DOT-TST-77-48
REGEIVED BY TiC SEP§ 1977,

CONTACT STRESSES FOR CLOSELY

CONFORMING BODIES—-APPLICATION
TO CYLINDERS AND SPHERES

FINAL REPORT
UNDER CONTRACT DOT-0S-40093
DECEMBER 1976

This document is available to the U.S. Public through
the National Technical Information Service
Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
Office of the Secretary

Office of University Research
Washington D.C. 20530

"DISTRIBUTION OF THIS vt wreser 18 GNTTITTED



NOTICE

This document is disseminated under the
sponsorship of the Department of Trans-
portation in the interest of information
exchange. The United States Government
assumes no liability for its contents or
use thereof.




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



This document is ‘
PUBLICLY RELEASABLE

_u_“_jﬁgzzgyéiéaggz___u
Authorizing Official

Date: 7-2L~0F

Techanical Report Documentation Page

1. Repoet N.o. 2. Government Accession Ne.

DOT-TST-77-48

3. Recipient’s Catolog No.

4 Title ol Subiivie

CONTACT STRESSES FOR CLOSELY CONFORMING
BODIES--APPLICATION TO CYLINDERS AND SPHERES -

S. Report Dote

December 1976

6. Performing Organizotion Code

7. Author's)
W. Woodward and B. Paul

8. Performing Orgonization Report lvo.

MEAM Report 76-1

9. Performing Organizotion Nome ond Address
Department of Mechanical Engineering and

???1ied Mechanics--University of Pennsylvania

Towne Building
Philadelphia, Pennsylvania 19174

10. Work Unit No. (TRALS)

11, Contract or Gront No.

DOT-0S-40093

1 32, Sponsaring Agency Nome ond Address

Department of Transportation
Program of University Research

Hashington: D, "BV SH85Y

13. Type of Repart and Period Covered

Final Report

14. Sponsaring Agency Code

0ST/TST-60

1S. Supplementary Notes /

0ST Technical Monitor: Clifford Gannett, FRA, RA-43

16. Abstroct

a known analytic solution of this problem.

regions.

of the first kind.

Since worn wheels and rails contact conformally, the existing contact
stress theories for nonconformal contact are not adequate.
a general numerical method of solution for three dimensional,frictionless,
conformal, elastic contact problems is presented for the first time.

‘method is used to analyze the conformal contact of a sphere indenting a
spherical seat and a cylinder indenting a cylindrical seat.
the sphere-spherical seat problem compared well with experimental data. Re-
sults of the cylinder-cylindrical seat problem were in close agreement to

For both analyses, results com-

pared favorably with Hertzian theory for problems with small contact

In this report
The

The results of

A method is given for defining the boundaries of the large contact re-
gions, and for solving the associated governing singular integral equation
A general iterative procedure is developed which con-
verges to the true three dimensional contact region. .

In addition the solution to a non-Hertzian contact problem with a
multiply connected contact region is solved; namely, the case of two
spheres in contact where one of them has a surface defect or pit.

17, Key Vords

Rail wheel interaction, contact
stress, conformal contact, elasticity,
non-Hertzian contact, pitted sphere

18. Distribution Statemant
Document is available to the public
through the National Technical
Information Service,
Springfield, Virginia 22161

20, Security Classif. (of this pege)

19. Security Classil. (of this report) ‘
Unclassified

Unclassified

2). No. of Peges 22. Price

272

Ferm DOT F 1700.7 -72)

Repreduction of completed poage suthorized

"DISTRIBUTION OF THIS DOCUMENT 1S UNLTVITED

g ¥




-

EXECUTIVE SUMMARY

1. Introduction

This is the final report for Phase I (first year) of a two year effort
on Contract DOT-0S-40093, "Improved Wheel and Rail Performance via Control
of Contact Stress." The general state of the art prior to the beginning
of the pkoject has been summarized in the report "A Review of Rail-Wheel
Contact Stress Problems," by B. Paul, FRA-OR&D 76-141, PB251238IAS, April 1975.
The present report gives the detailed mathematical theory of a new approach

to the higherto unsolved problem of finding the stresses between two closely

fitted or "worn-in" metallic surfaces, such as a moderately worn wheel and rail.
Before applying the general technique to the wheel-rail problem it is essen-
tial to check its validity with simpler geometries such as closely fitting
cylinders and spheres, where previous experimental and approximate

analytical solutions exist.

2. Problem Statement

The overall objective of the contact is to generate a method for
calculating the contact stresses between arbitrarily profiled wheel and rails.
In this report a general approach to the problem is formulated, and applied
to two specific geometries: (a) a cylinder pressed against a closely fitted
cylindrical seat and (b) a sphere pressed against a closely fitted spherical

socket. In addition, the stress concentrations induced by the presence
of a small defect such as a corrosion pit are calculated for the case of
a sphere.

3. Results Achieved
Since worn wheels and rails contact 'conformally, the existing contact

stress theories for nonconformal contact are not adequate. In this report a
general numerical method of solution forithrée‘dimensiona], frictionless,

conformal, elastic contact problems is-pkéSented for the first time. The

method is used to analyze the conformal contact of a sphere indenting a

-spherical seat and a cylinder indenting a spherical seat. The results of the

sphere-spherical seat problem compared well with experimental data and are
significantly more accurate than those of a previously published attempt to
solve the problem. Results of the cylinder-cylindrical seat problem were in
Close agreement to a known approximate solution of this problem and agree well

EXEC.-1




with an existing photoelastic experiment. For both analyses, results compared
favorably with Hertzian theory for the limiting case of small contact regions.

A method is given for defining the boundaries of the large contact regions,
and for solving the associated governing singular integral equation of the first
kind. A general iterative procedure is developed which converges to the
true three-dimensional contact region.

In addition the solution to a non-Hertzian contact problem with a multiply
connected contact region is solved; namely, the case of two spheres in con-
tact where one of them has a surface defect or pit. The method developed was
capable of detecting extremely steep gradients in stress at the defect.

4, Utilization of Results
Better understanding of the contact stress distribution at the interface
of wheel and rail could lead to substantial advances in the solution of several

key problems in railroad technology. Examples include wheel screech, flange
impact noise, wheel and track wear and fatigue failures, deterioration of

ride quality and possible derailment due to lateral and longitudinal siippage,
increase of headway (and loss of economic capacity) due to adhesion limits
in braking and acceleration.

The results of the research has potential for wheel and rail designers,
and those doing research and development work in the areas of wheel and
rail failures, rail-car dynamics, ride-comfort, and safety.

5. Conclusions v

The objectives set for Phase I of the research have been achieved. In
addition to the generation of a comprehensive survey report on wheel-rail
contact stress phenomena, the work reported on herein successfully tested the
validity of a new method for finding contact stresses between closely fitted
curved surfaces such as cylinders and spheres. This work is a necessary
precursor to the solution of the more complicated geometrical configuration
of wheel-rail interfaces, which is the subject of Phase I of this research
project.

EXEC.-2
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1. INTRODUCTION

The very large contact stresses which exist between rails and conven-
tional wheels may be calculated by Hertz's analysis when the wheels are new,
and the area of contact is small. However, when the wheels are worn, or are
initially fabricated with so-called preworn profiles, the contact area will
be too large for the Hertzian analysis to be valid. In fact, for this
latter case of so-called conformal elastic contact, there is no currently
available method for accurately predicting contact stresses. We have

therefore undertaken the task of developing general methods for the deter-

1

mination of contact regions, surface deformations, approach , and interfacial

pressures in conformal (i.e. closely fitting) elastic bodies. In this
work2 we report upon the numerical method developed to date, and show how
it méy be applied to the case of conformal cylinders, or spheres.
Contact problems can be classified into the following two categories:
i) Problems where one body is elastic and the other is rigid

ii) Problems involving two elastic bodies

In the first class of problems, termed "punch" problems, the

]The approach" is defined in contact mechanics as the displacement of
a point in one body relative to a point on the other body, where both points
are far removed from the region'of contact.

2The essentials of this wOrk’cénstftdte‘the Ph.D. dissertation of
W. Woodward at the University of Pennsylvania, 1976.

1




2
contact region is known a-priori. In the second class, termed elastic
contact problems, the contact region is initially unknown and must be
determined. The first widely acclaimed solution to a contact problem
was that published by H. Hertz [1881] involving the elastic contact of
frictioh]ess bodies with quadratic surfaces. Hertz's solution is
centered ardund the assumptioh that the dimensions of the contact
- region are small compared to the radii of curvature of the bodies.
Problems for which this assumption is valid are termed "nonconformal"
or "counterformal" contact problems. Most solutions that have been

found to date are of this type. In contrast, problems not restricted

to this assumption are termed "conformal." Following Hertz, solutions .

to punch problems were analyzed by several Russian authors such as
Muskhelishvili [1963}. For detailed accounts of these problems the
reader is referred to the excellent reviews of this work by L. A.

Galin [1961] and A. I. Lure {1964]. Recently, elastic contact prob-
lems involving friction and dynamics have also been analyzed. 1In a
recent publication, Kalker [1975] categorizes the solutions to date

and identifies the areas within contact mechanics which need:
investigation. His comparison reveals that the areas involving
friction, plasticity, visco-elasticity and large deformations are in
most need of study. Kalker does not review the analysis of conformal
contact problems in his survey. It should be noted that the uniqueness
theorem of Kirchoff (not intended for contact problems) was extended
only recently to inc]Qde general frictionless, elastic contact problems

by Kalker [1971].

-




" This dissertation centers on providing a general numerical
method of solution to conformal frictionless contact problems. The
lTiterature in the areas mentioned above is far too comprehensive to
review in this brief introduction, instead the interested reader is
referred to the aforementioned surveys. The remainder of this dis-
cussion will be devoted to a more detailed discussion of the existing
numerical solutions and the 1imited literature on conformal contact
problems.

With the advent of the digital computer several numerical
techniques have been developed to analyze a more general class of con-
tact problems. Conry and Seireg [1971] have examined elastic contact
in terms of a 11near programming model. ‘Their method is general in
§cope, however, the only examples which were analyzed were Hertzian or
one dimensional beam problems.

Kalker and van Randen [1972] derived a variational principle
for both linear and non-linear elastic contact problems. For the case
of linear elasticity the principle takes the form of an infinite
dimensional convex quadratic programming problem. They successfully
solved both a Hertzian and non-Hertzian problem. It was concluded that
the solution yielded accurate values of approach, maximum pressure and
applied force; hqwever, the actual contact area was not determined with
“great accuracy.

Finite element techniques,have also been adapte” to solve
contact problems by Chan and Tuba [1971] and more recently by Chaud,

Haug and Rim [1974]. Both methods are general in that they are




reported to be able to handle problems which fall into the domain of
finite element analysis such as analyzing non-isotropic,
non-homogenedus media or problems with plasticity and creep, however,
both works report only éxampTes which are composed of isotropic
materials stressed within the range of linear elasticity.

Tuba and Chan compare their computed results to photo elastic
studies and concluded that trends were identical but the results lacked
close agreement. Chaud et al, analyzed the non-Hertzian problem of a
human knee joint and the contact between two half spaces where one
half space has three bumpsvon the surface. The contact area in the
latter case found in photo elastic studies had good general agreement
with their computed results.

A general method of solution of non-Hertzian, non-conformal
elastic contact problems was developed by Singh and Paul [1974]. They
considered the. classical contact criterion (which includes that of
Hertz) for arbitrary surface geometries. In order to solve the
governing integral equation of the first kind, which belongs to the
class of "i1l posed" or "Hadamard incorrect" problems, they introduced
three different numerical échemes. The first "simply-discretized
method" was- found fO'be relatively unstable for the particular problems
they investigated. In order to overcome this difficulty, Singh and
Paul [1973-74] introduced two other methods of solving i1l posed
integral equations, called the "Redundant Field Point method" and
the "Functional Regularization method"; the latter of which is based

on Tychonov's regularization procedure.




In contrast to counterformal problems are those of the
"conformal" type; i.e., those where the dimensiohs of the contact
region can be large compared to the smallest radii of curvature of the
contacting bodies. Relatively few solutions to conformal contact
problems have been published. A brief summary of all elastic conformal
prob]ems, known to the author, follows.

 An elastic sphere indenting an elastic seat has been solved by
Goodman and Keer [1965]. They present results for the half angles of
contact up to 20 degrees and provide experimental results which
generally agree with their solutions. Improvements to the Hertzian
theory are’discussed--in particular, the problem which arises when one
tries to include terms of higher order than those used in the "half
space solution” (of Boussinesq) which is fundamenta] to the Hertzian
solution. It is noted that there are higher order terms in the exact
formulation of the sphere problem which do not appear in the formula-
tion if the half space assumption is used without truncating terms.
These terms are particular to the spherical geometry. Goodman and Keer
justify their extension of the -Hertzian theory through analysis of
these second order term§: |

The conformal contact of ‘an é1aStjc cylinder indenting a
cylindrical seat was first analyzed b}-Sjtaérman [1940] ‘and more
recently by Persson (1964]: Sjtaerman and Persson-derived the ‘iden-
tical “contact critérion" but both proceeded in different ways to solve
the equation. Sjtaerman formulated the displacements in terms of

integrals of the influence functions and used finite difference




techniques to solve the resulting integral equation for the unknown
pressure distrfbution. On the other hand, Persson assumed the contact
region to be cylindrical in shape and formulated the criterion as an
integro-differential equation from which he found analytic expressions
for the pressure field. The earlier solution of Sjtaerman appears to
be less accurate, possibly because he published before the digital
computer was invented and may have been forced to use a too crude
finite difference mesh.

Recently, a number of problems involving a disc in an infinite
plate under tension have been solved by finite element techniques.
Chan and Tuba [1971] analyzed a plate under tension with a shrink fit
disc located in the center. They present results which show good
agreement between their computed values of circumferential stress and
the exact solution, however, there is a larger discrepancy between the
computed value of compressive stress and the exact solution. In fact
the compressive stress on each body for any one angle does not in
general agree.

Chaud et al [1974]) have analyzed the problem of a plate under
tension with either a loose or full inclusion. They show good agree-
ment between their predicted contact stress and experimental results
for a contact angle of 20 degrees.

The goal of this research is to develop a general method of
analysis for frictfon]ess, conformal contact problems. _In particular,
the method developed is to be used in future research on the qna]ysis

of interfacial contact stresses between a railway wheel and rail. The




concepts of Hertz's classical geometric formulation of the contact
criteridn are extended to,nonlplanar surfaces resulting in a singular
integral equation of the first kind. The solution is dependent on
identifying the influence functions for surface point displacements

in the region of the contact area;' A numerical appraoch to generating
influence functidné is’deve]oped»and the accuracy of the generated
functions is shown to be good for those cases.where analytic solutions
are known. The simply discretized method of Singh and Paul [1973] was
used for solution of the integral equation. The solutions using this
formulation were compared to Hertz's solutions for limiting cases in-
vd]ving small contact regions.

The results of the present general method are compared to
avai]qble analytic sp]utions to specific problems involving the contact
of an elastic cylinder in seat and a sphere in seat.

In addition, a solution was found to a noncomformal problem
with a multiply connected contact region. The proper boundary
iteration which is necessary to arrive at a unique solution is
developed and discussed. -The specific example analyzed is a pitted
sphere in contact with a sphere. The significance of pit geometries
on the contact stress are illustrated. :

In summary, the maih~contr1butions of this disseration are:
1. A general numericai method for solution of frictionless conformal

elastic contact problems is presented




Numerical influence functions needed for solutions of problems
with cylindrical and spherical surface geometries were generated
and their accuracy was verified by comparison to exact analytic
solutions when they existed

In its application to the specific problems of a sphere indenting
a spherical seat and a cylinder indenting a cylindrical seat, it
was shown that this method produces accurate values of contact
pressure approach, displacements, strains and applied force

The problem of a pitted sphere indenting a sphere was solved for
the first time and the appropriate boundary iteration for
multiply connected contact regions was established

Chapter 2 contains a brief review of the previous non-

conformal methods of solution presented by Singh and Paul [1973-74].

The conformal contact theory which is the basis of this work is

formulated in chapter 3. The generation of influence functions which

are necessary to the solution of the sphere and cylinder problems is

discussed in chapter 4. Chapters 5 and 6 contain solutions to the

examples of a sphere indenting a conformal spherical seat and a cyl-

inder indenting a conformal cylindrical seat respectively. A contact

problem involving a multiply connected contact region is solved in

chapter 7. The conclusions of this work are presented in chapter 8.
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2, FORMULATION AND SOLUTIONS FOR NON-CONFORMAL CONTACT PROBLEMS

2.1 Introduction

~.The basic equation for non-conformal confacf theory is
developed in this chapter along with a method of solution. Hertz
[1881] has shown that the governing equation is an integral equation
of the first kind. Hertz found an analytical solution to this
equation for the special case where the surfaces may be modei]ed as
locally quadratic; however, the integral equation itself applies to
any non-conformal contact problem and has been solved by Singh and
Paul [1974] for non-conformal, non-Hertzian contact problems. The
method ofbsolution outlined here is that developed by Singh and Paul
and is termed the "Simply-Discretized" or "S.D." method. They proved
that the S.D. method can become unstable; they applied a stabilizing
technique termed the "Functional Regularization" or "F.R." method,
when the S.D. method proved unstable and successfully solved several
problems. The "Functional Regularization" method is also summarized
in this chapter.

In addition to presenting the basic integral equation for
non-conformal contact, the material in this chapter introduces the
concepts of contact theory thch will be used in the development of
the governing integral equation for conformal contact in chapter 3,

Furthermore, the "Simply-Discretized" method of solution will be used
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in solving the conformal contact problems presented in chapters 5 and
6 and in the non-conforma] contact problem with a multiply connected

contact region in chapter 7.

2.2 The Governing Equation for Non-conformal Contact Theory

Consider two frictionless non-conforming bodies initially in
contact at a single point. Loading each body such that the resultant
force acts through the initial point of contact produces deformétiohs
in the neighborhood of the initial point of contact. The area of
contact between the bodies will increase from a single point to a
finite area. In non-conformal contact théory it is assumed that fhe
dimensions of the contact area are small compared to the local radii
of curvature of the two contacting surfaces. After deformation;'the
two bodigs undergo a localized elastic deformation and a rigid body
displacement. The rigid body displacement is referred to as the
"approach" in contact mechanics.

In general the geometry of the surfaces before deformation
and the applied thrust is known,.while the actual contact area, the
pressure distribution within this area, and the approach S are unknown.
The governing equation for non-conformal contact relates the approach,
the contact area, the surface geometry and the interfacial pressure '
distribution.

Consider body 1 and body 2 initially in non-conformal contact
" at a point 0. (Fig. 2.1) Let a right-hand cartesian coordinate sys-
tem (;], ;1, ;]) be constructed such that the x, - y, plane lies

tangent to body 1 at point O and has point 0 as its origin. Let 2] be

-




Fig. 2.1. Coordinate systefns for noh;conformal contact

11
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the unit inward normal to body 1. Also define a left-handed
coordinate system (§2, ?2, 22)'such that §2 = ;1, ;2 = ;1, and
§2=-§]. Now examine a cross section of the contacting bodies through
the point 0 as shown in figure 2.2. ‘It is assumed that points on the
surfaces of bodies 1 and 2 which merge after deformation are located
at the same (x, y) coordinates. The displacements due to the contact
phenomena of a point A on body 1 and B on body 2 which merge after
deformation, will be examined closely in the following paragraphs.

Consider the change in the position of point A on body 1
after a load F is applied. Due to the elastic deformation of the
surface, point A moves the distance A'A" in the 21 direction. This
elastic deformation will be labeled w]; Also point A moves a distance
AA* due to rigid body motion, labeled Ay. Similarly on body 2 a point
B displaces an amount B'B" or W due to elastic deformation and
disp]aces»from B to B' due to a rigid body motion AZ' Therefore, con-
sidering the total motion of points A and B, point A moves a total
distance Wyt A] and»point B moves W, Az.

Having traced the motion of points on the surfaces of the
contacting bodies; these motions may be related to the surface-
geometry to obtain a necessary condition for contact of the two sur-
faces. Note that points A and B are initially separated by a distance
equal to f1 (x, y) + f2 (x, y) where f] (x, y) and f2 (x, y) are

termed the "profile functions" of the two surfaces. f] (x, y)




-
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Fig. 2.2. Kinematics of surface point displacements in non-
conformal contact. B e
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represents the 31 coordinate of a point (x, y,.z]) on the surface of
body 1, while f, (x, y) is the 22 coordinate of a point (x, y, 22) on
the surface of body 2. After deformation the initial separation
changes. Consider the final separation, S, of points A and B after

deformation
5=f{x.j)+1§(&3)+(W,+Au)+(Wz*Az) (2.1‘)

Define a function f (x, y) and a scalar § such that
[(X,3)=If(x,l1) t£ (X, 9) (2.2)

and

d= =(L,+4,) (2.3)

The scalar ¢ is termed the "approach" and physically represents the
distance that points on one body move parallel to the z1axis towards
points on the other body due to rigid body movement. Rewriting

equation (2-1) by substituting equations (2-2) and (2-3),
S=frx,y)+ (W tw,) -4 (2.4)

By assumption in non-conformal contact theory, the contact area is

small compared to the local radii of curvature of the contacting
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bodies. Therefore, it is appropriate to replace these displacements
with the displacement field of an elastic half space due to some

pressure distribution p (x, y) over an area Qi' Hence,

(-VE) [ Pxly)dxdy
W (%, Y)= —— 2L (2.5)
TE J J&x)Er(9-9')

where Ei and v; are the Yourg's»modu1us and Poisson's ratio for

body i. It is reasonable to neglect the displacements in the (x]- ﬁ)
plane and assume that points A and B, located at equal Q],Qlcoordi-
nates, will merge after deformation since the displacements in the
(x]- n) plane on each body are nearly equal in magnitude and direction.
The pressure distribution in equation (2.5) is over the contact

region Qi on body i, hoWever Q] = 92. Furthermore, since the radii of
curveture of the bodies are large compared to the dimensions of the
contact area and the radius of curvature of the contact patch is still
larger owing to the non- conforma] nature of the contact, the contact
area may be represented by @, the prOJect1on of Q] onto the X =%

plane. Substituting equation (2.5) into equation (2.4) the separation
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becomes:

P,y dxdy’
(x-x')% (4-4')?

(2.6)

S= ftx,9) + ka
| 0

where

(1-v1) , (=%
T E; 7TEZ

If @ is known then equation (2.6) is an integral equation of
the first kind and is the governing equation for non-cbnforma] contact.
The separation of two points within the contact region has to be zero
while the pressure has to be positive, i.e., the bodies can only exert
compressive forces on one another within the contact region. Outside
the contact region, S must be positive while the pressure distribution
must equal zero.

These boundary conditions.may be summarized as follows:

S =0 INSIDE L2  (2.7a)
g 20 OUTSIDE N (2.7b)
P(x,4Y) 20 InSpE n (2.7¢)

P(X,9) =0 ourswe n (2.7d)
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The solution of a non-conformal contact problem for a given thrust
requires the determination of the unknown contact region @, the
pressure distribution p (x, y), and the approach 6. These quantities
must all satisfy equation (2.6) and the boundary conditions (2.7).
General numerical solutions to equation (2-6) are explained in

sections 2.3 and 2.4.

2.3 The "Simply-Discretized" Method of Solution of Singh and Paul

The general non-conformal contact problem as posed in equation
(2.6) and boundary conditions (2.7) has been solved by Singh and Paul
by the "Simply-Discretized" method. This method is a semi fnverse

solution which will be exp1ained in the following paragraphs.

Given that two bodies of known shape are brought into contact
with one another and held there by a force F, the task remains to
locate the boundary of the cohtact region @ and to find the interfacial
pressure distribution p (x, y) aﬁd the approach 6. The “Simply-
Discretized" method is called abéemilinvéfsé:méthod becaﬁse the contact
area is assumed to be somé logicai "candidate" region whereupon the
pressure distribution and épprbach are théﬁ'fdund via equation (2.6).-
The force F is then calculated from the integral of the pressure dis-
tribution over the area (. The initial,guesslpfuthe logical
“candidate" contactregion Qis then checked to sée if the values of
the separation satisfy equation (2.7a) and (2.7b). If they do not,

the "candidate" region can be modified to better approximate the true
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contact region and the solution procedure is repeated. Now consfdef
the details of this solution. -

The first step in solving equation (2.6) by the "Simply-
Discretized" method is to find an approximation to the contact
~region Q. Singh and Paul used the X) - ylplane projection of an
"interpenetration curve" formed by the intersection of the two
surfaces when one body was allowed to mathematically interpenetrate
the other. increasing the depth of interpenetration would increase
the contact area. Each interpenetration depth would provide one
"candidate" contact area corresponding to one loading F:on the bodies.
This concept of interpenetration is physically meaningless in a con-
tact problem since the bodies can not actually interpenetrate onev
another; it is only a method which enables one to find an abproxima-
tion to the contact area.

Having found a "candidate" contact region the next task is to
find the pressure distribution and approach in equation (2.6). A
"Simply-Discretized" solution is obtained by assuming a piecewise
constant pressure distribution over the area Q. Dividing up the
contact area @ into N cells and assuming the pressure p (x, y) to be

constant Within each cell equation (2.6) becomes

N odx'dy’ ‘
/Q /‘?‘J(~ ' - =0 .
£§ ‘ _n‘fl (x-X)te(y-4)t §+ 7((7(-? 9) (2:8)
[
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where
(1-v2) A s V)
TE, TE,

(2.9)

y &

and

Pi is the constant pressure in cell 1i.

