-
 

0
0

0
 

... 

d
 

0
 

+ 0 
a
 

4
 

t
 
c
 

m
 

h
 

R
 

4
 

4
 

0
 

0
0

0
0

0
0

 
c
o
r
o
o
c
 

+
+

*
*

+
*

 
C

l
L

=
3

0
2

2
 

8c 
c
 c o

c
u
 

O
I

C
C

G
4

C
 

N
 Ul 

\o
 
d

 Y
 

m
)d

--tC
n

o
l 

E
o

l
C

O
d

-
 

P
J

N
lC

lR
R

E
 

0
0

0
0

0
0

 
I

I
I

I
I

I
 

n
.a

a
-\r

r
 c
 

f
o

a
m

r
-

w
i 

r
.
r

-
~

a
-

f
 

...... 0
0

0
0

0
0

0
0

 
o

c
c

o
o

c
o

o
 

+
+

+
*

+
*

+
+

 
c
0
3
0
3
0
0
c
 

N
.-

U
.-

U
l-

O
\C

 
f
 a
 Cu *)I R

 
Y
)
 0
,
 a
 

r. 
n 
c
 u
 c
 c
 

~
&

~
\

~
a

.
u

,
e

.
r

n
 

m
o

l
u

R
o

l
r

-
n

 
Q

O
Y

)l-L
O

N
I-O

I 
o

la
h

m
r-a

m
m

 
r

N
n

n
f

L
n

a
l

C
 

~
m

n
n

n
n

n
n

 
........ 

0
0

0
0

0
0

0
0

 
I

I
I

I
I

I
I

I
 0

0
0

0
0

0
0

 
O

O
P

C
~

O
C

 
*

+
+

*
+

+
+

 
o

c
3

c
o

c
o

 
I

C
Y

,C
,G

R
 U

N
 

m
-

m
f

r
b

o
f

 
n

c
*

c
r

c
c

\
l

 
U

r
p

o
c

P
U

o
 

a
m

 r- 
3
 Y. 
0
 u
 

m
m

m
-m

m
r- 

a
m

~
r

r
m

r
-

f
o

 
(G

 01 - N
R

 nr- 
m

r
-

f
~

-
t

t
f

 
....... 

0
0

0
0

0
0

0
 

1
1

1
1

1
1

1
 

0
0

0
0

0
 

o
c

o
o

c
 4

d
d

d
d

d
d

C
 

0
0

0
0

0
3

3
0

 
+

+
+

+
+

+
+

+
 

0
~

0
0

0
=

l
0

0
 

~
+

O
.

O
O

C
I

Q
W

 
OI 
0
 *1 

f
 
.L 

f
 
0

. 4
 

tm
m

o
(\i:tY

)m
 

O
.

O
C

.
f

f
o

s
f

 
-
0

 
0

 
0

 
d

c
1

 a
la

 
d
d
4
d
d
d
d
N
 

d
d

4
4

.
+

4
r
(
-
l
 

0
0

0
0

0
0

0
0

 

R
"

 
3

N
O

d
L

n
O

Y
l

-
 

R
 0

. d
.O

. e
 u
 

........ d
d

d
N

 
0

0
0

0
 

+
*

*
+

 
0

0
0

0
 

c
u

-u
ls

 
*

N
N

Q
 

o
t
o
n
 

w
a

r
-

m
 

U
N

C
I

 

4
4

L
n

D
 

m
m

f
n

 
r

n
m

n
 

n
m

m
r- 

0
0

0
0

 
.... 

I
 

0
0

0
0

0
0

0
0

0
0

-
l

~
 

O
C

O
O

C
~

O
O

O
Q

O
I

 
+

+
*

+
+

*
+

*
+

+
I

D
 

O
D

0
 3
1
3
o
o
o
c
o
o
 

r
+

a
c

f
a

~
~

n
m

e
-

 
c
u
 rc m

a
 (u
 n

r-c. Y
)
 ~

.
m

 
m

o
m

 -
3
0
 C

.o
lY

 t
 Q

f
 

@
n

a
m

Y
)

O
+

Q
N

O
N

a
 

d
m

M
O

r
R

d
m

f
O

t
r

-
 

m
l
P

L
p

Q
U

7
U

l
C

l
P

f
N

f
-

 

0
0

0
0

0
0

0
0

0
0

0
0

 
1

1
1

1
1

1
1

1
1

1
1

1
 

e
 

m
n
4 
f
 
Y
 

o
lo

lr
V

I
-

C
 

R
O

O
 u

 "
O

l
t

S
C

 
R

N
a

l
a

 

e
a
 0

.0
0

1
 ~

U
I
~

(
F

O
\
D

.
+

N
 

, ............ 
0

0
0

0
0

0
0

0
 

o
o
o
o
c
o
c
o
 

+
*

*
+

+
+

+
*

 
U

I
Q

d
A

O
k

O
O

Q
 

o
o
o
a
o
o
o
o
 

o
s

-
n

m
o

~
o

 

c
m

o
l

~
t

o
~

f
 

o
~

e
m

s
r

-
r

m
 

Y
l
-

R
-

Q
a

a
l
b

 
6

N
L

n
L

n
R

U
\

D
c

 

0
 m

t
o
a
 -
a
-
 

s
s

c
,s

a
o

lo
lc

 
N

h
N

N
N

N
N

R
 

c
 c
 c
 0

 c
 c
 c
 C' 

1
1

1
1

1
1

1
1

 

........ 0
0

0
0

0
0

0
0

0
0

0
 

o
o
o
c
G
o
o
o
o
o
o
 

*
*

+
*

+
*

+
+

+
+

+
 

0
0

0
c

t
0

0
0

0
0

0
 

N
U

i
f
-
n

N
f
f
Q

+
f
d

 
n

m
a

n
o

l
n

J
r

m
m

o
l
o

l
 

N
h

m
f

R
4

m
o

l
R

f
Q

 
a

c
~

m
r

~
~

c
a

+
f

o
 

e
\

r
o

n
n

a
r

~
~

o
a

 
a

o
~

o
l

n
m

a
f

~
-

c
 

O
-

-
-

N
&

n
f

!
n

Q
r

-
 

n
n

~
m

n
~

n
n

n
n

n
 

o
o

c
c

 c
 

O
C

O
C

C
:

O
 

~
~

~
N

O
N

Q
~

-
I

N
-

I
-

 

........... 
1

1
1

1
1

1
1

1
1

1
1

 0
0

 
c
c
 

*
*

 
0
0
 

m
u7 

d
e

 
f
m
 

m
-
 

n
e
 

O
IO

 
O
N
 

t
o
.
 

R
R

 

o
c
 

I
1

 

.. 0
0

0
0

 
o
o
c
o
 

0
0

0
0

 
+

+
+

+
 

O
IN

'IIY
) 

N
t
n
O
 

d
o
t
*
 

R
L

l
h

V
)

 
D

G
m

O
 

f
a

o
m

 
O

r
t

R
f

 
f

f
f

f
 

c
c

o
c

 
I

I
I

I
 

a
h
a
-
 

.... 0
0

0
0

 
0
0
0
0
 0

0
0

0
 

O
O

O
G

 

*
+

+
+

 
0
0
0
0
 

c
U

N
o

lr- 

a
Q

.7
4

 
u

t-m
m

 
"

*
\

O
f

 
'O

V
IN

ID
 

O
ifr

G
r

- 
m

m
m

m
 

n
s

s
r

,
 

r
m

h
o

 

c
o

c
c

 
.... 
1

1
1

1
 0

0
0

0
 

0
0

0
0

 
*

+
+

+
 

l
o

o
0

0
 

C
m
n
N
 

R
O

C
Q

 
4

r-d
.B

 
r

m
o

l-
 

b
Q

d
C

2
 

r
"
f
i
 

N
N

r
C

f
 

o
l

"
O

0
 

In
a

s
s

 
o
o
c
c
.
 

I
*

 I
1

 

.... 

~
d
0
0
0
0
0
 

e
O

O
o

C
C

O
 

+
+

*
*

*
+

+
 

0
0
0
0
0
0
0
 

O
'O

O
d

Q
m

,y
I 

~
C

o
O

N
m

n
 

o
l
d

C
R

N
4

R
 

0
0

L
n

o
l

Q
f

Y
)

 
U

f
.n

o
lU

IC
!
n

 
r

-
O

r
(

@
O

Y
)

N
 

m
~

a
n

o
o

o
l

 
n

~
m

o
m

)
~

~
 

a
o

la
a

r
-
-
c

 

....... 
0

0
0

0
0

0
0

 c
e
,
 

o
r
 

+
+

 
0
0
 

l
-
4

 
Y

&
 

a
t
 

G
I
-
 

c
u

 
m

e
 

e
m

 
c
c
 

0
0

 

m
 .D

 

.. o
n

u
o

 
0

C
"

O
 

+
*.+

 
0
0
0
0
 

u
c
o
e
 

R
o

l
F

O
 

m
N

R
-

 
R

R
N

U
 

C
O

R
-

 

s
-

o
m

 
f
*

:
r

9
 

c
c

r
-
c

 
0

0
0

0
 

c
 n

 ,rr- 

.... 0
-
2

0
 

O
"

0
 

*.+
 

O
O

G
 

o
n

0
 

4
U
G
 

m
m

o
l 

I
r
e

*
 

a
n

m
 

r
t

m
 

H
Q

N
 

*
F

Q
 

0
0

0
 

m
o

l0
 

... 0
0

0
0

 
c
o
o
0
 

*
*

+
+

 
0

0
0

0
 

n
o
-
&
 

o
r
-
s

a
l 

I
P

f
-

N
 

Lp - LT. 
c. 

Q
a

N
a

 
-

f
C

"
 

N
o

l
Y

l
c

 
o

U
.o

*
n

 
m

r-r-r- 
.... 

0
0

0
0

 

A
d

-
 

G
O

O
 

+
+

*
 

,
0

3
0

 
L

O
O

N
 

c
o
o
l
 

I-
a

c
 

0
1
-
 

R
t

R
 

a
n

0
 

G
o

lN
 

R
N

N
 

N" 

0
0

0
 

... 

C
O

C
 

c. n
 c
 

*
*

+
 

,
0
0
0
 

I
-
-
-
 

r
p
r
-
o
l
 

m
m

a
 

m
U

f
0

 
m

)
f

o
 

1
0
 o
c
:
 

a
m
*
 

e
l-

e
 

0
0

0
 

~
m

t
-

 
... ?

-
C

t
-

Q
Y

l
f

n
N

 
4

d
d

r
(
4

d
r
(
 

....... 
0

0
0

0
0

0
0

 

c
r
z

o
o

 
c
c
o
o
 

+
*

+
+

 
0
0
0
0
 

a
l)O

IN
o
l 

a
c
t
a
 

P
d
Y
O
 

?
-
a
c
e
 

R
-

S
f

 
..-r.fh

 
0

.
0

.
R

f
 

m
en

la
c 

L
n

m
o

 n
 

.... 
0

0
0

0
 

0
 

0
 

1
0
 

d
 

f
 

4
) 
c
 

0
, 
I. r- d
 

N
 

0
 

-
I
d

0
0

0
 

0
0

0
0

0
 

I
 
I *

*
+

 
O

O
O

O
O

 
O

O
t

N
O

 
Q

D
L
O

t-C
S

O
 

o
n

n
s

o
 

R
f
s
e
o
 

t
r

m
n

m
o

 
o

o
m

4
1

0
 

o
l

t
m

f
o

 
C

 
d
 Q

-IS
 -8

 
C

I
O

4
N

N
 

0
0

0
0

0
 

D
l

 I
I

 

..... 

d
C

 
0

0
 

*
+

 
8
0
9
 

O
f

 

t
m

 
R

R
 

f
d

 
N

.L
 

-0
. 

0
4

 
-

4
 

0
0

 

t
n
 

,
.
.
 

-
d
e
-
-
 

0
0

0
0

0
 

+
+

+
+

+
 

0
3

o
c

J
o

 
@

-
*

S
I

-
 

C
, f

 
P
 P

, m
 

N
C

u
0

l
-

m
 

R
4

f
O

l
O

 
o

l
R

R
f

N
 

"-m
a

l 
M

R
N

R
I
-
 

R
t

a
Q

O
 

-
.
-
4

.
-
h

 

0
0

0
0

0
 

..... 0
3
0
1
0
0
 

w
a

a
f

h
t

 
9
 f

 
f
 
f
 r

,"
 

...... 
0

0
0

0
0

0
 +

-
4

.
4

,
.
,
-
-
 

O
O

U
O

O
O

O
 

*
+

e
+

+
+

+
 

l
0

0
0

0
0

0
0

 
R

 r- c
 
4

 0
. f

 
f

m
f

a
l

m
d

m
 

N
O

G
O

O
-

C
 

R
N

O
S

R
N

R
 

O
O

E
U

d
N

o
l
d

 
C

o
l

R
L

n
d

W
C

)
 

6
iY

I
N

o
lO

I
O

il- 
0

.
S

f
N

N
f

O
 

I5 ". q
.'r .... e 

0
0

0
0

0
0

0
 w

n
~

 
0

0
0

 
-

+
+

 
0

0
0

 
0
-
3
 

t
f

O
 

O
r

w
d

 
N

-U
l 

a
h

L
 

N
f

N
 

N
 
olOl 

N
n

Y
)

 
c
c
-
 

I
.

.
.

 

0
0

0
 

C
N

N
N

N
N

 
0

0
0

0
0

0
 

*
+

+
*

*
*

 
'J

I
v

c
I
a

l
d

O
 

0
0

0
0

0
0

 
Q

C
Q

~
.

-
I

O
 

r-tU
=

l>
to

 
-

I
C

O
N

0
 

O
IC

.O
R

Q
O

 
Q

m
r

(
N

N
0

 
O

-n
u

?
C

fn
o

 
(
Y

O
C

d
?

-
O

 
tm

rC
.r-m

)O
 

0
0

0
0

0
0

 
...... 

n
 



OU*0216e99LSZ*O- 
00*0€6E9Sf1SZ*O' 
OIl*nZh5cZOLL1*O' 
10-00969ZCZ9S'O' 
Io-a99cS6OZLL*O 
oOtOczhO*cIIz*O 
ootaecohIzIhc*o 
OJtOI9chEOS9h*O 00+0h916ChZ9S*il 

OOt06fhZILC69*0 
OO*OhZC66C66L'O 

OO+fl200909966'0 
10*~19LhC6901°0 
10+06WI06BLI~*O 
IU+OZIOhLS9Z1*O 

OO+~IOI~EIOO~*O 

10+0O~S920sCK*O 
io+azLhiezEht*o 
IG+06E 169CIS 1.0 
IJt099SZIC6C1*0 
IO+~K~~ZFIL~I*O 
10tflbSLBhCIhLI'O 
IG+06ESSLhZBI'O 
10ta91Cs20061'0 
IutOIC190SLbI*O 

Iut0S6911EZIZ*O 
lutflI19~h9612'0 
I u +CIS 2 6956 9 22 ' 0 
1JtOCLOShZhEZ.O 
Iu+~LWE9CSfhZ~O 
IOt~S9E109dhZ'O 
IGt~1C9ShbESZ'O 
10+0919SSh65L'O 
Iu+flBUL165S92'0 
10*06ChS6€ZLZ*0 
10+09ch9BOO9~'0 
IUtflhLOO96UUZ*O 
IOtOCOL6Sh66z'O 
IO+OZOhC9fZIf*O 

IJ+abIL690fSC*0 
IG+O9fi9Ch99UC*0 
IO*0SLOOLIZ1s*0 

IJtfl06fhE6h0Z*O 

Io+osocLzeezc*o 

(aixu maow iN3wm IIINIJ do AwaNnoa mno) 

POP 3iawi 

AlIAW3 lW3IkiaNIlA3 W NO SOW01 IN11 tlOd SNOIlnlOS 3IlAlWNW 
3Hl 01 SlN3W313 31INIJ 9NISfl a31Wki3N39 SNOI13NnJ 33N3llJNI JO NOSILlWdW03 

3 

20*00 00 00 00;; i 0 
Zo+OIIbi?eZ~~0*0 
Z0+06610CZhIL*O 
20*0h9SLhI965*0 
zO*aCLh*96€~~'0 
ZO*U99A9096Zh*O 
20+0TL99h6d9L*O 
ZO+OISLI92HIf'O 
20+OB66Lh9SL6'0 
Z@*OLBLELh6f6'0 
ZO*OhCILb'SYOZ*O 

ZO*0hOIC026~1*0 
ZO*OIhZT~h6CL*O 

ZO*OhZL89Ud@l*O 

ZCtawfiozszzzt*o 
to+axcecIcLoI*o 
10+0h1126W2h6'0 
10+06ESCL16Zb*O 
10*0IQ09dS6ZL*O 
IO*GDhYOWfZh9*0 

IO*OEh2C5Lu6~*0 

IO~~LCI~S~L~E~O 

IO OL 5 0 2 0 6 b 9L ' 0 

IO (2 h I 99 h L 65 h 0 

IOt0hhWS6IZhC'O 
10tUSh606610f*O 
10*09hCL9S99C'O 
KOtOE999SESCc*O 

IO*a6SL6hSfBI*O 
16 t UL6 0 IrE I29 I ' 0 
IO*OlhZICZihL*O 
10 tcl6CZC6Z I E I 0 
10*0hSC19fbII'O 
IO*flOhSh2hLOI*O 
uO+flC021L9hSo'O 
00*0hAZ95hSCd*O 
OOtQZZZIUI9IA*U 
00+0h6SShL965'0 
OO+OBh9SfCLLh*O 
00+a91OSO6LSC'O 
OO*OZIZLC~~EC*O 

Io+aissezwLoe*o 

00*009L6a2611*0 
bO-OZZZLS6ZAS*O 

3 



5. CONFORMAL ELASTIC CONTACT OF A SPHERE 
INDENTING A SPHERICAL CAVITY 

5.1 I n t r o d u c t i o n  

Hertz [18811 provides an a n a l y t i c  s o l u t i o n  t o  t h e  problem o f  

two contac t ing  bodies w i t h  quadra t ic  surfaces. I n  h i s  theory, Her tz  

assumed non-conformal contact ,  i.e., t h a t  a l l  o f  t h e  dimensions o f  

t h e  contact  patch were small compared t o  t h e  r a d i i  o f  curva ture  o f  t h e  

bodies, hence j u s t i f y i n g  t h e  approximat ion o f  t h e  surfaces i n  t h e  

contac t  region, by e l a s t i c  h a l f  spaces. Her tz ian  theory may be 

a p p l i e d  t o  t h e  problem o f  a sphere i n d e n t i n g  a spher ica l  c a v i t y ,  how- 

ever, i t  i s  r e s t r i c t e d  i n  i t s  a p p l i c a t i o n  t o  t h e  ana lys is  o f  cases 

where t h e  contac t  patch remains small .  I f  t h e  sphere and seat a r e  

c l o s e l y  conforming, i.e., t h e i r  r a d i i  a re  n e a r l y  equal, then Her tz ian  

ana lys is  can o n l y  be a p p l i e d  f o r  very small  loads f o r  which t h e  

contac t  patch remains small .  

Goodman and Keer [19651 have analyzed t h e  conformal problem 

o f  a sphere and seat w i t h  n e a r l y  equal r a d i i .  

f o r  areas o f  con tac t  l a r g e r  than those t h a t  cou ld  be analyzed by 

Her tz ian  theory. As i n  t h e  theory o f  Hertz,  Goodman and Keer 

assumed t h a t  p o i n t s  on surfaces o f  t h e  sphere and seat r e s p e c t i v e l y  

which l i e  a long a l i n e  p a r a l l e l  t o  t h e  l i n e  o f  a p p l i e d  load w i l l  

merge a f t e r  deformation. Furthermore, t h e  bas ic  equat ion i n  t h e i r  

fo rmula t ion  enforces t h i s  c o n s t r a i n t .  It w i l l  be shown t h a t  t h i s  

They present r e s u l t s  

92 
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assumption i n  conformal theory can lead t o  erroneous s t r a ins  and dis- 

placements when large areas of contact are  analyzed. 

Llpi 

I n  section 5.2 the problem of an e l a s t i c  sphere indenting an 

e l a s t i c  spherical seat  will be formulated, using the conformal contact 

model discussed in chapter 3. The numerical procedures used i n  the 

solution will be reviewed i n  section 5.3 and the numerical resu l t s  

will  be presented i n  section 5 .4 .  

5.2 Formulation 

Consider the conformal contact problem of an e l a s t i c  sphere 

of radius R1 indenting an e l a s t i c  spherical seat  of radius R p  

( R 2  > R 1 ) .  

pressure dis t r ibut ions equal t o  the interfacial  contact pressure and 

I t  i s  assumed tha t  the sphere and  seat  a re  equilibrated by 

diametrically opposite the contact region. Contact regions will be 

therefore limited to  hemispherical contact. A cross section of a 

sphere, body 1 ,  and spherical seat ,  body 2 ,  i n  p o i n t  contact a t  0 i s  

i l lus t ra ted  i n  f igure 5.1. 
A h *  

Let us establish a global  coordinate system ( x ,  y,  z) whose 

origin will be fixed a t  the i n i t i a l  point of contact, 0, such tha t  the 

x - y plane i s  tangent to  the sphere a t  0 and z i s  directed into the 

sphere. The cross section of the sphere and seat  i n  the x - z plane 

represent the "contour curves'' of the sphere and seat  and each curve 

i s  a c i rc le .  

I t  i s  i n i t i a l l y  assumed that  two points which will merge 

a f t e r  deformation, A on body 1 and B on body 2, are  defined such tha t  

t l  t he i r  distances from the origin along the i r  respective contour curves 
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f P 

Fig. 5.1. Conformal contact between a sphere and spherical 
seat or a cylinder and a cylindrical seat. 

n 
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are  equal, i.e., s = s2 ( F i g .  5.1). 

vectors rl and r2, and the vector difference between them i s  defined 

by f ,  the vector valued prof i le  function. 

and B may be located on their respective contour curves by angles 

measured a t  the center of the contour curves from the z axis as 

shown i n  figure 5.1. 

Points A and B are  defined by 1 
A a 

A 
Alternatively, po in t s  A 

Point A i s  defined by angle + and point B i s  

defined by angle @. In the notation to  follow i n  t h i s  chapter a l l  

angles $ will refer  t o  locations of  points on the sphere while a l l  

angles @ will denote points on the seat. 