In equation (2.8) there are N unkown Pi's and 1 unknown S, thus a
total of N + 1 unknowns. However, equation (2.8) applies to every
point (x, y) inside Q, thus it can be written for N + 1'"field points"
inside the contact region. Singh and Paul chose the centroids of the
- N cells as N of the field points and picked a last field point at the
intersection of several cells.  The integrals in equatfon (2.8) can
be evaluated numerically to provide the coefficients for this set of

linear equations. Thus equation (2.8) can be expanded to the form
bii Pi =& =-F; (i,i=un) (2.10

where ' d - ‘
. . !x I» -
b“» = A ) (%~ %) f('::.‘.i;.")‘

Pj'is the pressure in cell j '

fi is the initial separation of'the centroid of cell i

2y js the area of cell j"<

(Xi’ yi) are the coordinates of the centroid cell i
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and

Vi R -4 =-f;l+l (¢=4N) (2.1)

where

| dx' dy’
v "La/(xo-x')W (Y-4')?

(xo, uo) are the coordinates of the N + 1 field point

fy + 1 1s the initial separation of the N + 1 field point

Combining equations (2.10) and (2.11) into one set of linear equations
in!Pi and 6, the unknown Pi'and ¢ can be found, in principle, by using
standard Gaussian'e]iminatioh. Thi§ is done by first substracting
equation (2.11) from equation (2.10), thus eliminating & from all

equations. The new set of N equations formed can be written as

N /
B F - £ (c=um) (2.12)

where
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Equation (2.12) is a set of N linear equations in N unknown P.'s.
After solving this set of equations for the pressure field, the
approach & may be found by back’substitutjon of these pressures into
equation (2.11).

Having obtained the pressure distribution and approach the
original "candidate" contact region Q can be verified via the boundary
conditions (2.7a, b). The "candidate" contact region can be reduced
if thé pressure is less than zero at the boundary of Q or it can be
extended if the separation is negative outside the boundary of §2. The
prob]em can be solved again if necessary to find the pressure distri-
bution in the connected region . When the true contact area is found
the total force applied to the bodies can be computed by integrating

the pressure over the contact area, i.e.,

el

' N
F _-ff(x, Y)dxdy = > PL'AC - (2.13)
-!z .
where

A; 1s the-area of cell i. . -

In app]ying’thé S.D. method to-a variety of problems, Singh
and Paul found that if was numerically unstable in the general case.
For small cell densities the solutions obtaiﬁed'were good; however, as
the cell density was increaséd, the solutions broke down. The pressure

distribution became very erratic, changing from positive values to
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negative values from cell to cell. The details of these results were
recorded by Singh [1972] and Singh and Paul [1973] [1974). One method
for eliminating the problem of ill-conditioning is known as the
"Functional Regularization" method which will be explained in section

2.4.

2.4 "Functional Regularization"

The "Functional Regularization" method is a technique of '
stabilizing an ill-conditioned set of linear equations. This method
was developed by Sihgh and Paul [1973] in order to extract a sensible
solution from the unstable "Simply-Discretized" method of solving non-
conformal contact problems.

The "Simply-Discretized" method yields solutions which have
wide variations in the pressure fields. Furthermore, it was observed
that small perturbations in the coefficient matrix B of equation (2.12)
produce completely different pressure fields which also vary radically
from cell to cell. Although the determinant of the coefficient matrix
was not singular, it appeared that there were many solutions to the
set of equations generated by the "Simply-Discretized" method of
solution. In order to find the correct solution vector of a large
number of vectors that satisfy the linear equation set, the F.R. method
' éxploits the “smoothness" property of the pressure distribution. The
F.R. method seeks to approximately solve the original set of equations
while it simultaneously minimizes the difference between the pressure

in neighboring cells. This is accomplished by introducing a function¢

-
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such that

@ = ?(’?‘Pm)z | (2.14)

Solving the equation set (2.12) is equivalent to finding a solution

to equation (2.15) which produces an 82 of exactly zero.

62 =¢"J£'k EBt'fe'-ff}[Bik Plc - )f ] (2.15)

4%

"Functional Regularization" seeks an approximate solution to equation

2

(2.15) such that both €° and ¢ are small quantities. Mathematically,

this is equivalent to minimizing a functional
2 .
V(PR)= (855 -] +V $(FR) 219

where

v is a small parameter which controls the influence of the
constraint function o, Minimizihg Y implies finding'the

vector P, such that’gipjxgi)='0-or solving the equation set

|

Bt'j B:IIPJ +'zy di:ﬁ)= Bt! F; (f=/ N) (2.17)

QL

Bounds for the parameter v have been given by Singh and Paul [19731].
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The solution to equation (2.17) is stable in that it yields -
a smoothly varying positive pressure distribution which is physically
realistic. Singh and Paul [1973-74] have shown that it closely agrees

with the exact solution for several Hertzian contact problems.




- .

3. FORMULATION OF CONFORMAL CONTACT PROBLEM

3.1 Introduction

The development of nonconformal contact theory was based on
the assumption that the dimensions of the conta¢t area are small
compared to the local radii of curvature of the contacting surfaces.
This assumption is no longer valid in conformal contact. By its

very nature, conformal contact can produce contact areas with

‘dimensions as large as the radii of curvature of the surfaces.

Because of this assumption in the nonconformal theory it was

appropriate to approximate the contacting surfaces by two elastic
half spaces and to use the Boussinesq displacement function for a
point load on a plane as the influence function] necessary for the

calculation of the displacement field. In conformal contact theory

the contact region cannot be approximated by a plane, and alternative

influence functions for the surfaces must be found.

Furthermore, no longer can the displacements tangent to the
surface be considered small as was the case in nonconformal theory.
A solution procedure must incorporate both the normal and tangential
displacements of the contacting surfaces in the solution.

Presented in the following sections of this chapter is a

]The “influence function" relates the surface tractions to
the displacement field. It may be sometimes referred to as a "Green's
function."
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formulation for conformal contact theory which not only incorporates
the true influence function for conformal surfaces but also accounts

for the surface displacements both normal and tangent to the surface.

3.2 Assumptions in Conformal Contact Theory

Consider two contacting bodies, labeled 1 and 2, which have
closely conforming surfaces, i.e., they exhibit conformal contact.

The initial point of contact will be labeled 0. Figure 3.1 represents

a cross section through 0 of the two surfaces. A coordinate system

is constructed such that Z is the inward unit normal to body 1 at 0

and unit normal § lies in the plane of_ the cross section at 90°

clockwise of z. The intersection of the surfaces of body 1 and 2 with

planes through the 2 axis will be termed the "contour curves" of

the respective surfaces. The following assumptions will be made:

1. The surfaces are assumed to be frictionless

2. The line of the applied load on the bodies in contact passes
through 0 (fig. 3.1)

Considering dnly frictionless surfaces reduces the complexity
of the contact problem significantly, yet it does not destroy the
usefulness of the solution. It is often desirable to have friction-
less surfaces in contact applications. For example, in the situa-
tions involving bearing surfaces, such as ball bearings or ball
joints, the surfaces are machined and lubricated to minimize surface
friction. This assumption dictates that no shear tractions can be

applied to the surface of either body within the contact region.




-
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|/— LINE OF APPLIED LOAD

Fig. 3.1. Cross section of bodies in conformal contact
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Hence, the normal interfacial pressures will be the only surface
tractions allowed within the contact area.
Assumption (2) requires that the resultant applied force
passes through 0. Mathematica]]y this assumption requires that

the following relationship hold:

f F"("Pﬁ")dA = 0 (i=1,2) (3.1)
A,

Where 2 is the contact area on body i, r is a vector extending from
the origin, 0, to a point within the contact area, Si is the unit
normal to body i of the point defined by F, and p is the interfacial
pressure at the point located by r. This assumption is not required
in the analysis, rather it is made to simplify the analysis. It
should be possible to extend the present analysis to include moments

and rigid body notations.

3.3 Formulation of Conformal Contact Criterion

Consider two conforming frictionless bodies in contact. Body
1 will be called the "indentor" while body 2 will be termed the
"seat." In the undeformed state these bodies contact at a point 0.
Figure 3.2 represents a cross section through 0 of typical conformal
contact surfaces. A global coordinate system (;,;,;) is constructed
such that the x-y plane is tangent to point 0 on dey 1 with 0 as

its origin and z is directed inside body 1.

One of the difficulties in this class of problems is the
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Fig. 3.2 Definition of coordinate systems in conformal
contact theory.. '
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identification of points on each body which come into contact in the
deformed state. In order to find the sets of mating points we
introduce an iterative scheme termed the "point-mating procedure.”
The details of this scheme will be discussed later.

ansider two points, A on body 1 and B on body 2, which come
into contact after deformation. It will be initially assumed that
points A and B lie at equal distances along their respective contour
curves from the initial point of contact. Figure 3.1 illustrates
this concept. The distance between 0O and A measured along the
contour curve of body 1 is S4 while the distance between 0 and B
measured along the contour curve of body 2 is Sy In order to form-

ulate the contact criterion it will be initially assumed that

-fd/ =42 (3.2)

Let ﬁ] and ﬁz'define the outward unit normals to the surfaces

of bodies 1 and 2 respective]y. Shown in figure 3.2 are the

normal vectors at points A and B. ﬁ] is directed ¢ degrees clockwise
of the z direction while 62 is directed ¢ degrees counter clockwise

of the z direction. For extremely conforming bodies 62 ® -ﬁ]. A

local coordinate system will be assigned to each set of points which
contact after deformation. This local coordinate system will have

a unit vector r defined as the mean of ﬁz and -ﬁ], i.e., the angle

between r and z is defined by o measured counter clockwise, where
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-V + P

& = (3.3a)
2

A unit vector % will be defined as being 90° clockwise of r in the

y-z plane, and a @ unit vector will be defined by
A A A
W= txr (3.3b)

The disp]acemenf of point A (and B) due to conformal contact
as illustrated in figure 3.3 will be traced. Point A (B) undergoes
a rigid body translation A] (AZ) which carries it in the direction
of ; (-;) to point A' (B'). As .shown in figure 3.3, point A displaces
an amountwlin the -;] direction (from A' to A") due to elastic
deformation. Not shown in figure 3.3 are the elastic displacements
of points A and B in the tangent plane. These displacements
will be initially neglected in the formulation of the contact
criterion.

Simi]ar]y‘pointzb Hisp]aces:to Bfidue to an elastic displace-
ment w, in the -;2 diréction.‘~Thé*ergin;T vector separation of
points A and B is labeled ¥ and.js a‘functiéﬁ of the geometry of the
contour curves. The vector'séﬁératioﬁ:iz-betWEQh'Ah-énd”B" (in the

deformed state) 'is- therefore given by the vector relation

—dn A

S =f +a,2-Wn, +w, A, 8,2 (3.0)




Fig. 3.3 Kinematics of surface point displacements in
conformal contact. Q
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Only the components of displacement along the ; axis will
be considered in the formulation of the contact criterion. The
elastic displacements, Wy and W, form angles of A and m=A respectively
with the ; direction where
T-v-¢

A= — (3.5)
2

The rigid body displacements A] and B, form angles -a and m-o
respectively with the r direction while ? forms an angle £ with the
r direction. & is determined by the shape of the contour curve at

EY A
points A and B. The projections of S in the r direction may be

written as
Sy = [flesa £-~4 coa & + (W, 4W, ) coa A (3.6)
where § = —(A] + A2). § is termed the approach and represents the

distance that points on one body move along the z axis towards
points on the other body due to rigid body hovement.

In general the displacement W, and w2vmay be written in
terms of the interfacial pressure p(x',y',z') and an influence

function G](x,x',y,y',z,z') as

W, -f Py, ¢) G (%% 9,4, 2,2 ) dxdy'de’  (3.7)
Q.
.
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where Qi is the area of contact of body i. Physically the function
Gi(x,x'y,y'z,z') represents the elastic displacement in the ';i
direction at point (x,y,z) due to a unit load at point (x',y',z') in
the ';i direction.” In the most general form equation (3.6) may be

written as.
S, =|fleoaf -Seor & +
+ 204 AJT’(t;g;z') G, (%,%,9,9, 2,2 )dxdyd2’ +
4

+ £oa A j P(x,4,2) G(x,X, 4,4, 22" ) dxdg'de’ (3.8)
i}
In order to solve the conformal contact problem it is
necessary to find the interfacial pressure P(x',y',z'), the approach
5, and the final contact area @, all of which satisfy equation (3.8)

and the following boundary conditions:

Sy =0 INSIDE £ (3.92)
P(x,9,:) 20  nswe a (3.9b)
S >0 OUTSIDE (3.9¢)
P(X,9,2) =0 ouTswpE C(3.9d)

Furthermore, it is required to verify the accuracy of equation

(3.2), i.e., that the points within the contact area satisfy the

relationships:
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Sy =0 INSIPE 0 (3.9€)
Sw:=0 INSIPE 12 (3.9f)

where St and Sw represent the separation in the % and ; directions
respectively.

Conditions (3.8) and(3.9a-f) represent the contact
criterion for conformal contact. They are analogous to equations
(2.6) and (2.7a-d) for nonconformal contact. Equations (3.8) and
(3.9a-d) may be solved in a similar manner as equations (2.6) and
(2.7a-d) using the "Simply-Discretized" method of solution.
However, this solution only guarantees the displacements be compat-
ible in the ; direction since only Sr was involved in equation (3.8).
Therefore it is necessary to examine the components of the displace-
ments in the % and ; directions to insure that A and B merge as
originally assumed. An iterative scheme, termed the "point-mating
procedure," is outlined which shows how successive®"Simply-Discretized"
solutions may be utilized to converge upon a final solution in which
merging points on each body haVe beéh identified.

Consider the "point-mating procedure" on the first attempt

at solution. As shown in figure 3.1
A, = k4, B ~ (3.10)

where k] = 1. With the "Simply Discretized" method of solution,

equation (3.8) is written for N + 1 field points, thus for each
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field point equation (3.10) must be assumed. This can be restated as

’

Az‘ = £, A, (¢=14,n¢) (3.11)

The first solution of equation (3.8) yields a pressure field,
approach and a contact region Q. The elastic displacements Wy and
w, at each field point may be calculated via equation (3.7). Now

it remains to see if indeed the field points on each body merge.

In order to check the final separation it is necessary to compute

the displacements in both the ; and E direction. Denoting the dis-
placements of a field point oh body i in the tangential plane of body
i by‘ui and v respectively, they may be determined as in equations

(3.12a,b),Whereui lies in the plane of the contour curve and v is

in the direction of w.

u; ".L P, 4.,¢) f{, (%4, 3,2')dxdy'dz’ (3.12a)

v "L‘- rx g, 2 )L (%%, 9,423 )dx’ dy' 42’ (3.12b)
In equations (3.12a,b) Hs and I represent the influence functions
for body i which relate the displacements u, and Vs respectively
at a point (x,y,z) to the normal pressures exerted at a point
(x',y',z'). The pressure field P(x',y',z') and the contact areas
2 are known from the solution of equation (3.8).

Examining one set of points, A on body 1 and B on body 2,
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which are assumed to merge after defcrmation, the total separation

may be written as:

S= SrF+5;€*Sw‘:’=(M*M)M1F +

+u, U, )eosn £+ (G-15)0 +f A hEef, B8, F -4, (3.13)
where

{=ﬁ;+,€£+/w¢3 (3.13b)

and

Equation (3.8), which was originally solved by the "Simnly-Discretized"
method represents the ; components of equation (3.13).

In the first solution of equation (3.8) it was assumed that
Uy = Uy, Vq = Vy, f = 0. However, the first solution has now

w

»
provided values for Ups Ugs Vys Vo and §. f is a function of the

5
geometry of the undeformed surfaces andja may be decomposed into ér
and Gt. Therefore all the quantities:in equation (3.13) are known

to a first approximation after the f1rst s1mp1y discretized solution.
The separation after the first so]ut1on may be computed and in general
it will be non- zero It w111 be shown how the separation may be
utilized to better approx1wate equat1on (3 11) sc that the separation

of a second so]ut1on to the same prob]em will be much sraller.
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In order to simplify the illustration of the point-mating
procedure, it will be assumed that for the problem at hand Vi and Vo
are zero for all field points. This is the case for axisymmetric
bodies. Furthermore, consider the seat to be fixed at some point
well removed from the contact area (where the elastic deformation
is neg]igib]e), thus after the deformation the indentor will have
displaced the entire amount § due to rigid body displacement. Typi-
cal displacements for points A and B, including the Uy and u,
displacements found via the first simply discretized solution, are
illustrated in figure 3.4. The solution to equation (3.8) guaranteed
only that the separation St in the ; direction would be zero. As
shown, the points A and B will in general be separated by a distance

Si. Equation (3.11) may now be modified such that

Ay = k,-d, CRINED. (3.14)

where

¢ 4, - S,
kj = ( 2 ‘, ‘) (3.15)
"dl

and subscript j refers to the number of the iteration.
This modification compensates for the error in the original
assumption (3.11). Using relationship (3.14), the calculation may

be performed a second time. The value of S, in the second solution

t
will be much smaller than that of the first, however, if it is




Fig. 3.4. Displacements of typical field points in
conformal contact. ‘ o
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still too large, a new value of k2, may be computed following
equation (3.15).
Equations (3.14) and (3.15) may be generalized as
( ¢ L0
Ay = kﬂ' A, (3.16a)

where

' ¢ ’
¢ 4, - 8§
Ry - <+ : : ) (3.16b)

4, i-1

and j denotes values associated with the j th "Simply Discretized"
solution [k] = 1]. The value of k} in equation (3.16) is used
in place of k}_] for the j th "Simply Discretized" solution. The
jterative scheme can be repeated until the desired tolerances cn S%
are met.

Also of concern is the separation in the & direction. It
was assumed that points along contour curves merge, however, if Vi
and v, are not equal, points A and B may not lie on the same contour
curve after deformation. This can be determined by examining the
separation, Sé, in the w direction. It must be remembered that the
solution at hand is an iterative one and therefore, the separaticn
of field points will in general never be zero. The separation can
only be reduced to an acceptable amount.

In summary, a mathematical model of frictionless conformal

contact theory has been presented. The model takes the form of
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equations (3.8) and (3.9a-d). Since there is no knowledge a priori

of which points on each surface merge, initially points located by
equation (3.11) are assumed to merge. The contact criter%on of
equatjons (3.8) and (3.9a-d) only insure that two field points,

assumed to merge, have zero separation in the r direction. In order

to guarantee the absence of separation between two field points

in the contact region, the jterative scheme termed the "point-mating

procedure" must be applied.




4. GENERATION OF INFLUENCE FUNCTIONS

4.1 Introduct{on

In the formulation of both the nonconformal and conformal
contact theories, the influence function plays a crucia1 role.

| Physically the influence function relates the elastic dis-

placement at a given point to the applied force at some other point.
The elastic displacements due to a given pressure distribution can be
found by integrating the product of pressure and the influence
fuhction over the contact area. This is illustrated by equation 3.7.

In any given problem it is necessary to know the influence
functions which are appropriate for the given surfaces in contact.
In nonconformal theory the contact area is approximated by a plane
making it appropriate to use the Boussinesq influence function, for a
point load on a half space, as the influence function for all sur-
face geometries. However, in conformal theory, where the contact
surface can not be approximated by'a plane, it is necessary to find
the influence functions explicitly for each of the bodies in contact.

For some problems analytic influence funtions may be found;
however, in the event that no analytic functions are available, they
may be generated numerically. The following two sections, 4.2 and
4.3, present the classical solutions of a half space loaded under a

point Toad and line Toad respectively. In section 4.4 the principles
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involved in the numerical generation of inf1uenée functions are
developed. The remainder of chapter 4 contains examples of influence
functions generated with finite element techniques. Wherever
feasible, analytic solutions are compared to the numerical influence

functions.

4.2 Influence Function for a Point Load on a Half Space

The problem of a half space ]oaded with a normal concentrated
load was first solved by J. Boussinesq [1885].] Consider the half
space and coordinate system illustrated in figure 4.1.

A concentrated load F is applied at point O and point A is
located on the surface of the half space at a distance |?1 from O.

u represents the elastic displacement of point A in the direction of
? while w represents the elastic displacement in the z direction.

Boussinesq found u and w to be given by

(1-2v)( 1+V) F
2 E JF|

(1-Vv*) F
TE IFl

(4.2)

where E and v are Young's modulus and Poisson's ratio respectively for

the half space.

Equation (4.2) forms the basis of the influence function used

Q..) Vsee Timoshenko and Goodier [1970}, pp. 398-402.
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Fig. 4.1. Point load on half space
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in nonconformal contact theory. We wish to generate a function
6 (x, x', ¥, ¥') which relates the normal displacement at (x, y)
to a unit load at (x', y'). Noting that in equation (4.2) w is pro-
portional to 1/|¥|, where |F| is the distance between points (x, y)
and (x', y'), the influence function for the normal surface dis-

placement on a half space may be written as

(1-v*) I
TE (x-2)4y-4)2

G(K,'X; .d: ‘4') =

Similarly, for the displacements tangent to the surface, a function

H (x, x's ¥y, ¥') may be defined as

=(1-2v)(1 +V) I
2TE V (-xe0y-y')?

Heaxgy) =

If a pressure field p (x', y') were considered to act over
the surface of a half space~within;a rggﬁon 2, the displacements w

and u due to this pressure field can be calculated by the following

equations: S T
w e [PxGE g dxdy )
‘n 9.9 A T

u:i P, y') (%, 5,‘4‘)dx'd§' (4.6)
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o ‘ Both G and H play an important role in the generation of numerical

influence functions which will be explained in section 4.4..

4.3 Analytic Solution for a Line Load on a Plane

Consider a line load acting on the edge of a semi-infinitely
plate. It is desired to find the displacement field in the plate due
to the given loading. (see fig. 4.2)

As posed the problem is one of plane stress and was originally
solved by Flamant [1892]. For boundary conditions, it is assumed that
points along the y axis have no motion in the x direction while a point
A, located along the y axis at a distance d from the surface, is fixed
rigidly. The displacement field then becomes]

2F (1-V)F
V= e cooe/?r T E

O 4inb +

+LF- /a?-dme (4.7)

2vF ( -v)F
Uu-= TE 17!‘ (2}

(1-y) -
- -F?m +—— ond (4.8)

where E and v are the Young's modulus and Poisson's ratio respectively
of the plate. The solution is not unique in that it is dependent on

the value of d chosen in the boundary condition.

]See Timoshenko and Goodier [1970], p. 103.




Fig. 4.2. Plate loaded under 1line load
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Let 6 be w/2. The surface displacements for the plane stress

problem become

2F qd (1+v)
TE ¥ p— F (4.9)

(4.10)
2E ‘

For the case of plane strain equations (4.9) and (4.10) may be written

substituting v by v and E by E where

v
(1-v

<l
"

(4.11)

{
™

(1-v?)
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The proof of this substitution is shown in appendix 1. For plane

strain the surface displacements at 6 = n/2 become

3
U= - 2F(I V )‘k]d (1+v) . )

mE

U= - (1-2V)(1+V)F (4.13)
2€E -

Equations (4.12) and (4.13) form the basis of an influence
function for a line load on a plane. Consider a unit line load.
Parallel to the z axis at x', then the displacements along a line at

coordinate x becomes

Z(I-U‘)I Ix-x|  (1+v)
e Td T mE

G(X,X‘) = -

(4.14)

(-2v)(+v)  x-x’'
2F |x-x'|

(4.15)

Hxx)=-

where G (x, x') and H(x, x') represent the influence functions for
displacements u and v respectively for 6 = n/2. Equations (4.14) and
(4.15) are essential to the numerical generation of influence functions
when line loads are involved. These results will be used fn sections

(e 4.7 and 4.8 for line loads on bodies with cylindrical surfaces.
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4.4 Numerical Generation of Influence Functions

Consider a three dimensional body whose surface is defined
by z = ¢ (x, y), as illustrated in figure 4.3. For a Tinear isotropic
material, the influence function for the surface point displacements

will be of the form

G(xx' y,g;u,f)z—;- g.(x;x,’y,y;v.) (4.16)

where F is a unit load acting normal to the surface at point
(x', y's z') and (x, x', y, y') represents the displacement in a
defined direction at some other surface point (x, y, z). E is the
Young'é modulus of the material and v is Poisson's ratio. The
function g(x, x', ¥, y', v) depends on the geometry of the body and
has dimensions of [1/L}]. In some cases g may be found analytically
however for more complicated geometries the task may be impossible.
When g can not be derived by analytic means, it can in principle be
constructed from a set of finite element solutions. A simple example
follows which demonstrates this numerical procedure.

Consider the region (z < 0) defined by the curvilinear
coordinate system i]]uétrated in figure 4.4.

A unit load F is applied to point (x', y') normal to the
surface and it is desired to find the displacement G in a specified

direction at a point (x, y). For the purpose of finding finite ‘;;;
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Fig. 4.4, Curvilinear coordinate system on three dimensional surface
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element solutions, a model of the body is divided into "elements." |
The surface of the body is defined by the top sides of some of those
e]ements; The intersection of more than two elements defines a node.
Figure 4.4 illustrates a typical discretization of the surface of
some typical body into elements.

In order to find G at (x, y) due to F at (x', y') it will be
necessary to solve a number of finite element problems with the above
model. Consider that a set of solutions is known via finite element
techniques within the region of interest around (x, y) and (x', y').
Each solution corresponds to a problem where the point load is
applied to a different node. Thus from these solutions the displace-
ment at each node is known due to a point load at any of the other
nodes.