A local coordinate system (;, 2, i) will be constructed a t  

point A such that  u n i t  vector ?, which represents the "mean normal'' 

forms an acute angle a w i t h  the z axis,  where 

u n i t  vector t i s  defined t o  be  IT/^ radians clockwise of r̂ and 6 i s  

such tha t  

The contact cr i ter ion can then be formulated by examining the 

displacements of points A and B. 'Consider t he  following displacements 

as i l lus t ra ted  i n  f igure 5.2. 

translation A l ,  parallel  t o  the z axis, to  A ' ,  and th rough  an e l a s t i c  

P o i n t  A moves through a r i g i d  body 
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F i g .  5.2. Displacements on sphere and spherical seat 
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displacement w along the inward norm 1 o f  the sphere to  A" .  1 
Similarly point B undergoes a r i g i d  body translation A2 parallel  t o  

the z axis t o  B '  and  an e l a s t i c  displacement w2 directed along the 

inward normal o f  the seat to  B" .  

contacting surfaces about the z axis ,  there will be no displacements 

on e i ther  body i n  the w direction. 

Because o f  the symmetry o f  the 

We now impose the contact c r i te r ion ,  i . e . ,  t h a t  the 

projection o f  the separation ( S  = A "  B " )  i n  the direction o f  the mean 

normal r must vanish. Following equation ( 3 . 6 )  this c r i te r ion  may be 

expressed i n  the form: 

h 

where 

W - 0  a =  
2 

d =  - (A,tAz) 
and 

(5.3) 

(5.4) 

(5.5) 

5 i s  derived i n  appendix F and r lx ,  rZXy r l z ,  r 

components of vectors rl and r2 as shown in figure 5.2. 

the prof i le  function and approach respectively. 

are  the x and z 
22 

A A 
f and 6 a re  
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I t  should be noted that  the peak s t ra ins  will remain small 

(as required by the assumption of l inear  e l a s t i c i ty  theory) only i f  

the i n i t i a l  separation f (see f i g .  5.1) i s  small compared to  the local 

radii  of curvature. Therefore some additional b u t  consistent approx- 

imations are  possible in the derivation of equation (5.3), (see 

appendix H ) .  However, these approximations resu l t  i n  no s ignif icant  

reduction of computational e f fo r t .  

) coordinate fixed t o  the sphere 

Point A can be located i n  spherical coordi- 
61 '  y1 Consider now the ( q l y  

as shown i n  figure 4 . 7 .  

nates by ($, f3, R 1 ) .  

i n  figure 4 .7 ,  can be expressed i n  terms o f  the pressure dis t r ibut ion 

p ( $ I ,  6 ' )  i n  the form 

The e l a s t i c  displacement w1 a t  A ,  shown as ur  

where G ($, f3, $ I 9  B ' ,  v l ,  E l )  i s  given by G in equation (4 .22 )  and 

5 2 ,  i s  the contact surface defined on the sphere. 

Similarly in terms o f  the ( q 2 ,  c2,  y2) coordinate system i n  

f igure 4.11, w2 can be expressed in terms of p ($I, f3) by 

n 
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where G2 ($, B ,  $1, B ' ,  u2, E2) i s  defined by equation (4.35) and  Q2 

i s  the contact are  defined on the spherical sea t .  

in equations (5.7) and (5.8) may be simplified by u t i l i z ing  the 

symmetry o f  the pressure f i e ld .  

z axis of the contact surfaces in figure 5.1,  the pressure distribution 

must also be symmetric about z. 

p ( x )  in equation (5.7) ,  (see f ig .  5.3) and p ( 4 ,  6 )  in equation 

(5.8) may be replaced by p ($ ) .  

combining equations (5.3) ,  (5.7) and  (5.8) the contact c r i te r ion ,  

equation ( 5.3) becomes 

The integrands 

Because of the symmetry about the 

Hence, p ( x ,  B )  may be replaced by 

Making these substi tutions and 

(5 .9 )  

The boundary conditions require that  the separation, S r ,  be zero with 

positive pressure inside the contactregionsQ1 and Q2. 

separation must be positive with zero.pressure outside the contact 

Also, the 
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F i g .  5.3. Axisymnetric pressure loading on sphere 



regions. I n  symbolic terms 
Gr, 

I 
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(5.10b) 

( 5 . 1 0 ~ )  

I t i s  requ i red  t o  determine the  contac t  regions, :al and R2, t he  

pressure d i s t r i b u t i o n s  p ( q )  and p (+),  and the  approach, 6, such 

t h a t  r e l a t i o n s h i p s  ( 5 . 9 )  and (5.10) a r e  s a t i s f i e d .  

The de terminat ion  o f  t he  contac t  regions, fl1 and Re, poses a 

major problem i n  t h e  s o l u t i o n  o f  equat ion (5.9) .  

some t e n t a t i v e  "candidate" regions, R1 

equat ion (5.9) as an i n t e g r a l  equat ion o f  the  f i r s t  k i n d  which can 

be so lved us ing  the  "Simply Disc re t i zed"  method o f  Singh and Paul 

[19741. I n  the  conformal contac t '  problem o f  a splhere i nden t ing  a 

However, choosing 
* * 

and R2 , w i l l  e s t a b l i s h  

spher ica l  seat, i t  i s  known a p r i o r i ,  t h a t  t h e  boundary o f  R1 w i l l  

always be a c i r c l e  on the  sphere de f ined by 

boundary, $MX, of R2 may be chosen such t h a t  s2 = s1 f o r  t he  

boundaries o f  Ql and S I 2  . Thus . 

Also, t he  
* 

* 

(5.11) 
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The r e g i o n  R1 i s  w r i t t e n  w i t h o u t  an a s t e r i s k  s ince  i t  can be de f i ned  

as the exact contact  reg ion  on the  sphere corresponding t o  some 
* 

unknown f o r c e  F. 

according t o  equat ion (5.11). 

t h e  t e n t a t i v e  reg ion  R2 are  discussed l a t e r .  

R2 i s  denoted w i t h  the  a s t e r i s k  s ince i t  i s  chosen 

Fur the r  d e t a i l s  on the  ref inement o f  
* 

A "Simply D isc re t i zed"  s o l u t i o n  i s  found by subd iv id ing  R1 

i n t o  a l a r g e  number o f  small  c e l l s .  
* 

and R2 The normal pressure i s  

replaced by a piecewise constant pressure f i e l d  (pressure pi and 

c e l l  i ) .  

t h e  c e n t r o i d  o f  c e l l  i o f  Rl merges w i t h  the  c e n t r o i d  o f  c e l l  i o f  

R2 . 
us ing t h e  r e l a t i o n  s2 = s1 t o  determine t h e  corresponding c e l l s  on 

* 
Thus Rl and R2 are  d i v i d e d  i n t o  N c e l l s  apiece, such t h a t  

* 
This  i s  achieved by f i r s t  choosing the  c e l l s  on a1 and then 

* 
R2 

Because of t he  known symmetry o f  p ( $ )  and p ( q ) ,  t h e  c e l l s  

on each sur face w i l l  be chosen as r i n g s  symmetric about t h e  rll 

as shown i n  f i g u r e  5.4 f o r  t h e  sphere. C e l l  i w i l l  be l o c a t e d  on t h e  

a x i s  

sphere betweenq1and qi+l w h i l e  t h a t  on the  seat w i l l  be between $i 

and @i+l. 
l o c a t i o n  o f  t h e  jth f i e l d  p o i n t  i s  w i t h i n  the  jth c e l l .  

N f i e l d  p o i n t s  a re  chosen on each sur face such t h a t  t h e  

Equation 

(5.9) may be w r i t t e n  i n  d i s c r e t i z e d  form f o r  f i e l d  p o i n t  j as, 
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p J t h  C R L  UNDER 

Fig. 5.4. Axisymmetric cells on sphere 
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The integrals in equation (5.12) may be evaluated numerically. The 

location of all the field points will be along the contour curve 

located in the q1 - y1 and q2 - y2 planes so that 6' 

considered zero. 

will always be 
j 

Equation (5.12) may be written for each field point. 

Thus N linear algebraic equations are generated in N + 1 unknown 

(N  values of Pi, and 6). 

a unique solution of the unknown variables. 

generated by writing equation (5.12) for one additional field point. 

The location of. this field point is, in theory, arbitrary but, as will 

One additional equation is needed to produce 

The last equation is 

be discussed later, the results are sensitive to this choice. 

Having generated N + 1 linear algebraic equations in N + 1 

unknowns the piecewise constant pressure distribution, Pi, and 6may 

be found. 

determine Q~ and the location of two points A and B which merge after 

deformation. In each case, the merging points or boundaries were 

It now remains t o  check the validity of the method used to 
* 

initially chosen such that s 2  = sl. 

"point-mating'' procedure, described in chapter 3 may be utilized to 

refine the choice of the outer boundary of Q2 and of points on the 

seat such that they merge with the appropriate points on the sphere. 

It will now be illustrated how the 

* 

The total separation after defdrmation of points A and B may 

be computed from equation (3.13a). For the case of a sphere indenting 

a spherical seat, the value of S, is zero.  

criterion required that Sr is zero. 

component of separation is St where 

Furthermore, the contact 

Sherefore, the only non-zero 

(5.13a) 

n 
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and 

ff = I F I A  p 

(5.13b) 

(5.13~) 

The components of displacements u1 and u2 may be computed using the 

pressure distribution ( P i )  of the "Simply Discretized" solution by 

and 

where y a n d  H2 are the influence functions for displacements in the 

tangential direction on the sphere and seat respectively. 

defined by H in equation (4.24) and H2 is defined by H in equation 

(4.32). Having evaluated St, at all field points, the "point-mating 

procedure" may be used to find coordinates for a new set of field 

H1 is 

points on the seat which' upon repeating the solution procedure 

described will give rise to new values of st which are smaller 
those previously calculated. Originally, mating points on the 

and seat were located by assuming that the distances along the 

just 

than 

sphere 

r 

= s1 as illustrated in s2 respective contour curves were equal i .e., 
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The "point-mating procedure" discards this relation after figure 3.1. 

the initial solution and replaces it with relations (3.16 a,b). 

Repeated iterations yield values of St which become smaller if the 

process converges. The limits on the final values of St depend largely 

on the cell density and the values o f  Numerical experiments 

have shown that for large values of qmaX ( >  loo), with few cells 
( <  l o ) ,  the final value of St which can be achieved is of the order 

of E (wl + w2) where E = 0.1. 

of E = 0.01 can be achieved. Considering, essentially Hertzian 

problems ($,,,ax < . lo ) ,  E = 0.01 may be achieved on the first solution. 

The location ofGmaxdefining f12* may also be refined using the 

"point-mating procedure." 

matically since@maxwas chosen as the additional field point. 

For problems with up to 15 cells values 

In most cases this was performed auto- 

Having generated the displacements wl, w2, u1 and u2 via 

equations ( 5 . 7 ) ,  (5.8) and (5.14) at field points along a contour 

curve, the strains E on the sphere and E and E on the seat $8' 88 t4 
may be formulated. These quantities will be needed later for 

accuracy analysis. 

of a sphere for the axisymmetric set of displacements are 

1 It can be shown that the strains on the surface 

(5.15) 

'Sokolnikoff, 2d ed., 1956, p.  184. 
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and 

(5.16) 

where $i i s  the coordinate of the i th  f i e ld  point. Similarly, for  

the spherical seat  

and 

where $i  i s  the coordinate of the i t h  f i e ld  point o n  the seat.  These 

s t ra ins  may be computed using f i n i t e  difference approximations for  the 

derivatives in equations (5.16) and (5.18) . 
5.3 Numerical Procedures 

1 

In each "Simply Discretized" solution the boundaries on R1 

and R2 a re  defined by $,, and 

was divided into N c e l l s  by f i r s t  subdividing into N 

equal intervals subtending equal arc  lengths. T h e  ce l l s  were then 

respectively. Each contact region 

and 

'Carnahan, [1969] p. 431. 
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de f ined by the  sur face generated by r e v o l v i n g  the  a rc  lengths  about 

the  rll and n2 ax is .  Typ ica l  c e l l s  on the  sphere a re  i l l u s t r a t e d  i n  

f i g u r e  5.4. 

de f ined by t h e  nl - y and n2 - y2 planes. (see f i g .  5.4) 

A l l  f i e l d  p o i n t s  were l oca ted  on the  contour  l i n e s  

1 
The i n t e g r a l s  i n  equat ions (5.12) and (5.14a, b)  were 

evaluated i n  p a r t  by a n a l y t i c  means. 

i n f l uence  f u n c t i o n  corresponding t o  the  ith f i e l d  po in ts  a t  $i (@i) 

over  the  reg ion  R (R ).  For a l l  cases where i # j, the  i n teg ra -  

t i o n  was performed by Gaussian quadrature.  When i = j ,  i .e . ,  when 

the  f i e l d  p o i n t  i s  l oca ted  w i t h i n  t h e  c e l l  o f  i n t e g r a t i o n ,  t h e  

in tegrand i s  s i n g u l a r  w i th in  t h e  reg ion  o f  i n t e g r a t i o n  and the  

s i n g u l a r i t y  i s  l oca ted  a t  t he  f i e l d  p o i n t .  

s i n g u l a r i t y  i s  performed a n a l y t i c a l l y  w h i l e  t h a t  over  the  remaining 

Consider the  i n t e g r a t i o n  o f  an 

l j  2 j  

I n t e g r a t i o n  over  the  

p o r t i o n  o f  t he  c e l l  i s  performed numer ica l l y  us ing  Gaussian 

quadrature. 

Consider the  p o r t i o n  o f  a c e l l  on a sphere o f  rad ius  ,,, near 

the  f i e l d  p o i n t  a t  ($c, 0) as shown i n  f i g u r e  5.5.  

bounded by arcs  de f ined by B = ? A ,  $ = I)c - A and I) = I), + A 

( A  < < 1 ) .  

sphere and seat when small c e l l s  a r e  used, t he  boundaries o f  the  c e l l  

f a l l  w i t h i n  the  l i m i t s  o f  t h i s  reg ion .  

$i and d e f i n i n g  t h e  c e l l  boundaries were used t o  bound the  reg ion.  

For small A ,  taken i n  t h i s  ana lys i s  t o  be 1/4 degree, t he  reg ion  

around t h e  s i n g u l a r i t y  on the  sphere w i l l  be approximated by a smal l  

The reg ion  i s  

S i m i l a r l y ,  cons ider  a reg ion  on the  seat.  For both the  

I n  t h i s  case the  values of 

n 
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h 

t 

Fig. 5.5. Small region surrounding a field point on a 
spherical surface. 

Fig. 5.6. Planar approximation to a region surrounding a 
field point on a spherical surface. 
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p lanar  annular  element w i t h  i nne r  rad ius  rl, ou te r  rad ius  r2, and 

h a l f  angle p where 

and 

r, = 

(5.19a) 

(5.19b) 

(5.19c) 

S i m i l a r  r e l a t i o n s  i n  terms of 

d e f i n i t i o n  o f  rl, r2 and P f o r  t h e  seat.  

and p i s  shown i n  appendix P. 

R p  and A may be w r i t t e n  f o r  t he  

The d e r i v a t i o n  o f  rl, 

The displacement a t  t he  f i e l d  p o i n t  

C due t o  a constant  f o r c e  app l i ed  t o  a general  p o i n t  A w i t h i n  the  

reg ion  i s  governed by the  Boussinesq i n f l u e n c e  f u n c t i o n  as shown i n  

appendix A.  

over an annular  element i s  der ived  i n  appendix G. 

i n t e g r a t i o n  over  a c e l l  i f o r  f i e l d  p o i n t  i was performed i n  two 

pa r t s .  

( f i e l d  p o i n t )  was def ined,  and the  i n t e g r a l  w i t h i n  t h a t  reg ion  was 

computed us ing  the  a n a l y t i c a l  s o l u t i o n s  i n  appendix G. Second the  

remaining p o r t i o n  of the  i n t e g r a l  was computed us ing  2-dimensional 

10 p o i n t  Gaussian quadrature.  

t h e  spher ica l  seat. 

The i n t e g r a t i o n  o f  t he  Boussinesq i n f l u e n c e  f u n c t i o n  

Therefore,  t he  

F i r s t  a smal l  annular  element surrounding the  s i n g u l a r i t y  

S i m i l a r  approximat ions were made f o r  

The "point -mat ing procedure" was employed t o  i d e n t i f y  t h e  s e t  
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he f i e l d  p o i n t s  on the  

sphere. The i t e r a t i o n  was terminated when values of S t  f o r  a l l  f i e l d  

p o i n t s  were wi th in  t h e i r  respec t i ve  values o f  [(wl + w2) E 1,. E was 

taken t o  be 0.1 f o r  p re l im ina ry  r e s u l t s  w h i l e  accurate so lu t i ons  were 

obta ined by choosing E t o  be 0.01. 

For a l l  cases t h a t  f o l l ow ,  the  e x t r a  f i e l d  p o i n t  was l oca ted  

a t  t h e  ou te r  boundary o f  t he  contac t  region. 

f i n a l  de termina t ion  o f  Gmax on the  seat i s  automat i ica l ly  performed, 

i.e., $,,ax i s  the  f i n a l  coord inate o f  t h e  e x t r a  f i e l d  po in t .  

"Simply D isc re t i zed"  method o f  s o l u t i o n  always prov ided ' s t a b l e  

pressure d i s t r i b u t i o n s  even though Singh and Paul 119731 noted t h a t  

f o r  t he  problems they t reated,  t h i s  method generated an ill- 

cond i t ioned s e t  o f  equat ions which r e s u l t e d  i n  uns tab le  (w ide ly  

vary ing  and negat ive)  pressure d i s t r i b u t i o n s .  

poss ib l y  be a t t r i b u t e d  t o  the  choice o f  axisymmetric: c e l l  d i s t r i b u -  

t i o n s  which had n o t  p rev ious l y  been attempted i n  the  work of  Singh 

and Paul. The so lu t i ons  w i l l  be termed "quasi  s tab le "  because the  

s o l u t i o n  becomes uns tab le  i f  the  l o c a t i o n  o f  t h e  ex t ra  f i e l d  p o i n t  i s  

moved w i t h i n  the  contact .  reg ion.  The success achieved when the  e x t r a  

f i e l d  p o i n t  i s  l oca ted  on the  boundary o f  t he  contac t  reg ion  can 

poss ib l y  be a t t r i b u t e d  t o  the  f a c t  t h a t  t h e  l o c a t i o n  i s  f a r t h e s t  f rom 

a l l  o the r  f i e l d  po in ts ,  on the  average, than any l o c a t i o n  i n s i d e  the  

contac t  region. 

equat ion thus p rov id ing  a more s t a b l e  so lu t i on .  

With t h i s  l oca t i on ,  t he  

The 

This  s t a b i l i t y  can 

Th is  choice cou ld  y i e l d  the  most independent e x t r a  

Having generated N + 1 equations i n  N + 1 unknowns 
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f i r s t  (N  values o f  Pi and 6 )  as descr ibed i n  sec t i on  5.2, the  s e t  wa 

reduced t o  N equat ions i n  N unknowns by s u b t r a c t i n g  the  equat ion 

w r i t t e n  f o r  t he  e x t r a  f i e l d  p o i n t  f rom the  o thers  thus e l i m i n a t i n g  6 

f rom the  set .  

e l im ina t i on .  

equat ion.  

The remaining N equat ions were so lved us ing  Gaussian 
s t  The approach, 6, was then computed f rom the  N + 1 

The s t r a i n s  corresponding t o  equat ions (5.17), (5.18),  (5.19) 

and (5.20) were computed, from equat ions (5.15) - (5.18), us ing  the  

values o f  wl, w2, u1 and u2 a t  each f i e l d  p o i n t  on the  sphere and seat  

The requ i red  d e r i v a t i v e s  dul/d$ and du2/d$ were evaluated us ing  

c e n t r a l  d i f f e r e n c e  formulae f o r  f i e l d  p o i n t s  i where i # 1 o r  N. For 

i = 1 forward d i f f e r e n c e  formulae were used w h i l e  f o r  i = N backward 

d i f f e r e n c e  formulae were used. 1 

The t o t a l  f o r c e  app l i ed  t o  t h e  sphere can be c a l c u l a t e d  f rom 

the  pressure d i s t r i b u t i o n  found i n  the  ana lys i s .  Consider the  d i sc re -  

t i z e d  pressure d i s t r i b u t i o n  Pi on c e l l  i. 

d i r e c t i o n  f rom Pi a p p l i e d  t o  a smal l  sec tor  area ZIT R12 s i n  $d$ i s  

2irR,' Pi cos+ s i n  $d$. 

The f o r c e  i n  the  - ql 

I n t e g r a t i n g  t h i s  between qi and $+1, the  fo rce  
2 2 i n  the - q d i r e c t i o n  due t o  Pi on c e l l  i i s  irR1 1 Pi ( s i n  $i+l - 

2 
s i n  Qi). Thus the  t o t a l  f o r c e  app l i ed  t o  t h e  sphere can be computed 

as 

'See Carnahan [19691 p. 431. 

(5.20) 



113 

5.4 Numerical Results 

A computer program termed CONSPHERE was written t o  analyze 

the conformal contact between an e l a s t i c  sphere and seat .  The 

following numerical example was considered 

R1 = 1 i n  

R 2  = 1.01 i n  

v1 = v2 = 0.25 
6 E l  = E = 30 x 10 psi 2 

= 0.5 degrees $ma x (5.21) 

In this example and the ones t o  follow, the value of Poisson's 

r a t i o  was chosen t o  be 0.25 so tha t  the r e su l t s  could be compared t o  

those of Goodman and Kerr [19651. 

dimensionless form. Let, 

The r e su l t s  a r e  presented i n  

and 

(5.22) 

. 

(5.23) 
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Then d e f i n e  

* 
Dimensionless Pressure i n  c e l l  i, Pi = Pik 

* Rk 
Dimensionless Load, F = F jp- 

m 

* -  R1 
=%I 

Dimensionless Rad i i  , R1 

* - R2 
R2 -i$- 

6 
Dimensionless Approach, 6* = - 

Rm 

R2 
R1 

Dimensionless Rat io  o f  Rad i i  = - 

(5.24a) 

(5.24b) 

( 5 . 2 4 ~ )  

(5.24d) 

(5.24e) 

(5 .24f )  

The contac t  r e g i o n  was d i v i d e d  i n t o  15 c e l l s  such t h a t  

-$j = 0.033 degrees. The pressure d i s t r i b u t i o n  obta ined from +j+1 
CONSPHERE i s  compared i n  f i g u r e  5.7 t o  t h e  pressure d i s t r i b u t  on 

p r e d i c t e d  by Her tz ian  theory  f o r  t h e  same a p p l i e d  f o r c e  o f  

F* = 0.7294 x The approach 6 was found t o  be 0.3858 x i n .  

w h i l e  t h e  value pred ic ted  by Hertzican theory i s  6 = 0.3895 x 

This  problem f a l l s  w i t h i n  t h e  domain o f  Her tz ian  theory,  and t h e  

comparison o f  these r e s u l t s  i n d i c a t e s  t h a t  t h e  s o l u t i o n  produced by 

CONSPHERE i s  i n  general agreement w i t h  those o f  Hertz.  

* 
* 

i n .  