Now consider in further detail elements i and j which
contain points (x', y') and (x, y) respectively. (see fig. 4.4)

Let us approximate element 1, 2; 3, 4 as a plane facet, then
a set of four forces located at nodes 1, 2, 3 and 4 may be found
which is equipollent to F at (x', y') i.e., if it is required that
the forces;at nodes 1, 2, 3 and 4 sum to F and that their moment about
(x', y') is zero then F may be replaced by forces F,, F,, F;, and F,
at nodes 1, 2, 3, 4 respectively. By superposition of the finite
element so]utions, the displacement at node 5 may be found due to the
set of forces F;, F,, F;, F,. Similarly the displacement at nodes 6, 7,
8 may be found. One final interpolation may be made between these dis-

placements at nodes 5, 6, 7 and 8 to obtain the displacement G at (x, y)

-




-
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due to F. The above scheme, involving the interpolation between
finite element solutions, i]]uéirates how an inf]uénée function can
be generated numerically for arbitrary surfaces.

It must be noted that finite element solutions for a point
load applied to a node will yield a finite displacement directly
under the 1oad. This is inconsistent with, at least, equations (4.1)
and (4.2) which predict infinite displacements under a point load on
a plane. The finite element displacement function is only valid away
from the point load. In the neighborhood of the load, the appropriate
singularities mUsf be identified as described in sections 4.5--4.8.

The following sections contain examples of the generation.of
influence functions via the method described above. They deal with
both point and line loading on spherical and cylindrical surfaces
respectively. In all but one of the examples analytic solutions are

compared to the numerically generated influence functions.

4.5 Influence Function for a Point Load on a Sphere

Sternberg and Rosenthal [1952] have found the solution for
the stress distribution iqlan elastic sphere under two equa] and
diametrically oppesed pofnt loads. Guefrero and Turteltaub [1972]
have analyzed a similar problem of a sphere under a finite number of
concentrated surface loads of arbitrary orientation. Both of these
solutions are useful in providing an analytic influence function for
a point load on a sphere. The results that fb]]ow are from:the
analysis of Sternberg and Rosenthal.

Consider a sphere compressed by two concentrated forces F as
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shown in figure 4.5. From dimensional considerations, symmetry
considerations and the fact that the displacements must be proportion-
al to loads in classical problems of elasticity, it follows that
displacements on the surface of a sphere must be of the form

u F

rT 3e6,v) (4.17)

It is shown in Lure' [1964] that the displacements u, (radial) and Ug

(meridional) on the surface of the sphere are as follows:

m-l( .I +l -4)

(m-2) F F
t m L An2 @

r= 46 (MH)TR  4TGR

2
+ 2 (g (et et T2) -2 )

é
3mLaom+l6, 26, ItainZ 26 , [#40dF
- : (ain®3 5 t a0ty Jog ﬁ_eL

[ -]
L € ol
4.2 - 5 <ol G +k:Z,A¢?k[2’k(W6)} (4.18)




F

Fig. 4.5. Sphere under diametrically opposed point loads
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, |
-F (m-2 cotz-ain R mi8m-8

Up - 4MGR [ m Ain O m?
X (l--m “Amg )LOT9+ A4in O 402’6 I*Me ]
[-- z 5 14c00 2 |
P szk(C_“w) }
"'g BZk' Je (4.19)

where m is the reciprocal of Poisson's ratio, G is the modulus of
rigidity and P, (cos 6) are the Legendre polynomials in cos 6. The

coefficients are given as

A= /
h- mtn-1}(ni)(rne2) o'

x[(m4+7m3+ :'}Om"—64-m-b-32)l‘)2 +
+(7m +22m3 - 39m*+ 494m-16)n

+ lOm4 -1l m2 +Im? + 20m- 1€ ] (4.20)
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-
m3(n-1)(nt1))(n+2) L

Bn =

[(7m3+u m®~28m +16 )(n+2)*

+ (-18m3-48m? +132m-72)(n+2)

+ 9(m-')(mz+8m—8)] (4.21)

where

‘ ' m+|
A = h(ﬂ-/) 1‘{2.)1*“) T (4.22)

The influence functions for a point load on a sphere may be
obtained by considering a unit load F in equations (4.18, 4.19) and
letting 6 represent the angle between the vectors describing the
position of the load and the point A where the displacements are
desired. This is illustrated in figure 4.6.

Consider points A and B on the surface of a sphere. A
cartesian coordinate system (n, Z, ;,) js constructed with the origin,
0, at the center of the sphere. The vectors 0A and 6@ form an angle ©
between them. |

If loads F are applied at point B and at a point diametrical-
ly opposite D then the displacements U, and Ug at A are defined by

equations (4.18) and (4.19) respectively. It is important to note




GREAT CIRCLE
FPASSING THROUGH

— g e d— . e—

y

Fig. 4.6. Coordinate system for influence functions for a
point load on a sphere. '
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that the direction of Ug is not only a function of & but also of the
spherical coordinates (¥, B) of D and those (¥', B') of A. ug is
measured along the tangent to the great circle at D which passes
through point A.

The influence functions for a point load on a sphere may be

written as

/
G(V, AV, . LER)= 73 9, (6,V) (4.23)

and

[ (4 | ’
.H(%/‘;')’,/,U;E,R)= R 96(6,10 (4.24)

where

O(V; B V/B') = anciot (am¥iinV co1f cotf’+

. - . '. ¢ ’
i P AR Y Aimf Ao p + 101V 004V’ ) (4.25)
1 . W W §
S From spherical law of cosines or from cos & = OA - oD/ |OA| -

|oD|.
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G and H represent the influence functions for u. and Ug respectively
which are given by equations (4.18) and (4.19) respectively. The
displacements u (v, B) and Ug (v, B) at point (¥, B) due to a dis-

tributed load p (y', B') over region Q can be calculated respectively -

Uply, 8) i PY,8') G(Y,87,8,%E,R )R sin ¥ dA'dV ' (4.26)

and

Up(r8)=J OCVI8IH,¥. 8 ER) Ritim Y d'd Y’ (4.27)

- Now consider the numerical generation of these influence
functions. It is known from symmetry that the magnitudes of G and H
are related to R, 6, v and E. Furthermore the orientation of positive
G is always radially inward whereas that of H is tangent to the sur-
face in the direction away from the unit load. Therefore it is
necessary to find functions g, (6, v) and g (8, v) in equations
1

(4.23) and (4.24). These functions can be constructed if desired

from one finite element solution of a point load on a sphere.

]The analytic solution of Sternberg and Rosenthal [1952] will
serve as a check on the finite element development which will then be
applied to the spherical seat and other problems without analytic
solutions.

-

-
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Consider the sphere under the loading in figure 4.5. This
problem can be modeled for finite element analysis with the grid
shown in figure 4.7. The present analysis was made with the computer
program for axisymmetric problems, described in Wilson [1965]. The
grid in figure 4.7 represents a cross section of ring elements which
are axisymmetric about the z axis. Because of the symmetry of the
loading, points located on the x axis were restricted to move only
in the x direction while points on the z axis were fgxed from moving
in the x direction. The output data of interest are the disp]acements
of the surface points. Consider the finite element analysis of a
sphere where E = 30 x 106 psi, v=0.3, R =1 in. which is compressed

7

between two forces F, where F = 30 x 10’ 1b. From equation (4.17) it

follows that

£
ER

Uy /2, .(6, V) (4.28)

(//9 = ?Fk- "he (6,1)) | - .: (4.29)

and the function hr and he.are exact]y.those, 9, and 9g> in equations
(4.23) and (4.24). s

The functions hr (6, v) and her(e; Q)Vare non-dimensional
functions of displacement which éré known at the nodes in figure 4.7

from the finite element analysis. Knowing the displacements at the
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Fig. 4.7. Axisymmetric finite element model of a sphere under
two diametrically opposed point loads.
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Fig. 4.8, Match1ng of ana]yt1c s1ngu1ar1ty to numerical -

(f1n1te element) influence function.’
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TABLE 4.1

COMPARISON OF INFLUENCE FUNCTIONS GENERATED USING FINITE ELEMENTS

TO THE ANALYTIC SOLUTIONS FOR POINT LOADS ON A SPHERE

DIMENSIONLESS RANTAL DISPLACEMENT

DIMENSTONLESS TANGFMYTAL DISPLACEMENT

THEYA (DEG.) ANALYTICAL SOLN, FINITE ELEM. SOLN PERCENT DIFF, ANALYTICAL SOLN., FINITE CLEM, SOLN PERCENT OIFF,
0,204545933D-02 0.8113861710+04 0.164965848D+03 ~ 0.979668639D+02 «0,231790422D0+04% 0,588928n76D-02 0,10n000254D403
0,408820333D+00 0.405022929D+02 0.342406574D+02 ~0,1545995300+02 +0,112831463D0+02 «-0,1346815630+01 0,8806347450+02
0.817661505D0+00 0.2018073170+02 04195544305D+02 =-0,308364057D+01 «-0,548385584D+01 ~0,.306718239D+01 0.44neB887270+02
0,1272654431D+401 0.134007316D+02 0.1327590670402 =0,924016007D+00 «0,3549897840+01 «0,274T853170+01 2259345780402
0,163548952D+01 0.,1000761980+02 0,998032229D0+01 ~0.,2727675410+00 -0,258192680D+01 =0,2283654620+01 0.115523097De02
0,204451831D+01 0.,7969822320+01 0.794941031D+01 ~0,2561162160+00 -0,2000188000+01 =0,187272994D+01 0.6372303820+¢01
0,24%3651170+01 0.6609952610+01 0.A58721651D+¢01 =0.343970663D+09 «0.1611486T4D+01 =0,154414887D+01 0.4178617330+01
0,28,2905090+401 0,5637618950+01 0,5613547550+401 ~0,426977993D+00 -0,1333058110+0% ~0,128827837D+01 0.335917357D0+401
0,327231350D+01 0,4907583620+01 0.4884419400001 ~0,472008564D+00 -0,1123541590+01 -0,1087976000+01 0¢31454R89470+401
0,36R188503D+01 0.433913873p+01 0,4317871900+01 =~0,490116543D+N0 «0,9599750950+00 «0,9288008800+00 0.324739830L0+01
0,4091645720+401 0,388384469D+01 0,3865758380+01 -0.,465680622D+00 -0,828592385D+00 =0,7993873720+00 0.352465373D+01
0.,4501615330401 0,3510870270+01 0¢349437857D+01 —0,4697323920+00 -0,7206423620+00 -0,694337424D+00 0,365020703D+01
0,4911816050+01 0,319965391D¢01 0.318831917D+01 ~0,35424R8570+N0 -0,630296874D+00 =0,601247959D+00 0.460876703D0+01
0,5322269900+01 0,293595734p+01 0,292411664D+01 ~0,403299564D+00 ~0,5535260160+00 =0,5341638920+00 0.3497961080+01
0,%732006630+01 0.,2710116070+01 ~ 0.2697217450001 ~0,.4759434900+00 ~0,4876034150+00 ~0,4709389020+00 0.3417636620+01
0,6340391690+01 0.242819348D+01 0.2416261470+01 =~0,4913945240+00 ~0.,4050903530+00 =0,3910677700+00 0.3461593840+01
0,701155408D+01 0.217341074D+01 0.2162647990+01 =0.,495200681D+00 ~0,330351069D+00 <~0,3191046970+n0 0.347436967D0+01
0,775168047D+01 0,194304231D+01 0,1933417010+01 =0,495372535D+00 «0.262732080D+00 «0,2542312640+00 0.3235545650+01
0,856739214D+03 0,1734%66067D+01 0,1726101110401 ~D,4%93442804D+00 «0,2016939410+00 =0,195763223D+00 0,2940454250+01
0,94R590063D+01 0,1546061850+01 0.153849082D003 ~0,489697805De00 -0,146783793D+00 ~0,143078338De00 0.2524430870+01
0,1045485860D+02 0.,1375279140+01 0.1368626290+01 ~D.4837456820+00 «0.9762612310«01 -0,9563768020-01 0.2036793880+01
0,1154264810+02 0.,1220508760+01 0.121470216D+01 =-0.4757522640+00 -0.5387856760+01 ~0,5299491570-01 0.1640080580+01
0,127381836D+02 0,108013504D+01 0,107509860D+01 ~0,4662789780+00 ~0,152072337p-01 <-0,147449887D~01 04303963901D+01
0,140510833D+02 049526901920+00 0,9483501280+00 ~0,455558737D+00 0,1876235080-01 0,194589737D0-01 <=0.3712876580+01
0,1549147380+02 0,8368604080+00 0en331417750+400 = 0,4443551900+00 0.4B84763538D-01 0,4989788140-01 =~0.293241451D+01
0,17n701948D+02 0,7314493370+00 0,7282762950+00 —0,4338020590+00 0,7447136670~01 0,7682138200-01 <~0,3155595840+01
0,1879864970+02 0.6353769800+00 0.4326703590+00 ~0,4259866690+00 0,973347504p-01 0.1004347090400 ~0,31PA484276D+01
0,2068886300+02 0,5476614040+00 0,54535208630+00 ~-0.4215271650+00 0,1176008930+00 0,1208954930+00 <0.,280150A93D+01
0,2275341180+02 0,467412808D+00 0,4654500330+00 ~0,4199231530+00 0,1325839960+00 0,1383292320400 =~0.20°474864D+0y
0,250n53232p+02 0,3938322860+00 0,39218%1360+00 ~0,4184904730+00 0,1512143940+00 0,1528158010+400 «0.1059031080+01
0,274581107p+82 0,326211929p+00 0,3248457750+00 =0,4126622650+00 N,164008870p+00 0,1644011630+00 <0,239190135p+00
0,3012569570+02 0,2639441660+00 0.262891080p+00 ~0,3989805280+00 0,1733079980+00 0,1730968760+00 0,1218131r855+00
0,3302203970+02 0,206525300D+00 0.2057405350+00 —-0,3798888370+400 0,1787668320400 0,1788827350400 <«0,6u4R3504870-0)
0,3616148358D+02 0.1535411680+00 0,1529821720+00 —0,364N69186D+00 0,180764894p+400 0,1817111500+00 ~0,5234731990+00
0,39%582116Dp+402 0,104648%24D400 0,1042747220+400 -0,3571973680400 '0,1801834590+00 0,1615133380400 <-0,731069266p+00
0,43722627520+402 0,595678377D-01 0.593640196D-01 —0,342161390D+00 0.,1774147530+00 0,1782058930+00 <~0.,4459266560+00
0,4717937680+02 0.181176243D0-01 0.1812070990-01 0.170304673D-01 0.1715957450+00 0,1717280980+00 =0.7713050450-01
0,514306964D+02 «0,197379829D-01 =0,195555474p=-01 =0,924286194D+00 0,1615035440400 0,1620946960+00 -0,36s0305160+00
0,5999999990+02 - 0,791779084D-01 =0,794195817D0-01 0,3052281300+00 1,1338512810+00 0,133739A730+00 0,8323306990-01
0,644117318D+02 «0,102543077D+00 =0,1027311195+00 0.1853328120+00 0.117761136D+00 0.11739729e0+00 0.30A9624080+00
0,688498854D0+02 © 0,121763598D000 =0,121893253D+00 0,106480874D+00 0,9951902460-01 0.992539813D-01 0,2663242960+00
0,732423703p+02 -0,1371503850+00 =0,1372n89590+00 0,427084857D=-01 0,791904160p-01 0,7957801210-01 =0.4854481630+00
0,779202161D+02 ~0,148855203n0400 <~0.,148871023D+00 0.106275003D-01 0,5798489550-01 0,5852349810-01 <~0.9298669630+00
0,8241987610+02 «0,156906638D+00 =0,156875324p+00 ~0,199572779D-01 0,361602318p-01 0.3616165310-01 -0.3930419610-02
0,87uB8643490+02 ~0,161133947D+00 =0,160937346D+00 ~0,1220113080+00 0,1258548560-01 0.1255620210-01 0,2326770240+00
0,9000000000+02 ~0,161688883D+00 =~0,161186696D+00 ~0,3105882850+00 ~0,469100350D0-07 0,7533453190~14% 6,10n0000160+03

v9
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surface nodes, the displacement at any surface point may be obtainea
through interpolation.

The computed displacements under the load are finite and the
numerical results must be matched at some point near the load with the
singularity of the function. It is shown in appendix A that the
dominant singularities in the displacements under a point load on a
sphere are indeed those of equations (4.1) and (4.2).

It was found that with an appropriately dense mesh, such as
that shown in figure 4.7, the numerical influence function hr (6, v)
would merge with its analytic singularity over a region near the load.
This is illustrated in fiqure 4.8 where the numerical influence func-
tion hr merges with the singular functfon in the region between A and
B. The singularity was matched to the numerical function at A, thus
between 0 and 6, the behavior of the generated influence function was

A
taken to be that of the singularity while for & greater than 6, the

A
numerical values of hr were utilized to describe the influence
function g, (6, v). Similar treatment was used to generate
9 (6, v).

A comparison of the displacement functions given by "analytic"
equations (4.18) and (4.19) with the displacement function hr (Q, v)
at the node points of finite element analysis are given in table 4.1.

It can be concluded that the numerical inf]Uence'functions are accurate

representations of the analytic ones.-

4.6 Influence Function for a Point Load on a Spherical Cavity

The displacements due to a point load on a spherical cavity
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‘have not been published to date. An investigation by Sternberg et al
[1951], which deals with the solution to the axisymmetric problem of
a region bounded by two concentric spheres, could be used under
certain limiting conditions to produce the influence function; how-
ever, the 1imit process is very involved and has not been performed.
For the purposes of the present research, the influence function for
a point'load on a spherical cavity is derived numerically as outlined
in this section.

Consider a spherical cavity of Radius R under two diametri-
cally opposed point loads, F. The material has elastic moduli E and
v. (see fig. 4.9)

The displacements u. and u, are desired as a function of R,

6
8, E, v, and F. From equation (4.17) which is also valid for a

spherical seat, we note that the displacements must be at the form

U, =E§- 9:" (6,y) (4.30a)

and

U = -é-— ds(6,V) (4.30b)




s
|~}
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Now consider a (nz, Tys Y2) coordinate system as shown in figure 4.11.
The influence function for radial and tangential.disp1ace-
ments respectively due to loads, diametrically opposed on a spherical
cavity, may be expressed in terms of a (n2, Tos YZ) spherical

coordinate system as

/
C(B6,8,8%6R) = —— 3 (6,V) (4.31)

and
| |
I II i‘{ / = ) ¥ N
H (8,408 1ER) 7 9g (6, V) (4.32)

We seek to find the functions 9 and 9% which are the
displacements on the internal spherical boundary surface of an infinite
region under a loading condition such that F/ER = 1. These displace-
ment functions can beAeasily found using a single finité element
analysis.

Consider the discretized model of a spherical cavity in an
infinite medium as shown in figure 4.11. The model represents the
loading illustrated in figure 4.9. Each element is a ring,
axisymmetric about the z axis. The boundary conditions for the model
restrict the nodes on the z axis to move only in the z direction while

those on the x axis are allowed to move only in the x direction. The




GREAT CIRCLFE
FPASSING THROUGH
A AND B

N b

g

Fig. 4.10. Coordinate system for influence functions for a
point load on a spherical seat. ‘
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Fig. ‘4.11, Axisymmetric finite element model of a spherical cavity in an
infinite region under diametrically opposed point loads.
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figure 4.11. These displacements, Uy and u
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nodes on the outer boundary were free. The values of the Force F,
radii, Poisson's Ratio and Young's modulus used in the finite element

analysis were as follows

F=130x10 1b.
"R =10 in.
R, = 200 in.
v = 0.3 and 0.25
E =30 x 10° psi (4.33)

The solution of the finite element analysis gives the values of the
displacements on the surface of the cavity at the nodal points in

9° under conditions where
F/ER = 1, actually represent the values of the functions 9, (6, v) and
9 (6, v). Therefore by interpolating between these values an
approximation of g, (6, v) and g, (9, v) is known for all 6. As with
the influence functions for the sphere, the singularities of equations
(4.31) and (4.32) neér'thé péint 1oad”werélrépresented by equations

(4.1) and (4.2).

4.7 Influence Functions for a Qy]ﬁnder Under Concentrated Line Loads

Consider a Tong cylinder under two ‘concentrated line loads as
shown in figure 4.12.
The problem is one of plane strain and has been solved in

Muskhelishvili [1963]1. The displacements at the point Q, in terms of




Fig. 4.12.
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Geometry of a cylinder under two line loads
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quantities labeled in figure 4.12, are

Uy (X,9)= = 2(A424) , 1
) Im U (Atm) ’5"6 *
2 e’
t (0220, - L0420, ) - -(%;‘”—;7 X } (4.34)
and
2M

u K’ s = d' d -
1 (%) = (A»«,«)( *)

‘, 2 6/

where F is a line load expressed in units of force/length, Uy, and uy
are the displacements in the x and y directions respectively, and A and
ﬁ are the Lame' constants of the cylinder. Equations (4.34) and
(4.35) may be combined to find the displacement field in polar
cordinateé of a cylinder under two diametrically opposed Tine loads,
as illustrated in figure 4.13.

The derivation of u. and Ug is performed in appendix B.
The results are as follows:

!
U, ,-f,(/'{mejnfmg.&/;f-f' 7 Am6  (4.36)
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Fig. 4.13. Polar coordinate system for a cylinder under two

diametrically opposed 1ine loads.
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and
Up == FKamblnlond -F 2 con0 (4.37)
where
2(1-y?
TE
and
X, = (1+v)(1-2v) (4.39)
2F
-]

The influence function for a Tine load on a cylinder may be formed
from equations (4.36) and (4.37) by considering 6 to be the angle
between the vector describing the position of the unit load F and the
péint Q. The influence functions in the radial and tangential

directions respectively are

G(6,6,V £) ==K [m(e-e’)lnﬁn %ﬁl-r I}

/(z

t — din (6-6’) | - (4.40)
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and
H(a)e)' V)E) :—Kl M(e’e'),&{f@n[%ﬁ’

+ ;,.!'A’z ot (6-6') (4.41)

where 6 and 6' are illustrated in figure 4.14.

It is important to note that equations (4.40) and (4.44)
represent the influence function for two diametrically dpposed Tine
loads. They may be integrated as shown below to find the displace-
ments u (8, R) and Ug (6, R) due to two symmetric loadings p. (6),

where p (8) = p (p + ). The displacements may be calculated by

Ur(6R) -i G(6,6.4,£) P(6') R d6' (4.42)
and

llg(@P)'fﬁmle/"’zf)f(a')/?de' (4.43)
L

Now consider the numerical generation of equations (4.40) and

(4.41). 1t is known that the displacements u, and ug due to diametri-

r

cally opposéd point loads, F are functions of 6, F, E, v and R, where
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Fig. 4.14. Coordinate system for the infiuence functions of
a cylinder under two diametrically opposed 1ine loads.
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E and v are the elastic constants of the cylinder of radius R. From
dimensional analysis the displacements U and Uy may be expressed in

the forms

Ur

y (—t% ) 6, V) (4.44)

and

Yo . g (L

F ,6,V) (4.45)

Furthermore, because of the linearity of the problem, the

F
ratio ER must appear linearly in the above equations; hence u. and

u, may be expressed in the form:

6
U, = ?/: ?,(6, V) (4.46)
and
F
Us = Tz Jo (6,v) (4.47)

We therefore seek to find the dimensionless functions 9, (6, v) and
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9s (8, v) which represent the displacements u. and ug under the
conditions that F/E = 1. These functions may be found with one finite
element analysis of a cylinder under two diametrically opposed line
loads.

Consider the model of a cylinder given by the finite element
representation in figure 4.15. The elements are plane stress elements.
The 1ine 1oad per unit thickness, F, is applied and due to the
symmetry of loading only the upper-right quarter of the cylinder is
considered. Nodes on the x axis are restricted to move only along
the x axis and nodes on the z axis are restricted to move only along

the z axis. For the solution at hand the values of the parameters

P, E, v and R were taken as

3x 107 1b/in.

P =
E = 32,967 x 10° psi
| (4.48)
v = 0.42857
R = 1ih.

The values of E and v used above represenf the.mbdu1i in plane stress
which are equivalent to the values of E = 30 x 10° psi and v = 0.3 1in
plane strain. These Vafuesbﬁerebdetérmfned via equation (4.11) and
the results are appropriate for the plané strain mbde1 with the noted
values of E and v. The solution yields the values of the displace-

ments, u. and uy at the surface nodes in figure 4.15. These

r
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R

N DIANE OF SYMMETRY

Fig. 4.15. Plane stress finite element model of a cylinder

under line loads.




TABLE 4.2

COMPARISON OF INFLUENCE FUNCTIONS GENERATED USING FINITE ELEMENTS
TO THE ANALYTIC SOLUTIONS FOR LINE LOADS ON A CYLINDER

THEYA (DEG.)

DIMENSIONLESS RADIAL DISPLACEMENT

ANALYTICAL SOLN.

FINITE ELEM. SOLN

PERCENT DIFF,

OIMENSTIONLESS TANGENTIAL DISPLACEMENT

ANALYTICAL SOLN,

FINITE ELEM, SOLN

PERCENT DIFF.

0,57295836AD-04
0,4088090790+00
0,R176394ARD+00
0.1226510920+01
0,1635444601+01
0,2044465750401
0,2453639970+01
0,7862R88770+01
0,%2722808104+01
0,2681842970+N01
0,8091593060401
0,u501608860+01
0.,8911796650+01
0,%532223939p+01
0,573197815p+01

0,43403942204+0)
0,7011536A840D401

0,77516314304+01
0.856736924D+01

0.9465929830+01 ~

0,1045486240402
0,1154263240+402
0.1273R817R20+02
0,14n05309860402
0,1569150900402
0,.1707016650+02
0,1879£62610402
0,206A889740+02
0,2275343930402
0,750053137D+02
0,7274580916p+02
0,301255747D+02
0,3302207353p+02
0,%61614735D+02
0,%955R1642D+02
0,8322624420402
0,47179385n00+02
0,51430710804+02
0,6000000940402
0,£441173870+402
0,688498955(;+02
0.7334234890+02
0,779202334D+02
0,Rr261989560+02
0,ATUBEHB52D+02
0,900000000p+02

0.,7825089220+01
0,2687446730+01
0.2287514100+01
0,2054126170+01
0.18888680604+01
0,1760901390+01)
0.165648329D+01
0.1568314640+01
0.1492n11690401
0,1424755500+01
0,13642346D4¢01
0,131023719D+01
0.12605998604+01
0,121493494D401
04117274%3120+01
0.1115359220+01
0.1058117170+01
0.,100100156D+01
0.9440N0163504+00
0,R871n895%90+00

0,830322334D400 °

0.7736223650+00
0.716990185p+00
0.660408506D+00
0,602863701D+00
0,5473462368p+00
0,4908290650+00
0.4343213%6p4+00
0.37783165404+00
0.3213R67€30400
0,26503668004+n00
0.2n88693120400
0,.1530107650+00
0.9765590410.-01
0.4306107420-01
«0,104267144D-01
-0.6235373610-01
=0,1121427570+00
=0,19504435204+00
-0,2291693740+00
-0.2578633600+00
=0.2832599910+00
-0,2993290210+00
-0.3118660960+00
«0,318459229p+00
~0,319323993p+00

0,375578893p+0}
0.265191994p4+01
0.2292281890+0}
0.2057000060+01
0,1889718280+01
0,176000878p+01
0.1654646670+01
0.15660u4366p40]1
0,14R966234+01
0.1622498080+401
0.1362614360+n}
0.1308382810+01
0.1259274090+01
0.1213553370+01
0.,1171196700+01
0,1113948600+01
0.105686529p+n1
0.9999011840+00
0,94304631504+00
0,8862878400+00
0.8296249290+n0
0,7730377350+00
0.716505649p+00
6.660007899p+00
0.603538161+00
0,547084663D+00
0.4906265800400
0,434164176D+00
0,3777108470+00
0,321296429p+00
0,264972122D+00
0,208825063p+r0
0,1529848950p+00
0,376483978p-01
0.430729331p-01
-0.103960371p-n1
«0.,6228734260=-01
-0.1120333500+00
-0,1953738770400
=0,2294546760+00
-0,258128854C+00
-0.281472643D+00
«0,2994915370+00
«0,311985554p+00
-0,318341793p+00
~0,318712500p+00

0,520081511D+0>
0.1321953290+01
~0.20R4264090400
=0,13990824004+n0
-0,4501226730-01
0.50690%1 74001
0.110874710D+00
0.144804020D+00
0.1574613A704+00
C.1584424960+10
0.1472272890+00
0.1415300970+0n
0.10516944D+07
0.,1137153u4nD40n
0.131063R760400
C.126472p2210+093
0,11R3117440+0n
0.109927592D04019
0.1011990250+00
0.925¢120A%p-01
0.83992n302p-01
0.,7557047760-01
0.6757926380-n1
0,606/056440-01
0.53909%¢850-01
0.470829377C-01
0.,43124970170-01
0.361R/5A1140-01
0.3197371930-01
0,281138752D-91
0,2443360720-01
0.21185092n0-01
0.16%077101p-01
0,7686428070-02
-0,275396073D-01
0.2942179550400
0.10647R673D+30
0.97%6016670-71
«0,167923212p+0n
«0,1284976050+00
-0.1029589800+192
“0.7560685150-01
~0.%429354050-0}
-0.383044809p~01
0.3687644600-01
0,19249%390004+00

=0,2999915950+00
-0.2366976030+00
=0.2191124830400
-0 ,2036776150+00
“N.1896350010+00
eN,1766246880400
~0,164433591p+00
=-n,1523248050+00
=0,1419975430+00
=1.1315774730400
-N,1216071750400
-N,112n39471D+00Q
«N,1028395900400
«N,939749431p-01
-0,854393221D~01
-2,732959201p-01
-N,605718553D-n1
-N,4727907510-01
«0,3343996080-01
-0,190R87514D=-01
“N,42748%127D~02
0.1094181810-01
N.264841687p-01
0,4225541530-01
0.5813627630-01
N,729A38714p=~01
0.,8963048080-01
0,1048776820+00
0,119494928p+00
nN,133219334D+00
0,1457539680+00
N0.15676660404+00
0,1658929110+00
0,1727373280+00
0.1768829010+400
0.177A9A87004+00
0.,1753555840400
N,168844468D+00
N,1455919660+00
N,1292236380+00
0,110324658p+00
0.8915197590-01
0.6591907570-01
N,408110465n0-01
0,1399581390-01
0,149180554D-13

0,375579269p=05
-0,13493764020+400
-0,1892381260+400
«0,19499R13360+00
~0.1830954920+00
=0,176924259D+00
«0,164892629D4+00
=0.1529704250+00
-0,141529051D400
=0,1306428530+00
=0,12023un37p+00
«0,11044A89950+00
~0,10056231904+00
-0,923279991D-01
<0,A378585440-01
~0,7154859820-01
=0,5877594070-01
-0,45485%12507D-01
-0,31664%4134D-01
«0.1734917650-01
~0.258172465D~02
0,125754A46)-01
0,28057790AD-01
0,4376342310-01
0,595818496n=01
0.7536549980-01
0,909473234N-01
0,106138112n+00
0,1207031520D+00
0,1343787A30+00
0,146872936p+00
0,1578509070+00
0,1669502710+00
0,1737772030400
0,17791Rr2720+00
0,178949142p+00
0,1764R33900+00
U,1702260670+00
0,1455503970+00
0,1295359930+00
0,110774933p+00
0,A%406942D-01
0,664027a58D-01
0,412556A390-01
0.144507n720-01
0,1489580570-13

0.1000014450+03
0.4299156400402
0,1363425590+02
0.4261282570+01
0.8118274405400
=0.1696093280+00
~0.279163208p+00
~0.298315015p-01
0,329929616N+09
0.7103175630+00
0,112p5nG671Dp+01
0.1419567350+401
0.2194944260+901
0.,1752535320+01
0.1935253720+01
0.2373927890+01
0.2964932350+01
0,379u394nup+01
0,5309657460+401
0.911303903p+01
0+3960667900+02
~0.149304842D+02
=0.5941746390+01
~0,3568791730+01
~0.2486525450+01
~0,1867472460+01
~0+146919086D+01
-0,120180936p+01
«0,100974288p+01
-0,8703353280+00
=0.767710161D+00
=0,6916672710+400
=0.637375497p+00
-0,6023453610+00
=0.5853422630400
~0,5903756750+00
“0,64315376404¢00
~0,8187408950+400
0,2855192770-01
“0,2417166360+00
«0,4081358330+00
=0+H4R1B5617D+00
~0,7337938090+00
=0,1089502520+01
=0,3250209500+403
0s1491461820+400

L8
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displacements represent the values of 9 (6, v) and 9 (6, v) at the
nodal points in the finite element model. The functions 9, (6, v)
and ge (6, v) can therefore be approximated by interpolating between
these values.

The singularities for the functions 9, and gq are given by
equations (4.14) and (4.15), that is, those singularities appropriate
to the line load on a plane. It is shown in Appendix C that these
are indeed‘the correct singularities since the functions in eqhations
(4.12) and (4.13) approach infinity in exactly the same manner as
equations (4.36) and (4.37), respectively.

It may be concluded that by knowing values of g (6, v) and
9 (6, v) at the nodal points in figuré 4.15 and by having correctly
identified the singularities of those fUnctibns, the influence
functions for line loads on a cylinder have been determined. As a
final check'oh the accuracy of such a function the values of the
displacements g} and,ge from the finite element aha]ysis have been
compared to those of equations (4.12) and (4.13) in table 4.2. It is
clearly indicated that the finite element solution gives a very
accurate representation of the displacements up to within a half

degree from the applied force.

4,8 Influence Function for a Line Load on a Cylindrical Cavity

Consider a cy]ihdrica] cavity within an infinite solid body.
Given that two line loads, F, diametrically opposed, are applied to
the cavity surface, the displacements u. and uy are derived from known
'elasticity solutions in Appendix D. (see figure 4.16)




rical cavity under two diametrically

ig. 4.16.
opposed line loads
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They are as follows:

Ur = F[/(,me,znm%+kzmef (4.49)
and
Up = /-'[,«,Maznmf - K, mé} (4.50)
where
e
K = 2(1-v*) .51)
| TE
and

K, = (1-2v)(1+V) (0.52)
- 2&

The influence functions for u. and u, can be derived simply from

)
equations (4.49) and (4.50). By considering F to be a unit Toad per

unit width and by replacing 6 by 6-6' as illustrated in figure 4.17.







" @
the influence function for two line loads on a cylinder become

€(6,0,U,€) = - K, £0a(6-0") dn Tam [S2]  (a.59)

- Ky ainf(6-¢)]

and

H(6,6VE) = /r,m(a-a')ﬁu%wn/%f'/

- £, coa (6-6') (4.54)

It is interesting to note that the influence functions for
both the cylinder and cylindrical seat are independent of the radius
R, since the dimensional analysis leading to equations (4.44) and
(4.45) are valid for the cylindrical cavity as well as for the solid
cylinder. Accordingly, the displacement functibns for the cylindrical

seat are:
U, = "2.6" dr (% V) (4.55)

and

Uy = ?‘53?; (&) (4.56) Q
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where ¢ represents the difference between the angular position of the
force and the displacement, i.e., Q-e' in figure 4.17. The functions
9, (¢, v) and 9 (¢, v) represent the displacement on a cylinder where
the ratio F/E = 1. An approximation to these functions may be obtained
through finite element ana1ysis. From equations (4.55) and (4.56) we
see that the required influence functions are found by dividing gr and
9 by E.

Consider the model of a cylindrical cavity as illustrated in
figure 4.18. The model represents the loadings illustrated in figure
4,17. The points along the z axis are restricted to move only along
the z axis and likewisethepoints’on the x axis are restricted to move
on the x axis. The outside radius is thought to be sufficiently
removed from the cavity to consider it at infinity. In the mathemati-
cal problem both the stresses and displacements vanish at infinity.
Therefore, two cases of boundary conditions will be considered at the
outside radius in the discretized model. In the first case those
points are free while in the second they will be fixed rigidly.

For the example at hand theVQalqes of E, v, R, R, and F were

as follows:

F=3x10" 1

E = 32,967 x 10?_ps%
V= o:@zasz a
R=1"1in

Ro = 20 in ~ (4.57)
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Fig. 4.18. Plane stress finite element model of a cylindrical cavity in an infinite
region under two diametrically opposed Tine loads. :
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The results of the surface nodal point displacement for the
free and fixed boundary conditions are compared to the analytic

solutions in tables 4.3 and 4.4 respectively. The results indicate

that the boundary condition at the outside radius which most closely

models the true condition is when those points are considered to be
free. The finite element data in table 4.3 shows good agreement
between the numerical and analytic solutions. While the data in
table 4.4 also indicates a close correspondence it does not agree as
well as the results in table 4.3.

Again there is the problem of finding the appropriate
singularity. As might be expected, the Flamant solution for a line
load on a plane, represents the singularity for the case of a line
load on a cylindrical cavity. This fs proven in appendix E.

From the above finite element analysis, the functions
g, (¢, v) and 9, (¢, v) may be evaluated away from the applied loads
by interpolating between the nodal displacements. The Flamant
singularity, given by equation (4.14), may be used as the singularity
of the function (4.55), while the constant in equation (4.15) may be
substituted.for the 1imit of equaifon»(4{56) near the applied loads.
Having constructed.eqﬁations (4.55)‘and (4.56), the displacements Uy
and Ug due to distributed 1ine51oad$,p (0) éﬁd p.(e + m), where
p(8) =p (6 +m), my be cd]éd]aﬁed_from equations (4.42) and (4.43)

respectively.




TABLE 4.3
COMPARISON OF INFLUENCE FUNCTIONS GENERATED USING FINITE ELEMENTS TO THE

ANALYTIC SOLUTIONS FOR LINE LOADS ON A CYLINDRICAL CAVITY

(OUTER BOUNDARY OF FINITE ELEMENT MODEL FREE)

gt
——

THETA (DEG.)

DIMENSIONLESS RADIAL DISPLACEMENT

ANALYTICAL SOLN.

FINITE ELEM. SOLN

PERCENT DIFF,

DIMENSIONLESS TANGENTIAL OISPLACEMENT

AMALYTICAL SOLN,

FINITE €LFM. SOLN

PERCEMT OIFF.

0,5729572220-04%
0.119289760D+00
0,238637212D4+00
0,3579858160+00
0,47733584A80+400
0,.%96745594D+00
0,716101222D+00
0,Rr35458274p+00C
0,254821203p+00
0.,107424340p+01
0,11936135405401
0,131293239p4+01
0.143231241p+01
0,1621340970+01
0,1835497590+01
0,20782085510+401
0,2353566630401
0.266%6T73460+01
0,301990946D+01
0.3%%2199844D+01
0,38785613204+01
0,4397466140+01
0,4987532u3p+01
0,%65902057p+01
0,A423804400D4+01
0,7295860810+01
0,8291235590+01
0,942£92114Dp+01
0,1073138310D+02
0,31222520480+02
0.1394212410+02
0,1592n5104p+02
0,182068724D+02
0,208587134p+02
0.23947578710+02
0.,2756479980+02
0,3152817510402
0.3689486710+402
0,429808786D+02
0.,5039A44730+02
0,%596147584p+02
0,714230198D+02
0,8732824110402
0,900000000p+02

0.8405213850+01
0,3978000200+01
0.357573873D+01
0.334021768p+01
0.317294255p+01
0.3042997820+01
0.2936760970+01
0.2846835300+01
0,276834346p+01
0.2699935660+01
0.263824920D401
0.2582400810+01
0,2531324060+01
0.2958448740401
0.2385353140+91
0,231197081p+01
0.2238272580+01
0.21642355%0+01
0.208975052p+01
0.201478207D+01
0.19392385304+01
0.1863016990+01
0,1786007960+n01
0,170807779p+01
0,1629069830401
0,1548783960+01
0,1467009440+01
0,138348079D+01
0,129788124D+01
0,1209844390+01
0.111854%2440+01
0.,102467125n+01
0.9264597160+00
0.823652580p+00
0,7155427670+00
0,6013865670+400
0,4805262350p+00
0.35256R4490+00
0,217797841De00
0.780953060p-01
-0,610454350pD-01
=0.1855363740+00
«0,2584576620+400
-0,260000000p+00

0.514558790p+01
0.389032440p+01
0.355458287D+01
0.3312160090+01
0.314752784p+N1
0.,3018482170+n1
0.291348558D+N1
0.,282476719p+N1
0.2747831610+01
0.267973215p+01
0.261843058)+01
0,256332636D+01
0,251134123p+01
0,243922697p+01
0.,236630775p+01
0.2293416000p+01
0.2220317920+01
0.,2146932920+01
0.2073136u46D4N1
0,199884187p+01
0.,1952397695(+01
0,1848428730+01
0.177209479Dp+01
0,169%84944p+01
0,161653837D+"71
0.,153696374D+01
0.145590438D+N1
0.137311752p+01
0.128828355D+01
0.120104184D+01
0.111096927C+01
0,10175470Ap+01
0,920215333p+00
0.518307242p+00
0.7111224270+00
0,597903709p+00
0.477982799p+00
0,350934408p+00
0.2169827390+00
0.7784482650-01
-0.,614067132p0-N1
«0,188141202p0400
=042664785160+400
«0,273111075p+n0

0,387809996D+02
0.2204017090+0}
0.9916500380+00
0.8399930160+00
0.800382287D+00
0.80564135104+00
0.7925533570+00
0,775180647D400
0.758R6T4110+09
0.746n739280+00
0,7512032980+09
0,7385323700¢2C
0.7657121070+400
0.7818655#0D+00
0.79843055904+90
0,802553960D+00
0.802165%090+00
0.799481470D4+00
0.795n0257410+409
0.791162282D+00
0.7869883,7D4+0N
0.783044871D+00
0,77900969204+N0
0,774458501D+00
0,7692399u50+00
0.763193532D400
0,7569867820+09
0.7490725760D+00
0.,73948R6200400

C.727577344D4+00

0.712562636D400
0.,695263517D+00
0.673940079p+00
0,6489796300400
0,61776C444D400
0,5791379680+01
0,529716179p+9%9
0,463467642D400
0.374247069D+00
0,32073%64u4D+720
-0,5918185830+00
«0,314039%4610+01
«0,3103353030+01
-0,504272115D0+M

-0,260008405D+00
-N,268282768D+00
«0,274895311D+00
=0,2008751310+400
«0,266443680p+00
-0,2917006050+400
-N,2967268100+00
-0,301%41708p+00
-0.3061825290+00
«0,3106729590+00
-N,3150256720+400
=N ,319254334034+00
-n,3233739220+00
«0.329691248p+00
«N,3365755480+00
-0.,3440698810+00
-0,.3522138720+00
-0,361044941D+00
-0,370608917D+00
-0,380939415p+00
~N.392071906D+N0
-0,4040361290+00
-N,416852042D+00
-0,4305284390+00
-N,8450576050400
-0,4604123200+00
-0,4765306180+00
-0,4933121110+00
-0,5106016540400
-N.5281676330+00
«0,5456756620400
«N,562652449D+00
«N,578430657D+00
-0,592077637p+00
-D.6C2285708D+400
-N,607219173D0+00
-0,604201682p4+00
-N,5897727840+00
«0,55835846800+00
«0,502250292p+00
N, 4099145440400
-0,2640816140+00
«N,e3911453450-01
«0,392215231p-13

-0,51455£2575D=05
«0,2242413560+00
«0,2723745p210+00
«0,2772214540+00
=-0,2831359600+00
~0,288044396N4+00
~0,2928290420+00
-0,297450R060+00
~0,302160RA8D+10
«0,30671665A0¢00
-0,311351170+00
-0,314998537)+00
=0,3198832421+00
-0,326092451D4+n0
«0,3325822299+n0
-0,3397333210400
-0,347598939)+00
«0,3562780n570+00
«0,3657120990+00
-0,3759384660+00
=0,386986253D+00
-0,398856115n+00
-0,411570753)+00
-0,4251473480n+00
~0,4395591230+00
-0,4548003950+00
~0,4707906420+00
-0,487446u6204+00
-0,5046025940+n0
=-0,52203705290+00
~0,53942256A0+00
=-0,5562803870+00
-0,5719551570+00
-0,585506184D+00
-0,59563689%0+00
-0,600515193p+00
=0,59754R8410p+00
«0,5830526590+10
-0,55173301AD+00
«0,4958970010+400
-0,40424%2390+400
-0,260045324n+00
-0,414289784D0-01
«0,312764%5119D-13

0.99998n210p+02
0,16416n421+02
0.916974307p+00
0.130nR81752p+01
0.,115475383p+01
0.1256119580+01
0.13135/802p+V1
0.1356661970+01
0.131347A100+01
0,127345220p+01
0.1166412550+01
0.133304295n+01
0,10794563104+01
0.,109156572p+01
0.118a24744p+01
0.126n36R8910¢01
0.131026451p+01
0.,1329301930+01
0.1321289820+01
0,1312793660+C1
0,129712251p+01
0,12R206703p4+01
0,12669u568D+01
0,128988038(p+01
0.123545386D+07
0,1218891100401
0,120u453456D401
0.1189034120+01
0,1174900370+01
0.116072582D+01
0.11459%6000+401
0.,113550416p+01
0,1119494630+01
0,110989721n+01
0,1103920030+01
0,110404519p+01
0,111426051p+01
0.113944209p+01
04118659657D0+01
0,1264965190+01
0,13R304577p+01
0,152842925p+01
«0¢5917094250+401
0,6745533860+402
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TABLE 4.4
COMPARISON OF INFLUENCE FUNCTIONS GENERATED USING FINITE ELEMENTS TO THE

ANALYTIC SOLUTIONS FOR LINE LOADS ON A CYLINDRICAL CAVITY

(OUTER BOUNDARY OF FINITE E

e —— =
UIMENSIONLESS RADIAL DISPLACEMENT

THETA (DEG.)

ANALYTICAL SOLN,

FINITE ELEM. SOLN

PERCENTY DIFF,

LEMENT MODEL FIXED)

———— ]

DIMENSIONLESS TANGEMTIAL DISPLACEMENT

ANALYTICAL SOULN,

FINITE ELEM, SOLN

PERCENT OIFF.

0,5729572220-04
0.1192297600+00
0,238637212D400
0.3579658160D+00
0.,477335848D+00
0,5967455940400
0,716101222p+090
0,835458274D+00
0,954821203p+00
0,1074243400D+01
0,119361354p4+01
0,1312932390+01
0,1432312410+01
0,162134097n+91
0,18354975%9D+01
0,2078285%51D+01
0,2353566630+01
0,26656T346D+0%
0,30199094€0+01
0,.542195844D401
0,3878561320+01
6,9397466140001
0.,39R753243p+01

0,56%9020570001°

0,6423806400+01
0,7295660810+01
0,3291235590+01
0.942A921140+01
0.107313831D+02
0,12225204A0+92
0,1394212410+02
0,159205104p+02
0,182068724D+02
0,208587134D+02
0.2394757870+02
0,2756479980+02
0,3182817510402
0,36R948671D+02
0,4298087860+02
0,503364473D+02
0.596147584D+02
0,7142301980+02
0,8732824110+02
0,*Y0000000D+02

0,8405213850+01
0.3978000200+401
0,357573873D+01
0,334021768D401
0,3172942550+01
0,3042997820+01
0.293676097p+01
0.2846AR35300+401
0.2768843460401
T 0.269993566D+01
1 0,263824920p+01
0.25824008104+01
0,253132406p4+401
0.245844%87%p+01
s 0,238535314pn+01

' 0,231197061p+01

'0,2228272580+01
0,2164235590+01
0.20897505204+01
6.201478207p+01
0.,193923853D+01

0.186301699;+01

0,1786007960+01
0,1704G77790+01
. 0,162906983pD+401

C0,15487839€D+01

0,1467009440+01
C.1383480790+01
0,129788124D+01
0,1209R4439D+01
0,111894244D+01
0,1024671250+01
0,926459716D4+00
0,823652580D+00
0,7155427670400
0.,6013865670+400
0,4805282350+00

0.3525684%090+00

0,2177978410+00
0,730953060D0-01
=0.6104543500-01
«0,1855363740+00
~0,2584576620+00
«0,260000000p+00

0.,512170075p+01
0.386643688D+901
0.353069714p+401
0.3288273050+01
0.3123644020401
0.299459703D+01
0,288960074p4n1
0,260088436D+01
0.272395439p+01
0.2655917A8p401
0.2594556160+01
0.253945631p+01
0.248807385p+01
0.2415363R87p¢ng
0.2342450320401
0.226956923n4+n])
0.219648611p+n}
0212311695040
0.20493u390p+C1
0.197508131p+n3
0,1900253G66D+01
0.182475659001
0.174848758)+01
0,167132651D+01
0.159312586p¢01
0,151369139p+01
0.1432814720401
0.1350265400+01
0.126574012D+01
0.1178901490+01
0.108934281D+01
6.9966060020+900
0,9001581010+00
0,7993993240+00
0.6937124390+00
£0,582439164D400
8.4650343610400
0.341214038D+00
0,2113480423p+00
0,7720953860~01
-0.5623269600~-01
«0.1770235420400
-0.2513583930+00
«0.2576689120+¢00

0,390651940D+N2
0,2804507710+01
0.,12596443004+01
0.,155%127130+01
0.15537163¢0+01
0,159056290D+01
0,16058586£D401
0.161u1N0631D4+01
0,16212210Ap40y
0.163n0327120491
0.1656137770401
0,166296816D4+01
0,1708600N02404
0.1752522320+01
0,1796S3410D+01
0.1833997290+01
0.186690703D+N
0,189991492D+01
0.1933561R¢0D+ M
0.19704Tu32p+NY
0.,201n349470+01
0.205%67969D+N)
0.210n795960+401
0.2151614600401
0.220641051p4N1
0,22658142904+01
0.2330913660+01
0.240085658C+01
0.24764%29980+01
0,25575936£0D+01
0.26446960404+01
0.,273p9%122D4+01
0,283R937850+401
0,2944597810+01
0,30508767604¢01
0,3150619640+01
0.322434212D401
0.32204A40u4D+01
0,296486782D4+01
0,1134213330+01
0.7883863860+01
0.458pr22808D+01
0,2749678235D401
0,896572115D+00

«0,26000840504+00
«0,2632827680+00
-0,274R953110+00
-0.280875131D+00
«0.,286443680D+C0
«0,2917086050+00
-N,226726810D+00
«0.3015417080400
«0.,3061R25290+00
«0,310,729590+400
«0,31501256720400
~N,3132543340400
-0 ,3233739220+400
«0.329671248n+00
-0,3365755480+400
-Nn,3un0698810+00
e0.3%221387204+00
=D,361046941D+00
«0,3705089170400
~0,380939415400
-Nn,3920719060+00
(. 4040361290400
-N,416AR52042p400
-0,4305284390+00
~0,445057605p+00
-N,4604123200+00
-~0.4765306180+00
-0,4933121110+00
«0,5106016540+00
-0,5281676380+00
-0,5456756620+00
-0,5626524490400
-N,57843065704+00
-0,5920776370+00
~0,602285708D+00
-N,6072191730+00
=N, 6042816820400
~N,589772784D+00
-0.55835848006+00
-N,5022502920400
«N, 4099145440400
«0.264081614D+00
-0,3911453450-01
-0,3922152310-13

=0,5123169%630-05
«0,2241601510+00
=0,2722107230+00
=0,2769749320+00
~0,262807751D400
«0,2876353930+00
-0.29234118np4+00
«0,2968817350400
=0,30150A75404+00
-0,3059R833071)+00
=0,310527nu8p+n0
~U,.314103%360)¢00
-0,318907213p+n0
=0,3249per070)400
-0,3313320670)400
-0,3383157€00+30
~0,345993a3504+00
=0,3544599070+00
-0,363651u40400
«0,37360324404n0
-0,384340°490400
=0,3958581370400
-0,4081726%1D400
-0,4212968930+00
~0,435196257904¢n0
-0,44985718A0+00
=0,465190480D+00
-0,4831037570400
=0,49742250u4D+00
-0,5139163660+00
-0,530248R02D400
-V,5u459354470p400
~0,5603204960+00
-0,5724718620+00
-0,5811184600+00
=0,5844806680+00C
~0,580066P23N0+00
-9,5643704930+00
-0,5323999190+00
~0,4769633440400
~0,3875551800400
-0,2486050550+400
~0,3956634740~01
-0,120427A48D-13

0.99998n03020+02
0.16446%1070402
0.976%858420+00
0.1388508120+0)
0.126933470D+01
041396328910+ 01
0.1473000100+01
0.15453a5480+01
0.152646695D+01
0.1%50951391D+01
0,142u8434704+01
0,161%64A60N+VT
0.13810rua60+01
0414263527490+01
0.1557A%197p+01
0.167236406D403
0.17659n09upe0]
0.,18238R2050+0]
0.1877300750401
0.1925A1037p+01
0,1971992a7p+01
0.2024074460+01
0.20Pr212743p+01
0.214423613D+01
0,221574153p+01
0,2292530940401
0.237972907D+U}
0.207477293p+01
0,25911n223n+01
0,2693247800+401
0.,2827111560+01
0.297107ne8p+01
0,3130913090+0)
0,3311351990+01

0,35144R6290+01

0.37u86948uC+01
0.,400721377p+01
0.430713170D+01
0,4649085190+01
0,5034730400+0)
0.5454640300+03
0.586052131D401

~01155102150+01

046929346880+02
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5. CONFORMAL ELASTIC CONTACT OF A SPHERE
INDENTING A SPHERICAL CAVITY

5.1 Introduction.

Hertz [1881] provides an analytic solution to the problem of
two contacting bodie; with quadratic surfaces. In his theory, Hertz
assumed non-conforma] contact, i.e., that all of the dimensions of
the contact patch were small compared to the radii of curvature of the
bodies, hence justifying the approximation of the surfaces in the
contact region, by elastic half spaces. Hertzian thebry may be
applied to the problem of a sphere indenting a spherical cavity, how-
ever, it is restricted in its application to the analysis of cases
“where the confact patch remains small. If the sphere and seat are
closely conforming, i.e., their radii are nearly equal, then Hertzian
analysis can only be applied for very small loads for which the
contact patch remains smail. '

Goodman and Keer [1965] have analyzed the conformal problem
of a sphere and seat with nearly equaT radii. They present results
for areas of contact larger than those that could be analyzed by
Hertzian theory. As in the theory of Hertz, Goodman and Keer
- assumed that points on surfaces of the sphere and seat respectively
which 1ie along a line parallel to the line of applied load will
merge after deformation. Furthermore, the basic equation in their

formulation enforces this constraint. It will be shown that this
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assumption in conformal theory can lead to erroneous strains and dis-
placements when large areas of contact are analyzed.