Now consid,er t h e  non-Hertzian problem where $ma, = 30 degrees 
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Fig.  5.7. Pressure d i s t r i b u t i o n s  between sphere and seat, 
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and the dimensions and elastic constants are the same values as used 

in the previous example. 

bution between the sphere and seat. 

pressure distribution for the same applied force It should be noted 

that the conformal contact solution predicts a higher peak stress and 

a smaller contact region than the Hertzian solution. 

for the conformal solution is 6 = 0.1281 x and the total 

compressive force was found to be F = 0.1780 x The radial and 

tangential displacements are tabulated in tables 5.1 and 5.2. It is 

interesting to note that the tangential displacements on the sphere 

are all positive (increasing $ is positive direction) while those on 

the seat are negative (increasing $ is positive). 

stood if one considers the sphere to be flattened out while the seat 

is a depression which elongates or grows deeper. 

Figure 5.8 illustrates the pressure distri- 

Also shown s the Hertzian 

The approach 
* 

* 

This can be under- 

Additional problems were solved in order to compare the load- 

approach relationship to that obtained with the solutions of 

Hertz I18811 and Goodman and Keer [1965]. Figure 5.9 illustrates the 

load-approach curves for Hertzian theory, the theory of Goodman and 

Keer and experimental data reported by Goodman and Keer. 

are plotted for half angles o f  contact between 0' and 20'. 

clearly illustrates a strong correspondence between the present 

theory and the experimental data reported by Goodman and Keer. 

load-approach curve for the Hertzian theory indicates more compliance 

than that of the other theories while the load-approach relation of 

the Goodman and Keer theory is less compliant than t h e  others. All 

The results 

Figure 5.9 

The 

n 
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E 5.1 

SURFACE DISPLACEMENTS ON SPHERE 

JI 
[Degl 

1 .o 
3.0 

5.0 

7.0 

9.0 

11 .o 
13.0 

15.0 

17.0 

19.0 

21 .o 
23.0 

25.0 

27.0 

29.0 

30.0 

Radial 
Displacements 

w1 x 104 i n  

14.12 

14.04 

13.87 

13.62 

13.29 

12.88 

12.39 

11.82 

11.16 

10.43 

9.627 

8.745 

7.792 

6.766 

5.672 

5.099 

= 30°, R1 = 1.00 i n ,  R2  = 1.01 i n ,  
6 - 

%ax 
El = E2 = 30 x 10 p s i ,  v1 - v2 = 0.25 

Tangent i a 1 
Displacements 

u1 x 104 i n  

0.03869 

0.1194 

0.2035 

0.2841 

0.3578 

0.4300 

0.4968 

0.5580 

0.6123 

0.6635 

0.7116 

0.7562 

0.7998 

0.8475 

0.91 65 

0.971 1 

n 
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TABLE 5.2 

d g l  
-~ 

0.9888 

2.966 

4.944 

6.922 

8.899 

10.88 

12.85 

14.83 

16.81 

18.79 

20.77 

22.74 

24.72 

26.70 

28.68 

29.67 

Radial 
Displacements 
w2 x 104 in 

11.73 

11.66 

11.53 

11.32 

11.04. 

10.70 

10.29 

9.812 

9.267 

8.654 

7.974 

7.228 

6.4q14 

5.534 

4.587 

4.089 

Tangential 
Displacements 
u2 x 104 in 

- 0.1789 
- 0.5307 

- 0.8735 

- 1.211 
- 1.542 
- 1.858 
- 2.158 
- 2.439 
- 2.699 
- 2.929 
- 3.125 
- 3.286 
- 3.404 
- 3.470 
- 3.463 
- 3.418 

= 30°, R1 = 1.00 in, R2 = 1.01 in, @Inax 
El = E2 = 30 x 10 6 psi, v1 - - v2 = 0.25 
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GOODMAN AND KEER [1965] 
( ~ 0 . 2 5 )  

/ /o / 

/ 

- CONSPHERE ( v=O .25) 

0 - CONSPHERE ( FO. 30) 

A- / 
EXPERIMENTAL ( ~ 0 . 3 3 )  A , 

/ ( I ) /  

Fig .  5.9 Load-approach r e l a t i o n s h i p  f o r  conformal con tac t  o f  
a sphere and spher ica l  seat.  
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of the theories agree for  loads less  t h a n  F (1  - v )  / R12E = 2 while 

the experimental data near t h i s  region deviates from the theories.  

Goodman and Keer [1965] a t t r i bu te  th i s  discrepanc.y t o  experimental 

error .  

The e f fec t  of Poisson's ra t io  on the load-approach curve was 

also studied. 

Poisson's r a t io  of v = 0.25 and v = 0.30 were plotted together in 

The variation of force and approach for  values of 

figure 5.9. 

t o  be less  compliant. 

W i t h  increasing Poisson's r a t io  the inaterials were found 

A comparison was made of the values, predicted by the various 
* * 

theories,of the radius of the contact region a = sin ($) and 6 . 
Figure 5.10 i l l u s t r a t e s  the resul ts  of Hertz, Goodman and Keer, and 

the present theory. The resu l t s  from CONSPHERE f a l l  much closer t o  

the Hertzian theory than those of Goodman and Keeln. 

KnovJledge of the displacements a t  d iscrete  points, namely, 

the f i e ld  points, enables one to  also calculate the surface s t ra ins  

g i v e n  i n  equations (5.15) - (5.18). Both t h e  displacements and  

s t ra ins  for  several problems will be compared to  those obtained i n  

the analysis o f  Goodman and Keer [19651. I t  will be shown through 

this comparison tha t  the assumptions used by Goodman and Keer can 

produce erroneous displacements and s t ra ins  i n  problems where the 

contact angle exceeds = 60'. 

I n  the derivation of the contact c r i te r ion  used by Goodman 

and Keer (see appendix L )  i t  is  assumed tha t  points on both bodies, 

which a re  i n i t i a l l y  equidistant from the axis of symnetry come into 
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HERTZ---\/ 

GOODMAN AND KEER [1965] $ /  (v=0.25) 
- CONSPHERE ( ~ = 0 . 2 5 )  

a* = a/R1 = s i n  $J 

Fig. 5.10. 
conformal contac t  of  sphere and spher ica l  seat.  

Approach vs.  rad ius o f  con tac t  boundary f o r  
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contac t  a f t e r  deformat ion.  To show t h a t  t h i s  assumption can n o t  be 

t r u e  f o r  l a r g e  angles o f  contact ,  cons ider  the  contac t  of an e l a s t i c  

sphere i n  a r i g i d  seat, as shown i n  f i g u r e  5.11. According t o  

Goodman and Keer p o i n t s  A and B which merge a f t e r  deformation, a r e  

loca ted  such t h a t  R1 s i n  + = R 2  s i n  @. 
p o i n t  A on the  sphere w i l l  merge w i t h  p o i n t  B on t h e  seat s o l e l y  due 

t o  a displacement uz o f  p o i n t  A. Th is  displacement may be viewed as 

having components i n  t h e  ? and t d i rec t i ons ,  i.e.,, w1 and ul¶ where 

r i s  d i r e c t e d  r a d i a l l y  inward on the  sphere and t i s  perpend icu la r  

t o  P, i.,e.¶ 

Since the  seat  i s  r i g i d ,  

A 

where (see appendix M f o r  d e r i v a t i o n ) :  

I 4 1 = Rt ( I  - $) - R, (J-m U) + d 

(5.25) 

(5.26) 

(5.27) 

(5.28) 



/ 
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Fig.  5.11. Sphere i n  contact  w i t h  seat  (displacements o f  
points A and B constrained) .  



125 

and 

Now consider t h e  case where 

R1 = 1.0 i n .  

R2 = 1.001 i n .  
6 El = 30 x 10 p s i ,  E, = 30 x 10’’ p s i  

v1 = 0.25, v2 = 0.25 
L 

+ma, = 60’ 

(5.29) 

(5.30) 

Since E2 >> El t h e  seat w i l l  be considered completely r i g i d  

and equat ions (5.27) and (5.28) w i l l  be used t o  compute w1 and u, 

f o r  r e s u l t s  obta ined i n  t h e  Goodman and Keer ana lys is .  

ments f o r  t h e  present conformal theory o f  sec t ion  5.2 were computed 

us ing equat ions (5.7), (5.8) and (5.14).  The displacement r e s u l t s  

f o r  t h e  problem a t  hand are  compared i n  t a b l e s  5.11 and 5.4. 

tabu la ted  a r e  t h e  displacements t h a t  a r e  obta ined when t h e  pressure 

d i s t r i b u t i o n  obta ined through CONSPHERE was a p p l i e d  t o  a f i n i t e  

element model o f  t h e  sphere.’ 

The d isp lace-  

Also 

The r a d i a l  displacements o f  a l l  

s o l u t i o n s  agree we1 1 .  The t a n g e n t i a l  displacements obta ined through 

the  Goodman and Keer ana lys is  a r e  much h igher  than those of CONSPHERE 

’The paper o f  Goodman and Keer 119653 d i d  n o t  p rov ide  any data 
f o r  angles of contact  above 20 degrees. 
f i n i t e  element model could be analyzed us ing the i r .  pressure d i s t r i -  
but ion.  

Therefore no comparable 
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TABLE 5.3 

COMPARISON OF RADIAL DISPLACEMENTS w, 

3.0 

9.0 

15.0 

21 .o 
27.0 

33.0 

39.0 

45.0 

51 .O 

57.0 

Goodman 
and Keer 

w1 x 103 i n  

1.171 

1.147 

1 .loo 

1.029 

0.9368 

0.8231 

0.6895 

0.5374 ~ 

0.3686 

0.1850 

CONSPHERE 
w1 x 103 i n  

1.166 

1.142 

1.095 

1.025 

0.9330 

0.8197 

0.6864 

0.5348 

0.3663 

0.1828 

= 60°, R1 = 1.000 i n ,  R2 = 1.001 i n ,  %ax 

F i  n i  te 
Element 

w1 x 103 i n  

1.184 

1.157 

1 .lo9 

1.040 

0.9480 

0.8315 

0.6965 

0.5364 

0.3535 

0.1738 

6 10 El = 30 x 10 p s i ,  E2 = 30 x 10 p s i ,  v = v = 0.25 1 2 
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0.2001 

0.5972 

0.9737 

1.306 

1.576 

1.770 

1.881 

1.892 

1.811 

11657 

TABLE 5.4 

COMPARISON OF TANGENTIAL DISPLACEMENTS u1 

0.2065 

0.6160 

1.002 

1.338 

1.607 

1.806 

1.910 

1.915 

1.858 

1.718 

Element CONSPHERE and Keer 

3.0 

9.0 

15.0 

21 .o 
27.0 

33.0 

39.0 

45.0 

51 .O 

57.0 

0.61 35 

1.816 

2.946 

3.951 

4.773 

5.345 

5.584 

5.374 

4.552 

2.849 

= 60°, R1 = 1,000 i n ,  R2 = 1..001 in, 

p s i ,  E2 = 30.x 10 

%l,X 

6 10 . - El = 30 x 10 p s i ,  v1 - v2 = 0.25 
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or the finite element solution. 

Having computed the displacement fields, the strains E 

They are 

and BB 
may be calculated using relations (5.15 - 5.18). %J 

tabulated in tables 5.5 and 5.6 for the analysis by Goodman and Keer, 

CONSPHERE and finite element theory. 

strains are zero for the analysis of Goodman and Keer which is 
BB It can be seen that the E 

expected since the circle defined by $ does not enlarge or shrink 

after deformation. The strains E from CONSPHERE are in general 

agreement with those produced through finite element analysis. 

computation of E ’  

region, those strains predicted by the Goodman and Keer analysis are 

much larger than the solutions o f  CONSPHERE and the finite element 

analysis. Furthermore, the results of CONSPHERE agree with those 

of the finite element analysis. 

BB 
The 

reveals that near the boundary of the contact 
$4) 

Both E and E decrease as $ increases according to BB $$ 
CONSPHERE and the finite element analysis. 

since the pressure diminishes when $ increases. 

the values of E 

This is to be expected 

On the other hand 

predicted by the Goodman and Keer model increase a s  

for 
$4) 

$ increases. Finally, the values of E and E are nearly equa 

small $ in the Solution of CONSPHERE and finite element analysfs 

which is expected in this axisymmetric case. 

BB $$ 

5.5 Conclusions 

The problem o f  a sphere indenting a spherical seat has been 

solved. 

compare closely with the Hertzian solution. 

The pressure distribution for $mx = 0.50’ has been shown to 

(fig.5.7) For Jtnax = 30°, 
n 



129 
Grs TABLE 5.5 

CONPARISON OF STRAINS E++ 

.~ 

Goodman 
and Keer 

x 103 i n / i n  

- 0.002744 
- 0.02506 
- 0.07172 
- 0.1472 
- 0.2593 
- 0.4210 
- 0.6545 
- 0.9975 
- 1.520 
- 2.360 

CONSP ti ERE 
x 103 i n / i n  

- 0.7868 
- 0.7730 

- 0.7567 
- 0.7377 
- 0.7115 
- 0.6741 
- 0.6280 
- 0.5681 
- 0.4788 
- 0.3299 

F i n i t e  
El emen t 

x 103 i n / i n  

3.0 

9.0 

15.0 

21 .o 
27.0 

33.0 

39.0 

45.0 

51 .O 

57.0 

= 60°, R1 = 1.000 i n ,  R2 = 1.001 i n ,  $ma x 
El = 30 x 10 psi ,  E p  = 30 x 10” p s i ,  6 v1 _- -- v2 = 0.25 

- 0.7894 
- 0.7692 

- 0.7563 
- 0.7355 

- 0.7121 

- 0.6626 
- 0.6181 
- 0.5437 
- 0.4171 
- 0.2873 

f 
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J, 
[Degl 

3.0 

9.0 

15.0 

21 .o 
27.0 

33.0 

39.0 

45.0 

51 .O 

57.0 

COMPARISON OF STRAINS tzBB 

Goodman 
and Keer 

i n / i n  

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

CONSPHERE 
x 103 i n / i n  

- 0.7842 

- 0.7653 

- 0.7318 

- 0.6849 

- 0.6237 

- 0.5471 

- 0.4542 

- 0.3455 

- 0.2196 

- 0.07525 

F i n i t e  
Element 

x 103 i n / i n  

- 0.7900 

- 0.7680 

- 0.7354 

- 0.6912 

- 0.6325 

- 0.5535 

- 0.4604 

- 0.3444 

- 0.2029 

- 0.06036 

= 60°, R1 = 1.000 i n ,  R2 = 1.001 i n ,  J,,,, 
El = 30 x 10 6 p s i ,  E2 = 30 x 10 10 p s i ,  u, = u2 = 0.25 



the  r e s u l t i n g  pressure d i s t r i b u t i o n  

smal ler  con tac t  area than the  Her tz  

force. The 

c l o s e l y  w i t h  

a 

oad-approach curve was p 

the  exper imental  r e s u l t s  

The p l o t  o f  approach vs. con tac t  area 

n e a r l y  equal t o  those o f  the  Her tz ian  
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has a h igher  peak s t ress  and 

s o l u t i o n  f o r  t h e  same app l i ed  

o t t e d  and was found t o  agree 

repor ted  by Goodman and Keer. 

i n d i c a t e s  t h a t  t he  r e s u l t s  a r e  

theory  f o r  angles up t o  20'. 

The displacement f i e l d  and r e s u l t i n g  s t r a i n s  were found t o  be 

reproduced when a f i n i t e  element ana lys i s  was made o f  t he  sphere under 

the  pressure f i e l d  p red ic ted  by CONSPHERE f o r  

being r i g i d ) .  

= 60' ( t h e  seat  

I t  was shown t h a t  i n  us ing  the  c o n s t r a i n t  imposed by 

a1 displacements 

f a c t  t h a t  t he  

. J .  Kalker  1971) 

guarantees a unique pressure f i e l d  and displacement f i e l d  f o r  a g iven 

contac t  area, i t  can be concluded t h a t  t he  t o t a l  s o l u t i o n  p red ic ted  

by CONSPHERE i s  c o r r e c t  s ince  the  f i n i t e  element model reproduces the  

same displacement f i e l d  as CONSPHERE when subjected t o  the  i n t e r f a c i a l  

pressure p red ic ted  by CONSPHERE. 

, 

Goodman and Keer i n  t h e  

and E s t r a i n s  w i l l  be $9 

r analysis,  l a r g e r  tangent 

produced. I n  view o f  t he  

uniqueness theorem f o r  con tac t  theory  (proven by 



6. CONFORMAL ELASTIC CONTACT OF A CYLINDER 
INDENTING A CYLINDRICAL C A V I T Y  

6.1. I n t r o d u c t i o n  

The s o l u t i o n  o f  t he  two dimensional con tac t  problem o f  two 

c y l i n d e r s  i n  con tac t  o r  t he  problem o f  a c y l i n d e r  i nden t ing  a 

c y l i n d r i c a l  seat can be obtained from Her t z ian  theory by a l l o w i n g  the  
1 r a d i i  o f  curvature o f  each body t o  become i n f i n i t e  i n  one d i r e c t i o n .  

However, such a s o l u t i o n  i s  o n l y  v a l i d  w i t h i n  t h e  assumptions o f  

. I  

Hertz, i.e., t he  i n  plane dimensions o f  t he  con tac t  area must remain 

small  compared t o  t h e  i n  plane r a d i i \  o f  curvature.  Therefore, H e r t z ' s  

s o l u t i o n  i s  n o t  app rop r ia te  f o r  moderate loads, when the  d i f f e r e n c e  i n  

t h e  r a d i i  o f  t h e  c y l i n d e r  and c y l i n d r i c a l  seat i s  small .  

A more recen t  theory, p e r t a i n i n g  s p e c i f i c a l l y  t o  the  problem 

of a c y l i n d e r  i nden t ing  a c y l i n d r i c a l  seat has been publ ished by 

Sjtaerman [19491 f o r  t h e  problem where the  con tac t  pressure on the  

c y l i n d e r  and seat a re  e q u i l i b r a t e d  by i d e n t i c a l  pressures l o c a t e d  a t  r 

radians from t h e  con tac t  reg ion.  Sjtaerman's s o l u t i o n  i s  based on the  

fo rmu la t i on  o f  a con tac t  c r i t e r i o n  i n  the  r a d i a l  d i r e c t i o n  o f  a p o l a r  

coord inate system f i x e d  a t  t h e  cen te r  o f  t h e  c y l i n d e r .  

consider displacements t a n g e n t i a l  t o  the  surface. I n  order  t o  compute 

He does n o t  

t h e  r a d i a l  displacements w i t h i n  t h e  con tac t  area, Sjtaerman forms t h e  

'Tirnoshenko and Goodier, 3d. ed. [1970], pp. 418-20. 

132 
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integral of the unknown pressure distribution times the influence 

function for  the cylinder and seat.  

into the contact cr i ter ion and the unknown pressure f i e l d  i s  determined 

us ing  a f i n i t e  difference technique. 

These integrals are  incorporated 

A thi rd theory specific t o  the problem o f  a disc contacting a 

hole i n  an  i n f in i t e  plate  has been published by Persson [1964]. In  

contrast t o  the work of Sjtaerman and the present analysis, Persson 

considers the disc t o  be equilibrated by a force ‘located a t  the center 

of the disc w i t h  the seat  being fixed a t  i n f i n i t y ,  

assumes the existence of both tangential and  radial displacements of 

surface points. 

c i rcular  and neglecting second order quant i t ies ,  the contact c r i te r ion  

was independent of tangential displacements and i!; identicdl to t h a t  

derived by Sjtaerman. Persson proceeds t o  develop the final form of 

the contact cr i ter ion in terms of a singular integro-differential  

equation which he solves. 

Persson i n i t i a l l y  

He found that  by assuming the contact region t o  be 

The problem of an e l a s t i c  cylinder indenting an e l a s t i c  cy- 

l indrical  seat  i s  solved i n  t h i s  chapter using the conformal theory 

developed in chapter 3. 

displacements a re  retained i n  the final solution. The loading condi- 

t ions applied are  the same as those used in . the  Sjtaerman analysis. 

No assumptions pertaining to  the tangential 

Section 6.2 contains the formulation of the problem and the 

numerical procedures a re  discussed i n  section 6.3. The resu l t s  are  

compared to  those of Hertz, Sjtaerman and Persson i n  section 6.4. 
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6.2 Formulat ion 

Consider the  conformal contac t  o f  an e l a s t i c  c y l i n d e r  o f  

rad ius  R1 i nden t ing  an e l a s t i c  c y l i n d r i c a l  seat  o f  rad ius  R2 

(R2 > R1). 

d i s t r i b u t i o n s  equal t o  t h e  i n t e r f a c i a l  con tac t  pressures and a p p l i e d  

a t  IT rad ians r e l a t i v e  t o  the  contac t  region. (see f i g .  6.1). Th is  

assumption i s  n o t  inherent  i n  the  method o f  ana lys i s  b u t  i t  does e f f e c t  

t he  form o f  t he  i n f l u e n c e  func t i ons  used i n  the  ana lys i s  t o  fo l l ow .  

Theretore the  contac t  reg ion  w i l l  be l i m i t e d  t o  contac t  over h a l f  t he  

cy l i nde r ,  i.e., a h a l f  angle contac t  o f  3 rad ians (which should cover 

a l l  cases o f  p r a c t i c a l  i n t e r e s t ) .  A cross sec t i on  o f  t he  c y l i n d e r ,  

I t  i s  assumed t h a t  t he  bodies a r e  e q u i l i b r a t e d  by pressure 

body 2, i s  shown i n  f i g u r e  6.2-a. 

The contour curves a r e  the  same as 

s o f  t h e  sphere and seat, t he re fo re  much 

same form. The reader  i s  r e f e r r e d  t o  

the  formulat ion omi t ted  i n  t h i s  sect ion.  

I t  must be remembered t h a t  t he  problem o f  a c y l i n d e r  and seat  i n  

contac t  i s  two dimensional and the  fo rce  a p p l i e d  a t  any p o i n t  on e i t h e r  

body represents  a l i n e  l oad  w i t h  u n i t s  [ l b s / i n l .  

Surface p o i n t s  on the  cy1 i nde r  and seat w i l l  be descr ibed” as 

i n  the  l a s t  chapter,  i .e . ,  coordinates$ p e r t a i n  t o  p o i n t s  on the  c y l -  

i nde r  and coord inates @ de f ines  p o i n t s  on the  seat. 

l o c a t i o n  o f  p o i n t s  A and B on the  contour  curves a r e  chosen i n  the  same 

way as those on the sphere and spher ica l  seat, s1 = s2. 

coord ina te  system (;, i, I;) i s  f i x e d  a t  p o i n t  A as before,  however, t h e  

The i n i t i a l  

The l o c a l  

those obta ined i n  the  analys 

o f  t he  development takes the  

chapter 5 f o r  t he  d e t a i l s  o f  
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Fig.6.1. Cross section of cylinder and cylindrical seat in 
conformal contact. 

, \  
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I 

h z 

f i" 

Fig. 6.2-a. + (repeated) Conformal contact between a sphere and 
spherical s ea t  o r  a cylinder and cylindrical  sea t .  
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A 

unit vector w is parallel t o  the axis o f  the cylinder. 
' 

The contact criterion of equation ( 5 . 3 )  exactly represents 

the criterion needed for the solution of this problem, i.e., 

where f is the profile function, 6 is the approach and w1 and w2 

represent the displacements in the radial directions of points A and 

B on the cylinder and seat respectively. The quantities a ,  A ,  6 

and 5 are defined by equations (5.1), (5.4),  (5.5) and (5.6) respec- 

ti vely . 
A I \  ~n 

Now consider the (q, , cl) and (q2, c2 )  Cartesian coordinate 
systems fixed to the cylinder and seat respectively as illustrated in 

figure 6.2. 

($, Rl). 

a function of the pressure distribution p ($) by 

Point A is located on the cylinder by polar coordinates 

The elastic displacement w1 at point A ,  can be expressed as 

where G1 ( J I ,  $ ' ,  vl, El) i s  given by G in equation (4.40) and Q1 is the 

contact surface on the cylinder. Similarly., on the cylindrical seat, 

the elastic displacement w2 may.be defined by 
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F i g .  6.2. Coordinate systems for cylinder and cylindrical seat 
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where G2 (@, 4' , v2, E2) i s  de f i ned  by equat ion (4.53) and R2 i s  t h e  

con tac t  reg ion  on t h e  c y l i n d r i c a l  seat. 

Combining equations (6.1),  (6.2) and (5.3) t he  con tac t  

c r i t e r i o n  may be w r i t t e n  

The supplementary cond i t i ons  associated w i t h  equat ion (6.3) a re  

equations (5.10 a-d) .  
* 

The i n i t i a l  choice o f  t he  t e n t a t i v e  contact. reg ion  R2 i s  

based on t h e  same assumptions used i n  the  previous chapter,  i . e . ,  

- so t h a t  s1 - s2 

( 6 . 4 )  

A simply d i s c r e t i z e d  s o l u t i o n  o f  equat ion (6.3) i s  found by f i r s t  

subd iv id ing  Rl and R2 i n t o  a l a r g e  number (N) o f  i n f i n i t e l y  l ong  

c e l l s  which a r e  o r i e n t e d  such t h a t  t h e  i n f i n i t e  dimensions o f  t h e  

c e l l s  a re  p a r a l l e l  t o  t h e  a x i s  o f  t h e  c y l i n d e r .  The normal pressure 

d i s t r i b u t i o n  i s  then approximated w i t h  a piecewise constant  pressure 

* 

d i s t r i b u t i o n  such t h a t  t he  pressure i n  each c e l l  i s  constant.  The 
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ith c e l l  on the  c y l i n d e r  w i l l  be denoted Rll w h i l e  t h a t  on t h e  seat  

w i l l  be termed QZi . i s  such t h a t  i t  merges w i t h  

Rli. 

us ing  the  p o i n t  mat ing procedure t o  determine the  c e l l  boundaries on 

R2 . 
w h i l e  c e l l  i on the  seat w i  11 be de f ined between $i and $i + 1. 

f i e l d  p o i n t s  a re  chosen on each body such t h a t  one l i e s  w i t h i n  each 

c e l l .  

con tac t  reg ion  on each body. 

t he  seat  i s  determined us ing  the  p o i n t  mat ing procedure so t h a t  i t  i s  

assumed t o  merge w i t h  the  ith f i e l d  p o i n t  on t h e  c y l i n d e r .  

* 
The choice o f  RZi 

Th is  i s  achieved by f i r s t  choosing the  c e l l s  on R1 and then 

* 
C e l l  i w i l l  be l oca ted  on t h e  c y l i n d e r  between $i and $i + 

N 

The N + 1 f i e l d  p o i n t  was l oca ted  on the  boundary o f  t he  

The l o c a t i o n  o f  the  ith f i e l d  p o i n t  on 

Equat ion 

(6.3) may be w r i t t e n  i n  d i s c r e t i z e d  form as 

The i n t e g r a l s  i n  equat ion 

descr ibed i n  the  f o l l o w i n g  sec t ion .  Thus N + 1 equat ions a r e  gener- 

a ted  i n  N + 1 unknowns which may be so lved f o r  by Gaussian e l i m i n a t i o n  

as discussed i n  sec t i on  5.2. 

(6.5) may be evaluated a n a l y t i c a l l y  as 
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I t remains t o  check t h e  v a l i d i t y  o f  t h e  assumption used t o  

determine t h e  l o c a t i o n  o f  merging po in ts .  

t h e  same manner as described i n  sec t ion  5.2 us ing t h e  p o i n t  mat ing 

procedure. The separat ion i n  t h e  tangent ia l  d i r e c t i o n  i s  determined 

us ing equat ion (5.13a), however, t h e  t a n g e n t i a l  displacements u1 and 

u2 used i n  equat ion (5.13a) a r e  now defined by 

Th is  i s  done i n  p r e c i s e l y  

and 

w i t h  H1 and H2 defined by H i n  equations (4.41) arid (4.54) respec- 

t i ve ly .The remaining steps i n  the  p o i n t  mat ing proc:edure a r e  performed 

as descr ibed i n  s e c t i o n  5.2. 

For t h e  two dimensional problem o f  p lane s t r a i n ,  t h e  o n l y  

meaningful s t r a i n s  which can be c a l c u l a t e d  .(,from t h e  sur face 

" ~ l ~  f o r  t h e  cy1 inder -  and E displacements) a r e  

s t r a i n s  cW, E 

and 

displacements. 

and (5.18) respec t ive ly ,  

for t h e  seat. The @@ 

w'  &r@ 
and E are  a l l  i d e n t i c a l l y  zero w h i l e  E 

r w '  "$w w 

F$ $4 

can n o t  be c a l c u l a t e d  w i t h  only knowledge o f  t h e  sur face p o i n t  

and E can be c a l c u l a t e d  us ing equat ions (5.16) 



142 

6.3 Numeri ca 1 Procedures 

In each simply discretized solution the boundaries on a1 and 
Q~ were defined by $mx and 

each body was partitioned into N cells by dividing 

and defining the i t h  cell to lie between qi and qi 

respectively. The contact region on 

or 

where 

by N 

- - hnax - - i*(Qmax / N) (see fig. 6.3). The Qi + 1 - $1 -and $i + 1 
N 

pressure distribution between + = 0 and Q = - Qmax was assumed to be 
symmetric with respect to the nl axis. The ith field point on the cyl- 

inder was located on the contour curve at an angle of -7,. 

The N + 1 field point was located at QN + 1. Similar locations for 

the field points on the seat were chosen in terms of (pi, (pi + , and 
'N t 1' 

$1 + llri + 1 

The integrals in equations (6.5), (6.6) and (6.7) were 

evaluated using the analytic formulations derived in appendix 0. 

the pressure distribution is symmetric about the q1 axis (fig. 6.3), 

the integral over.the i t h  cell on the cylinder (or seat) consisted of 

two parts, the region between llri and Qi + 

between - $i and - Qi + 

tangential displacements in equations (6.6) and (6.7) the integrals 

were multiplied by either + 1 or - 1 depending on the relative posi- 

tions of the field point and regions of integration. 

integration was located to the left (in the - Q or - (p direction) of 

the field point the integral was multiplied by - 1; otherwise it was 
multiplied by 1. 

direction o f  the displacement due to the position of the loading. 

Since 

(or $i and $i + ) and 

(or - Q i  and - $i + l ) .  In evaluating the 

If the region of 

This procedure accounted for the sign of the 

The 
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n 

F i g .  6.3. Ce l l  boundaries on cy l inder  



144 

integrals when evaluated at their singulari ties present no problem 

n 

since the resultsarefinite as shown in appendix 0. 

The point mating procedure was employed in the same manner as 

Bescribed in section 5.3, to converge on the coordinates o f  a set of 

merging field points. 

equations were generated and the variables were solved for using 

Also as described in section 5.3, N + 1 

Gaussian elimination. 

The total applied force per unit length can be calculated 

from the discretized pressure distribution determined in the analysis. 

Consider the constant normal pressure Pi over cell i on the cylinder. 

The component of incremental force in the - r-~~direction at angle q 

is Pi cos J, R1 d$. Integrating this between ql and $i + the force 

per length over cell i becomes Pi R1 (sin q j  + 

that the pressure Pi acts overan identical region between - $i and 
- $i + 1, the total force on the cylinder may be found by summing the 

forces on each cell , i .e., 

- sinqi). Recalling 

Finally the approach 6 may be calculated by back substitution of the 

Pi ,s in the N + f equation written at the N + 1 field point (see 

chapter 2 for a description o f  the complete simply discretized method 

of solution). 

t 
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6.4 Numerical Resul ts 

The f o l l o w i n g  numerical example i n  plane s t ress  was 

considered: 

R1 = 1.00 i n  

R2 = 1.01 i n  

$,,ax = 40 Deg (6.9) 

El = E2 = 30 x 10 6 p s i  

- V, - v2 = 0.3 

A program CONCYL was w r i t t e n  us ing t h e  a n a l y s i s  o f  s e c t i o n  

6.3. The r e s u l t s  for t h e  above problem were compared t o  those of 

Persson I1 9641 . 
The pressure d i s t r i b u t i o n s  obtained by Persson and CONCYL 

are p l o t t e d  i n  f i g u r e  6.4. 

two so lu t ions .  

i n  t a b l e s  6.1 and 6.2 as func t ions  o f  t h e  angles Q and @. 

A c lose  correspondence e x i s t s  between t h e  

The displacements c a l c u l a t e d  i n  CONCYL a r e  tabu la ted  
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1.33 

4.00 

6.67 

9.33 

12.00 

14.67 

17.33 

20.00 

22.67 

25.33 

28.00 

30.67 

33.33 

36.00 

38.67 

40.00 

TABLE 6.1 

DISPLACEMENTS ON CYLINDER 

Radial  
Displacement x 10 

[ i n 1  

2.019 

2.006 

1.979 

1.939 

1.886 

1.819 

1.739 

1.646 

1.540 

1.422 

1.290 

1.146 

0.9885 

0.81 89 

0.6368 

0.5409 

PLANE STRESS RESULTS FOR: 
= 40' , R1 = 1.00 i n ,  R2 = 1.01 i n ,  'max 

El = E2 = 30 x 10 6 p s i ,  v1 - - v2 = 0.3 

Tangent ia l  
Displacement x 10 

[in1 

0.1101 

0.3288 

0.5429 

0.7492 

0.9450 

1.127 

1.294 

1.443 

1.573 

1.682 

1.771 

1.841 

1.896 

1.945 

2.010 

2.039 



1.31 

3.93 

6.55 

9.17 

11.79 

14.41 

17.04 

19.66 

22.28 

24.91 

27.54 

30.16 

32.79 

35.43 

38.06 

39.38 

I 

3 Radial 

[in1 
I Displacement x 10 

0.3097 

0.3078 

0.3040 

0.2984 

0,291 0 

0.281 7 

0.2706 

0.2577 

0.2431 

0.2268 

0.2089 

0.1894 

0.1683 

0.1458 

0.1219 

0.1094 

PLANE STRES 
- - 

max 
El = E2 

Tangential 
Displacement x 10 

[in1 

-0.071 00 

-0.21 24 

-0.3521 

-0.4889 

-0.621 6 

-0.7490 

-0.8700 

-0.9834 

-1.088 

-1.182 

-1.265 

-1.334 

-1.389 

-1.427 

-1.444 

-1.446 

L 
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TABLE 6.2 

DISPLACEMENTS ON CYLINDRICAL SEAT 
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The r a d i a l  displacements on t h e  seat a r e  l a r g e r  by a f a c t o r  

o f  1.5 t o  2.0 than those on the  c y l i n d e r .  

and seat, t h e  t a n g e n t i a l  displacements on t h e  c y l i n d r i c a l  seat  were 

found t o  be negat ive w h i l e  the  t a n g e n t i a l  displacements on t h e  c y l i n d e r  

were p o s i t i v e .  The phys ica l  i n t e r p r e t a t i o n  o f  t h i s  r e s u l t  i s  t h e  same 

as t h a t  expressed i n  sec t ion  5.4 f o r  t h e  sphere and seat.  

of force and approach f o r  t h i s  problem were found t o  be 

F = 0.6922 x 10 

As i n  t h e  case o f  t h e  sphere 

The values 

5 l b s / i n  and 6 = 0.5120 x 10” i n .  

I n  o rder  t o  c o r r e l a t e  r e s u l t s  w i t h  Her tz ian  theory,  t h e  

problem f o r  qmaX = 0.1 degree was analyzed. 

d i s t r i b u t i o n  i s  p l o t t e d  i n  f i g u r e  6.5 a long w i t h  t h e  r e s u l t s  o f  Persson 

and Hertz.  

expected f o r  t h i s  case o f  small  con tac t  area. 

The r e s u l t i n g  pressure 

There i s  c lose  agreement between a l l  s o l u t i o n s  as  would be 

F igure 6.6 i l l u s t r a t e s  t h e  r e l a t i o n  between the  l o a d  F, r a d i a l  

d i f ference A R , ’  and t h e  maximum angle o f  contac 

t h e  r e s u l t s  o f  CONCYL a r e  p l o t t e d  t h e  s o l u t i o n s  

[ 19491 and Persson . 
There i s  c l o s e  agreement between a l l  so 

Along w i t h  

o f  Hertz,  S j taerman 

u t i o n s  f o r  angles of 

con tac t  l e s s  than 15 degrees. For l a r g e r  angles o f  con tac t  there  i s  a 

c lose  correspondence between t h e  r e s u l t s  o f  CONCYL itnd those o f  Persson. 

The curves corresponding t o  Her tz ’s  theory and t h a t  o f  Sjtaerman 

dev ia te  s i g n i f i c a n t l y .  

F igure  6.7 i ’ l l u s t r a t e s  t h e  v a r i a t i o n  o f  maximum pressure w i t h  

’AR equals R* - R ~ .  
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Fig .  6.6. 
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RIPmax and tangent o f  'max F ig .  6.7. Relat ionship between F 2 
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maximum contac t  angle f o r  both the  present theory and t h a t  o f  Persson. 

F igure 6.8 r e l a t e s  t h e  v a r i a t i o n  between t h e  maximum pressure, r a d i a l  

d i f f e r e n c e  and load. I n  each o f  the  l a s t  two f i g u r e s  t h e  r e s u l t s  o f  

CONCYL show c lose  agreement w i t h  the  r e s u l t s  o f  Persson. 

The computer costs  i n  running CONCYL werle minimal, be ing about 

twenty-three cents f o r  a f i f t e e n  node case. 

f i v e  seconds of CPU t ime on t h e  I B M  300/65 computw. 

CONCYL can be a t t r i b u t e d  t o  t h e  f a c t  t h a t  a l l  i n t e g r a t i o n  was performed 

a n a l y t i c a l l y  r a t h e r  than numer ica l l y  as i n  CONSPHERE. 

Th is  corresponds t o  about 

The low costs  i n  

6.5 Conclusions 

It can be concluded t h a t  t h e  problem o f  ii c y l i n d r i c a l  seat  

has been success fu l l y  solved us ing t h e  conformal theory  presented i n  

chapter 3. The pressure d i s t r i b u t i o n s  f o r  the  problems where 

= 40' and $MX = 0. lo were found t o  agree w i t h  t h e  r e s u l t s  o f  *,, 
Persson [19641. I n  a d d i t i o n  t h e  l a t t e r  r e s u l t s  a l s o  corresponded t o  

t h e  s o l u t i o n  of Her tz ian  theory.  

f o r  t h e  case where qmaX = 40'. 

t o  be o f  opposi te  s i g n  on each body. 

r e l a t i o n s h i p  was found' to  agree w i t h  t h e  s o l u t i o n  o f  Persson, however, 

The displacements were c a l c u l a t e d  

The t a n g e n t i a l  coniponents were found 

The load vs. subtended angle 

t h e  s o l u t i o n  o f  Sjtaerman [1949] dev iates s i g n i f i c a n t l y  f o r  angles 

g r e a t e r  than 20 degrees. 

angle a l s o  agreed w e l l  w i t h  t h a t  o f  Persson. 

The r e s u l t s  o f  maximum pressure vs. con tac t  

I n  general t h e r e  was s t rong agreement w i t h  t h e  Persson so lu-  

t i o n .  Th is  c l o s e  agreement supports Persson's assumption t h a t  t h e  

contour curve o f  t h e  contac t  reg ion  i s  c i r c u l a r .  The c o r r e l a t i o n  
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between t h e  s o l u t i o n s  presented and t h e  Her tz ian  s o l u t i o n s  broke down 

f o r  l a r g e  angles as expected. 

f rom those o f  t h e  present theory  which may be expla ined by t h e  f a c t  

t h a t  Sjtaerman may have used an extremely crude f i n i t e  d i f f e r e n c e  

scheme s ince he could n o t  take advantage o f  modern computational a i d s  

a t  t h e  t ime o f  p u b l i c a t i o n .  

The r e s u l t s  o f  Sjtaerman a l s o  dev iated 



7. CONTACT STRESSES FOR MULTIPLY CONNECTED REGIONS 

7.1 Introduction 

Contact problems involving mu1 ti ply-connected contact 

regions have received l i t t l e  attention i n  the l i t e r a tu re ,  possibly 

because o f  the non-Hertzian nature of such problems. 

ar ise ,  for  example, whenever e i ther  o f  the contacting bodies have 

surface p i t s  (e.g. ,  casting defects, corrosion pi ts ,  machining 

fau l t s ,  e tc . ) .  Barely perceptible surface flaws can cause h i g h  

s t r e s s  concentrations, and consequently, rapid f a t igue  fa i lure .  

Experimental observations by Tal l ian [1967], Martin and Eberhardt 

[1967] and Littman and Widner [1966] indicate t h a t  such surface 

defects may be potential nuclei of microcrack propagation and can 

produce rapid destruction of roll ing surfaces. 

Such problems 

Based on the degree of d i f f icu l ty  associated with the i r  

solution, these problems may be divided into the following two 

categories : 

( i )  Contact region known a pr ior i :  

When the indentor contact surface i s  f l a t  (or  almost f l a t )  i t  

will be called a "stamp," and the contact surface i s  defined 

a pr ior i  by the stamp boundary. When the indentor surface 

is  not f l a t ,  b u t  the indentor has a substantially higher 

e l a s t i c  modulus than the indented body, the indentor can be 
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treated as r igid,  and the shape o f  the contact region becomes 

known for  any given depth of penetration re la t ive  to  the 

indentor t i p .  These are also termed ''punch'' problems. 

( i i )  Elastic Contact Problems: 

When the indentor is  not a stamp, and the t w o  bodies have 

comparable e l a s t i c  moduli, then the geometry of the contact 

region is unknown a p r io r i ,  and i t  must be determined by 

solving the appropriate Elast ic i ty  problem. 

To the best of our knowledge, only one recent solution by 

Chaud e t  a l .  [1974] fo r  three dimensional e las tos ta t ics  with multiply- 

connected regions, has been reported i n  the l i t e r a tu re .  

solution of a few special cases of r igid indentor problems (category 

[ i])  have been found by Olesiak [1965], Parlas and Michalpoulos [1972] 

and C h i u  [1969]. 

However, 

Olesiak [1965] solved the problem of an annular f l a t  faced- 

Parlas el; a l .  proposed the 

indentor pressed into an e l a s t i c  half 

stamp pressed on an e l a s t i c  half space. 

solution fo r  a "bolt  shaped" 

space with a cylindrical hole. The cylindrical (bo l t )  section o f  

the indentor was assumed to  be rigidly bonded t o  tihe wall of the 

cylindrical hole while the bottom face o f  the bol t :  head presses 

against the half space. *{. : 

C h i u  [1969] solved the problem of an i n f in i t e ly  long r i g i d  

cylinder i n  contact w i t h  an e l a s t i c  half space, where the r i g i d  

cylinder has a groove r u n n i n g  parallel  t o ' i t s  axis.  

In  this chapter, resul ts  indicate that  problems of 
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both categor ies ( i )  and ( i i )  may be successfu l ly  so lved by an extens ion 

o f  t h e  method in t roduced by Singh and Paul [1974]. 

A b r i e f  synopsis of  t h e  fo rmula t ion  and a p p l i c a t i o n  o f  the  

"s imply d i s c r e t i z e d "  method o f  s o l u t i o n  are g iven w i t h  some l i m i t a t i o n s  

and advantages o f  t h i s  method i n  sec t ion  7.2. The example problem of a 

p i t t e d  sphere i n  contac t  w i t h  a complete sphere i s  descr ibed i n  s e c t i o n  

7.3. Techniques devised f o r  an accurate numerical s o l u t i o n  and r a p i d  

convergence are  descr ibed i n  s e c t i o n  7.4. Resul ts f o r  an example are 

given i n  s e c t i o n  7.5, and conclusions are reviewed i n  sec t ion  7.6. 

7.2 Formulation 

We w i l l  r e s t r i c t  our a t t e n t i o n  t o  "nonconformal" con tac t  

problems where the  dimensions o f  the  contac t  reg ion are small  compared 

t o  appropr ia te r a d i i  o f  curva ture  o f  t h e  undeformed bodies. 

fore,  we may assume t h a t  t h e  contac t  surfaces do n o t  dev ia te  s i g n i f i -  

c a n t l y  f rom a reference plane i n  which we imbed f i x e d  Cartesian 

axes (x,y). Furthermore, we s h a l l  consider o n l y  those cases where 

the two bodies undergo a r e l a t i v e  r i g i d  body t r a n s l a t i o n  o f  amount 

6, i n  a d i r e c t i o n  normal t o  the  reference plane, p lus  an e l a s t i c  

deformation. 

i s  p o s i t i v e  i f  i t  moves t h e  bodies towards one another. 

assume t h a t  the  a p p l i e d  l o a d  cons is ts  o f  a f o r c e  F, a c t i n g  normal 

t o  t h e  reference plane, and t h a t  the contac t ing  surfaces have a 

s u f f i c i e n t  degree o f  symmetry t h a t  the r e s u l t a n t  o f  the  contac t  pres- 

sures on each body i s  a f o r c e  of  magnitude F which ac ts  through the  

There- 

The t r a n s l a t i o n  6 is c a l l e d  the  " r e l a t i v e  approach" and 

We w i l l  a l s o  
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o r i g i n  0 of t h e  reference plane and e q u i l i b r a t e s  the app l ied  fo rce  F. 