In section 5.2 the problem of an elastic sphere indenting an
elastic spherical seat will be formulated, using the conformal contact
model discussed in chapter 3. The numerical procedures used in the
solution will be reviewed in section 5.3 and the numerical results

will be presented in section 5.4.

5.2 Formulation

Consider the conformal contact problem of an elastic sphere
of radius R] indenting an elastic spherical seat of radius R2
(R2 > R]). It is assumed that‘the sphere and seat are equilibrated by
pressure distributions equal to the interfaéia] contact pressure and
diametrically opposite the contact region. Contact regions will be
therefore limited to hemispherical contact. A cross section of a
sphere, body 1, and spherical seat, body 2, in point contact at 0 is
illustrated in figure 5.1,

Let us establish a global coordinate system (Q, 9, 2) whose
origin will be fixed at the initial point of contact, 0, such that the
X - y plane is tangent to the sphere at 0 and z is directed into the
sphere. The cross section of the sphere and seat in thevx - z plane
represent the "contour curves" of the sphere and seat and each curve
is a circle.

It is initially assumed that two points which will merge
after deformation, A on body 1 and B on body 2, are defined such that

their distances from the origin along their respective contour curves




XY Yo

Fig. 5.1. Conformal contact between a sphere and spherical
seat or a cylinder and a cylindrical seat.
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are equa], i.e., 51 =S, (Fig. 5.1). Points A'and B are defined by
vectors'?] and ?;, and the vector difference between them is defined
by ?t the vector valued profile function. Alternatively, points A
and B may be located on their respective contour curves by angles
measured at the center of the contour curves from the z axis as
shown in figure 5.1. Point A is defined by ang1é w and point B is
defined by angle ¢. In the notation to follow in thisrchapter all
angles y will refer to locations of points on the sphere while all
angles ¢ will denote points on the seat.

A local coordinate system (r, t, ») will be constructed at

point A such that unit vector ¥, which represents the "mean normal®

forms an acute angle o with the z axis, where

¥+@
2

(5.1)

unit vector t is defined to be n/2 radians clockwise of ¥ and & is

such that

" A oA
w txr (5.2)

The contact criterion can then'bé‘fokmulated by examining the
displacements of points A and'B.‘”ConSidérjthé'fo11dwing'displacements
as illustrated in figure 5.2. Point A moves through a rigid body:

; ; translation A1,para11e1 to the z axis, to A', and through an elastic




Fig. 5.2. Displacements on sphere and spherical seat
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displacement w. along the inward normal of the sphere to A".

1
Similarly point B undergoes a rigid body translation A2 parallel to
the z axis to B' and an elastic displacement W, directed along the
inward normal of the seat to B". Because of the symmetry of the
contacting surfaces about the z axis, there will be no displacements
on either body in the w direction.

We now impose the contact criterion, i.e., that the
projection of the separation (S = A" B") in the direction of the mean

normal r must vanish. Following equation (3.6) this criterion may be

expressed in the form:

S, = fees ¢ L +(W,+ W, ) coa A (5.3)

where
Acs v-¢ (5.4)
2
§=-(a,+4a,) (5.5)
and

g? = "’6&1;25i41. <:.£2§.:.!Z!_.) (5.6)

& is derived in appendix F and r are the x and z

1x* "ox® Mz22 T2z
—_— ——d .
components of vectors r and ro as shown in figure 5.2. f and § are

the profile function and approach respectively.
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It should be noted that the peak strains will remain small
(as required by the assumption of linear elasticity theory) only if
the initial separation f (see fig. 5.1) is small compared to the local
radii of curvature. Therefore some additional but consistent approx-
imations are possible in the derivation of equation (5.3), (see
appendix H). However, these approximations result in no significant
reduction of computational effort.

Consider now the (n1, L1 y]) coordinate fixed to the sphere
as shown in figure 4.7. Point A can be located in spherical coordi-
nates by (y, B, R]). The elastic displacement W at A, shown as u.
in figure 4.7, can be expressed in terms of the pressure distribution

p (', B') in the form

W, (%,4,9),E) = R} f PYE )G, (Y, 8,7, 8) ¥, E ) tim Y'df'dY’  (5.7)
A,

where G (¢, B, ', B', vy E]) is given by G in equation (4.22) and
Q, is the contact surface defined on the sphere.
Similarly in terms of the (”2’ Tos YZ) coordinate system in

figure 4.11, W, can be expressed in terms of p (¢, B) by

Wt 4.6) = RE[ OB RIC, (B, BA 0, 6, JainBalp dp’  (5:8)
K,
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where G, (o, B, ¢ B', Voo E2) is defined by equation (4.35) and 2,
is the contact are defined on the spherical seat. The integrands
in equations (5.7) and (5.8) may be simplified by utilizing the
symmetry of the pressure field. Because of the symmetry about the
z axis of the contact surfaces in figureb5.1, the pressure distribution
must also be symmetric about z. Hence, p (x, B) may be replaced by
p (x) in equation (5.7), (see fig. 5.3) and p (¢, B) in equation
(5.8) may be replaced by p (¢). Making these substitutions and
combining equations (5.3), (5.7) and (5.8) the contact criterion,

equation (5.3) becomes

S = fmf—é'mu +

'fMAR,’f?(7')6,(7,'ﬁ,v;ﬁ;vhf.)w '}"'.dfd‘v" ¢
Ny

eor AR BIG,(4.1.6,8,v,,E,)im pdtd 5" (5.9)
4’ '

The boundary conditions require that the separation, Sr’ be zero with
positive pressure inside the contact regions&ﬁ and QZ. Also, the

separation must be positive with zero.pressure outside the contact
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Fig. 5.3. Axisymmetric pressure loading.on sphere
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regions. In symbolic terms

S,z 0 INSIDE 2 - (5.10a)
P(B), (V)20  insive n (5.10b)
S, >0 OUTSIVE .0 (5.10c)
P(¢),6’(’Y) =0 oursidbé n (5.10d)

It is required to determine the contact regions, Q] and»QZ, the
pressure distributions p (¢) and p (¢), and the approach, &, such
that relationships (5.9) and (5.10) are satisfied.

The determination of the contact regions, 2 and 2,5 poses a
major problem in the solution of equation (5.9). However, choosing
some tentative "candidate" regions, Q]* and QZ*, will establish
equation (5.9) as an integral equation of the first kind which can
be solved using the "Simply Discretized" method of Singh and Paul
(1974]. In the'confofhaf“édﬁtécf‘brobiém76fia"sphere indenting a
spherical seat, it is known a priori, that the boundary of Q] will
always be a circ]% on the sphere defined<by_wmax.l Also, the

boundary, ¢

* . .
max’ of 92 may be chosen such that 52 = s] for the

boundaries of Q] and QZ*‘ Thus
R,

S — (5.11)
Drmax e YV max
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The region Q] is written without an asterisk since it can be defined
as the exact contact region on the sphere corresponding to some
unknown force F. 92* is denoted with the asterisk since it is chosen
according to equation (5.11). Further details on the refinement of
the tentative region 92* are discussed later.

A "Simply Discretized" solution is found by subdividing Q]
and 92* into a large number of small cells. The normal pressure is
replaced by a piecewise constant pressure field (pressure pi_and
cell i). Thus @, and QZ* are divided into N cells apiece, such that

1
‘the centroid of cell i of Q] merges with the centroid of cell i of

Qz*. This is achieved by first choosing the cells on 91 and then

using the relation So = S to determine the corresponding cells on
*

92 .

Because of the known symmetry of p (¢) and p (y), the cells
on each surface will be chosen as rings symmetric about the n axis
as shown in figure 5.4 for the sphere. Cell i will be located on the
sphere between w1and W1+1 while that on the seat will be between ¢1
and ¢i+]' N field points are chosen on each surface such that the

th h

location of the j~ field point is within the jt cell. Equatﬁon

(5.9) may be written in discretized form for field point j as,

S, = feot F-8noack «

N
teotd 2 B[ G (¥, 0, 9,41, E )aim ¥apd ¥’
i

N
umkE&LG?(¢3,55,¢,'FIv,,E,).aany"dﬁ'dﬁ' (5.12)
X8
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The integrals in equation (5.12) may be evaluated numerically. The
location of all the field points will be along the contour curve
located in the M and Ny, = Y, planes so that B'j will always be
considered zero. Equation (5.12) may be written for each field point.
Thus N linear algebraic equations are generated in N + 1 unknown
(N values of Pi’ and §). One additional equation is needed to produce
a unique solution of the unknown variables. The last equation is
generated by writing equation (5.12) for one additional field point.
The Tocation of this field point is, in theory, arbitrary but, as will
be discussed later, the results are sensitive to this choice.

Having generated N + 1 linear algebraic equations in N + 1
unknowns the piecewise constant pressure distribution, P, and Smay
be found. It now remains to check the validity of the method used to
determine 92* and the location of two points A and B which merge after
deformation. In each case, the merging points or boundaries were
initially chosen such that So = Sq- {t will now be illustrated how the
"point-mating" procedure, described in chapter 3 may be utilized to
refine the choice of the outer boundary of 92% and of points on the
seat such that they merge with the appropriate points on the sphere.

The total separation after deformation of points A and B may
be computed from equation (3.13a). Ffor the case of a sphere indenting
a spherical seat, the value of Se is zero. Furthermore, the contact
criterion required that Sr is zero. Therefore, the only non-zero

component of separation is St where

Se = <ot A (U-Uy) + - & (5.132)

-
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and
dy = & ot (- ) (5.13b)

Fo = F | uim ¥ (5.13c)

The components of displacements Uy and u, may be computed using the

pressure distribution (Pi) of the "Simply Discretized" solution by

N
u, O, "J') =¢‘zr ke A’,sz, (4?1/ B V8, V6 ) am Y dfoly’
: R, (5.14a)

and

N
U, (4, 4) = Z ’ifzzj A (%')/J') ¢/,F)'uuf;)4‘5ﬂ,¢'d/'d 4
e ¢ (5.14b)

where H]and H2 are the influence functions for displacements in the
tangential direction on the sphere and seat respeqtive]y. H] is
defined by H in equat{on (4.24)_and H2 is defjned by H in equation
(4.32). Having evaluated St,‘at a11:f%e1dlpoints,‘the "point-mating
procedure" may be used to find coordinates for:a}new set of field
points on the seat which7up6n repéatihg the solution procedure just
described will give rise to new values of S, which are smaller than
those previously calculated., Originally, mating pdints on the sphere
and seat were located by assuming that the distances along their

respective contour curves were equal, i.e., S, = Sy as illustrated in -
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figure 3.1. The "point-mating procedure" discards this relation after
the initial solution and replaces it with relations (3.16 a,b).
Repeated iterations yield values of St which become smaller if the
process converges. The limits on the final values of St depend largely
on the cell density and the values of wmax' Numerical experiments
have shown that for large values of v . (> 10°), with few cells
(< 10), the final value of S, which can be achieved is of the order
of € (w] + w2) where € = 0.1, For problems with up to 15 cells values
of € = 0.01 can be achieved. Considering, essentially Hertzian
problems (wmax.< .1°), € = 0.01 may be achieved on the first solution.
The location of¢maxdefining 92* may also be refined using the
"point-mating procedure." In most cases this was performed auto-
matically since¢maxwas chosen as the additional field point.

Having generated the displacements Wys Wos Uy and Us via
equations (5.7), (5.8) and (5.14) at field points along a contour
curve, the strains EBB’ eww on the sphere and 888 and €¢¢ on the seat

may be formulated. These quantities will be needed later for

1

accuracy analysis. It can be shown' that the strains on the surface

of a sphere for the axisymmetric set of displacements are

-W, (¥;) L _Uiw)
R

€ge ) = P

2oL (Y;) (5.15)

YsokoTnikoff, 2d ed., 1956, p. 184.
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and

(5.16)

N - / O/((l(”?%) ‘All(ﬁbi)
8’”"(%)'& dy ~ R

th

where wi is the coordinate of the i~ field point. Similarly, for

the spherical seat

l‘4i(’¢5i.) 4 U, (‘4{)

ot (¢,
2 2 (%) (5.7

é:g*; <:¢&‘) =

and

/ juz(ﬂc‘) A W, (6;)
R, d¢g Py

(5.18)

€¢¢ (¢:) =

th field point on the seat. These

where s is the coordinate of the i
strains may be computed using finite difference approximations for the

derivatives in equations (5.16) énq (5.18)].

5.3 Numerical Procedures

In each "Simply Discretized" solution the boundaries on Q]
and 92 are defined by wmax-and ¢max'respect1ve1y. Each contact region
was divided into N cells by first subdividing wmax and ¢max into N

equal intervals subtending equal arc lengths. The cells were then

Ycarnahan, [1969] p. 431.
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defined by the surface generated by revolving the arc lengths about
the M and ) axis. Typical cells on the sphere are illustrated in
figure 5.4. A1l field points were located on the contour Tines
defined by the ot and Ny = Y, planes. (see fig. 5.4)

The integrals in equations (5.12) and (5.14a, b) were .
evaluated in part by aha]ytic means. Consider the integration of an
)

over the region Q1j (sz). For all cases where i # j, the integra-

influence function corresponding to the ith field points at wi (¢i
tion was performed by Gaussian quadrature. When i = j, i.e., when
the field point is located within the cell of integration, the
integrand is singular within the region of integration and the
singularity is located at the field point. Integration over the
singularity is performed analytically while that over the remaining
portion of the cell is performed numerically using Gaussian
quadrature.

Consider the portion of a cell on a sphere of radius R] near
the field point at (wc, 0) as shown in figure 5.5. The region is
bounded by arcs‘defihed by B = A, ¢ = Ve - A and y = wc + A
(A < <1). Similarly, consider a region on the seat. For both the
sphere and seat when small cells are used, the boundaries of the cell
fall within the Timits of this region. In this case the values of
s and ¢i defining the cell boundaries were used to bound the region.
For small A, taken in this analysis to be 1/4 degree, the region

around the singularity on the sphere will be approximated by a small
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Fig. 5.5. Small region surrounding a field point on
spherical surface.

Fig. 5. 6 Planar approx1mat1on to a reg1on surrounding a

field point on a spherical surface.
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planar annular element with inner radius rys outer radius Fos and

half angle p where

h = RAam(VYe-a)/con %, (5.19a)
s R oain (Veta)/co Ve (5.19p)

and
P = A cos Vi (5.19¢)

Similar relations in terms of ¢c, R2 and A may be written for the
definition of rys T’ and p for the seat. The derivation of res '’
and p is shown in appendix P. The displacement at the field point
C due to a constant force applied to a general point A within the
region is governed by the Boussinesq influence function as shown in
appendix A. The integration of the Boussinesq influence function
over an annular element is derived in appendix G. Therefore, the
integration over a cell i for field point i was performed in two
parts. First a small annular element surrounding the singularity
(field point) was defined, and the integral within that region was
computed using the analytical solutions in appendix G. Second the
remaining portion of the integral was computed using 2-dimensional
10 point Gaussian quadrature. Similar approximations were made for
the spherical seat.

The "point-mating procedure" was employed to identify the set




m
of field points on the seat which merge with the field points on the
sphere., The iteration was terminated when values of St for all field
points were within their respective values of [(w] + w2)€ ;. € was
taken to be 0.1 for preliminary results while accurate solutions were
obtained by choosing € to be 0.01.

For all cases that follow, the extra field point was located
at the outer boundary of the contact region. With this location, the

final determination of ¢ma on the seat is automatically performed,

X
i.e., ¢max is the final codrdinate of the extra field point. The
"Simply Discretized" method of solution always pkovided‘stab]é
pressure distributions even though Singh and Paul {1973] noted that
for the problems they treated, this method generated an ill-
conditioned set of equations which resulted in unstable (widely
varying and negative) pressure distributions. This stability can
possibly be attributed to the choice of axisymmetric cell distribu-
tions which had not previously been attempted in the work of Singh
and Paul. The solutions will be termed "quasi stahble" because the
so]utjon becomes unstable if the location of the extra field point is
moved within the contacturegion. The success achieved when the extra
field point is 1oca;ed’on the bouhdary_of_thé contact region can
possibly be attrfbuted to the fact.tﬁatvthe ]ocation.is‘farfhest from
all other field points, on thé‘avekage, than’any location inside the
contact region. This choice could yield the most independent extra
equation thus providing a more-stablé'ébTution;i»'

Having generated N + 1 equatidns in N + 1 unknowns
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(N values of P, and 8) as described in section 5.2, the set was first
reduced to N equations in N unknowns by subtracting the equation
written for the extra field point from the others thus eliminating &
from the set. The remaining N equations were solved using Gaussian
elimination. The approach, &, was then computed from the N + 1St
equation.

The strains corresponding to equations (5.17), (5.18), (5.19)
and (5.20) were computed, from equations (5.15) - (5.18), using the
values of Wis Wos Uy and Uy at each field point on the sphere and seat.
The required derivatives du]/dw and du2/d¢ were evaluated using
central difference formulae for field points i where i # 1 or N. For
i = 1 forward difference formulae were used while for i = N backward
difference formulae were used.]

The tota]vforce applied to the sphere can be calculated from
the pressure distribution found in the analysis. Consider the discre-
tized pressufe distribution Pi on cell i. The force in the - n
direction from Pi applied to a small sector area 27 R]2 sin pdy is
2mR 2 P{ cosp sin ydy. Integrating this between wi-and1g+], the force

1
. . . A 2 : . 2
in the - n, direction due to P, on cell i is mR," P, (sin Vi1 -

sin2 wi)' Thus the total force applied to the sphere can be computed

as

N
F= ZmRYF (ain Yy, -tin' %) (5.20)

c=l

lsee Carnahan [1969] p. 431.
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5.4 Numerical Results

A computer program termed CONSPHERE was written to analyze
the conformal contact between an elastic sphere and seat. The

following numerical example was considered

R] =1 in

R2 = 1.01 in

V=V, = 0.25

E, = E, = 30 x 10° psi

Ypax - 0-5 degrees (5.21)

In this example and the ones to follow, the value of Poisson's
ratio was chosen to be 0.25 so that the results could be compared to
those of Goodman and Kerr [1965]. The results are presented in

dimensionless form. Let,

2R
R = ’A? .f;:a' (5.22)
Y 4 !
and o .
1-v,%) 1- V2
£k = (I-v + (-b) (5.23)

TTE, mE,




114

Then define

Dimensionless Pressure in cell i, Pif = P.k (5.24a)
k
* R
Dimensionless Load, F = F g% (5.24b)
' m
* R]
- Dimensionless Radii, Ry = ﬁ;‘ (5.24c)
* R2
m
) o x 6
Dimensionless Approach, § =g~ (5.24e)
m
Ra
Dimensionless Ratio of Radii = g= (5.24f)
1

The contact region was divided into 15 cells such that
¢j+1 -wj = 0.033 degrees. The pressure distribution obtained from
CONSPHERE is compared in figure 5.7 to the pressure distribution

predicted by Hertzian theory for the same applied force of

F* = 0.7294 x 10°1%. The approach &" was found to be 0.3858 x 1072 in.

while the value predicted by Hertzian theory is 6* = 0.3895 x 10'8 in.
This problem falls within the domain of Hertzian theory, and the
comparison of these results indicates that the solution produced by
CONSPHERE is in general agreement with those of Hertz.

Now consider the non-Hertzian problem where y = 30 degrees

max
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Fig. 5.7. Pressure distributions between sphere and seat,
Ypax = 0-5°.

ma

GLL



116
and the dimensions and elastic constants are the same values as used
in the previous example. Figure 5.8 illustrates the pressure distri-
bution between the sphere and seat. Also shown is the Hertzian
pressure distribution for the same applied force. It should be noted
that the conformal contact solution predicts a higher peak stress and
a smaller contact region than the Hertzian solution. The approach
for the conformal solution is 8 = 0.1281 x 10”7 and the total
compressive force was found to be F* = 0.1780 x ]0'7. The radial and
tangentia] displacements are tabulated in tables 5.1 and 5.2. It is
interesting to note that the tangential displacements on the sphere
are all positive (increasing ¢ is positive direction) while those on
the seat are negative (increasing ¢ is positive). This can be under-
stood if one considers the sphere to be flattened out while the seat
is a depression which elongates or grows deeper.

Additional problems were solved in order to compare the load-
approach relationship to that obtained with the solutions of
Hertz [1881] and Goodman and Keer [1965]. Figure 5.9 illustrates the
load-approach curves for Hertzian theory, the theory of Goodman and

Keer and experimenta1 data reported by Goodman and Keer. The results

are plotted for half angles of contact between 0° and 20°. Figure 5.9

clearly illustrates a strong correspondence between the present
theory and the experimental data reported by Goodman and Keer. The
1oad-approach curve for the Hertzian theory indicates more compliance
than that of the other theories while the load-approach relation of

the Goodman and Keer theory is less compliant than the others. All

-
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Fig. 5.8. Pressure distribution between sphere and seat, V¥ max - 30°.
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TABLE 5.1
SURFACE DISPLACEMENTS ON SPHERE
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Radial Tangential
_ Displacements Displacements.
[Deg] W x 104 in up x 104 in
1.0 14.12 0.03869
3.0 14.04 0.1194
5.0 13.87 0.2035
7.0 13.62 0.2841
9.0 13.29 0.3578
11.0 12.88 0.4300
13.0 12.39 0.4968
15.0 11.82 0.5580
17.0 11.16 0.6123
19.0 10.43 0.6635
21.0 9.627 0.7116
23.0 8.745 0.7562
25.0 7.792 0.7998
27.0 6.766 0.8475
29.0 5.672 0.9165
30.0 5.099 0.9711
- an0 - . - )
Yrax 307, R] 1.00 in, R2 1.01 in,
E, = 6 =

E, = 30 x 10° psi, vy = v, = 0.25
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TABLE 5.2
SURFACE DISPLACEMENTS ON SPHERICAL SEAT

Radial | Tangential
, Displacements Displacements

(08q] wy x 10% in u, x 104 in
0.9888 1.73 - 0.1789
2.966 11.66 - 0.5307
4.944 11.53 - 0.8735
6.922 11.32 - 1.211
8.899 11.04 - 1.562
10.88 10.70 - 1.858
12.85 10.29 - 2.158
14.83 9.812 - 2.439
16.81 9.267 - 2.699
18.79 8.654 - 2.929
20.77 7.974 - 3.125
22.74 7.228 - 3.286
24.72 6.414 - 3.404
26.70 5.534 - 3.470
28.68 4.587 - 3.463
29.67 4.089 - 3.418

Unax = 30% Ry = 1.00 in, R, = 1.01 in,

£y = E, = 30 x 10° psi, v, = v, = 0.25
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Fig. 5.9 Load-approach relationship for conformal contact of
a sphere and spherical seat. Q
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of the theories agree for loads less than F (1 - v) / R]ZE = 2 while
the experimental data near this region deviates from tﬁe theories.
Goodman and Keer [1965] attribute this discrepancy to experimental
error.