The fundamental i n t e g r a  1 equa t i  on govern ii ng noncon formal 

contac t  problems was shown i n  chapter 2 t o  be 

where t h e  " e l a s t i c  parameter" k i s  de f ined as 

v2,  and El, E 2  denote. the Poisson's v1 ' I n  t h e  foregoing equations, 

r a t i o  and Young's modulus r e s p e c t i v e l y  f o r  body 1 ( i n d e n t o r )  and body 

2 ( indented);  p ( x ' , y ' )  i s  the  normal pressure over the contac t  

surface; M i s  t h e  p r o j e c t i o n  of  the contac t  surface on the (x,y) 

re ference plane; f(x,y) represents the  i n i t i a l  separat ion (or gap) 

between surface p o i n t s  on the two bodies, located a t  the  same (x,y) 

coordinates,  before the  load F i s  appl ied;  S(x,y) i s  the  separat ion 

o f  t h e  opposed sur face p o i n t s  a f t e r  the  load i s  applied: F igure 7.1 

i l l u s t r a t e s  t h e  i n i t i a l  separat ion f f o r  a case o f  a x i a l  symmetry 

where f i s  a f u n c t i o n  f ( r - )  o f  the  r a d i a l  coord inate r: _, 

The c o n d i t i o n  o f  i m p e n e t r a b i l i t y  o f  mat te r  requ i res  t h a t  

S(x,y) should vanish i n s i d e  R.and i t  should be. p o s t t i v e  ou ts ide  of 

R. Conversely, the  i n t e r f a c i a l  .contact  pressure p(x,y) should be 

p o s i t i v e  i n s i d e  Q, and i t  should vanish i d e n t i c a l l y  o u t s i d e  o f  it. 



160 

I n  symbol i c  terms, 

p(x, y) 0 fORt%/C1) O V T S / D € A  (7 .4a)  

p(x, 9)  2 0 h R ( n J  g)  /Ns/oE (7.4b) 
I n  short ,  a solution of the problem requires the determina- 

tion of the boundaries of region R ,  a pressure f i e ld  p ( x , y ) ,  and an 

approach 6 which sa t i s fy  relations ( 7 . 1 ) - ( 7 . 4 ) .  The associated 

load may be found from the expression 

The absence of foreknowledge of the contact region R i s  a major 

impediment t o  a mathematical solution. 

postulating a tentat ive contact region a*. 

proposed that  the "interpenetration curve" described by 

This obstacle i s  overcome by 

Singh and Paul [1974] 

be used as a tentative contact region. Equat ion (7 .6 )  defined the 

contour of the curve formed by interpenetration (without deformation) 

of the two surfaces through an arbi t rary distance d .  Picking a 

suitable value of d establishes the candidate contact region R*. 

Using this as a preliminary estimate of n, equation ( 7 . 1 )  i s  readily 
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recognized t o  be an i n t e g r a l  equat ion o f  t h e  f i r s ' t  k ind.  

Equation (7.1) can be solved using t h e  "s imply d i s c r e t i z e d "  

A "s imply  method o f  Singh and Paul which i s  reviewed i n  chapter 2. 

d i s c r e t i z e d "  numerical s o l u t i o n  of equat ion (7.1) i s  found by 

subd iv id ing  52 i n t o  a l a r g e  number of small  c e l l s .  

func t ion  p(x,y) i s  rep laced by a piecewise constant  pressure f i e l d  

(pressure Pi i n  c e l l  i ) .  

equat ion (7.1 ) becomes 

The pressure 

Thus i f  R i s  subdiv ided i n t o  N c e l l s ,  

where ai i s  the reg ion  o f  c e l l  i. 

and t h e  constant 6 a re  unknowns t o  be determined. The cent ro ids  

(xi,yi) o f  t h e  c e l l s  a re  taken as f i e l d  p o i n t s  (x! ,y)  and equat ion 

(7.7) i s  w r i t t e n  f o r  each f i e l d  p o i n t .  The i n t e g r a l s  i n  equat ion 

(7.7) are evaluated by numerical quadrature. 

equat ions are generated. An a d d i t i o n a l  independent 1 i n e a r  equation, 

I n  equat ion (7..7), N values o f  pi 

Thus N l i n e a r  a l g e b r a i c  

e s s e n t i a l  f o r  a unique s o l u t i o n ,  i s  generated by p i c k i n g  up a f i e l d  

p o i n t  o t h e r  than the  c e l l  cent ro ids.  The choice of t h i s  a d d i t i o n a l  

f i e l d  p o i n t  i s  otherwise a r b i t r a r y ,  however, i t  does a f fec t  the  

q u a l i t y  o f  the  r e s u l t s ,  as discussed i n  sec t ion  7.4. 

Having thus generated a s e t  of  N + 1 l i n e a r  equations, the  

N unknown pressures, Pi, and the  approach 6, are obta ined through 
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Gaussian e l im ina t i on .  

whether the  t e n t a t i v e l y  se lec ted  reg ion  of i n t e g r a t i o n  R i s  indeed 

the  t r u e  contac t  reg ion.  

(7.3) and ( 7 . 4 )  and sys temat i ca l l y  a d j u s t i n g  the boundaries o f  82 

u n t i l  these i n e q u a l i t i e s  a re  s a t i s f i e d .  

The nex t  s tep  i n  the  s o l u t i o n  i s  t o  determine 
* 

This  i s  done by u t i l i z i n g  t h e  i n e q u a l i t i e s  

Singh and Paul [1974] showed t h a t  the  "s imply  d i s c r e t i z e d "  

method was unstable i n  the  general case and was incapable o f  pre- 

d i c t i n g  the  proper  s t ress  d i s t r i b u t i o n .  For such problems they found 

i t  necessary t o  in t roduce s t a b i l i z i n g  techniques known as the  

"Redundant F i e l d  P o i n t  Method," and the  "Funct ional  Regu lar iza t ion  

Method" (see Singh [1972], Singh and Paul [1973]) .  

The amount o f  numerical  computation requ i red  f o r  e i t h e r  o f  

t he  two l a s t  methods exceeds t h a t  of the Simply D i s c r e t i z e d  Method. 

Accordingly,  i t  i s  des i rab le  t o  use the  l a t t e r  whenever circumstances 

permi t. 

I n  t h i s  chapter  we w i l l  focus on a problem w i t h  complete 

axisymmetry, and i t  w i l l  be shown t h a t  t he  Simply D i s c r e t i z e d  Method 

prov ides an e x c e l l e n t  s o l u t i o n ,  prov ided t h a t  the maximum poss ib le  

use i s  made o f  t he  symnetry o f  the  problem. 

I n  o the r  words, we recognize t h a t  a l l  c e l l s  l oca ted  a t  the  

same rad ius  from the  a x i s  o f  symmetry have the  same con tac t  pressure 

a t  t h e i r  cen t ro ids ,  and t h e  number of unknown pressures Pi i s  reduced 

from the number of  c e l l s  t o  N ( t h e  numbgr of annular  r i n g s  formed 

by an ax isymnet r ic  d i s t r i b u t i o n  of  c e l l s ) .  

D i sc re t i zed  Method, we are  able t o  u t i l i z e  I n e q u a l i t y  (7.4) t o  

By us ing  t h e  Simply 
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i te ra t ive ly  refine the region of contact 52. 

Inequality (7.4),  i t  was invariably found t h a t  Inequal i ty (7 .3)  was 

sa t i  s f  ied. 

Upon satisfying 

The nature of the Functional Regularization Method prohi bi ts 

the use of Inequality (7.4)  as a basis for  refining R. 

Numerical experiments have indicated t h a t  i terat ion pro- 

cedures based on Inequality (7.4) converge much f a s t e r  than those 

based upon Inequality (7.3).  

cedures will be found i n  sections 7.4 and 7.5. 

Further detai ls  of the i te ra t ion  pro- 

7.3 Pit ted Sphere Geometry 

As a typical example, contact of a pi t ted e l a s t i c  sphere of 

radius R1 with an u n p i t t e d  e l a s t i c  sphere of radiuis R 2  i s  considered. 

A section of the pitted surface by a plane through the axis of 

symmetry is  shown i n  figure 7.1. The local contour o f  the pi t ted 

surface is  idealized as a torus smoothly blended into a sphere. 

The blending point P ,  where the p i t  joins the main surface, i s  

located a t  a distance rb from the load l i ne ,  The center o f  curvature 

0 of the p i t  blending arc  l i e s  on the cqnical surface o f  semivertex 
I c 

angle T. The meridional radius  of curvature of the torus is  rc. 

Note tha t  the discontinuity i n  curvature which occurs a t  P 

does n o t  preclude the use of the method of solution b e i n g  used. 

A tentative contact region, R, is established by a hypothetical inter-  

penetration of  the two spheres through a distance d .  The annulus  o f  

contact so formed i s  bounded by an inner radius rI  and an outer radius 
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f ( r  1 IS INITIAL SEPARATION 

F ig .  7.1.  Geometry o f  p i t t e d  surface 

COMPLETE 

I 

F ig .  7.2. Generation o f  annular in te rpenet ra t ion  
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ro as shown i n  f i g u r e  7.2, where s u i t a b l e  coordin,ate axes r, and z 

a re  ind ica ted .  

determined as fo l lows. 

a t  a d is tance p from the  z-axis on the t o r o i d a l  p o r t i o n  of body 1 

(see f i g .  712), where 

The values o f  rI and ro f o r  a given problem are  

The z coord inate o f  a p o i n t  C(p,z,) loca ted  

(7.8a) 

i s :  

where 

(7.8b) 

( 7 . 8 ~ )  

The z-coordinate o f  a p o i n t  on sphere 2, loca ted  a t  a d is tance p from 

t h e  z-axis i s  given by 

(7.10) 

Since p o i n t  C l i e s  on both t h e  torus and t h e  lower. sphere, z1 = z2; 

thus equat ions (7.8b) and (7.10) r e q u i r e  t h a t  
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(7.11a) 

Furthermore, the z-coordinate of a material point C' located on the 

spherical portion of body 1 ,  a t  a distance p from the z-axis, i s  given 

by 

(7 .12 )  

where 

Hence, fo r  a given interpenetration d, the radius p of a point on the 

intersection of sphere 2 and spherical region of body 1 i s  given by 

( 7.1 3a ) 

9,rb (7.13b) 

The geometry of the toroidal surface indicates that  fo r  rc < R1,  

equation (7.11) has two solutions fo r  p.  2 
roots of equation (7.11). 

Case ( i ) .  

Let p1 and p2 (p ,  < p ) be 

Two cases are readily ident i f ied.  

When both inner and outer  radii  of the assumed 

contact region l ie  inside the blending radius, i .e . ,  

(7.14) 
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I n  this case the contact i s  assumed to  be completely confined to 

the toroidal segment of  body 1 ,  i n  which case 

(7.15) 

Case ( i i ) .  When the outer boundary of R l i e s  beyond the 

blending radius (as shown i n  f i g .  7 . 2 ) ,  i .e . ,  

( 7.16a) 

In this case 

r , = A  (7.16b) 

and the outer  radius ro is  determined from solution of equation (7.13). 

Note t h a t  equations (7.11) and (7.13) are transcendental i n  p ,  which 

can be found by an i t e r a t i v e  procedure (e.g. ,  Newton Raphson). 
. L 1  

In order t o  find the i n i t i a l  separation f ( r ) ,  shown i n  f igure 

7.1, i t i s  only necessary t o  find 

. ' ,  i i fir) = t ,  - t ,  I ( 7 . 1 6 ~ )  

1 :  

where z2 is found from equation (7.10) w i t h  p E r and d E 

the value of d corresponding t o  i n i t i a l  contac t  a!; shown i n  f igure 7.1. 

do; do i s  
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To find z l ,  set  p, I r and use equation (7.Sb) for  points on the torus 

( r  < rb) ,  or  equation (7.12)  for  points on the upper sphere ( r  > rb) .  

In order t o  find the i n i t i a l  separation do, i t  i s  necessary 

to  note from figure 7.1, that  when d = do,  the slope of the torus 

matches tha t  of the lower sphere a t  the contact point; i . e . ,  

di? I 

( 7  

where the derivatives are found from equation (7.8b) and equation 

(7.10). Equation (7 .17) ,  together with equations ( 7 . 8 b )  and ( 7 .  

suff ice  t o  f i n d  do, and the two coordinates ( r , z )  o f  the i n i t i a l  

contact point. 

Having found the boundaries ( r  and ro) of the contact region I 
R and the i n i t i a l  separation function f ( r ) ,  we may proceed t o  solve 

the governing integral equation (7 .1  ) .  

7.4 Numerical Solution Procedure 

The contact region R i s  subdivided i n t o  N annular rings. 

Since a steep pressure gradient i s  expected near the p i t ,  the annular 

rings near the inner boundary are very narrow i n  width. 

learned from experience t h a t  the peak pressure always occurs a t  

some radius r where r < rb. 

of the rings are clustered i n  the region r I  < r < r 

axisymmetry of the problem, we assume t h a t  the pressure i s  constant 

i n  each r i n g .  

I t  was also 

Guided by th i s  consideration, a majority 

Exploiting the - - b '  

The rings are numbered sequentially from 1 to N, from 

n 

n 
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the inside out ,  and the pressure in the i - t h  ring i s  assumed to  be 

an unknown constant p i .  

bounding radii  for  ce l l  i ;  t h u s  rl f rI  and rN+l f r 

i s  further subdivided circumferentially into m equal sectors by 

drawing ( m )  equispaced radial rays from the center of R;  the angle A @  

between two adjacent rays is 2n/ni. The sector,  bounded by radial 

'L rs  
Let ri and r i+l be the inner and outer 

Each ring 
0' 

rays 1 and 2 ,  i s  shown in figure 7.3. 

The region of the sector located in the i - th  ring, between 

ray j and ray ( j + l ) ,  i s  identified as S i j ;  and  i t s  centroidal rad ius  

by B i j .  Elementary calculations show, tha t  

The centroids of the f i r s t  sector shown in figure 7.3 ( i . e . ,  where 

j = 1 )  are  selected as f i e ld  points. 
' 

Thus  for  the f i e ld  point R, equations ( 7 . 7 )  and (7.3a) reduce 

to  

(7 .19 )  



Fig. 7.3. Subdivided and labeled contact region (portion) 

U 
0 
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where f ( r )  i s  ca l cu la ted  f o r  r = BR1 from equat ion ( 7 . 1 6 ~ ) .  

i s  the  r a d i a l  d is tance from f i e l d  p o i n t  R t o  the elemental area dAij 

loca ted  i n  Si j .  For most c e l l s ,  the i n t e g r a l  i n  equat ion (7.19) may 

be rep laced by the  approximat ion 

ci j R  

(7.20) 

where cij i s  the d is tance between f i e l d  p o i n t  R and the  c e n t r o i d  of 

the reg ion  Sij, whose area i s  denoted by Aij. It was shown i n  

Singh [1972] that ,  i n  general, equat ion (7.20) i s  a very useful  

approximat ion which r e s u l t s  i n  a s i g n i f i c a n t  reduc t i on  of  computa- 

t i o n  time, w i t h o u t  compromising the  accuracy o f  r e s u l t s .  However, 

f o r  reg ions l oca ted  i n  the immediate v i c i n i t y  o f  the  f i e l d  p o i n t  R, 

the e r r o r s  due t o  the approximat ion (7.20) may be unacceptable. 

To avo id  such e r ro rs ,  Iija i s  evaluated by numerical quadrature w i t h i n  

c e l l s  l oca ted  near the f i e l d  p o i n t .  

s a t i s f i e d  i n  o rde r  t o  use equat ion (7.20) i s  

The c r i t e r i o n  which must be 

(7.21 ) 

I n  equation(7.21), r A $  and A r  are the s ide  lengths of a t y p i c a l  c e l l .  

Not ice  t h a t  when the f i e l d  p o i n t  R l i e s  i n s i d e  the reg ion  Sij ( i .e . ,  

j = l , i =  R), cijR = 0, and hence the i n teg rand  i n  equat ion (7.15) 

has a s i n g u l a r i t y .  However, f o r  such cases, an approximate a n a l y t i c a l  

- 
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s o l u t i o n  f o r  the i n t e g r a l  i s  r e a d i l y  const ructed as shown i n  

Appendix G. 

I n  t h i s  manner, N l i n e a r  equations corresponding t o  the N 

f i e l d  p o i n t s  are generated. An add i t i ona l  l i n e a r l y  independent 

equat ion i s  generated by s e l e c t i n g  p o i n t  P '  a t  the  outermost boundary 

o f  the  contact  reg ion  as f i e l d  p o i n t  ( N  i- 1 ) .  The l o c a t i o n  o f  t h i s  

a d d i t i o n a l  f i e l d  p o i n t  has a pronounced a f f e c t  on the so lu t i on ,  which 

de te r io ra tes  as P I  i s  moved i n s i d e  the boundary. I t  i s  p l a u s i b l e  

t o  assume t h a t  t h i s  behavior i s  due t o  the gradual increase i n  c e l l  

w id th  A r  w i t h  r (see f i g .  7.3) which was in t roduced t o  keep the aspect 

r a t i o  o f  the  c e l l s  from becoming excessive. With the c e l l s  so 

designed, the l o c a t i o n  o f  P '  shown i n  f i g u r e  7.3 maximizes the  d is tance 

between P' and i t s  nearest  ne ighbor ing f i e l d  p o i n t .  This i n  t u r n  

tends t o  maximize the  amount o f  independent i n fo rma t ion  supp l ied  by 

the equat ion w r i t t e n  f o r  f i e l d  p o i n t  P I ,  and should tend t o  minirr;ize 

i l l - c o n d i t i o n i n g  e f f e c t s  on the c o e f f i c i e n t  ma t r i x  generated. 

Thus (N i- 1 )  equat ions i n  (N  + 1)  unknowns are generated, and 

equat ion (7.19) assumes the  form 
e 

and the  equat ion us ing P I  as a f i e l d  p o i n t  becomes, 

(7.22) 

(7.23) 
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where fi i s  the  value o f  the " i n i t i a l  separat ion"  func t i on  f ( r )  a t  

t he  f i e l d  p o i n t  i. fN+l i s  the  value o f  f ( r )  a t  P i ;  and summation 

from 1 t o  N i s  hencefor th  i m p l i e d  over repeated subsc r ip t s .  

equat ions (7.22) and (7.23), 6 may be e l im ina ted  t o  y i e l d  

From 

where 

and 

6 '  =f,,, -6 

(7.24) 

(7.25) 

(7.26) 

When equat ion (7.24) i s  so lved f o r  Pi, us ing  Gaussian e l i m i n a t i o n ,  the 

r e s u l t i n g  pressure d i s t r i b u t i o n  i s  u s u a l l y  found t o  p r e d i c t  negat ive  

con tac t  pressures i n  the  immediate v i c i n i t y  o f  t he  i n s i d e  boundary, 

r = r The axisymmetry o f  the problems enables us' t o  ma in ta in  the 

ou ts ide  boundary f i xed ,  and i t e r a t e  on the  i n s i d e  boundary where the 

p red ic ted  pressure i s  i n c o r r e c t .  The i t e r a t i o n  scheme i s  bes t  

I '  

expla ined w i th  the  a i d  o f  the  numerical example g iven i n  sec t i on  7.5. 

7.5 A Numerical Example 
6 

The fo l l ow ing  example problem was considered. 

R1 = R2 = 1 i n  
: - 

- v1 - v2 = 0.3 

E, = E2 = 30 x l o 6  l b / i n 2  



rc = .006 i n  

rb = .00025 i n  

The r e s u l t s  a re  presented i n  dimensionless form. L e t  

Then, we d e f i  ne 
* 

Dimensionless pressure i n  r i n g  i, Pi = k Pi 

* kF Dimensionless load, F = - 
R2m 

* 
Dimensionless d is tance from o r i g i n  o f  0, r = r / R m  

* 
Dimensionless approach, 6 = 6/Rm 

* 
rb = rb /Rm 

* 
r = r c / R m  

C 
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(7.27) 

(7.28) 

(7.29) 

(7.30a) 

(7.30b) 

(7.31a) 

( 7.31 b )  

F igure 7.4 shows the  pressure d i s t r i b u t i o n  near the  i n s i d e  boundary 

f o r  t he  u n i t e r a t e d  s o l u t i o n .  

p i t  agrees c l o s e l y  w i t h  the  Her tz ian  s o l u t i o n  f o r  u n p i t t e d  spheres 

(no t  shown i n  the f i g u r e ) .  

negat ive.  

The pressure d i s t r i b u t i o n  f a r  from the 

However, t he  pressure i n  c e l l  #1 i s  h i g h l y  

The pressures i n  the successive c e l l s  a re  l ess  and less  
n 
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negative, u n t i l  a t  p o i n t  Q, the pressure curve crosses the r * -ax i s .  

The shape o f  the  pressure curve r e a d i l y  suggests the i t e r a t i o n  scheme. 

The new reg ion  o f  i n t e g r a t i o n  i s  assumed t o  have i n n e r  rad ius  

rI = OQ,. 

sponding t o  t h i s  new reg ion  R ,  and thus a new pressure vec to r  i s  

generated (see f i r s t  i t e r a t i o n ,  f i g .  7.4). 

negat ive peak (weaker than t h a t  o f  the  u n i t e r a t e d  s o l u t i o n )  a t  the 

innermost f i e l d  po in t .  The new p o i n t  o f  i n t e r s e c t i o n  i s  Q2, which 

de f ines  the  i n n e r  boundary o f  R f o r  t he  n e x t  i t e r a t i o n .  

i s  thus cont inued u n t i l  a l l  pressures are p o s i t i v e .  I n  f i g u r e  7.4, 

the t h i r d  i t e r a t i o n  y i e l d s  the  des i red  s o l u t i o n .  11: i s  found t h a t  

t h i s  s o l u t i o n  a l s o  s a t i s f i e s  I n e q u a l i t y  (7.3),  thus q u a l i f y i n g  as the  

' I t rue" s o l u t i o n  o f  the contac t  problem. 

b u t i o n  i s  shown i n  f i g u r e  7.5. 

pressure d i s t r i b u t i o n  (corresponding t o  contac t  o f  i inpi  t t e d  spheres) 

a t  r* > 6 x lo - '+ .  
l o c a l  zed nature.  

rI/ro 2 0.3) the  pressure curve departs completely f rom the Her tz ian  

case. For example, f i gu re  '7.6 shows a t y p i c a l  pressure d i s t r i b u t i o n  

fo r  rI/ro = 0.623, along w i t h  the  Her tz ian  s o l u t i o n  f o r  u n p i t t e d  

spheres corresponding t o  i d e n t i c a l  values o f  t h r u s t  F. 