The effect of Poisson's ratio on the load-approach curve was
also studied. The variation of force and approach for values of
Poisson's ratio of v = 0.25 and v = 0.30 were plotted together in
figure 5.9. With increasing Poisson's ratio the materials were found
to be less compliant.

A comparison was made of the va]ues,predicted by the various
theories, of the radius of the contact region a = sin (¢) and 5.
Figure 5.10 illustrates the results of Hertz, Goodman and Keer, and
the present theory. The results from CONSPHERE fall much closer to
the Hertzian theory than those of Goodman and Keer.

Knowledge of the displacements at discrete points, namely,
the field points, enables one to also calculate the surface strains
given in equations (5.15) - (5.18). Both the displacements and
strains for several problems will be compared to those obtained in
the analysis of Goodman and Kéer [1965]. It'will be shown through
this comparison that the assumptions used by Gobdman and Keer can
produce erroneous displacements and strains in problems where the
contact angle exceeds wmax = 60°.

In the derivation of fhe contact criterion used by Goodman
and Keer (see appendix L) it is assumed that points on both bodies,

which are initially equidistant from the axis of symmetry come into
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Fig. 5.10. Approach vs. radius of contact boundary for
conformal contact of sphere and spherical seat.
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contact after deformation. To show‘that this assumption can not be

true for large angles of contact, consider the contact of an elastic
sphere in a rigid seat, as shown in figure 5.11. According to
Goodman and Keer points A and B which merge after deformation, are
located such that R] sin w = R2 sin ¢. Since the seat is rigid,
point A on the sphere will merge with point B on the seat solely due
to a displacement u, of point A. This displacement may be viewed as
having components in the ¢ and t directions, i.e., wy and uj, where
¥ is directed radially inward on the sphere and £ is perpendicular

to ¥, i.,€.,

el

A A
Uy = W, r +U,t (5.25)
where (see appendix M for derivation):

/D:./ = K, (/-m¢)—k,(/-m'vo)+6 (5.26)
W, = |Uzlcosy (5.27)

W, = Iaz"‘i‘"')b (5.28)
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Fig. 5.11. Sphere in contact with seat (displacements of
points A and B constrained). :
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and
¢=amw'/n(-g Am Y ) (5.29)

Now consider the case where

Ry = 1.0 in.
R, = 1.001 in.

E, = 30 x 10° psi, E, = 30 x 1010 psi

vy = 0.25, v, = 0.25

Vnay = 60° (5.30)

Since E2 >> E] the seat will be considered completely rigid
and equations (5.27) and (5.28) will be used to compute Wy and Uy
for results obtained in the Goodman and Keer analysis. The displace-
ments for the present conformal theory of section 5.2 were computed
using equations (5.7), (5.8) and (5.14). The displacement results
for the problem at hand are compared in tables 5.3 and 5.4. Also
tabulated are the displacements that arg obtained when the pressure
distribution obtained through CONSPHERE was applied to a finite
element model of the sphere.] The radial displacements of all
solutions agree well. The tangentié] disb]acements obtained through

the Goodman and Keer analysis are much higher than those of CONSPHERE

]The paper of Goodman'and Keer [1965] did not provide any data
for angles of contact above 20 degrees. Therefore no comparable
finite element model could be analyzed using their pressure distri-
bution.
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TABLE 5.3

COMPARISON OF RADIAL DISPLACEMENTS W

Goodman v Finite

v and Keer CONSPHERE Element
[Deg] Wy x 103 in Wy x 103 in Wy x 103 in
3.0 1.171 1.166 1.184
9.0 1.147 1.142 1.157
15.0 1.100 1.095 1.109
21.0 1.029 1.025 1.040
27.0 0.9368 0.9330 0.9480
33.0 0.8231 0.8197 0.8315
39.0 0.6895 0.6864 0.6965
45.0 0.5374 0.5348 0.5364
51.0 0.3686 0.3663 0.3535
57.0 0.1850 0.1828 0.1738

Unay = 6075 Ry = 1.000 in, R, = 1.001 in,

E, = 30 x 10° psi, E, = 30 x 10'0 psi, v, = vy = 0.25

1

2
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TABLE 5.4

COMPARISON OF TANGENTIAL DISPLACEMENTS Uy

R T
up X 10" in Uy X 107 in Up X }O in

3.0 0.6135 0.2001 0.2065
9.0 1.816 0.5972 0.6160
15.0 2.946 0.9737 1.002
21.0 3.951 1.306 1.338
27.0 4,773 1.576 | 1.607
33.0 5.345 1.770 1.806
39.0 5.584 1.881 1.910
45.0 5.374 1.892 1.915
51.0 4.552 1.811 1.858
57.0 2.849 ©1.657 | 1.718

Yooy = 60°5 Ry = 1.000 in, R, = 1.001 in,

E, = 30 x 10° 10

. psi, E, é’391g 10 ‘psi} vy = v, = 0.25
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or the finite element solution.
Having computed the displacement fields, the strains €ag and

€,, may be calculated using relations (5.15 - 5.18). They are

Y
tabulated in tables 5.5 and 5.6 for the analysis by Goodman and Keer,
CONSPHERE and finite element theory. It can be seen that the EBB
strains are zero for the analysis of Goodman and Keer which is
expected'since the circle defined by y does not enlarge or shrink
after deformation. The strains EBB from CONSPHERE are in general
agreement with those produced through finite element analysis. The
computation of e&w reveals that near the boundary of the contact
region, those strains predicted by the Goodman and Keer analysis are
much larger than the solutions of CONSPHERE and the finite element
analysis. Furthermore, the results of CONSPHERE agree with those

of the finite element analysis.

Both €8 and €y decrease as Y increases according to
CONSPHERE and the finite element analysis. This is to be expected
since the pressure diminishes when y increases. On the other hand
the values of ¢ , predicted by the Goodman and Keer model increase as

vy

¥ increases. Finally, the values of EBB and eww are nearly equal for
small ¢ in the solution of CONSPHERE and finite element analysis

which is expected in this axisymmetric case.

5.5 Conclusions
The problem of a sphere indenting a spherical seat has been
solved. The pressure distribution for Yrax - 0.50% has been shown to

compare closely with the Hertzian solution. (fig.5.7) For %nax = 30°,

-
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TABLE 5.5
CONPARISON OF STRAINS e,
Goodman Finite
" and3 K.eer. CONS3PH.ERE. E'Igm?nt.
[Deg] x 10° in/in x 10 in/in x 10 in/in
3.0 - 0.002744 - 0.7868 - 0.7894
9.0 - 0.02506 - 0.7730 - 0.7692
15.0 - 0.07172 - 0.7567 - 0.7563
21.0 - 0.1472 - 0.7377 - 0.7355
27.0 - 0.2593 -0.7M15 | - o0.721
33.0 - 0.4210 - 0.6741 - 0.6626
39.0 - 0.6545 - 0.6280 - 0.6181
45.0 - 0.9975 - 0.5681 - 0.5437
51.0 - 1.520 - 0.4788 - 0.4171
57.0 - 2.360 - 0.3299 - 0.2873
Vay = 6075 Ry = 1.000 in, R, = 1.001 in,

. = 6 i = 10 1 P =
E] 30 x 10~ psi, EZ 30 x 10 psi, Y \)2 0.25
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TABLE 5.6
COMPARISON OF STRAINS €,
Goodman Finite
v and Keer CONSPHERE Element
[Deg] in/in x 103 in/in x 103 in/in
3.0 0.0 - 0.7842 - 0.7900
9.0 0.0 - 0.7653 - 0.7680
15.0 0.0 - 0.7318 - 0.7354
21.0 0.0 - 0.6849 - 0.6912
27.0 0.0 - 0.6237 - 0.6325
33.0 0.0 - 0.5471 - 0.5535
39.0 0.0 - 0.4542 - 0.4604
45.0 0. - 0.3455 - 0.3444
51.0 0.0 - 0.2196 - 0.2029
57.0 0.0 . 0.07525 - 0.06036
_ 0 _ . _ .
Vmax = 6075 Ry = 1.000 in, R, = 1.001 in,
Ey = 30 x 10° psi, E, = 30 x 10'°

1 psi, vy =V, = 0.25
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the resulting pressure distribution has a higher beak stress and
smaller contact area than the Hertzian solution for the same applied
force. The load-approach curve was plotted and was found to agree
closely with the experimental results reported by Goodman and Keer.
The plot of approach vs. contact area indicates that the results are
nearly equal to those of the Hertzian theory for angles up to 20°.

The displacement field and resulting strains were found to be
reproduced when a finite element analysis was made of the sphere under
the pressure field predicted by CONSPHERE for wmax = 60° (the seat
being rigid). It was shown that in using the constraint imposed by
Goodman and Keer in their analyéis,1arger tangential displacements
and €¢¢ strains will be produced. In view of the fact that the
uniqueness theorem for contact theory (proven by J. J. Kalker 1971)
guarantees a unique pressure field and displacement field for a given
contact area, it can be concluded that the total solution predicted

by CONSPHERE is correct since the finite element model reproduces the
same displacement field as CONSPHERE when subjected to the interfacial
pressure predicted by CONSPHERE. '




6. CONFORMAL ELASTIC CONTACT OF A CYLINDER
INDENTING A CYLINDRICAL CAVITY

6.1. Introduction
The solution of the two dimensional contact problem of two
cylinders in contact or the problem of a cylinder indenting a

cylindrical seat can be obtained from Hertzian theory by allowing the
1

radii of curvature of each body to become infinite in one direction.
However, such a solution is only valid within the assumptions of
Hertz, i.e., the in plane dimensions of the contact area must remain
small compared to the in plane radii of curvature. Therefore, Hertz's
solution is not appropriate for moderate Toads, when the difference in
the radii of the cylinder and cylindrical seat is small.

A more recent theory, pertaining specifically to the problem
of a cylinder indenting a cylindrical seat has been published by
Sjtaerman [1949] for the problem where the contact pressure on the
cylinder and seat are equilibrated by identical pressures located at 7
radians from the coﬁtact region. Sjtaerman's solution is based on the
formulation of a contact criterion in the radial direction of a polar
coordinate system fixed at the center of the cylinder. He does not
consider displacements tangential to the surface. In order to compute

the radial displacements within the contact area, Sjtaerman forms the

1Timoshenko and Goodier, 3d. ed. [1970], pp. 418-20.

132




133
integral of the annown pressure distribution times the influence
function for the cylinder and seat. These integrals are incorporated
into the contact criterion and the unknown pressure field is determined
using a finite difference technique.

A third theory specific to the problem of a disc contacting a
hole in an infinite plate has been published by Persson [1964]. In
contrast to the work of Sjtaerman and the present analysis, Persson
considers the disc to be equilibrated by a force located at the center
of the disc with the seat being fixed at infinity. Persson initially
assumes the existence of both tangential and radial displacements of
surface pdints. He found that by assuming the contact region to be
circular and neglecting second order quantities, the contact criterion
was independent of tangential}disp]acements and is identical to that
derived by Sjtaerman. Persson proceeds to‘develop the final form of
the contact criterion in terms of a singular integro-differential
equatioh which he solves.

The problem of an elastic cylinder indenting an elastic cy-
Tindrical seat is so]ved in this chaptér using the conformal theory
developed in chapter 3. No assumptions pertaining to the tangential
displacements are retained in the final solution. The loading condi-
tions applied are the same as those]used in@the Sjtaerman analysis.

Section 6.2 contains the formulation of the problem and the
numerical procedures are dichssed in section 6.3. The results are

compared to those of Hertz, Sjtéefman»qhd'Persson in section 6.4,
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Consider the conformal contact of an elastic cylinder of

6.2 Formulation

radius R] indenting an elastic cylindrical seat of radius R2

(R2 > R]). It is assumed that the bodies are equilibrated by pressure
distributions equal to the interfacial contact pressures and applied

at m radians relative to the contact region. (see fig. 6.1). This
assumption is not inherent in the method of analysis but it does effect
the form of the influence functions used in the analysis to follow.
Theretore the contact region will be Timited to contact over half the
cylinder, i.e., a half angle contact of % radians (which should cover
all cases of practical interest). A cross section of the cylinder,
body 1, and cylindrical seat, body 2, is shown in figure 6.2-a.

The contour curves are the same as
those obtained in the analysis of the sphere and seat, therefore much
of the development takes the same form. The reader is referred to
chapter 5 for the details of the formulationomitted in this section.

It must be remembered that the problem of a cylinder and seat in
contact is two dimensional and the force applied at any point on either
body represents a line load with units [1bs/in].

Surface points on the cylinder and seatwill be described as
in the last chapter, i.e., coordinatesy pertain to points on the cyl-
inder and coordinates ¢ defines points on the seat. The initial
location of points A and B on the contour curves are chosen in the same
way as those on the sphere and spherical seat, S1 = Sy The local

A

coordinate system (;, %, w) is fixed at point A as before, however, the 4;;>
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Fig.6.1. Cross section of cylinder and cylindrical seat in
conformal contact.




Fig. 6.2-a. - (repeated) Conformal contact between a sphere and
spherical seat or a cylinder and cylindrical seat.

136
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unit vector @ is parallel to the axis of the cylinder.
The contact criterion of equation (5.3) exactly represents

the criterion needed for the solution of this problem, i.e.,

S,.=7[/co:t E-Sma+ (W, +w, ) 204 A (5.3)

where f is the profile function, § is the approach and W, and W,
represent the displacements in the radial dfrections of points A and
B on the cylinder and seat respectively. The quantitiés Oy A, 8

and £ are defined by equations (5.1), (5.4), (5.5) and (5.6) respec-
tively.

Now consider the (a], 2]) and (32, 22) cartgsian coordinate
systems fixed to the cylinder and seat respectively as illustrated in
figure 6.2. Point A is Tocated on the cylinder by polar coordinates
(v, R]). The elastic displacement Wy at point A, can be expressed as

a function of the pressure distribution p (¥) by

.

W,(¥, v, £) = R] POPIG, (%, %], E)dy’ (6.1
£, :

where G, (b, V', V]; E]) is given by G in equation (4.40) and Q] is the
contact surface on the cylinder. Similarly, on the cylindrical seat,

the elastic displacement W, may ‘be definéd,by

Wa,%,,6,) =R, [ 0(#') G,(9,8) 1, £ )P’ (5.
AR AL




CYLINDER —

Fig. 6.2. Coordinate systems for cylinder and cylindrical seat
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where G, (o, ¢, Vs Ez) is defined by equation (4.53) and Q, is the

2
contact region on the cylindrical seat.
Combining equations (6.1), (6.2) and (5.3) the contact

criterion may be written
é;;- = JI:CA*Q i? = <§4C4>d X +
t oot A R,jo’(v')G, v, ¥, v,E)dY’ +
fQ,

+teor A R, fm')ﬁz (9,0, v,,€,)dp’ (6.3)
2,

The supplementary conditions associated with equation (6.3) are
equations (5.10 a-d).

The initial choice of the tentative contact region QZ* is
based on the same assumptions used in the previous chapter, i.e.,

S1 75y so that

R

¢rmx = ra Vinax (6.4)
]

A simply discretized solution of equafion (6.3) is found by first
subdividing Q] and 92*~into a large number (N) of infinitely long
cells which are oriented such that thé infinite dimensions of the
cells are parallel to the axis of the cylinder. The normal pressure
distribution is then approximated with a piecewise constant pressure

distribution such that the pressure in each cell is constant. The
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ith cell on the cylinder will be denoted Qli while that on the seat

will be termed 921. The choice of 921* js such that it merges with
Q5 This is achieved by first choosing the cells on Q] and then
using the point mating procedure to determine the cell boundaries on
92*. Cell i will be located on the cylinder between Vs and bio4
while cell i on the seat will be defined between ¢, and ¢ 4 10 N
field points are chosen on each body such that one lies within each
cell. The N + 1 field point was located on the boundary of the

th

contact region on éach body. The location of the i~ field point on

the seat is determined using the point mating procedure so that it is

th

assumed to merge with the i field point on the cylinder. Equation

(6.3) may be written in discretized form as

S, = fen B -8 + (6.5)

N |
sk ‘%P‘JG,('\I;, 'V;,VUE»)“'V""
i

It
y ! /
+ cot A ‘Z' f’,-fG,(¢5,¢,V,,E,)d¢ (§=4we)
) Q2

The integrals in equation (6.5) may be evaluated analytically as
described in the following section. Thus N + 1 equations are gener-
ated in N + 1 unknowns which may be solved for by Gaussian elimination

as discussed in section 5.2.
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It remains to check the validity of the assumption used to
determine the location of merging points. This is done in precisely
the same manner as described in section 5.2 using the point mating
procedure, The separation in the tangential direction is determined
using equation (5.13a),.however, the tangential displacements Uy and

Uy used in equation (5.13a) are now defined by

U, (v) = gR R.f/'/, (¥, %, v,6)dy’ (6.6)

=t
A4

and

N
Uz (¢,,) -"5 P¢' sz Hz(%‘/ 9, vy, 6) dg’ (6.7)
N3

“with H] and H2 defined by H in equations (4.41) and (4.54) respec-

tively. The remaining steps in the point mating procedure are performed
as described in sectidn 5.2.

For the two dimensional prob1ep of plane strain, the only
meaningful strains which:can be:calculated (from the surface

displacements) are eww for the cylinder-and e¢¢ for the seat. The

strains €’ Erw? EWu>and e, are all identically zero while ¢

rw » €

dw ry’ ro
and € Can not be calculated with only knowledge of the surface point

displacements. € and-e¢¢‘can be calculated using equations (5.16)

and (5.18) respectively.
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6.3 Numerical Procedures

In each simply discretized solution the boundaries on 2 and
Qp were defined by Yrmax and ¢ respectively. The contact region on

each body was partitioned into N cells by dividing Pmax O by N

h

‘Pma X

and defining the it cel to 1ie between y; and y, , 4 where

_ Umax s .
Vi 41 "W T ——N—-and LTI 1-(wmax / N} (see fig. 6.3). The

pressure distribution between v = 0.and ¢ = - wmax was assumed to be

th field point on the cyl-

e Vi o+ ¥+
inder was located on the contour curve at an angle of —y

symmetric with respect to the gl axis. The i

The N + 1 field point was located at wN + 1" Similar locations for
the field points on the seat were chosen in terms of ¢i’ ¢i + 1 and
ERE

The integrals in equations (6.5), (6.6) and (6.7) were
evaluated using the analytic formulations derived in appendix 0. Since
the pressure distribution is symmetric about the N axis (fig. 6.3),

th cell on the cylinder (or seat) consisted of

the integral over the i
two parts, the region between wi and wi + 1 (or ¢i and ¢i + ]) and
between - V. and - [P (or - ¢, and - ¢, | ]). In evaluating the
tangential displacements in equations (6.6) and (6.7) the integrals
were multiplied by either + 1 or - 1 depending on the relative posi-
tions of the field point and regions of integration. If the region of
integration was located to the left (in the -~y or - ¢ direction) of
the field point the integral was multiplied by - 1; otherwise it was

multiplied by 1. This procedure accounted for the sign of the

direction of the displacement due to the position of the loading. The

-




Fig. 6.3. Cell boundaries on éyh‘nder
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integréls when evaluated at their singularities present no problem
since the results arefinite as shown in appendix 0.

The point mating procedure was employed in the same manner as
described in section 5.3, to converge on the coordinates of a set of
merging field points. Also as described in section 5.3, N + 1
equations were generated and the variables were solved for using
Gaussian elimination.

The total applied force per unit length can be calculated
from the discretized pressure distribution determined in the analysis.
Consider the constant normal pressure Pi over cell i on the cylinder.
The component of incremental force in the - n]direction at angle y

is Pi cos | R] dy . Integrating this between U1 and Vi 41 the force

per length over cell i becomes Pi R] (sin Vi g " sin wi)' Recalling
that the pressure Pi acts over an identical region between - s and
ull R the total force on the cylinder may be found by summing the

forces on each cell, i.,e.,

N
F<2R, Z F (an ¥, -4iny,;) (6.8)
¢!

Finally the approach & may be calculated by back substitution of the
P.ig in the N + ftequationwritten at the N + 1 field point (see
chapter 2 for a description of the complete simply discretized method

of solution).

-
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6.4 Numerical Results

The following numerical example in plane stress was
considered:

R1 = 1.00 in

R2 = 1.01 in

Ynax = 40 Deg v (6.9)

E, = E, = 30 x 10° psi

1 2
Vi =V, = 0.3

A program CONCYL was written using the analysis of section
6.3. The results for the above problem were compared to those of
Persson [1964].

The pressure distributions obtained by Persson and CONCYL
are plotted in figure 6.4. A close correspondence exists between the
two solutions. The displacements calculated in CONCYL are tabulated

in tables 6.1 and 6.2 as functions of the angles ¥ and ¢.
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Fig. 6.4. Pressure distribution between a cylinder and cylindrical seat, ¥max e
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TABLE 6.1

DISPLACEMENTS ON CYLINDER

. Radial 3 . Tangential 3
1 Displacement x 10 Displacement x 10
[Deg] [in] [in]
1.33 2.019 0.1101
4.00 2.006 0.3288
6.67 1.979 0.5429
9.33 1.939 0.7492
12.00 1.886 0.9450
14,67 1.819 1.127
17.33 1.739 1.294
20.00 1.646 1.443
22.67 1.540 1.573
25.33 1.422 1.682
28.00 1.290 1.771
30.67 1.146 1.841
33.33 0.9885 ' 1.896
36.00 0.8189 S 1.945
38.67 0.6368 | 2.010
40.00 0.5409 _ 2.039

PLANE STRESS RESULTS FOR:

= o = ] = 1
wmax 40~ , R] 1.00 in, R2 1.0] in,

Ey = E, = 30 x 108 psi, v, =

1 1 v, = 0.3
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TABLE 6.2

DISPLACEMENTS ON CYLINDRICAL SEAT

_ Radial 3 . Tangential 3“
¢ Displacement x 10 Displacement x 10

[Deg] [in] [in]

1.31 0.3097 -0.07100

3.93 0.3078 -0.2124

6.55 0.3040 -0.3521 .

9.17 0.2984 -0,4889
11.79 0.2910 -0.6216
14.41 0.2817 -0.7490
17.04 0.2706 -0.8700
19.66 0.2577 -0.9834
22.28 0.2431 -1.088
24.91 0.2268 -1.182
27.54 0.2089 -1.265
30.16 0.1894 -1.334
32.79 0.1683 -1.389
35.43 0.1458 -1.427
38.06 0.1219 -1.444
39.38 0.1094 -1.446
PLANE- STRESS RESULTS FOR:

Vg = 40° 5 Ry = 1.00 in, R, = 1.01 in,
Ey = E, = 30 % 10% psi, v, = v, = 0.3

1 2
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The radial displacements on the seat are larger by a factor
of 1.5 to 2.0 than those on the cy]inder. As in the case of the sphere
and seat, the tangential displacements on the cylindrical seat were
found to be negative while the tangential displacements on the cylinder
were positive. The physical interpretation of this result is the same
as that expressed in section 5.4 for the sphere and seat. The values
of force and approach for this problem were found to be

5 1bs/in and § = 0.5120 x 1072 in.

F =0.6922 x 10
In order to correlate results with Hertzian theory, the

problem for y = 0.1 degree was analyzed. The resulting pressure

max
distribution is plotted in figure 6.5 along with the results of Persson
and Hertz. There is close agreement between all solutions as would be
expected for this case of small contact area.

Figure 6.6 illustrates the relation between the load F, radial
difference AR,] and the maximum angle of contact, wmax‘ Along with
the results of CONCYL are plotted the solutions of Hertz, Sjtaerman
[1949] and Persson. _

There is close agreement betheﬁ‘a11 solutions for angles of
contact less than 15 degrees. For 1arge} angles of contact there is a
close correspondence between the results of CONCYL and those of Persson.
The curves corresponding to Hertz(é:thedry and thafiof Sjtaerman

deviate significantly.

Figure 6.7 illustrates the variation of maximum pressure with

]AR equals R2 - R].
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maximum contact angle for both the present theory and that of Persson.
Figure 6.8 relates the variation between the maximum pressure, radial
difference and load. In each of the last two figures the results of
CONCYL show close agreement with the results of Persson.

The computer costs in running CONCYL were minimal, being about
twenty-three cents for a fifteen node case. This corresponds to about
five seconds of CPU time on the IBM 360/65 computer. The low costs in
CONCYL can be attributed to the fact that all integration was performed

analytically rather than numerically as in CONSPHERE.

6.5 Conclusions

It can be concluded that the problem of a cylindrical seat
has been successfully solved using the conformal theory presented in
chapter 3. The pressure distributions for the problems where
wmax 40° and w 0.1° were found to agree with the results of
Persson [1964]. In addition the latter results also corresponded to
the solution of Hertzian theory. The displacements were calculated
for the case where Vnax = 40°, ”The tangential components were found
to be of opposite sign on each body. The load vs. subtended angle
relationship was found to agree with the so]ut1on of Persson, however,
the solution of SJtaerman [1949] dev1ates s1gn1f1cant1y for ang]es
greater than 20 degrees. The results of maximum pressure vs, contact
angle also agreed well with that of Persson,

In general there.was strbng agreement with the Persson solu-

tion. This close agreement supports Persson's assumption that the

contour curve of the contact region is circular. The correlation
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between the solutions presented and the Hertzian solutions broke down
for large angles as expected. The results of Sjtaerman also deviated
from those of the present theory which may be explained by the fact
that Sjtaerman may have used an extremely crude finite difference
scheme since he could not take advantage of modern computational aids

at the time of publication.




7. CONTACT STRESSES FOR MULTIPLY CONNECTED REGIONS

7.1 Introduction

Cohtact problems involving multiply-connected contact
regions have received little attention in the literature, possibly
because of the non-Hertzian nature of such problems. - Such problems’
arise, for example, whenever either of the contacting bodies have
surface pits (e.g., casting defects, corrosion pits, machining
faults, etc.). Barely perceptible surface flaws can cause high
stress concentrations, and consequently, rapid fatigue failure.
Experimental observations by Tallian [1967], Martin and Eberhardt
[1967] and Littman and Widner [1966] indicate that such surface
defects may be potential nuclei of microcrack propagation and can
produce rapid destruction of rolling surfaces.

Based on the degree of difficulty associated with their
solution, these problems may be divided into the following two
categories:

(i) Contact region known a priori:
When the indentor contact surface is flat (or almost flat) it
will be called a "stamp," and the contact surface is defined
a priori by the stamp boundary. When the indentor surface
is not flat, but the indentor has a substantially higher

elastic modulus than the indented body, the indentor can be

- 156
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treated as rigid, and the shape of the contact region becomes
known for any given depth of penetration relative to the
indentor tip. These are also termed “punch" problems.

(ii) Elastic Contact Problems:
When the indentor is not a stamp, and the two bodies have
comparable elastic moduli, then the geometry of the contact
region is unknown a priori, and it must be determined by
solving the appropriate Elasticity problem.

To the best of our knowledge, only one recent solution by
Chaud et al, [1974] for three dimensional elastostatics with multiply-
connected regions, has been reported in the literature. However,
solution of a few special cases of rigid indentor problems (category
[i]) have been found by Olesiak [1965], Parlas and Michalpoulos [1972]
and Chiu [1969].

Olesiak [1965] solved the problem of an annular flat faced-
stamp pressed on an elastic half space. Parlas et al. proposed the
solution for a "bolt shaped" indentor pressed into an elastic half
space with a cylindrical hole. The cylindrical (bolt) section of
the indentor was assumed to be rigidly bohded to the wall of the
cylindrical hole Whi]é.fhé bottom face of the bolt head presses
against the half space. w; " |

Chiu [1969] solved the problem of. an infinitely long rigid
cylinder in contact with.ﬁﬁ'eiaéfic h%if.space, wheré the rigid
cylinder has a groove ruhﬂing'ﬁ&ra11é11fofits-éxis.

In this chapter, results‘fndicate-that problems of
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both categories (i) and (ii1) may be successfully solved by an extension
of the method introduced by Singh and Paul [1974].

A brief synopsis of the formulation and application of the
"simply discretized" method of solution are given with some limitations
and advantages of this method in section 7.2. The example problem of a
pitted sphere in contact with a complete sphere is described in section
7.3. Techniques devised for an accurate numerical solution and rapid
convergence are described in section 7.4. Results for an example are

given in section 7.5, and conclusions are reviewed in section 7.6.

7.2 Formulation

We will restrict our attention to "nonconformal" contact
problems where the dimensions of the contact region are small compared
_to appropriate radii of curvature of the undeformed bodies. There-
fore, we may assume that the contact surfaces do not deviate signifi-
cantly from a reference plane in which we imbed fixed cartesian
axes (x,y). Furthermore, we shall consider only those cases where
the two bodies undergo a relative rigid body translation of amount
§, in a direction normal to the reference plane, plus an elastic
deformation. The translation & is called the "relative approach" and
js positive if it moves the bodies towards one another. We will also
assume that the applied l1oad consists of a force F, acting normal
to the reference plane, and that the contacting surfaces have a
sufficient degree of symmetry that the resultant of the contact pres-

sures on each body is a force of magnitude F which acts through the
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origin 0 of the reference plane and equilibrates the applied force F.
The fundamental integral equation governing nonconformal

contact problems was shown in chapter 2 to be

Peigldidy o fex, )

S(%,9) = R (x-x) e (4-%)7 (7.1)
N
where the "elastic parameter" k is defined ag
('“M') [I-V:)
k = * (7.2)
n-e-, T"Ez_

In the foregoing equations, Vis Voo and E], E2 denote-the Poisson's
ratio and Young's modulus respectively for body 1 (indentor) and body
2 (indented); p(x',y') is the normal pressure over the contact
surface; @ is the projection of the contact surface on the (x,y)
reference plane; f(x,y) represents the initial separation (or gap)
between surface points on the two bodies, located at the same (x,y)
coordinates, before the load F is épp]ied; S(x,y) is the separation
of the opposed surface points after the load is applied.. Figure 7.1
illustrates the initial separation f for a case of axial symmetry
where f is a function f(r) of the radial .coordinate r.

The condition of -impenetrability of matter: requires that -
S(x,y) should vanish insddé'Q.andritvshould be: positive outside of
2. Conversely, the interfacial .contact pressure p(x,y) should be

positive inside Q, and it should vanish identically outside of it.
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In symbolic terms,

8 =0 foR (X,Y) INSIDE AnD ON QO (7.3a)
S >0 for(%,9) oursivEn (7.3b)
P(X,4Y) =0 for(x,4) ouvrsiea (7.4a)
P(X,Y) 20 ForR(X,Y) IvSIDE AvDON A (7.4b)

In short, a solution of the problem requires the determina-
tion of the boundaries of region o, a pressure field p(x,y), and an
approach & which satisfy relations (7.1)-(7.4). The associated

load may be found from the expression
F= [Pey)dxdy (7.5)
al

The absence of foreknowledge of the contact region @ is a major
impediment to a mathematical solution. This obstacle is overcome by
postulating a tentative contact region 9*. Singh and Paul [1974]

proposed that the "interpenetration curve" described by

[(xl'd):d ' (7.6)

be used as a tentat{ve contact region. Equation (7.6) defined the
contour of the curve formed by interpenetratioh (without deformation)
of the two surfaces through an arbitrary distance d. Picking a
suitable value of d establishes the candidate contact region Q*.

Using this as a pre1iminary estimate of @, equation (7.1) is readily <;;>
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recognized to be an integral equation of the first kind.

Equation (7.1) can be solved using the "simply discretized"
method of Singh and Paul which is reviewed in chapter 2. A "simply
discretized" numerical solution of equation (7.1) is found by
subdividing @ into a large number of small cells. The pressure
function p(x,y) is replaced by a piecewise constant pressure field
(pressure Pi in cell i). Thus if Q is subdivided into N cells,

equation (7.1) becomes

N dx'dy’
5 k B V (-x)2 e (4-9')

i)

-8 +fx9)s8S .7

where a2 is the region of cell i. In equation (7.7), N values of P
and the constant & are unknowns to be determined. The centroids
(xi,yi) of the cells are taken as field points (x,y) and equation
(7.7) is written for each field point. The integrals in equation
(7.7) are evaluated by numerical quadrature. Thus N linear algebraic
equations are generated. An additional independent linear equation,
essential for a unique solution, is generated by picking up a field
point other than the cell centroids. The choice of this additional
field point is otherwise arbitrary, however, it does affect the
‘quality of the results, as discussed in section 7.4.

Having thus generated a set of N + 1 linear equations, the

N unknown pressures, Pi’ and the approach §, are obtained through
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Gaussian elimination. The next step in the solution is to determine
whether the tentatively selected region of integration Q* is indeed
the true contact region. This is done by utilizing the inequa]ities
(7.3) and (7.4) and systematically adjusting the bbundaries of §
until these inequalities are satisfied.

Singh and Paul [1974] showed that the "simply discretized"
method was unstable in the general case and was incapable of pre-
dicting the proper étress distribution. For such problems they found
it necessary to introduce stabilizing techniques known as the
"Redundant Field Point Method," and the "Functional Regularization
Method" (see Singh [1972], Singh and Paul [1973]).

The amount of numerical computation required for either of
the two last methods exceeds that of the Simply Discretized Method.
Accordingly, it is desirable to use the latter whenever circumstances
permit.

In this chapter we will focus on a problem with complete
axisymmetry, and it will be shown that the Simply Discretized Method
provides an excellent solution, provided that the maximum possible
use is made of the symmetry of the problem.

In other words, we recognize that all cells located at the
same‘radius from the axis of symmetry have the same contact pressure
at their centroids, and the number of unknown pressures Pi is reduced
from the number of cells to N (the numbgr of annular rings formed
by an axisymhetric distribution of cells). By using the Simply

Discretized Method, we are able to utilize Inequality (7.4) to
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iteratively refine the region of contact Q. Upon satisfying
Inequality (7.4), it was invariably found that Inequality (7.3) was
satisfied.

The nature of the Functional Regularization Method prohibits
the use of Inequality (7.4) as a basis for refining Q.

Numerical experiments have indicated that iteration pro-
cedures based on Inequality (7.4) converge much faster than those
based upon Inequality (7.3). Further details of the iteration pro-

cedures will be found in sections 7.4 and 7.5.

7.3 Pitted Sphere Geometry

As a typical example, contact of a pitted elastic sphere of
radius R] with an unpitted elastic sphere of radius R2 is considered.
A section of the pitted surface by a plane through the axis of
symmetry is shown in figure 7.1. The local contour of the pitted
surface is idealized as a torus smoothly blended into a sphere.

The blending point P, where the pit joins the main surface, is
located at a distance s from the load line. The center of curvature
0' of the pit blending arc lies on _the conical su;face of semivertex
angle t. The meridional radius:of curvature_of the torus is re:

Note that the discontinuity in curvature which occurs at P
does not preclude the use of the method of solution being used.

A tentative contact reg}on, Q,‘is:established by a hypothetical inter-
penetration of the two spheresthrbugh a distance d. The annulus of

contact so formed is bounded by an inner radius r, and an outer radius

I
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Fig. 7.1. Geometry of pitted surface
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Fig. 7.2. Generation of annular interpenetration
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ro as shown in figure 7.2, where suitable coordinate axes r, and z
are indicated. The values of L and o for a given problem are
determined as follows. The z coordinate of a point C(p,Z]) located
at a distance p from the z-axis on the toroidal portion of body 1
(see fig. 712), where
-/D < (7.8a)
is:
2= R-(R-re)cos T -\ rt-(1-£)*
(7.8b)
where
R-r)h
,['-' ' (I )b (7.8¢)
R,
=1 P
T an! b (7.9)

The z-coordinate of a poiht on Spheﬁé 2, lbcéted at a distance p from

the z-axis is given by

2,=d-[R,- (R~ 1 (7.10)

Since point C lies on both the torus and the lower sphere, 2y = 2y;

thus equations (7.8b) and (7.10) require that
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dz R,- (R -V ) cod T

“[e™- (-2 1" ¢ Ry (8- 1)

P < rs : (7.11a)

Furthermore, the z-coordinate of a material point C' located on the

spherical portion of body 1, at a diétance p from the z-axis, is given

by

2,: k- (R2-p7)" (7.12)

where

P >n (7.12a)

Hence, for a given interpenetration d, the radius p of a point on the

intersection of sphere 2 and spherical region of body 1 is given by
nk 2 a0’/
d= k'-(m"/) sz "(?z 'P) (7.]3&)
P>ohn (7.13b)

The geometry of the toroidal surface indicates that for re < R],
equation (7.11) has two solutions for p. Let o1 and Py (p] < p2) be
roots of equation (7.11). Two cases are readily identified.

Case (i). When both inner and outer radii of the assumed

contact region lie inside the blending radius, i.e.,

f, <rs | (7.14)
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In this case the contact is assumed to be completely confined to

the toroidal segment of body 1, in which case

= Ah
A

Case (ii). When the outer boundary of Q lies beyond the

(7.15)

blending radius (as shown in fig. 7.2), i.e.,

,;; > ’1 (7.16a)

In this case
rr=A (7.16b)

and the outer radius ro is determined from solution of equation (7.13).
Note that equations (7.11) and (7.13) are transcendental in p, which
can be found by an iterative procedure'(e g., Newton Raphson).

In order to f1nd the 1n1t1a] separat1on f(r), shown in figure

7.1, itis only necessary to flnd

) e R S ’

4

where z, is found from equat1on (7 10) w1th p=Er and d = do;-d0 is

the value of d correspond1ng to 1n1t1a1 contact as shown in figure 7.1.
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To find 25 set p, = r and use equation (7.8b) for points on the torus
(r < rb), or equation (7.12) for points on the upper sphere (r > rb).

In order to find the initial separation do’ it is necessary
to note from figure 7.1, that when d = do’ the slope of the torus

matches that of the lower sphere at the contact point; i.e.,

i, _ d Z,
dP ~ dp A

where the derivatives are found from equation (7.8b) and equation
(7.10). Equation (7.17), together with equations (7.8b) and (7.10),
suffice to find do’ and the two coordinates (r,z) of the initial
contact point.

Having found the boundaries (rI and ro) of the contact region
Q and the initial Separation function f(r), we may proceed to solve

the governing integral equation (7.1).

7.4 Numerical Solution Procedure

The contact region Q is subdivided into N annular rings.
Since a steep pressure gradient is expected near the pit, the annular
rings near the inner boundary are very narrow in width. It was also
learned from experience that the peak pressure always occurs at
some radius r where r < o Guided by this consideration, a majority
of the rings are clustered in the region PpSr<r. Exploiting the
axisymmetry of the problem, we assume that the pressure is constant

in each ring. The rings are numbered sequentially from 1 to N, from

-
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the inside out, and the pressure in the i-th ring is assumed to be
an unknown constant Py Let r; and L be the inner and outer

bounding radii for cell i; thus ry s and rNey 5T Each ring

o
is further subdivided circumferentially into m equal sectors by
drawing (m) equispaced radial rays from the center of Q; the angle A¢
between two adjacent rays is 2m/m. The sector, bounded by radial
rays 1 and 2, is shown in figure 7.3. |
The region of the sector located in the i-th ring, between

ray j and ray (j+1), is identified as Sij; and its centroidal radius

ij° Elementary ca]cu]ations'show,that

. a4
ﬂ*' = $ 4 -zi(,::' + 0t ) (7.18)
“ 3 ap (Vi + 17)

The centroids of the first sector shown in figure 7.3 (i.e., where
j = 1) are selected as field points.

" Thus for the field point'z, équations (7.7) and (7.3a) reduce

to

N m| dA;
R % R Z|—— L -d +f(€u)=0 (7.19)
= sl 3. cul

(¥




ADDITIONAL
FIELD POINT

Fig. 7.3. Subdivided and labeled contact region (portion)

0L1
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from equation (7.16c). c.

where f(r) is calculated for r = B 138

21
is the radial distance from field point & to the elemental area dAij
located in Sij’ For most cells, the integral in equation (7.19) may

be replaced by the approximation

T. ___j dA; . Al
(92 . Ciit - Ciit (7.20)
(F]

where Eij is the distance between field point 2 and the centroid of
the region Sij’ whose area is denoted by Aij' It was shown in
Singh [1972] that, in general, equation (7.20) is a‘very useful
approximation which results in a significant reduction of computa-
tion time, without compromising the accuracy of results. However,
for regions located in the immediate vicinity of the field point &,
the errors due to the approximation (7.20) may be unacceptable.

To avoid such errors, 1 is evaluated by numerical quadrature within

ij2
cells located near the field point. The criterion which must be

satisfied in order to use equation (7.20) is

Ciiyy > max(rag,ar) (7.21)

In equation(7.21), rA¢ and Ar are the side 1ength$ of a typical cell.

Notice that when the field point % lies inside the region Sij (i.e.,

j=1,1=2)), Eijz = 0, and hence the integrand in equation (7.15)

has a singularity. However, for such cases, an approximate analytical
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solution for the integral is readily constructed as shown in
Appendix G..

In this manner, N linear equations corresponding to the N
field points aré generated. An additional linearly independent-
equation is generated by selecting point P' at the outermost boundary
of the contact region as field poinf (N +1). The location of this
additiona] field point has a pronounced affect on the solution, which
deteriorates as P' is moved inside the boundary. It is plausible
to assume that this béhavior is due to the gradual increase in cell
width Ar with r (see fig. 7.3) which was introduced to keep the aspect
ratio of the cells from becoming excessive. With the cells so
designed, the location of P' shown in figure 7.3 maximizes the distance
between P' and its nearest neighboring field point. This in turn
tends to maximize the amount of independent information supplied by
the equation written for field point-P', and should tend to minimize
ill-conditioning effects on the coefficient matrix generated.

‘Thus (N + 1) equations in (N + 1) unknowns are generated, and

equation (7.19) assumes the form
e . = -t F
bi; P; f+é (7.22)
and the equation using P' as a field point becomes,

\ A “fon +9 (7.23)
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where fi is the value of the "initial separation" function f(r) at
the field point i. fN+1 is the value of f(r) at P'; and summation
from 1 to N is henceforth implied over repeated subscripts. From

equations (7.22) and (7.23), & may be eliminated to yield

/ |
3‘.". F = ,{ (7.24)

where
-V, (7.25)

and
f; , ='}‘;,, - 7{: (7.26)

‘When equation (7.24) is solved for P., using Gaussian elimination, the
resulting pressure distribution is usually found to predict negative
contact pressures in the immediate vicinity of the inside boundary,
r=r. The axisymmetry of the problems enables us to maintain the
outside boundary fixed, and iterate on the inside boundary where the
predicted pressure is incorrect. The iteration scheme is best

explained with the aid of the numerical example given in section 7.5.

7.5 A Numerical Example

The fo]lowing‘egamplg prob]ém was. considered.

R, =R, =1 1in

1 2
Vi TV, = 0.3
E, = E, = 30 x 10% 1b/in?
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re = .006 in
Ty T .00025 1in
The results are presented in dimensionless form. Let
R 2ﬂl Rt
- (7.27)
m R+ R,
Then, we define
Dimensionless pressure in ring i, Pi* = k P. (7.28)
. . . * _ kF
Dimensionless load, F = —
R (7.29)
Dimensionless distance from origin of Q, r* = r/Rm (7.30a)
Dimensionless approach, 5 = 6/Rm (7.30b)
* = r /R | 7.31
ry = rb/ m (7.31a)
* R 1b
re = rc/ . (7.31b)

Figure 7.4 shows the pressure distribution near the inside boundary
for the uniterated solution. The pressure distribution far from the
pit agrees closely wfth the Hertzian So]ution for unpitted spheres
(not shown in the figure). However, the pressure in cell #1 is highly

negative. The pressures in the successive cells are less and less

-
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negative, until at point Q] the pressure curve crosses the r*-axis.
The shape of the pressure curve readily suggests the iteration scheme.
The new region of integration is assumed to have inner radius
ri = OQ]. The discretized equation set (7.24) is generated corre-
sponding to this new region £, and thus a new pressure vector is
generated (see first iteration, fig. 7.4). This new curve also has a
negative peak (weaker than that of the uniterated solution) at the
innermost field point. The new point of intersection_is QZ’ which
defines the inner boundary of Q for the next iteration. The process
is thus continued until all pressures are positive. In figure 7.4,
the third iteration yields the desired solution. It is found that
this solution also satisfies Inequality (7.3), thus qualifying as the
"true" solution of the contact problem. The complete pressure distri-
bution is shown in figure 7.5. Notice the essentially Hertzian
pressure distrfbution (corresponding to contact of unpitted spheres)
at r* > 6 x 10=*. Thus the effect of the cavity is of a strictly
localized nature. However, as the cavity is made larger (e.g.,
rI/roli 0.3) the pressure curve departs completely from the Hertzian
case. For example, figuref7.6_show$ a,typica1'pressure distribution
for rI/ro = 0.623, along with the Hertzian solution for unpitted
spheres corresponding to identical.vaTues of thrust F.

In order to establish confidehce in the solution, it is
necessary to study its Cdnvéfgence4With cﬁangéziﬁ ﬁhé number of cells
used. It must be recognized that it is necessary for the cells to

be densely concentrated only in that region where a'high pressure
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gradient exists. Therefore, for purposes of convergence studies,
we have systematically varied the number of cells within a fixed
radius reon® This radius is chosen arbitrarily for éach probiem in
such a way that the major area of stress concentration lies inside
the radius ’con® For the example problem considered, Yeon = .0003.
Let Ncon be the number of rings located within radius eon® Figure

7.7 illustrates the convergence of the peak pressure, Pa Figure

ax’
7.8 shows the convergence of stress concentration factor with Ncon'
Stress Concentration Factor (SCF) is defined as the ratio of the peak
computed pressure to the peak pressure for unpitted spheres under
equal thrust. Notice both figures7.7and 7.8exhibit convergence for
NCon > 8.
¥ The load-approach curve is shown in figure 7.9. Itis obvious

from figure 7.9 that the compliance characteristics of the balls
(with small pits) remain essentially the same as that predicted by
the Hertzian solution.

Figure 7.10 shows SCF as a function of cavity edge radius
rg. Smaller values of rz cause greater stress concentration. Due to
the nonlinearity of the problem, the SCF is also a function of the
applied load F*. Table 7.1 shows thevariation of SCF with the size
of the pit (measured by blend point radius). Notice that SCF increases

with increasing value of r;. This variation of SCF with rg may be
related to the loss of load carrying area.
The computer program developed to solve this problem is

moderately efficient. For example, the nine cases, needed to generate
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TABLE 7.1
DEPENCENCE OF STRESS CONCENTRATION FACTOR ON ry

Case No. r; x 103 SCF F* x 108 § x 10* rf x 103
1 0.25 1.692 0.9743 0.1023 0.1845
2 0.35 1.856 0.9737 0.1029 0.2753
3 0.50 2.049 0.9702 0.1041 0.4166

Rm= 1, r: = 0.006, r; = 0.002236, E = 30 x 10° psi, v =0.3.
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figure 7.10, required an average running time of 10 min each on the
IBM/360/65 computer, corresponding to $8.33 per case, with N = 34

nodes per case.

7.6 Conclusions

A non-Hertzian elastic contact problem involving an unknown
multiply-connected contact region has been solved. The example
problem considered, is that of a pitted sphere in contact with an
unpitted sphere. The axisymmetry of the problem enabled us to use
the "simply-discretized method" with a polar coordinate grid. For
problems with a lower degree of symmetry, it had been found in earlier
work, that a more complicated (and less efficient) method of solution
was necessary because of the numerical instability of the equations
generated. It may be appropriate to describe the equation set (7.24)
as "quasi-stable" because it exhibits dependence on the location of
the (N + 1)th field point. Through experience and heuristic reasoning,
it was established that locating the additional field point (P' in
fig. 7.3) at the outside boundary yields a well-conditioned matrix.

The variation of the SCF, contact region and peak pressure
Paax with changes in the pit b]ending;kadius rk, and the pit edge
radius res was studied, and.some.nuhef%cél results were presented;

The numerical solution was shown to converge rapidly with a
moderate cell density.

The principal results of fhis,chapter have been published

by the International Union of Theoretical and Applied Mechanics in
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a joint paper by Woodward, Paul and Singh. To the best of our
knowledge, this is thg first published solution of a multiply-
connected contact region problem with an a priori unknown

contact boundary.




8. CONCLUSIONS

A general method of solution of three dimensional frictionless
conformal contact problems has been presented. Specifically, two con-
formal examples were analyzed, viz., the case of an elastic sphere
indenting an elastic spherical seat and the case of an elastic
cylinder indenting an elastic cylindrical seat. The necessary influ-
ence functions, needed for solution of these problems, were generated
numerically and validated with analytic solutions wherever possible.

The predicted values of contact stress, lonad, approach, and
contact area for these examples is in close agreement with Hertz's
solutions in the case of small loads, where small contact regions
occur. For larger angles of contact, the load-approach relationship
obtained for the sphere-seat problem was found to compare favorably
with the experimental results. The displacement field obtained in the
analysis of an elastic sphere in contact with a conformal rigid seat
was found to be reproduced, with satisfactory accuracy, by a finite
element model subjected to the same pressure distribution.

Therefore, it may be concluded that the solution obtained by
the methods of this dissertation is the unique solution to the problem.
Pressure distributions and maximum pressure obtained in the anlaysis of
conformal cylinders were within 1.5 percent of the values predicted by

Persson [1964].  The values of load vs.. contact angle also agree with
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the values computed by Persson. In réviewing the above .results, it
is concluded that the method presented can be used to successfully
analyze three dimensional conformal ;ontact.

In addition the non-conformal problem involving a pitted--
ﬁphere contacting a sphere was solved for a variety of pit geometriés.
This problem is of inféreét because it has a multiply connected
contact region. The necessary iteration needed to converge to the
true boundaries of the brob]eﬁl was established. The predicted values
of contact stress were essentially Hertzian away from the pit location
and the stress became much larger in the vicinity of the pit, as
expected; the stress concentration factor was found as a function of
pit geometry parameters.