The d i s c r e t i z e d  equat ion s e t  (7.24) i s  qenerated cor re -  

This new curve a l s o  has a 

The process 

The complete pressure d i s t r i -  

Not ice  the e s s e n t i a l l y  Her t z ian  

Thus the  e f f e c t  o f  the  c a v i t y  i s  of  a s t r i c t l y  

However, as the c a v i t y  i s  made l a r g e r  (e.g., 

I n  o rde r  t o  e s t a b l i s h  conf idence i n  the s o l u t i o n ,  i t  i s  

necessary t o  s tudy i t s  convergence w i t h  change i n  &e number o f  c e l l s  

used. 

be densely concentrated on ly  i n  t h a t  reg ion  where a h igh  pressure 

I t must be recognized t h a t  i t  i s  necessqry f o r  t h e  c e l l s  t o  
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-16 

- 46 

I6 - 
14 - 
12 - 

- 
U NIT E R ATE0 - 

- 
- 

FIRST ITERATED 

4 - BOUNDARY FOR 
FINAL SOLUTION 

BOUNDARY 

R =  1" 
r," = 0.006 
r: = 0.00025 
r; = 0.002236 
E = 5or1O6PSI 

I V = 0.3 

I NOTE: SOLUTION OF SECOND I ITERATION IS OMITTED. 

I I 
Fig. 7 .4  Boundary iteration sequence i 

n 
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16 t 
HERTZIAN SOLN FOR TWO 
SPHERES IN CONTACT 

PITTED SPHERE IN CONTACT 
WITH A SPHERE (Nco,=15) 

A 

0 

9 
8 
7 
6 E =30x IO6 PSI 
5 

I C  -*= 0 . 6 ~  IOm2 

I - I I I I I 1 1 I I 1 I ~ 1 ~ I ~ 1 ~ 1 ,  

1 2 3 4 5 6 7 8 9 IO I I  12 13 14 15 16 17 18 192021 2 2 2 3  v 3-.r*x io4 

,- 
r*= 0 . 2 5 ~  I O - ~  

2 -  Fb.- 0.9743 x ,I 

1 -  STRESS CONCENTRATION FACTOR = 1.69 
3l 1 

Fig.  7.5. Pressure d i s t r i b u t i o n  f o r  p i t t e d  sphere pressed aga ins t  a sphere 
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g rad ien t  e x i s t s .  Therefore, f o r  purposes o f  convergence s tud ies,  

we have sys temat i ca l l y  va r ied  the  number o f  c e l l s  w i th in  a f i x e d  

rad ius  rcon. This  rad ius  i s  chosen a r b i t r a r i l y  f o r  each pro t lem i n  

such a way t h a t  the  major area o f  s t ress  concent ra t ion  l i e s  i n s i d e  

the  rad ius  rcon. For the example problem considered, rcOn = .0003. 

L e t  Ncon be the  number o f  r i n g s  loca ted  w i t h i n  rad ius  rcon. Figure  

7.7 i l l u s t r a t e s  the  convergence o f  the peak pressure, P i a x .  F igure 

7.8 shows the  convergence o f  s t ress  concentrat ion f a c t o r  w i t h  Ncon. 

St ress Concentrat ion Fac tor  (SCF) i s  de f ined as the  r a t i o  o f  the peak 

computed pressure t o  the peak pressure f o r  u n p i t t e d  spheres under 

equal t h r u s t .  Not ice both f igures7.7and 7 .8exh ib i t  convergence f o r  

“con > 8. 

The load-approach curve i s  shown i n  f i g u r e  7.9. I t  i s  obvious 

from f i gu re  7.9  t h a t  the compliance c h a r a c t e r i s t i c s  o f  the b a l l s  

( w i t h  smal l  p i t s )  remain e s s e n t i a l l y  the same as t h a t  p red ic ted  by 

the Her t z ian  s o l u t i o n .  

F igure  7.10 shows SCF as a f u n c t i o n  o f  c a v i t y  edge rad ius  

r;. Smal ler  values o f  r; cause g rea te r  s t ress  conc:entration. 

the  n o n l i n e a r i t y  o f  the problem, the SCF i s  a l so  a f u n c t i o n  o f  the 

Due t o  

app l ied  load F*. Table 7.1 shows t h e v a r i a t i o n  o f  SC:F w i t h  the s i z e  

of t he  p i t  (measured by b lend p o i n t  rad ius ) .  

w i t h  inc reas ing  value of r;. 

r e l a t e d  t o  the l o s s  o f  l oad  c a r r y i n g  area. 

Notic:e t h a t  SCF increases 

This v a r i a t i o n  o f  SCF w i th  r i  may be 

The computer program developed t o  so l ve  t h i s  problem i s  

moderately e f f i c i e n t .  For example, the n ine  cases, needed t o  generate 
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TABLE 7.1 

DEPENCENCE OF STRESS CONCENTRATION FACTOR ON rb 

r* x l o 3  F*  x lo8  6 x i o4  I C a s e  No. r i  x l o 3  SCF 
-- 

1 0.25 1.692 0.9743 0.1023 0.1645 

2 0.35 1.856 0.9737 0.1029 0.2753 

3 0.50 2.049 0.9702 0.1041 0.4166 

R = l " ,  r* = 0.006, r: = 0.002236, E = 30 x l o 6  p s i ,  v =0.3. m C 

i .* 
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PMAX x 1 0 3  
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1.5 t 
0 1.2 

1 . 1  ::i 0 0  

R . =  t i '  
r,*= 0.006 
r z =  0.00025 
r,*= 0.002236 
E = 3 0 ~ 1 0 ~  P S I  
v = 0.3 

. -  
NUMBER OF CELLS WITHIN r * = O t 0 0 O 3  

Fig. 7 . 7 .  Convergence o f  peak pressure with increasing 
number o f  cel l  s . 

STRESS 
CONCENTRATION FACTOR 

0 0 0  

1.6 0 0  

1.4 '-1 0 
0 0 

R = 1 "  
rc * = 0.006 

r i =  0.00025 
r t =  0.002236 
E = 30x IO6 PSI 0. 
u =0.3 

NUMBER OF CELLS WITHIN r%O.S003 
Fig. 7.8.  Convergence o f  stress concentration with 

increasing number of c e l l s .  
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0 DATA FOR PITTED 
SPRERE IN CONTACT 

SPHERES 1N COP WITH SPHERE. 

R = 1 "  
rF= 0.002 
rz = 0.004 
E = 30x1O6PSI 
v = 0.3 

I * 
5 '6 7 8 9 10 sffX106 

S.C.E 

4.0 
3.0 
3.6 
3.4 
3.2 
3.0 
2.8 
2.6 
2.4 
2.2 
2.0 
I .8 
I .6 
I .4 
1.2 

F i g .  7.9. Load-approach relationship 

- 
- 
- - - 
- 
- 
- 
- - 
- 
- 
- 
- 
- 
L - J  I I r 1 - , L u I . - - L  

R = l  
r: = 0.0004 

n 



f i g u r e  7.10, requ i red  an average running t ime o f  '10 min each on the 

IBM/360/65 computer, corresponding t o  $8.33 per  case, w i t h  N = 34 

nodes per  case. 

83 

7.6 Conclusions - 
A non-Hertzian e l a s t i c  contact  problem i n v o l v i n g  an unknown 

niul t ip ly -connected  contac t  reg ion  has been solved. 

problem considered, i s  t h a t  of a p i t t e d  sphere i n  contac t  w i t h  an 

u n p i t t e d  sphere. 

the "s imp ly -d i sc re t i zed  method'' w i t h  a p o l a r  coord ina te  g r i d .  

problems w i t h  a lower  degree o f  symmetry, i t  had been found i n  e a r l i e r  

work, t h a t  a more compl icated (and less  e f f i c i e n t )  method o f  s o l u t i o n  

was necessary because o f  the  numerical i n s t a b i l i t y  o f  the  equat ions 

generated. 

as "quas i -s tab le"  because i t  e x h i b i t s  dependence on the l o c a t i o n  o f  

the (N + 1 ) t h  f i e l d  p o i n t .  

i t  was es tab l i shed  t h a t  l o c a t i n g  the a d d i t i o n a l  f i e l d  p o i n t  ( P I  i n  

f i g .  7.3) a t  the ou ts ide  boundary y i e l d s  a we l l - cond i t i oned  ma t r i x .  

The v a r i a t i o n  of the  SCF, con tac t  reg ion  and peak pressure 

The example 

The axisymmetry of t he  problem enlabled us t o  use 

F o r  

I t  may be appropr ia te  t o  descr ibe the  equat ion s e t  (7.24) 

Through exper ience and h e u r i s t i c  reasoning, 

w i t h  changes i n  the p i t  b lend ing  rad ius  ri, anld the  p i t  edge ';ax 
rad ius  r:, was s tud ied,  and some numerical r e s u l t s  were presented. 

The numerical  s o l u t i o n  was shown t o  converge r a p i d l y  w i th  a 

moderate ce 1 1 dens i ty , 

The p r i n c i p a l  r e s u l t s  of  t h i s  chapter have been pub l ished 

by the  I n t e r n a t i o n a l  Union o f  Theore t ica l  and App l ied  Mechanics i n  
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a j o i n t  paper by Woodward, Paul and Singh. To the best  o f  our 

knowledge, t h i s  i s  the  f i r s t  published so lu t ion  of a m u l t i p l y -  

connected contact  region problem w i t h  an a p r i o r i  unknown 

contact boundary. 



8. CONCLUSIONS 

A general method o f  s o l u t i o n  o f  t h ree  dimensional f r i c t i o n l e s s  

conformal contac t  problems has been presented. S p e c i f i c a l l y ,  two con- 

formal examples were analyzed, v i z . ,  the  case o f  an e l a s t i c  sphere 

i nden t ing  an e l a s t i c  spher ica l  seat and the  case o f  an e l a s t i c  

c y l i n d e r  i nden t ing  an e l a s t i c  c y l i n d r i c a l  seat. The necessary i n f l u -  

ence func t ions ,  needed f o r  s o l u t i o n  o f  these problems, were generated 

numer ica l l y  and va l i da ted  w i t h  a n a l y t i c  s o l u t i o n s  wherever poss ib le .  

The p red ic ted  values o f  con tac t  s t ress ,  load, approach, and 

contac t  area f o r  these examples i s  i n  c lose  agreement w i t h  Her t z ' s  

so lu t i ons  i n  the  case o f  small loads, where small con tac t  reg ions 

occur. For l a r g e r  angles o f  contact ,  t he  load-approach r e l a t i o n s h i p  

obta ined f o r  t he  sphere-seat problem was found t o  compare favo rab ly  

w i t h  t h e  exper imental  r e s u l t s .  The displacement *Field obta ined i n  the  

ana lys i s  of an e l a s t i c  sphere i n  contac t  w i t h  a conformal r i g i d  seat  

was found t o  be reproduced, w i t h  s a t i s f a c t o r y  accuracy, by a f i n i t e  

element model subjected t o  the same pressure  d i s t r i b u t i o n .  

Therefore,  i t  may be concluded t h a t  t h e  s o l u t i o n  ob ta ined by 

the  methods o f  t h i s  d i s s e r t a t i o n  i s  the  unique s o l u t i o n  t o  the  problem. 

Pressure d i s t r i b u t i o n s  and maximum pressure ob ta ined i n  the  an lays i s  o f  

conformal c y l i n d e r s  were w i t h i n  1.5 percent  o f  t h e  values p r e d i c t e d  by 

Persson [19641. The values o f  l oad  vs. con tac t  angle a l s o  agree w i t h  

185 
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the  values computed by Persson. I n  rev iewing the  above.resul ts ,  i t  

i s  concluded t h a t  t he  method presented can be used t o  success fu l l y  

analyze th ree  dimensional conformal contact .  

I n  a d d i t i o n  the  non-conformal problem i n v o l v i n g  a p i t t e d -  

sphere contac t ing  a sphere was solved f o r  a v a r i e t y  o f  p i t  geometries. 

This  problem i s  o f  I n t e r e s t  because i t  has a m u l t i p l y  connected 

contac t  region. 

t r u e  boundaries o f  t h e  problem was establ ished.  The p red ic ted  values 

o f  con tac t  s t ress  were e s s e n t i a l l y  Her tz ian  away from the  p i t  l o c a t i o n  

The necessary i t e r a t i o n  needed t o  converge t o  the  

and the  s t ress  became much l a r g e r  i n  the  v i c i n i t y  o f  t he  p i t ,  as 

expected; t he  s t ress  concent ra t ion  f a c t o r  was found as a f u n c t i o n  o f  

p i t  geometry parameters. 

I n  a l l  o f  t he  above mentioned axisymmetric examples, 

axisynnnetry was u t i l i z e d  t o  the  f u l l e s t  ex ten t  i n  t h e  d i s c r e t i z a t i o n  

process and i t  was discovered t h a t  a l l  so lu t i ons  were quas i -s tab le  

us ing  the  s imply  d i s c r e t i z e d  method o f  Singh and Paul [19741. This  

has n o t  been observed before. 

The computer cos ts  i n  a l l  

$8.33/for the 34 f i e l d  p o i n t  model 

The p r i n c i p l e  conclusions 

summarized as fo l l ows :  

1.  A general method o f  s o l v i n g  fr 

conformal contac t  problems has 

cases were minimal, being a t  most 

f o r  t he  p i t t e d  sphere examples. 

o f  the  foregoing r e s u l t s  may be 

c t i on less ,  t h ree  dimensiona 

been formulated. 

n 
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2 .  A method by which numerical influence functions may be generated 

is presentedandvalidated where analytic solutions could be 

obtained. 

The conformal analysis was shown to be in close agreement with the 

limiting cases of Hertzian contact for light 'loads and with other 

numerical, analytic and experimental analyses, of conformal contact 

3 .  

probl ems. 

A problem involving a multiply connected contact region was 

Future research should be directed towards applying the 

method to the solution of non-axisymmetric problems in conforma 

tact. Within the broad area of elastic contact theory, the inc 

of friction and dynamics in contact theory are needed areas o f  

investigation. 

4. sol ved. 

above 

con- 

usi on 



APPEiJDIX A 

DOMINANT SINGULARITIES I N  THE STERNBERG INFLUENCE 

FUNCTION FOR A POINT LOAD ON A SPHERE 

Consider a sphere o f  rad ius  R compressed between two diamet- 

r i c a l l y  opposed p o i n t  loads, F. 

i n  f i g u r e  A . l ,  a re  der ived  i n  Lur6 [1964] and a re  g iven by equat ions 

( A . l )  and ( A . 2 ) .  

The displacements ur and Ue,  as shown 

It w i l l  be shown i n  t h i s  appendix t h a t  t he  dominant 

s i n g u l a r  terms i n  these displacement func t i ons  are  those o f  the  

Boussinesq in f l uence  func t i ons  f o r  a p o i n t  load on a plane.  

The Sternberg In f l uence  Funct ions may be w r i t t e n  as fo l l ows :  

188 
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F ig .  A . l .  D i a m e t r i c a l l y  Opposed Po in t  Loads on a Sphere 

F ig.  A.2. Coordinate System f o r  a Po in t  Load on a Plane 

/ \  
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and 

where m i s  the reciprocal o f  Poisson's r a t i o ,  G i s  the modulus o f  

r ig id i ty ,  PZk (cos 8 )  a r e  the Leyendre polynomials i n  cos e and the con- 

s t an t s  A, and Bn a r e  given by 



where 

The Boussinesq displacement func t i ons  a re  given by 

where v and E are Poisson's r a t i o  and Young's modulus r e s p e c t i v e l y  and 

ut and r are i l l u s t r a t e d  i n  f i g u r e  A.2. Consiider the  coord ina te  
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system i n  f igure A.l where r = R e .  

assumed equal t o  distance r along the s t r a igh t  boundary i n  f igure A . 2 .  

Also 8 i n  equations (A.l) and (A.2)  will be replaced by r/R. 

Specif ical ly ,  i t  will be shown tha t  

As r tends t o  zero, r will be 

Am clr = &  (A.8) 

r-o 
and 

hw LA#= ut (A.9) 
r-0 

Now consider the singular terms i n  equation (A.1). They. 

a r e  as  follows: 

(A.lO) 

(A.11) 

I t  can be seen upon inspection tha t  a l l  other terms tend toward a 

f i n i t e  quantity. 

zero whereas S3 is indeterminant a t  8 = 0.  

S1 and S2 def in i te ly  tend toward 00 as  e tends toward 

I t  will be shown f o r  the 



l i m i t  o f  r tending t o  zero t h a t  

s, = ut 

and 

& s3 = o  
e- o 
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(A.13) 

(A. 14) 

(A.15) 

Expanding Sly i n  terms o f  0 we f i n d  

(A.16) 
c 7 +- 

As 8 4  t he  o n l y  s i n g u l a r  term i s  the  f i r s t ,  which w i l l  be termed Sl0. 

Now consider  the  l i m  o f  t he  r a t i o  

m = - a n d  G = 

. Reca l l i ng  the 0 = r / R ,  s1 0 
r + O  2 1 E 

qi-Gy V 

(A.17) 

Therefore the  s i n g u l a r  term S1 corresponds d i r e c t l y  t o  uz.  

I n v e s t i g a t i n g  the l i m i t  o f  the r a t i o  S,/S.,, where 
L. 
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(A.18) 

i t  can be shown, us ing  1 'Hop i ta l  ' s  r u l e  t h a t  

CI - 0 0  
(A.19) 

Thus, even though t h e  s i n g u l a r i t y  S2 i s  present  i n  the displacement 

'rY i t  i s  weak compared t o  the  s i n g u l a r i t y  S1. 

F i n a l l y ,  examining S 3 ,  us ing  1 ' H o p i t a l ' s  r u l e  i t  can be 

shown t h a t  

= o  (A.20) 

I n  o the r  words, S 3  i s  n o t  a s i n g u l a r  term, b u t  tends toward zero a t  

the load.  

From the above ana lys i s  i t  can be seen t h a t  the dominant 



195 

and furthermore, i n  the 1 - i m i t  as r tends toward s i n g u l a r i t y  i n  ur i s  S 1 
zero S1 = u . Therefore, i t  may be concluded t h a t  i n  the same l i m i t  

2 

u = u . This i s  i l l u s t r a t e d  i n  t a b l e  A.1. As 0 decreases, t he  per-  r Z 

cent  d i f f e r e n c e  between ur and u a l s o  decreases. 

Now consider  the displacements uo and ut. 
Z 

The th ree  terms i n  

equat ion (A.2)  which are s i n g u l a r  o r  indeterminant  are 

(A.21) 

( 1  -2v) (1 +v) 
2E where K2 = 

T1 i s  s i n g u l a r  w h i l e  T2 and T3 are indeterminant .  The o t h e r  term i n  

ng dPZk(cos e ) /de  i s  known t o  be zero a t  8 equa equat ion ( A . 2 )  i n v o l v  

t o  zero.  

Examining the  r a t i o  T1/ut i t  can be shown t h a t  f o r  r =Re 
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TABLE A.1 

COMPARISON OF BOUSSINESQ INFLUENCE FUNCTION TO THE 
INFLUENCE FUNCTION FOR A POINT LOAD ON A SPHERE 

_.- 

10.00 

1 .oo 
0.10 

0.01 

- 

ur[ i  n. la 
__- 

1.44963 

16.4732 

165.91 7 

1659.65 

uz[ i n .] 
-- - 

1.65964 

16.5964 

165.964 

659.64 

% D i f f e rence  

12.654 

0.74222 

0.02806 

-0.001 79 

R = l o " ,  F = 30 x l o 7  l b ,  E = 30 x l o 6  p s i ,  v = 0.30 

a51 Terms taken i n  Legendre Polynomial 
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( A . 2 4 )  

Usi ng 1 'Hopi t a l  ' s  r u l e ,  

Therefore i n  the l imit  a s  0 ,  o r  r ,  tends  t o  zero  u t  = T 1 .  

Consider term T2 i n  the l i m i t  a s  0 goes t o  z e r o ,  and us ing  

1 ' H o p i t a l ' s  r u l e  

(A.26) 

T h i s  proves t h a t  a l though T2 was inde terminant  i t  i s  not  a s i n g u l a r  

term i n  the 1 imi t a s  e tends  t o  ze ro .  

F i n a l l y ,  cons ider  T 3 .  T may be rewritten i n  the form 3 
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(A.27) 

which i s  indeterminant as 8 tends t o  zero.  Using 1 ' H o p i t a l ' s  r u l e  

and reducing the r e s u l t s  

(A.28)  

Therefore T3 i s  n o t  a s i n g u l a r i t y .  

From the above ana lys i s  i t  was shown t h a t  the on ly  s i n g u l a r i t y  

i n  the f u n c t i o n  uB i s  T1 and t h a t  t h i s  i s  equal t o  ut as 0 tends t o  

zero. 



APPENDIX B 
Grs 

I 

DISPLACEMENTS ON A CYLINDER UNDER TWO 

DIAMETRICALLY OPPOSED L I N E  LOADS 

Consider a c y l i n d e r  under two l i n e s  loads F as shown i n  

f i g u r e  6.1. M u s k h e l i s h v i l i  [1963] has shown t h a t  f o r  t he  case o f  

p lane s t r a i n  the displacements i n  the x and y d i r e c t i o n s  r e s p e c t i v e l y  

are, 

159 



Fig .  B . l .  Cy l inder  Under Two Opposing L ine  Loads 

200 

Fig.  8 . 2 .  Geometry f o r  D i a m e t r i c a l l y  Opposed L ine  Loads on a Cy l inder  n 
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where X and a r e  the  Lam6 constants .  

Now consider  the case where the  two l i n e  loads a re  d iamet r i -  

c a l l y  opposed ( f i g u r e  B.2). The f o l l o w i n g  r e l a t i o n s  may be der ived  

f o r  the geometry i 11 us t ra ted  i n  

(8.3) 
r r . 8  d,r - - -  2 2  

S u b s t i t u t i n g  i n  the  r e l a t i o n s  o f  (B.2) i n t o  equat ions ( A . l )  and (A.2), 

the  displacements ux and u become, 
Y 

(B.4)  
e .  Ux = FK, fa, 7a,/zI+,ctd 



where 

E and v a r e  Young's modulus and Poisson's r a t i o  r e s p e c t i v e l y .  

p o l a r  coordinates the  r a d i a l  and t a n g e n t i a l  displacements, no ta ted  ur 

and u 

I n  

respec t i ve l y ,  computed as func t i ons  o f  ux and u a re  
t Y 

S u b s t i t u t i n g  equat ions (8.4)  and ( B . 5 )  i n t o  equat ions (B.8) and (B.9),  

u and uB become r 

( B . l O )  



and 
203 



1 
I 

APPENDIX C 

SINGULARITIES I N  THE INFLUENCE FUNCTIONS FOR A 

CYLINDER UNDER TWO DIAMETRICALLY 

OPPOSED L I N E  LOADS 

Consider a cylinder, of radius R, under two diametrically 

opposed line loads F, as shown in figure C.l. 

and u 

The displacements ur 

as derived in appendix B are 8 

where 

and 

204 
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F ig.  C . l .  Two D i a m e t r i c a l l y  Opposed L ine  Loads on a Cy l inder  

Fig.  C.2. Line Load on an E l a s t i c  H a l f  Space 
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E i s  Young's modulus a n d  v i s  Poisson's r a t io .  Also consider the 

Flamant solution for a l ine  load acting on a h a l f  space as i l lus t ra ted  

in figure C . 2 .  

u t  are 

As presented in section 4 .3 ,  the displacements uz and 

and 

i t  will be shown t h a t  the singularity in the displacement u r  i s  the 

same a s  that  of uz  near the load. 

tends t o  zero, will be shown t o  be u t .  

Furthermore, the l imit  o f  u O ,  as 0 

As i l lus t ra ted  in figure C . 2 ,  r represents the distance 

between the applied load and the point Q where the displacements u z  

and u t  are calculated. 

such that  r = Re. 
shown t h a t  u r  - uz as r tends toward zero. 

t o  approach u t  as r tends to  zero. 

Let us define a coordinate r on figure C.l 

Replacing 0 with a in equation ( C . l ) ,  i t  will be 

Likewise, u 8  will be shown 

I n  terms o f  the coordinate r ,  the r a t io  u r / u z  may be written 

as 

n 
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where 

Taking the l i m i t  as r tends t o  zero o f  equat ion (C.7) and us ing  

1 ' H o p i t a l ' s  r u l e ,  

The second term i n  (C.9) c l e a r l y  goes t o  zero f o r  r equal t o  zero 

w h i l e  t h e  f i r s t  and t h i r d  terms are indeterminant .  

Expanding c o t  f i n  the f i r s t  term o f  equat ion (C.9), and 

tak ing  the l i m i t  as r tends t o  zero I 

D 



(c.10) = I  
Taking the l imit  of the third tern in equation (C .9 )  and using 

1 'Hopital 's  rule,  

208 

= o  ( c .11 )  

Hence, the only nonzero term in equation ( C . 9 )  i n  the l imit  as r tends 

to  zero i s  the f i r s t  and i t  tends toward 1 .  Therefore in the l imit  

as r tends t o  zero, ur  = u z .  
5 

Now consider the l imit  o f  u B / u t .  Both u8 and u t  are f i n i t e  a t  

In  equation ( C . 2 ) ,  the f i r s t  term can be shown t o  go r equal to  zero. 
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u B ,  therefore, tends t o  the value - K p  for  small r .  

Thus, 

t o  zero for  small r .  

This i s  exactly the value of u t  for a l l  r .  

and u B  = u t  when r tends t o  zero. 

(C.12)  



APPENDIX D 

D E R I V A T I O N  OF SURFACE DISPLACEMENTS FOR A 

C Y L I N D R I C A L  C A V I T Y  UNDER TI0 

DIAMETRICALLY OPPOSED 

L I N E  LOADS 

Timoshenko and Goodier [1970] der ived  the  s t ress  func t ions  

Q and @ corresponding t o  an e l l i p t i c  ho le w i t h  un i fo rm pressure p 

app l i ed  on two d i a m e t r i c a l l y  opposed segments. 

i n  the  z, p lane and t h e  mapping func t ion ,  

Consider a u n i t  c i r c l e  

0 . 1  1 z =  w ( 5 )  
where 

w ( < )  maps t he  u n i t  c i r c l e  i n  the  5 plane i n t o  an e l l i p s e  i n  the  Z 

plane w i t h  semiaxes 

For m = 0, t h e  mapping becomes a c i r c l e  o f  rad ius  R. Now consider  an 

e l l i p t i c  ho le  w i t h  a pressure d i s t r i b u t i o n  app l i ed  as shown i n  

21 0 



f i g u r e  D- 
lu3 

. Timoshenko has shown t h a t  t h e  s t ress  func t i ons  i n  

plane, corresponding t o  the above loading, are 

21 1 

he 5 

and 

where a l ,  and sl correspond t o  the  mapped p o i n t s  Z1 and f, i n  the  Z 

plane. L e t t i n g  m = 0 f o r  the case o f  a c i r c u l a r  hale,  t h e  mapping 

f u n c t i o n  becomes 
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x E 

fild 
Fig.  D . l .  E l l i p t i c  Hole w i t h  I n t e r n a l  Pressure 

F ig.  D.2. D i a m e t r i c a l l y  Opposed L ine  Leads on a C y l i n d r i c a l  Cav i t y  
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and equations (D.4) and (D .5 )  may be w r i t t e n  i n  t h e  Z plane as 

and 

t 
- 277; Y( t )=  -"I%\- 21 

PR 3 R 

The displacements ur and u8 a re  r e l a t e d  t o  the  s t r e s s  funct ions by 
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for  plane stress or 

x= 3 - 4 Y  ( D . l O )  

for  plane s t r a in .  (See figure D.2.)  

In order t o  find the correct displacements for  concentrated, 

diametrically opposed loads, F, l e t  p vary as F / I Z 1  - 2, I and take 

the l imit  as IZ, - f ,  )+O. Hence for concentrated loads the s t r e s s  

functions become 

+ I 
1 % -  7, I I 

(D.11)  

and I 
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The quantit  

z =  
es  Z ,  Z1 and i1 may be writ ten as 

2, = R e (D.13) 

Substituting equations (0.13) in to  equations (D. l l )  and (D.12) ,  

functions + and + may be writ ten in terms of 8 and (x. 

IZ1 - Z1 I i s  now the l imi t  as a*. 

+ and $I become 

The l imit  

Taking tha t  l imi t ,  the funct 
- 

and 

2 Z%* 1 

he 

of 

ons 

(D.14) 

(D.15) 

where Zo = Zo = R.  
I 

The displacements u r  and u8 may be found by subst i tut ing 

equations (D.14) and (D.15) ? in to  equation (D.8). 

real and imaginary par t s ,  u r  and u8 a re  found t o  be 

Separating out the 



(0.16) 

and 

(0 .17)  

For plane s t r a i n  these displacements may be w r i t t e n  i n  terms o f  E and 

v as 

and 

(D.18) 

(D.19) 
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APPENDIX E 

SINGULARITIES I N  THE INFLUENCE FUNCTIONS FOR A 

CYLINDRICAL C A V I T Y  UNDER TWO DIAMETRICALLY 

OPPOSED LINE LOADS 

Consider a c y l i n d r i c a l  c a v i t y  o f  rad ius  R ,  under two diamet- 

r i c a l l y  opposed l i n e  loads F, as shown i n  f i g u r e  E . l .  

der ived  i n  appendix D are 

ur and uB as 

up = - 4  F-6 +k', -tv2 F,& 8 (E.1) 

where 

and - ( / - 2 V ) ( I  t JJ) 
2 E  K2 - (E.4) 

E i s  Young's modulus and v i s  Poisson's r a t i o .  

Flamant S o l u t i o n  f o r  a l i n e  load a c t i n g  on a h a l f  space as i l l u s t r a t e d  

i n  f i g u r e  E.2. 

Also consider  the  

21 7 
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F ig.  E . l .  Two D i a m e t r i c a l l y  Opposed L i n e  Loads on a C y l i n d r i c a l  Cav i t y  

F ig .  E.2. L i n e  Load on an E l a s t i c  H a l f  Space 
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As presented i n  s e c t i o n  4.3, the displacements uz and ut are 

and 

It w i l l  be shown t h a t  t h e  s i n g u l a r i t y  i n  t h e  displacement ur i s  

t he  same as t h a t  o f  uz near the  load.  

as 6 tends t o  zero, w i l l  be shown t o  be ut. 

Furthermore, the l i m i t  of  u8, 

As i l l u s t r a t e d  i n  f i g u r e  E.2, r represents the  d i s tance  

between t h e  a p p l i e d  l oad  and t h e  p o i n t  Q where the displacement uz and 

ut a re  ca l cu la ted .  

t h a t  r = Re.  

L e t  us de f i ne  a coord inate r on f i g u r e  E . l  such 

Replacing 6 w i t h  f i n  equat ion ( E . l ) ,  i t  w i l l  be shown 

t h a t  ur = uz as r tends t o  zero. L ikewise, uB w i l l  be shown t o  

approach ut as r tends t o  zero. 

I n  terms o f  t h e  coord inate r,' the  r a t i o  uJuZ may be w r i t t e n  

as 



220 

where 

Taking the 

1 'Hopi t a l  ' s 

imit as  r tends t o  zero, of equat on (E.7) and us ing  

rule  

(E.8) 

The t h i r d  term i n  equation (E.9) c lear ly  goes t o  zero as r tends t o  

zero, while the f i r s t  and second terms are  indeterminant. 

Expanding cot f i n  the f i r s t  term i n  equation (E.9) and 

taking the l imi t  as  r tends t o  zero, 

Taking the limit of the second term i n  equation (E.9) and u s i n g  

1 'Hopitals rule 
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I 

Hence the only nonzero term i n  equation (E.9) i n  the l imit  as r tends 

t o  zero i s  the f i r s t  and i t  tends t o  1 .  Therefore i n  the l imit  as 
- r tends t o  zero, u r  - uz .  

Now consider the l imit  of ue /u t .  Both ue and ut  are f i n i t e  

a t  r equal t o  zero. 

t o  go t o  zero as r approaches zero. 

-K2F forsmall r. 

In the f i r s t  term of equation (E .2 )  can be shown 

ue ,  therefore, tends t o  the value 

This i s  exactly the value of ut for a l l  r .  Thus, 

and u e  = u t  when r equals 0. 

(E .12)  



APPENDIX F 

DERIVATION OF THE PROFILE FUNCTION FOR CONFORMAL 

CONTACT OF A SPHERE AND SPHERICAL SEAT 

Consider a sphere of rad ius  R1 i n  contac t  w i t h  a spher ica l  

seat  o f  rad ius  R2 a t  a p o i n t  0 as i l l u s t r a t e d  in f i g u r e  F . l .  

assumed t h a t  p o i n t  A, loca ted  a t  $ on the  sphere, w i l l  con tac t  p o i n t  

I t  i s  

B on t h e  seat, l oca ted  a t  4 .  The d is tance between A and 6, denoted 

f, i s  the  p r o f i l e  f u n c t i o n  f o r  these po in ts .  The va lue o f  t h e  pro-  

f i l e  f u n c t i o n  i n  terms o f  @ and J ,  i s  der ived  below. 
1 

Vectors :1 and t2 are  def ined such t h a t  rl extends f rom 0 t o  
A A and r2 extends f rom 0 t o  B. 

angles between the  x a x i s  and rl and r2 respec t i ve l y .  

o f  i sosce les  t r i a n g l e s  i t  can be shown t h a t  

The q u a n t i t i e s  w1 and w2 de f i ne  the  
1 1 

From geometry 

and 

Furthermore, f rom geometry 

222 
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Fig .  F . l .  P r o f i l e  funct ion f o r  a sphere and spherical  seat  

.\/ I \ \  

I A 

F ig .  F.2. P r o f i l e  funct ion,  f, reqat ive  t o  mean r a d i a l  d i r e c t i o n ,  r 
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L 1 
The components i n  the  x and z d i r e c t i o n s  O f  rl amd r2 may be 

expressed as 

2 6  rz t = 2 4 &  2 

The values of rlx9 rlz9 r 2x and r2z are  merely the  Car tes ian 
1 

coord inates o f  p o i n t s  A and B. 

by the  d is tance between these two p o i n t s  o r  

The va lue o f  If1 i s  the re fo re  de f ined 

and rZz are  g iven by r e l a t i o n s  ( F . 5 )  i n  terms o f  r2x’ r l z  where rlx 

~1 and $I. 

Now consider  the  mean r a d i a l  d i r e c t i o n  which forms an acute 

w i t h  t h e  z d i r e c t i o n  as shown i n  f i g u r e  F.2. angle o f  -- 

between 

The angle o + J 1  
2 
and the  mean r a d i a l  d i r e c t i o n  i s  5 w h i l e  the  acute angle n 
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between and the  z a x i s  i s  labeled y such t h a t  5; + y = ( @  + $) /2 .  

The value o f  5 may be’determined using the  f o l l o w i n g  r e l a t i o n s  

and 

- r  # + v  F =  2 

/ \  



APPENDIX G 

INTEGRATION OF THE BOUSSINESQ INFLUENCE FUNCTION 

OVER AN ANNULAR ELEMENT 

I t  i s  requ i red  t o  evaluate the  i n t e g r a l  

over an annular element where (x,y) represents  the l o c a t i o n  o f  a f i e l d  

p o i n t  C along the center  l i n e  o f  the annular segment as i l l u s t r a t e d  i n  

f i g u r e  G . l .  

and t h e  f i e l d  p o i n t  i s  l oca ted  as rad ius  rc. 

are  de f ined by angle 0 measured from the center  l i n e .  

The annular element has i nne r  rad ius  rl, ou te r  rad ius  r2 

The sides o f  t he  element 

Now consider  the  r i g h t  t r i a n g l e  as shown i n  f i g u r e  6.2. The 

i n t e g r a l  i n  equat ion (G. l )  over  the  r i g h t  t r i a n g l e  i s  g iven i n  Lurk 

[1964] as 

This  r e s u l t  w i l l  be used t o  approximate the  i n t e g r a l  i n  equat ion (G.1) 

over the  annular reg ion  i n  f i g u r e  G . l .  

L e t  the annular reg ion  o f  f i g u r e  G . l  be d i v i d e d  i n t o  s i x  r i g h t  
I 

t r i a n g l e s  as shown i n  f i g u r e  6.3. They a r e  as fo l l ows .  

226 

J 
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F ig.  G . l .  Annular Segment w i t h  F i e l d  P o i n t  a long Center L i n e  

F ig.  6.2. Righ t  T r i a n g l e  w i t h  F i e l d  P o i n t  as a Vertex 
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Fig .  6 .3 .  Annular Region Subdivided i n t o  Six  Right  Tr iangles 
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The c a l c u l a t i o n  o f  t h e  i n t e g r a l  (G . l )  over each t r iangle. rnay be per-  

formed us ing  r e l a t i o n  (6.2).  The i n t e g r a l s  over each o f  the t r i a n g l e s  

de f ined by r e l a t i o n s  (6.3) w i l l  be termed 11, I2 . - * * *  I6 corresponding 

t o  the  i n t e g r a l s  over t r i a n g l e s  1, 2 * * * * .  6 respec t i ve l y .  Thus 

where +i i = 1,6 a re  i l l u s t r a t e d  i n  f i g u r e  6.3. 

a l l  func t ions  o f  rl, r2, rc and 0 def ined below. 

The values o f  @i a re  

e 
# I  = (G.5a) 



(G.5c) 

(G.5d) 

&s = 4 = c 8 

(G.5e) 

= p c c c n 0 ) ' t c r , - G  ccr3e)' && I 

pf6 = T -  q -e3 -e4 -es te, (G.5f) 

The values of !ti can then be de f i ned  by 

(G .6a) 

! 

by 

= C E  = c & e  (G.6b) 



APPENDIX H 

DERIVATION OF A CONTACT CRITERION FOR 
CLOSELY CONFORMING SPHERES 

Consider a sphere o f  rad ius  R1 in terpenetrpat ing the  sur face  

o f  a spher ica l  seat  o f  rad ius  R2 by an amount 6. 

hand 6 corresponds t o  the  r i g i d  body approach due t o  some unknown 

app l i ed  f o r c e  F, on t h e  sphere. 

and seat and p e r t i n e n t  no ta t i ons  f o r  t h e  d iscuss isn  t o  fo l low.  

For the  problem a t  

F igure  tl.l i l l u s t r a t e s  the  sphere 

P o i n t  A i s  l oca ted  on the  sur face o f  the  sphere a t  coord ina te  

$. P o i n t  B i s  l oca ted  on the  seat  between p o i n t  A on the  sphere and 

the  center  o f  t h e  seat. The r a d i a l  gap between A and B, denoted 

by f, i s  equal t o  the  sum o f  t he  e l a s t i c  r a d i a l  displacements w1 and 

w2, on t h e  sphere and seat  respec t i ve l y ,  i n  the  deformed s ta te .  From 

the  geometry o f  t h e  problem the  f o l l o w i n g  r e l a t i o n s h i p s  may be s tated:  

O 2  , 

48. Rz 

“3) 
where e = R2 - R,. 

231 



2 32 

Fig.  H. 1. Sphere interpenetrating a spherical seat 



Now conslU.x the  case where R anc ? 1  
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6 << R1, hence $ 2 $. 

With these assumptions equat ion (H.3) may be w r i t t e n  as 

- 
Reca l l i ng  t h a t  BA = w1 f w2 

Equat ion (H.5) i s  an approximate contac t  c r i t e r i o n  based on r a d i a l  

displacements. 



APPENDIX I 

RELATIONSHIP BETWEEN THE ELASTIC  CONSTANTS 

I N  PLANE STRESS AND PLANE STRAIN 

Given the  displacement and s t ress  f i e l d s  i n  a s t a t e  o f  p lane 

s t ress  i n  terms of t h e  e l a s t i c  constants  E and v, the  equ iva len t  

f i e l d s  f o r  t he  i d e n t i c a l  problem i n  p lane s t r a i n  may be found by 

s u b s t i t u t i o n  o f  E f o r  E and f o r  v where 
- 

E 
a-vz F =  - 

and 

P o -  r-r, 

This  can be v e r i f i e d  by s u b s t i t u t i o n  o f  (I 1)  and (I 2) 

i n t o  t h e  s t r e s s - s t r a i n  r e l a t i o n s  f o r  p lane s t r e s s .  

r e l a t i o n s h i p s  f o r  a l i n e a r  i s o t r o p i c  m a t e r i a l  a r e  

The s t r e s s - s t r a i n  

234 

I 
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Substituting equations (I 1 )  and ( I  2) into (I 11 3) yields 

Equations (I 4) are the stress-strain relations for plane 

strain, 

Similarly, a solution in plane stress may ble obtained from 

a solution in plane strain by substituting E' for E and v '  for v 

where 

Substituting relations (I 5) and (I 6) into equations (I 4) one 

obtains equations (I 3) for plane stress. 



APPEND1 X J 

HERTZIAN FORMULAS FOR A SPHERE 
INDENTING A SPHERICAL SEAT 

For t h e  case o f  a sphere o f  r a d i u s  R1 indent ing  a spher ica l  

seat o f  rad ius  R,, Her tz 's  theory p r e d i c t s  the  f o l l o w i n g  r e l a t i o n -  
L 

ships between 

reg ion  a (see 

Q =  

6 =  

l oad  F, approach 6, and t h e  r a d i u s  o f  t h e  contac t  

Timoshenko and Goodier, 1970 pp. 409-14): 

L 4  J 

L ' 6  

(J.1) 

where 

vl and v a r e  Poisson's r a t i o  f o r  t h e  sphere and seat r e s p e c t i v e l y  

and El and E p  a r e  t h e  respec t ive  values o f  Young's modulus. 
2 

The pressure a t  a rad ius  o f  r from t h e  center  o f  t h e  contac t  

reg ion  i s  g iven by 

2 36 
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These formulae a re  o n l y  v a l i d  f o r  con tac t  reg ions which have dimen- 

s ions small compated t o  both R1 and R2. 

I 



APPENDIX K 

HERTZIAN FORMULAS FOR A CYLINDER 
INDENTING A CYLINDRICAL SEAT 

For the  case o f  a c y l i n d e r  o f  rad ius  R1 i nden t ing  a c y l i n -  

d r i c a l  seat o f  rad ius  R 2 ,  Her tz ' s  theory  p r e d i c t s  the  f o l l o w i n g  

r e l a t i o n s h i p s  between l o a d  F per  u n i t  l e n g t h  and the  ha l f  w id th  of the  

contac t  reg ion  b (see Timoshenko and Goodier, 1970 pp. 418-19): 

where 

v1 and v2 a r e  t h e  Poisson's r a t i o  o f  t he  c y l i n d e r  and seat  respec- 

t i v e l y  w h i l e  El and E2 a re  the  respec t i ve  values o f  Young's modulus. 

The pressure d i s t r i b u t i o n  a t  a d is tance o f  r f rom the  center  

l i n e  o f  con tac t  reg ion  i s  g iven by 
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e a re  o n l y  Val i d  f o r  b << R1. 

i nders  i n  contac t  o r  t he  contac t  o f  a c y l i n d r i c a l  seat  i s  pred ic ted  

t o  be i n f i n i t e  by Her tz ian  theory  which i s  c l e a r l y  n o t  poss ib le .  

an exp lanat ion  o f  t h i s  inadequacy and the  d e r i v a t i o n  o f  an appro- 

p r i a t e  formula f o r  c y l i n l e r s  i n  l i n e  contac t  see Singh [August 19741. 

The approach f o r  c y l -  

For 



APPENDIX L 

DERIVATION OF A CONTACT C R I T E R I O N  FOR CONTACT OF A SPHERE 

AND SPHERICAL SEAT WITH A CONSTRAINED 

DISPLACEMENT FIELD 

Consider an e l a s t i c  sphere o f  rad ius  R1 i nden t ing  an e l a s t i c  

spher ica l  seat o f  rad ius  R2. For a g iven f o r c e  app l i ed  t o  t h e  sphere, 

t he  bodies w i l l  approach by 6 and the  contac t  area w i l l  extend t o  amax 
on the  sphere. I t  w i l l  be assumed t h a t  a p o i n t  l oca ted  a t  + on the  

sphere w i l l  con tac t  a p o i n t  a t  @ on the  seat  and 

R ,  Ad 
RZ h ' Y T  
- =  

This  i s  p h y s i c a l l y  equ iva len t  t o  r e q u i r i n g  p o i n t s  w i t h  the  same x 

coord inates as shown i n  f i g u r e  L . l  t o  contac t  a f t e r  deformat ion.  Only 

displacements i n  the  z d i r e c t i o n  w i l l  be considered i n  the  c r i t e r i o n .  

Consider the  sphere i n t e r p e n e t r a t i n g  the  seat (a l though t h i s  i s  

p h y s i c a l l y  impossib le)  by an amount 6. The d is tance between p o i n t s  A 

and B is  l abe led  f. 

Not ing the  geometry a t  hand and the  c o n s t r a i n t  equat ion ( L . l )  

t he  gap f may be w r i t t e n  as 

240 
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Fig. L.l. Sphere interpenetrating a spherical seat 

Fig. L.2. Deta 1 o f  interpenetration surfaces o f  sphere and seat 
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Th is  gap must be c losed by the  dimensionless e l a s t i c  displacements 

w, and w, on t h e  sphere and seat respec t i ve l y .  (see f i g .  L.2) Thus 

W r i t i n g  equat ion (L.3) f o r  p o i n t s  on the  ou te r  boundary 

(L.4) 

Equation (L.4) may be so lved f o r  6. S u b s t i t u t i n g  the  r e s u l t i n g  va lue 

o f  6 i n t o  equat ion (L.3) and rear rang ing  terms g ives 

W r i t i n g  equat ion (L . l )  f o r  p o i n t s  on the  ou te r  boundary 

n 

D i v i d i n g  equat ion (L.5) by R, and s u b s t i t u t i n g  i n  r e l a t i o n  (L.6) t he  

f i n a l  expression f o r  the  contac t  c r i t e r i o n  becomes 
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The above expression (L.7) i s  t he  contact  c r i t e r i o n  used i n  t h e  

ana lys i s  o f  Goodman and Keer [1965] who omi t  t he  bar over t h e  dimen- 

s ion less  q u a n t i t i e s  W,, i,. 



APPENDIX M 

DERIVATION OF CONSTRAINED DISPLACEMENT FIELD FOR 

SURFACE POINTS OR AN ELASTIC SPHERE 

CONTACTING A R I G I D  SEAT 

Consider an e l a s t i c  sphere o f  rad ius  R1 i n  contac t  w i t h  a 

I t i s  known a p r i o r i  t h a t  t h e  r i g i d  spher ica l  seat o f  r a d i u s  R2.  

con tac t  sur face w i l l  be o f  rad ius  R2. 

sur face o f  t h e  sphere move i n  a d i r e c t i o n  p a r a l l e l  t o  t h e  l i n e  o f  t h e  

app l ied  load. For a given contac t  angle t h e  displacement f i e l d  

i s  then uniquely  determined and w i l l  be der ived  below. 

Assume t h a t  a l l  p o i n t s  on t h e  

The displacement of sur face p o i n t s  on the  sphere cons is ts  o f  

a r i g i d  body t r a n s l a t i o n  6 and an e l a s t i c  displacement f i e l d  uz (@).  

Consider a sphere which has undergone t h e  r i g i d  body t r a n s l a t i o n  so 

t h a t  i t s  surface i n t e r p e n e t r a t e s  the  seat as i l l u s t r a t e d  i n  f i g u r e  M . l .  

The e l a s t i c  displacement o f  p o i n t  A on the  sphere i s  then de f ined by 

i n  accordance w i t h  t h e  g iven assumption. Taking vec tor  components 
1 2  3 _1 o f  OB, O ' A  and 00' t h e  magnitude o f  uz can be der ived  t o  be 
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Fig.  M . l .  E l a s t i c  sphere in terpenet ra t ing  if r i g i d  seat  

F ig .  M.2. Components of surface displacement on sphere 
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which can be expressed as 

I ~ : = = R z f r ~ ~ P ) - ~ , ( , - . c w 1 V ) t d  

A 
L e t  a r̂ - t coord 

t h a t  r̂ i s  d i r e c t e d  r a d i a l  

c lockwise o f  r̂. Then t h e  

puted by 

nate system be de f i ned  a t  po in  A such 

y inward on the  sphere and ^t i s  d i r e c t e d  n/2 

components o f  Cz, w,̂ r and u,̂ t, may be corn- 

The i n i t i a l  assumption requ i res  A and B t o  be l oca ted  such t h a t  

thus 



I 
Combining equations (M.3),  (M.4) ,  and (M.6) one finids 

. . . . . . . - . 
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dul  The derivative - may be expressed as 
d$ 

This latter derivative is useful i n  computing the surface strain 



APPENDIX N 

COMPUTATION OF THE ORIENTATION OF TANGENTIAL COMPONENTS 

OF DISPLACEMENT ON SPHERICAL SURFACES 

Consider the spherical surface of radius R i l lus t ra ted  i n  

The surface i s  subjected to  a load F a t  point B located figure N . l .  

a t  ($B, BB). 

located a t  ($A, O), l i e s  along the tangent t o  the great c i r c l e  

connecting A and B and  i s  directed away from B for  posit ive values. 

The angle between the positive ut  direction and the tangent a t  A which 

l ies i n  the rll - y1 plane i s  defined a t  T. 

between OA and  OB. 

The tangential displacement u t ,  a t  a given point A 

@ i s  the angle measured 

For purposes o f  integration of the tangential 

displacement influence function i t  i s  desired to  f i n d  T i n  terms o f  

$A, $B and BB. 

Consider the portion of the spherical surface A M B as 

i l lus t ra ted  in figure N.2. 

opposite angle i s  @. 

spherical angle a t  A i s  T.  

The spherical angle a t  M i s  BB and the 

The The adjacent angles to  M are  $A and qB. 

From the law of cosines fo r  spherical 

trigonometry 
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Fig. N.l. Orientation o f  tangential displacements due to a 
point load on a sphere. 

M 

Fig. N.2. Spherical triangle 
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The law o f  s ines fo r  spher ica l  t r igonometry  s ta tes :  

combining equations ( N . l )  and (N.2)  and t a k i n g  the  inverse  o f  s i n  T, 

A.Lnpg A h  Yi3 ' = -~wa~my8Lod y A t ~ ~ ~ r A M , , ~ ~  

0 4 . 3 )  
The above r e s u l t  can a l so  be der ived  w i t h  Car tes ian vectors .  



APPENDIX 0 

INTEGRATION OF INFLUENCE FUNCTION 

FOR CYLINDRICAL GEOMETRIES 

The in f l uence  func t i ons  f o r  a c y l i n d e r  undier two d i a m e t r i c a l l y  

opposed l i n e  loads, normal t o  the  sur face as der ived  i n  sec t i on  4.7 

a r e  

where G1 (Qy $ I ,  El' vl) i s  the  i n f l uence  f u n c t i o n  f o r  t he  d isp lace-  

ment o f  a p o i n t  a t  due t o  a l oad  a t  J, (J, 111) and 

H1 (JI, $ I y  El' vl) i s  t h e  in f luence func t ion  f o r  the  tangen t ia l  

I I 

displacement. El and vl a r e  e l a s t i c  constants  o f  the  c y l i n d e r  and the  

constants I? and K12 are  g iven by 

( 0 . 3 )  
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Similarly for the cylindrical seat under two diametrically opposed 

normal line loads the influence functions as derived in section 4.8 

and 

t Ka *cbd (#'-#I 
where k; and k i  are given by equations ( 0 . 3 ,  0.4) 

G2 represents the radial displacement influence function and 

H2 is that for the tangential displacement on the cylindrical seat. 

Consider the loading p ( $ I )  on the cylinder between Q, and 

$2 ($2 > I+) as shown in figure 0.1. p ( Q ' )  is a constant pressure 

P and $ is located such that (J Ql (see fig. 0.1). The displacement 

w1 at $ due to p ( 4 ' )  can be computed as 
"v. 

W, =J f t r ) G ,  (%T; V l , E , h ? , d Y '  
% 

% 
= PR,J  ~ , W v ' , J , , E ; ) d 7 '  (0.7) 

Y, 
The tangential displacement u1 due to load p ( Q ' )  can be expressed as 

n 



Fig.  0.1. Pressure loading on a cylinder 
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Fig.  0.2. Pressure loading on a cylindrical seat 
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Similarly on the cylindrical seat the radial and tangential displace- 

ments at $ due to p ( @ ' )  are 

f A 

and 

P A 

(0.9) 

(0.10) 

respectively (see fig. 0.2) 

The integrals in equations (0.7), (0.8), ( 0 . 9 )  and (0.10) 

may be evaluated analytically. In each case the first term in G,, 

G2 and H2 can be integrated by parts while the integration of "1 ' 
the second terms is trivial. The indicated integration results in 

(0.12) 

(0.13) 

(0.14) n 



I 
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These expressions for u1 wl'and w2 are valid for J12,  $1 and u2, 
T I  

Q~ less than 2. 
n,  symetry of the displacement fields must be considered. 

q2, $1 and $ 

in order t,o extend the domain o f  the integration to 

For ill, 

7T 
less than 2 these conditions may be expressed as 2 

w ~ ( $ % # ~ J p ) =  wI(Y)n-%JTT-%, (0.15) 

ul (v>'y;,T J P)' - '1 TT- ?Tt)Ir-3);) P) (0.16) 

bh(#,4J,,$b&)P) = H/L (4,r-#s,-4, P) (0.17) 

u 2  ( 6 ,  % , & , P )  = ' ~ 2 ( 4 n - 4 * , - 4 , ,  P) (0.18) 

The above analysis is valid only for $ 5 11 < q2. If 1 
J ,  2 J12 > J , ,  (or 4 1 $2 > $1) then the absolute values of 9 -  $i 

(i = 1 ,  2)  and 4 - Qi in equations (0.11)-(0.14) !Should be considered 
in the evaluation o f  wls w 2 ,  u1 and u 

the direction o f  u1 and u2 must be accounted for lby considering these 

quantities as being + u, (or + u2) when $ <_ $, < I$ ( $  L Q1 < Q2) and 

as - u1 ( -  u2) when J, L J,z > JI, ( 4  1 4, > @ z ) .  

In addition to the above, 2 '  

. . .  ' .  . _,:. , . .. . * .  : 

,. . 
, .  .. . .  



APPENDIX P 

DERIVATION OF A PLANAR APPROXIMATION TO THE 

ELEMENTAL AREA ON A SPHERICAL SURFACE 

Consider t h e  area ABCD on a spher ica l  sur face o f  rad ius  R as 

shown i n  f i g u r e  P . l .  I t  i s  des i red  t o  approximate t h i s  curved area 

w i t h  a plane element so t h a t  the  i n t e g r a l  o f  t h e  Boussinesq i n f l u e n c e  

func t ions  can be approximated f o r  the  spher ica l  element. 

The area on the  sphere i s  bounded by $ '  f A and B '  k A where 

A << 1 radian. A cone generator i s  de f ined such t h a t  i t s  apex N f a l l s  

on the a x i s  and p o i n t s  A, B, C, and D f a l l  on t h e  sur face of the  

cone (see f i g .  P.1). The sur face ABCD on the  cone c l o s e l y  approx i -  

mates t h e  sur face on t h e  sphere f o r  small  A .  L e t  p o i n t  G be l o c a t e d  

midway between A and D, and l e t  G '  be i t s  p r o j e c t i o n  on the  r) a x i s  

(as shown i n  f i g .  P.2). 

t i o n s  may be es tab l i shed:  

From f i g u r e s  P . l  and P.2, the  f o l l o w i n g  r e l a -  
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GEMRATOR 

Fig .  P.l. Elemental area on spherical surface 
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F i g .  P.2. Sect ion  view o f  cone generator  

2 58 

OF 

Fig.  P.3. Annular segment 
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Finally, for  small A ,  the area ABCD on the cone can be closely approx- 

imated by a planar annular element including points N, A ,  B, C y  and D. 

Figure P.3 i l l u s t r a t e s  an annular segment ABCD with inner radius r l ,  

outer radius r2 and half angle of p.  I n  relating the equation (P . l )  

t o  the geometry of the annular element the quantit ies r l ,  r2 and 

can be described as 

The corresponding areas o f  the original spherical element may 

be compared to  the area of the planar annular element. For the sphere 

= + R 2 6 A a & f V ' A w L A  

For the annular element 



Aa 

Ai 

Aij 

n 

AS 

A 

A2 k 
a 

r 

Q 

1 

* 
a 

i 

Bi j  

Bn 

B2k 

bij 
b 

i j l  

'i j l  
d 

C 

- 

do 

E 

Ei 
E '  

NOMENCLATURE 

area o f  annular segment 

area o f  c e l l  i 

area o f  c e l l  i j  

c o e f f i c i e n t s  def ined i n  equat ions (4.20) and (A.3) 

area o f  sec to r  on sphere 

coe f f i c i en ts  i n  equat ions (4.18) and ( A . l )  

rad ius  o f  con tac t  reg ion  i n  chapter  5, 
semi-major a x i s  o f  e l l i p s e  i n  appendix D 

non-dimensional rad ius  o f  con tac t  reg ion  

c o e f f i c i e n t s  de f ined by equat ion (2.12) 

c o e f f i c i e n t s  de f ined by equat ions (4.21) and (A.4) 

coe f f i c i en ts  i n  equat ions (4.19) and (A.2) 

c o e f f i c i e n t s  de f ined by equat ion (2.10) 

h a l f  w id th  o f  con tac t  reg ion  i n  appendix K, 
semi -minor a x i s  o f  e l  1 ipse i n  appendix D 

dis tance between f i e l d  p o i n t  1 and a p o i n t  i n  c e l l  sij 

d is tance between f i e l d  p o i n t  1 and c e n t r o i d  of c e l l  sij 

hypotlie t i  ca l  i n t e  rpenet  r a  t i on 

i n i t i a l  i n t e r p e n e t r a t i o n  o f  spheres 

Young's modul us 

Young's modulus o f  body i 

equ iva len t  Young's modulus f o r  p lane s t ress  
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e 

F 

Fi 
F* 

* 
F~~~~~~~ RE 
* 

F Her tz  

f 

a 
f 

fi 

equiva len t  Young's modulus f o r  p lane s t r a i n  

d i f f e rence  i n  r a d i i  o f  curva ture ,  RZ-R1 

fo rce  i n  context  o f  p o i n t  loads, f o rce  per  u n i t  
leng th  i n  context  o f  l i n e  loads 

force a t  node i 

nondimensi onal fo rce  

fo rce  r e s u l t i n g  from ana lys is  by CONSPHERE 

f o rce  r e s u l t i n g  from Her tz ian  ana lys is  

nondimensional fo rce  r e s u l t i n g  firom ana lys i s  by 
CONSP H E RE 

nondiitiensional fo rce  r e s u l t i n g  from Her tz ian  ana lys is  

p r o f i l e  f unc t i on  o r  i n i t i a l  separat ion between two 
po in ts  which merge a f t e r  deformat ion 

vec tor  descr ib ing  i n i t i a l  spearat ion f o  two po in ts  
which merge a f t e r  deformat ion 

i n i t i a l  separat ion o f  f i e l d  po in ts  i 

- fi N+l 
components o f  f i n  F, ? and d i r e c t i o n s  r e s p e c t i v e l y  

f evaluated a t  p o i n t  (x,y)  

d is tance of sur face i from x-y plane evaluated a t  (x,y) 

modulus o f  r i g i d i  

i n f l uence  func t i on  f o r  displacements normal t o  a 
o r d i  na t e sys tern 

surface i n  a p o l a r  o r  sph 

' I '  - a q :  . 
nondimensional i n f l uence  func t i on  ' ' 

i 
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IT 

Ii jl 

K1 

K2 

K3 

KJ 
1 

k 

kl 

m 

nondimensional i n f l u e n c e  f u n c t i o n  f o r  displacements i n  
the r a d i a l  d i r e c t i o n  

nondimensional i n f l u e n c e  f u n c t i o n  f o r  displacements 
i n  the tangen t ia l  d i r e c t i o n  

i n f l u e n c e  f u n c t i o n  f o r  displacements tangen t ia l  t o  a 
sur face i n  a Cartesian coord inate system 

i n f l u e n c e  f u n c t i o n  f o r  displacements tangen t ia l  t o  a 
surface i n  a p o l a r  o r  spher i ca l  coord inate system 

H( ) f o r  body i 

numer ica l ly  generated nondimensional i n f l  uence func- 
t i o n  f o r  displacements i n  the r a d i a l  d i r e c t i o n  

numer i ca l l y  generated nondimensional i n f l u e n c e  func- 
t i o n  f o r  displacements i n  the tangen t ia l  d i r e c t i o n  

t o t a l  i n t e g r a l  over an annular segment 
r 

'Si dA. ./Ci j, 

e l a s t i c  parameter E 
1J 

2( 1 -v2 )  

( 1  -2v) (1+v) 
2E e l  as t i c  parameter 

1 +v e l a s t i c  parameter - 
ITE 

Ki eva luated f o r  body j 

e l a s t i c  parameter - + ~ 

1-v2 1-v2 2 
1 

ITE TE 

i n i t i a l  value o f  constant  i n  p o i n t  mat ing procedure 

constant i n  p o i n t  mat ing procedure f o r  jth s o l u t i o n  
on body i 

inve rse  o f  Poisson 's  r a t i o  i n  chapter 4 and appendix A ,  
constant  i n  mapping f u n c t i o n  i n  appendix D, 
number o f  equal sectors  i n  R i n  chapter 7 
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N number o f  c e l l s  i n  simply discretized solution 

Nco" 
h 

i n 

P 

R 

Ri 

m R 

AR 

r 

r 
* 

A 

r 

r 
A 

i r 

b r 

number of cel l  s within rcOn 

uni t  normal vector t o  surface of body i 

conitant pressure 

constant pressure in  cel l  i 

maximum pressure 

nondi mensi onal pressure, kPi 

kP* 

Legendre polynomial i n  cos 0 

in te r fac ia l  contact pressure i n  polar or spherical 
coordi nate sys tern 

in te r fac ia l  contact pressure i n  Cartesian coordinates 

max 

radius of curvature 

radius of curvature o f  body i ( k  = 1,2) 

mean radius of curvature, - 2R1 R2 
R2+R1 

(note: i n  conformal theory -R2 
R2) 

R2 - R1 

s substituted f o r  

coordinate o f  generic point 

nondimensi onal coordinate of generic point, r/R, 

u n i t  vector in mean radial *direction 
_ I  position vector 

position vector t o  point on surface o f  body i 

radi-us of blending 'point of p i t  on sphere 

C .  . .  
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rC 

r con 

rI  

ri 

rO 

r i x s r i  t 
r* 

S 

SCF 

si j 

si 
S j 
TOL 

h 

t 

radius of curvature a t  "edge" of p i t  i n  chapter 7,  
radius of centroid i n  appendix G 

radius used i n  convergence studies 

radius of inner boundary of contact. region 

chords used i n  analysis of influence functions for a 
cylinder i n  chapter 4 and appendix B ( i  = 1 , 2 )  , 
radius of inner boundary of i t h  cell  in chapter 7 

radius o f  outer boundary of  contact region 
f 
x and z components respectively of vector Ti 
r/Rm 

rb/Rm 

rc/Rm 
l e n g t h  of cel 

w i d t h  of ce l l  

separation o f  merging f i e ld  points 

separation vector of merging f i e ld  points 

r, 2 ,  and Lj components of 3 
s ingular i t ies  i n  influence function for  radial d i s -  
placements on a sphere 

s t ress  concentration factor 

region included i n  ring i between rays j and j + 1 

distance' along contour curve of body i ( i  = 1 , 2 )  

s i  on j t h  solution 

tolerance used to  determine merging of f i e l d  points 

s ingular i t ies  i n  influence function for  tangential 
displacements on a sphere 

u n i t  vector i n  mean tangential directions 

A 
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U 

'r 

t U 

u Z  

8 U 

W 

zo 

z1 

z1 

'i 

- 

a 

"1 '9 
B 

'i j 

displacement tangent t o  surface 

di spl acement i n radi a1 direction 

di s pl acemen t i n tangent i a1 di rec t i  on 

displacement in z direction 

displacement in tangential direction 

tangential displacement on body i ( i  = 1 , Z )  

coeff ic ients  defined in equation (2.11) 

displacement i n  2 direction on bodly i ( i  = 1 , 2 )  

displacement normal to  surface 

normal displacement on body i ( i  =. 1,2)  

wi a t  outer boundary of contact region 

nondimensional normal displacement; w i / R i  

coordinates o f  generic point in Cartesian coordinate 
sy s tern 

uni t  vectors on body i 

generic vector in Z plane, Re 

vector in 

vector in Z plane 

conjugate of Z1 

value of f i  (x,y) . 

.angle between mean radial  direction and the Z axis 

i 6  

direction in Z plane 

angles defined in figures 4.12 and B . l  

coordinate of generi c point i n splieri cal coordi nate 
sys tern 

centroidal radius o f  sec tor  S'i 
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Y 

yXY 
A ‘  

A 

‘ i  

6 

’* 

‘CON SPH E RE * 
CONSPHERE 

‘Hertz 

’ Hertz 

& r s 6 t  

* 

E 

& , E :  
X Y  

i j  E 

4 

A A 

9 

K 

A 
angle between F and  Z axis ~ 

u n i t  vectors i n  Cartesian coordinate systems fixed to 
bodies 1 and 2 respectively 

shear s t r e s s  

small angle << 1 radian 

constant defined i n  equations (4.22)  and ( A . 5 )  

r i g i d  body translation of body i ( i  = 1 , 2 ) ,  
t r iangle  i (i = 1,6)  defined i n  appendix G only 

t 

approach 

6’ Rm 

approach predicted by CONSPHERE 

‘CONSP HE RE’ Rm 
approach predicted by Hertzian theory 

‘Hertz / R  m 

approach i n  the and directions respectively 

root mean square e r ro r  

components of s t r a i n  in appendix I 

s t r a in  tensor ( i , j  = 6, JI, r ,  W ,  $) 

generic vector i n  <-plane 

u n i t  vectors i n  Cartesian coord 
bodies 1 and 2 respectively 

uni t  vectors i n  Cartesian coord 
bodies 1 and 2 respectively 

generic angle used i n  spherical 
systems 

nate s rstem fixed on 

nate system fixed on 

and polar coordinate 

e l a s t i c  parameter equal t o   forp plane 3 -v s t r e s s  and 
3-4v for  p l  ane s t r a in  
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angle between normal vec to r  Gi and 

modulus o f  r i g i d i t y ,  Lame's constant  

Poisson' s r a t i o  

Poisson's r a t i o  o f  body i ( i  = 1,2) 

equ iva len t  Poisson's r a t i o  f o r  p lane s t ress  

equ iva len t  Poisson 's  r a t i o  f o r  p lane s t r a i n  

angle between f and r̂ 

d i r e c t i o n  

A 

h a l f  ve r tex  angle o f  annular  segment i n  chapter  5 
and appendix P, 
a boundary rad ius  ( r I  o r  r o )  o f  the con tac t  reg ion  i n  
chapter 7 

components of s t ress  i n  append ix , I  

vec tor  i n  <-plane 

conjugate o f  o1 

angle de f ined i n  equat ion (7.9) i n  chapter 7, 
angle desc r ib ing  o r i e n t a t i o n  o f  ut  i n  appendix N 

shear s t ress  

r e g u l a r i z a t i o n  parameter 

gener ic  angle i n  spher ica l  and p o l a r  coord ina te  sys- 
tems f i x e d  t o  body 2 

angle d e f i n i n g  boundary o f  con tac t  reg ion  on body 2 

Zn/m i n  chapter  7 

gener ic angle i n  spher ica l  and p o l a r  coord ina te  
systems f i x e d  t o  body 1 

angle d e f i n i n g  boundary o f  con tac t  reg ion  on body 1 

f u n c t i o n  which i s  minimized i n  Funct ional  
Regu la r i za t i on  method 

contac t  reg ion  
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w 

i w 

p r o j e c t i o n  of con tac t  reg ion  onto x-y plane i n  
chapters 2 and 7 on l y  

reg ion  o f  c e l l  i i n  chapters 2 and 7, 
contact  reg ion  on body i i n  chapters 3-6 

contac t  reg ion  o f  c e l l  j on body i 

candidate o r  t e n t a t i v e  contac t  reg ion  

t e n t a t i v e  contac t  reg ion  o f  c e l l  j on body 2 

u n i t  vec tor  de f ined by equat ion (3.3b) 

mapping func t ion  

angle between ti and ( i  = 1,2) 
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