In all of the above mentioned axisymmetric examples,
axisymmetry was utilized to the fullest extent in the discretization
process and it was discovered that all solutions were quasi-stable
using the simply discretized method of Singh and Paul [1974}. This
has not been observed before.

The computer costs in all cases were minimal, being at most
$8.33/for the 34 field point model for the pitted sphere examples.

The principle conclusions of the foregoing results. may be
summarized as follows:

1. A general method of solving frictionless, three dimensional

conformal contact problems has been formulated.




-

187

2. A method by which numerical influence functions may be generated
is presented and validated where analytic solutions could be
obtained.

3. The conformal analysis was shown to be in close agreement with the
Timiting cases of Hertzian contact for light loads and with other
numerical, analytic and experimental analyses, of conformal contact
problems.

4. A problem involving a multiply connected contact region was solved.

Future research should be directed towards applying the above
method to the solution of non-axisymmetric problems in conformal con-
tact. Within the broad area of elastic contact theory, the inclusion
of friction and dynamics in contact theory are needed areas of

investigation.




APPENDIX A

DOMINANT SINGULARITIES IN THE STERNBERG INFLUENCE
FUNCTION FOR A POINT LOAD ON A SPHERE

Consider a sphere of radius R compressed between two diamet-
rically opposed point loads, F. The displacements U, and ug, as shown
in figure A.1, are derived in Lurée [1964] and are given by equations
(A.1) and (A.2). It will be shown in this appendix that the dominant
singular terms in these displacement functions are those of the
Boussinesq influence functions for a point load on a plane.

The Sternberg Influence Functions may be written as follows:

(m-2)F F |
= ) + ((m ’)( "4)
46(me)TR 47TGR 1‘ M %

r

(MZ) -0 _
(xowt 1’1—-2)

-
_ 3m? -20m+16 (Mag_l [tom 7

+
m? M-g-
/+m2
+m 103. "L""MZ Md‘g‘ )

+ & Aue B (ca0) | w1
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Fig. A.1. Diametrically Opposed Point Loads on a Sphere

L/é— r-» N !

STT T T
| +2 \Ua

Fig. A.2." Coordinate System for a Point Load on a Plane
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and

(A.2)

where m is the reciprocal of Poisson's ratio, G is the modulus of
rigidity,PZk(cos 6) are the Legendre polynomials in cos & and the con-

stants An and Bn are given by
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A [ 4700 430m-64m 32)n0
h m* (n-)(h4)n+2)a’ (m*+7m +30m -64m 32)n

+ (7m* +22m>-39m* + 44 m-1¢)n

(A.3)
HOM*-“ m3+9m? +20m - 16 }
B = ' [(7m’+nm’ 26m +l6)(n+2)"
- Ny - *
" me (n-1)(nu)(ht2) s’ |
+ (-18m>- 48m* + 132 m - 72 )(n+2)
+ I(M-1}(m?*+8m-8) ] (A.4)
where
m+
A' = n(n-1) +(2n+) ™ (A.5)
The Boussinesq displacement functions are given by -
Uy = FO1-%) (A.6)
meEr
and
W - ~F (1-2v)(1+v)
T arer A7)

where v and E are Poisson's ratio and Young's modulus respectively and

u,> u, and r are illustrated in figuré A.2. Consider the coordinate
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system in figure A.1 where r = R6. As r tends to zero, r will be
assumed equal to distance r along the straight boundary in figure A.2.
Also 6 in equations (A.1) and (A.2) will be replaced by r/R.

Specifically, it will be shown that

.ZQAOt C/r - Lll: (A.8)
and

Lim g = Ue (A.9)

r—>0

Now consider the singular terms in equation (A.1). They.

are as follows:

- | (A.10)
s - F m-

4r6R M  am§

|
)

3

Z
&
§,
*lo
8
"R

Asz"

F /-3m®-20m+lé ‘. g, um;
’8 (A.12)

33 T 4meRr m?3

It can be seen upon inspection that all other terms tend toward a

finite quantity. S] and S2 definitely tend toward « as 6 tends toward

zero whereas S3 is indeterminant at 6 = 0. It will be shown for the
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limit of r tending to zero that

S, = U, | (A.13)
. s
Lom L 0 (A.14)
&-~0o \S
and 2
Lem S, =0
6— 0 (A.15)

Expanding S], in terms of 6 we find

F m-|] (2 6 7 3
J; - (("‘ + - — Ve s (A.16)
' = qrer mle 2 t a0 *

As 6-0 the only singular term is the first, which will be termed S]O'

S
Now consider the 118 of the ratio 7}9-. Recalling the 6 = r/R,
1 . E z
m = G and G = m s
F(1-v*) R
Sie TER ' r {
U = FO-v) L (A7)
3 r

Therefore the singular term S] corresponds directly to u,-

Investigating the 1imit of the ratio S]/S?, where
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é
S, _ m(m-1) cee 3 A18)
- e -6 '
2 mz laa(bo‘tzw T)
it can be shown, using 1'Hopital's rule that
&
4 S, ,  m@m) 4“3
e~»0 S, “evo m? w’-’-’?m 4°mrm§+l
= OO0

(A.19)

Thus, even though the singularity S2 is present in the displacement
Up.s it is weak compared to the singularity S].

Finally, examining S3, using 1'Hopital's rule it can be

shown that
. 28
o S, = Z (—-3m-2omm), aintT
60 o 4TER 2 |teing

=0 (A.20)

In other words, S3 is not a singular term, but tends toward zero at

the load.

From the above analysis it can be seen that the dominant

-
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singularity in u. is S] and furthermore, in the limit as r tends toward
Zero S] =u,. Therefore, it may be concluded that in the same limit
U, = U, . This is illustrated in table A.1. As 6 decreases, the per-
cent difference between u. and u, also decreases.

Now consider the displacements Uy and Uy - The three terms in
equation (A.2) which are singular or indeterminant are

~FK | m‘z‘o-@ng}

= (A.21)
7 mR Aim 6
- -F(m +8m "'8) . e
2" T4 GR mt ( w )Mé (A.22)

- F(m'+6m-8) ] [ hain T
= 6 Log tod 3 (A.2
37 4mgRrR m? (2 4ine Loy lfm%)

= (1-2v)(1+v)
where K2 5E .

T, is singular while T2 and T3 are indeterminant. The other term in

1
equation (A.2) involving dPZk(cose)/de is known to be zero at 6 equal
to zero. |

Examining the ratio T]/ut it can be shown that for r =R6
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TABLE A.1

COMPARISON OF BOUSSINESQ INFLUENCE FUNCTION TO THE
INFLUENCE FUNCTION FOR A POINT LOAD ON A SPHERE

6[Deg. ] ur[in.]a u,Lin.] % Difference
10.00 1.44963 1.65964 12.654
1.00 16.4732 16.5964 0.74222
0.10 165.917 © 165.964 0.02806
0.01 1659.65 1659.64 -0.00179

R=10", F=230x107 1b, £ = 30 x 10° psi, v = 0.30

451 Terms taken in Legendre Polynomial
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- . 0

i  O(corg-4n7) (h.20)

ut Am 6
Using 1'Hopital's rule,

@ (-]
(co8 §-amnt)+6(-4in § -0

fim L lim DA
690 “‘ o~~»0 - Lod O
Therefore in the limit as 6, or r, tends to zero Uy = T].

Consider term T2 in the Timit as 06 goes to zero, and using
1'Hopital's rule

_F(m',am-a) (I-—.cod;» -aun Q)
-‘M’ﬂ- z
60 8—%0 47GR mM? Ton €
F( ($aimf-4coaf)
= di m2gm-8) (7 4um3 3
6% 4MGRM* At o
= (A i..'.‘ Yy
; Ftmsg m-8) (h.26)
8 RKTG m2

This proves that although Té was indeterminant it is not a singular
term in the 1limit as 6 tends to zero.

Finally, consider T3. T3 may be rewritten in the form
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t kacy +) )
-Fm*%8m-8) 2 s § +)
T3,-'-' (A.27)
SmrGRm? <Lt ©

which is indeterminant as 6 tends to zero. Using 1'Hopital's rule

and reducing the results

- F(m*+8m -8) (Mem £
6»o 020 BTGCRM* \.ot6 cot§(11enk)

Ain'e 'b«.‘g
201 6(1+c042)

=0 (A.28)

Therefore T3 is not a singularity.
From the above analysis it was shown that the only singularity

in the function Ug is T] and that this is equal to u, as 8 tends to -

2ero.
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 APPENDIX B

DISPLACEMENTS ON A CYLINDER UNDER TWO
DIAMETRICALLY OPPOSED LINE LOADS

Consider a cylinder under two lines loads F as shown in
figure B.1. Muskhelishvili [1963] has shown that for the case of

plane strain the displacements in the x and y directions respectively

are,

~F [ 2(2A+2m) r
Uy = —_—
" 41;44{ o) 7

+(k0a 26,09 20, ) -

2Mmeos § X }
(Arm) R

-F (. |
u’ = {2/‘ -(d,fdz) é(AiﬂZd.fMZO(z)

dmu | Atm
2u k090 Y- }
— - (8.2)

(Am) R
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Fig. B.1. Cylinder Under Two Opposing Line Loads

~— P

e

Fig. B.2. Geometry for Diametrically Opposed Line Loads on a Cylinder ;
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where X and y are the Lamé constants.
Now consider the case where the two Tine loads are diametri-
cally opposed (figure B.2). The following relations may be derived

for the geometry illustrated in

vty = I
r, e
n = dam S
(-]
X225 3
T e (8.3)
o, = Z°32
X= Reos 6
Y= Rané

Substituting in the relations of (B.2) into equations (A.1) and (A.2),

the displacements Uy and uy.become,

uxrfk,{zu'fa.al%larmef} C (B4

Uy = F{Mmé--f—,.z'-} (B.5)
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where

(A+ 20 ) _ 2(1-v?) 5.6)
T 2Mm (Arw) TE '

K. = / _ (1) (1-2v)
27 Y am) - 2€F 87)

E and v are Young's modulus and Poisson's ratio respectively. In
polar coordinates the radial and tangential displacements, notated u

and uy respectively, computed as functions of u, and u_ are

Ur

~Ux ko1 6 - Uy 4in 6 (8.8)

UQ "'UK 4in 6 fU,Me

(B.9)

Substituting equations (B.4) and (B.5) into equations (B.8) and (B.9),
U, and Ug become

U, =—F/\${me£n7&n§+l}+fﬁgﬁna (5.10)
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and

Fh

Ug = ~F Kiaumb n fomg ~ — 020 (3.1)




APPENDIX C

SINGULARITIES IN THE INFLUENCE FUNCTIONS FOR A
CYLINDER UNDER TWO DIAMETRICALLY

OPPOSED LINE LOADS

Consider a cylinder, of radius R, under two diametrically
opposed line loads F, as shown in figure C.1. The displacements u.

and u,. as derived in appendix B are

6
é K .
and
. 6 h
Ug = - K Faino bnfam 3 ~ 5 F 2026 (c.2)
where
-t
k' - 2(’”) (C.3)
TE
and
K. = (1+2)(1-20) |
2 = ZZE? (C.4)
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Fig. C.1. Two Diametrically Opposed Line Loads on a Cylinder

L”t A

—-
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Uz

Fig. C.2. Line Load on an Elastic Half Space
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Flamant solution for a line load acting on a half space as illustrated

E is Young's modulus and v is Poisson's ratio. Also consider the

in figure C.2. As presented in section 4.3, the displacements u, and

(1+V)F
mTE

2F (1-v?) 4o

u, -
: TE

d
r
and

Us = - (1+v)(1-2V) F o
¢ - 2€ |

it will be shown that the singularity in the displacement u,. is the

same as that of u, near the load. Furthermore, the limit of u,, as O

0

tends to zero, will be shown to be Uy -

As illustrated in figure C.2, r represents the distance
between the applied load and the point Q where the displacements u,
and u, are calculated. Let us define a coordinate r on figure C.1
such that r = R6. Replacing 6 with E—in equation (C.1), it will be
shown that U, - u,asr tends toward zero. Likewise, Ug will be shown
to approach ug asr tends to zero.

In terms of the coordinate r, the ratio ur/uZ may be written

as
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K F
Ur  ~Fh{eotfbnton iz 1]+ Fmaing

\ . (C.7)
L‘z - F Aﬂa‘ﬂz %g = k};':
|
where
(1+v)
Ka = c.8
3 '3 (.8
Taking the 1imit as r tends to zero of equation (C.7) and using
1'Hopital's rule,
) N N
r—so U, 'FMR Rk TR
—.f..m_’."@,‘f £ (C.9)
R R M iom e

The second term in (C.9) clearly goes to zero for r equal to zero
while the first and third terms-areaindéterminantu
Expanding cot-%—in the first term of‘equation (C.9), and.

4

taking the Timit as r tends to zero
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. r r
r-»o

= -f(_@.-.r_-r_’ - )
r»0 R\ ¥ 3r 45R3

(C.10)

J
S

Taking the limit of the third term in equation (C.9) and using

1'Hopital's rule,

= O (C.11)

Hence, the only nonzerc term in equation (C.9) in the limit as r tends

to zero is the first and it tends toward 1. Therefore in the limit

as r tends to zero, ur = uz.

&

Now consider the limit of ue/ut. Both ug and uy are finite at

r equal to zero. In equation (C.2), the first term can be shown to go
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to zero for small r. Ugs therefore, tends to the value —K2 for small r.

This is exactly the value of Uy for all r. Thus,

(C.12)




APPENDIX D

DERIVATION OF SURFACE DISPLACEMENTS FOR A
CYLINDRICAL CAVITY UNDER TWO
DIAMETRICALLY OPPOSED
LINE LOADS

Timoshenko and Goodier [1970] derived the stress functions
y and ¢ corresponding to an elliptic hole with uniform pressure p
applied on two diametrically opposed segments. Consider a unit circle

in the ¢ plane and the mapping function,

Z= (%) (e

Wiy =R(F+2) 0.2

w(z) maps the unit circle in the ¢ plane into an ellipse in the Z

plane with semiaxes

Qa

R(I+ M)

b= R(I-m)

For m = 0, the mapping becomes a circle of radius R. Now consider an

elliptic hole with a pressure distribution applied as shown in
210
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figure D-1. Timoshenko has shown that the stress functions in the ¢

plane, corresponding to the above loading, are

27‘T¢ ¢(S.)__ M@q

and

where 01> and 81 correspond to the mapped points Z] and 71 in the Z
plane. Letting m = 0 for the case of a circular hole, the mapping

function becomes

2= W(Y)=RS




Fig. D.2.
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P
£
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Fig. D.1.
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Elliptic Hole with Internal Pressure
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Ved
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Diametrically Opposed Line Leads on a Cylindrical Cavity

-
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and equations (D.4) and (D.5) may be written in the Z plane as

2w z’ z,
2
#(z) = 7 17
+i Z+L +_’Zn loy E-El (D.6)
R 2-2 R Z+3,

and

me . 1R 2)
x V= j"? R
2-3, 2. 2+2

h? 243, R '(?z -2, -7

The displacements u, and ug are related to the stress functions by

2m(UpsiUy) = e"'a {)(¢(e)—z @'ce) -V(z)}

(D.8)

where yu is the modulus of rigidity, v is Poisson's ratio and

X Ty (D)
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for plane stress or

XN=3-4y (D.10)

for plane strain. (See figure D.2.)

In order to find the correct displacements for concentrated,
diametrically opposed loads, F, let p vary as F/IZ] - Z]I and take
the 1imit as IZ] - Z]|+0. Hence for concentrated loads the stress

functions become

. 2, zi-gt
LLCO ) R Loy Gro3r
PR +
lt.'Z.l"O \ -Z'- 2.\ ‘
£ fog EtD . 33' 2¢%
R ﬂ -2 & - g, (D.11)
"Zs' »l
and
4R , 2 |
2"‘ Vehom (- TLHT
la—z.l*o | 2,- Z
2 2-2 _ 2 2-2
+ R 2+2, R 2+ %, \ (D.12)
‘:2, - 35 ’
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The quantities Z, Z] and 2] may be written as
- ¢
2= Re

cat
Z, =Ré€E (D.13)

— _¢:°(

Z,=KRe

Substituting equations (D.13) into equations (D.11) and (D.12), the
functions § and ¢ may be written in terms of 6 and a. The limit of

|2, - Z;| is now the Timit as a»0. Taking that limit, the functions

Yy and ¢ become

27T 26 2+2.
— 2) = — .
= b ) 2 ,103 2t | (D.14)

and

a1 2R 2o 2-2o

—— 2) =  — +

F ’w( ) z R z + E‘

, 222 }
R(2%2}) (D.15)

R

The disp]acements»ur and ug may be found by substituting
equations (D.14) and (D.15)'into equation (D,8),A Separating out the

real and imaginary parts, u, and ue are found to-be
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~F
Ur =W{(K+/),cm 6 Log Lam [ 2] +

+ (X-1) ,ﬂ.me } (0.16)
2

and

o = o { (K 1)ain g Jom [2] -

— (_;_(_:_Qﬂ.we } (D.17)
2

For plane strain these displacements may be written in terms of E and

Y

F[ 201 o 6 Log Tom [ 2] +

(1-2v)(1+p) . ] (D.18)
F Ainé
and
201-V%) .
Us = F{ s Melof]au[%]-
_(-2v) (1Y) } (0.19)
ZE w o D.19




APPENDIX E

SINGULARITIES IN THE INFLUENCE FUNCTIONS FOR A
CYLINDRICAL CAVITY UNDER TWO DIAMETRICALLY
OPPOSED LINE LOADS

Consider a cylindrical cavity of radius R, under two diamet-
rically opposed line loads F, as shown in figure E.T. u. and ug as

derived in appendix D are

Uy = "k; Frod 6 Jzz?r7420&'gt"l*; Fan 6 (E.1)

Uo= K, F.an azo-, i‘am-g - K Faodb (E.2)
where
K - 2;:—;‘) (E.3)
and

: (1-2v)(1¢V)

K

(E.4)
E is Young's modulus and v is Poisson's ratio. Also consider the
Flamant Solution for a line load acting on a half space as illustrated

in figure E.2.

217
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Fig. E.1. Two Diametrically Opposed Line Loads on a Cylindrical Cavity

,E'

V= W A
////////J///f‘é/r >t
A

;o

Fig. E.2. Line Load on an Elastic Half Space
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As presented in section 4.3, the displacements u, and u, are

2F(1-VY) o Fl1+v)
Us= — 0 by & TE (€8
and
Up = — (1+v)(1-2vV) F (E.6)

2E

It will be shown that the singularity in the displacement u. is

the same as that of u, near the load. Furthermore, the limit of Ugs

as 6 tends to zero, will be shown to be Uy -

As illustrated in figure E.2, r represents the distance

between the applied load and the point Q where the displacement u, and

u, are calculated. Let us define a coordinate r on figure E.1 such

t

that r = R8. Replacing 6 with L8

R

that ur = uZ as r tends to zero. Likewise, Ug will be shown to

approach up asr tends to zero.

In terms of the coordinate r, the ratio ur/uZ may be written

in equation (E.1), it will be shown

as

U ~FKinot & togfom 55 + ke ting ]
Up F[/ﬁ jvg.-f:.'- -Ks ]




where

(1+v)
me

Afj =

(€.8)

Taking the limit as r tends to zero, of equation (E.7) and using

1'Hopital's rule

. Ur r r _r r r
r K r
R AL Y A (E.
+ R ’ 100&1 ‘2 9)

The third term in equation (E.9) clearly goes to zero as r tends to
zero, while the first and second terms are indeterminant.
Expanding cot %—in the first term in equation (E.9) and

taking the 1imit as r tends to zero,

Loy 2 <ot

L ot
R

Taking the 1imit of the second term in equation (E.9) and using

1'Hopitals rule
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r-»0 2R
A r r e L. 2r
= L z?'z““iﬁ"“zp"“‘w O ()
r—0 r _ r = .
r.,.r r
A+ 2 <ot L

Hence the only nonzero term in equation (E.9) in the 1imit as r tends
to zero is the first and it tends to 1. Therefore in the limit as

r tends to zero, U, = u,.

t
at r equal to zero. In the first term of equation (E.2) can be shown

Now consider the limit of ”e/“t' Both Ug and u, are finite

to go to zero as r approaches zero. Ug> therefore, tends to the value

-K2F forsmall r. This is exactly the value of Ug for a1l r. Thus,

Lim Yo _ / o (E.12)

r—»0 L‘r-

and u, =

g = Ui when r equals 0.




APPENDIX F

DERIVATION OF THE PROFILE FUNCTION FOR CONFORMAL
CONTACT OF A SPHERE AND SPHERICAL SEAT

Consider a sphere of radius R]'in contact with a spherical
seat of radius R2 at a point O as illustrated in figure F.1. It is
assumed that point A, located at ¥ on the sphere, will contact point
B on the seat, located at ¢. The distance between A and B, denoted
f, is the profile function for these points. The value of the pro-
file function in terms of ¢ and ¢ is derived below.

Vectors ?] and ?2 are defined such that ?1 extends from 0 to
A and %2 extendsbfrom 0 to B. The quantities 0y and Wo define the
angles between the x axis and %1 and %2 respectively. From geometry

of isosceles triangles it can be shown that

w, = 'é' (F.1)

and

‘~)2. = EE' | (F.2)

Furthermore, from geometry

/ ;? , - ézlﬁn 44Lé91 %g: (F.3)
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Fig. F.2. Profile function, f, relative to mean radial direction,
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J ] = 24, Mg (F.4)

. . b b
The components in the x and z directions of ry amd r, may be

expressed as

nx = Ry am Y

Kia = 2R an*y
(F.5)
V2 = Ry 4in @

rzz =2R2 Mz g:'

The values of "1’ M1z "ox and o, a;e merely the cartesian
coordinates of points A and B. The value of |[f|is therefore defined

by the distance between these two points or

/’?/:\](r;x‘rz'x)z + ("}3'6;)2 (F.6)

where Pix® Toxs T and rp, are given by relations (F.5) in terms of

z
y and ¢.

Now consider the mean radial direction which forms an acute
angle of'¢ ; with the z direction as shown in figure F.2. The angle

between AB and the mean radial direction is £ while the acute angle
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between AB and the z axis is labeled y such that £ + y =(¢ + V)/2.

The value of & may be determined using the following relations

= anctin. : -1 ) -

2 -~ ha

and

F._.M_y‘

F.8
> (F.8)




APPENDIX G

INTEGRATION OF THE BOUSSINESQ INFLUENCE FUNCTION
OVER AN ANNULAR ELEMENT

It is required to evaluate the integral

Zexy = ff 2ads. o

(x-%')230Y-Y')2

over an annular element where (x,y) represents the location of a field
point C along the center Tine of the annular segment as illustrated in
figure G.I. The annular element has inner radius r outer radius ro
and the field point is located as radius e The sides of the element
are defined by angle © measured from the center line.

Now consider the right triangle as shown in figure G.2. The
integral in equation (G.1) over the right triangle is given in Luré

[1964] as

I=j.jn@¢(z7£ g} (6.2)

This result will be used to approximate the integral in equation (G.1)
over the annular region in figure G.1.
Let the annular region of figure G.1 be divided into six right

triangles as .shown in figure G.3. They are as follows.
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Fig. G.1. Annular Segment with Field Point along Center Line

} 4

FIELD
POINT C

e L —

Fig. G.2. Right Triangle with Field Point as a Vertex
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A
> X

Fig. G.3. Annular Region Subdivided into Six Right Triangles
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A, = ACB
A, = BCD
Ay = DCE
A, 2 ECF
(G.3)
Ag = FCH

A¢ = GCH

The calculation of the integral (G.1) over each triangle may be per-

formed using relation (G.2). The integrals over each of the triangles

defined by relations (G.3) will be termed I], I2 seess I6 corresponding

to the integrals over triangles 1, 2 -+« 6 respectively. Thus

I[ -"j(' In féﬂ"(%+ }z‘?‘) - L=h6 (6.4)

where ¢i i=1,6 are fl]ustkated'in figure G.3:{ The values of ¢; are

all functions of r1s Ty rc-and 8 defined below.

@, - 'g o ' | | (6-52)
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_ e
¢2=Wm{(r¢ n)eot £

—1 @
V letamro +(r. core-r

8, = arelin { ('Game-r.)}

(c an o)

%:W{(n me)}

(% amg)
s = ‘g‘%"g
G=m-6, -6, -64 -6 6,

The values of 21 can then be defined by

dy=b,~ CH=(rp-r)coa §

Ly=dy = CE =K sine

(G.5¢)

(G.5d)

(G.5e)

(G.5F)

(G.6a)

(G.6b)

Ls=Md; = CB ='\[(Q4me)’+('§

-1z C016)" c19

(G.6c)

The total integral IT over the annular element can be approximated

by

T, = 2{E b tutiu (Fo8)- 4 bt (Fr£)}




APPENDIX H

DERIVATION OF A CONTACT CRITERION FOR
CLOSELY CONFORMING SPHERES

Consider a sphere of radius R] interpenetrating the surface
of a spherical seat of radius R2 by an amount 6. For the problem at
hand 8§ corresponds to the rigid body approach due to some unknown
applied force F, on the sphere. Figure H.] il]ustrdtes the sphere
and seat and pertinent notations for the discussion to follow.

Point A is located on the surface of the sphere at coordinate
Y. Point B is located on the seat befween point A on the sphere and
02, the center of the seat. The radial gap between A and B, denoted
by f, is equa]lto the sum of the elastic radial displacements W and
Wy, ON the sphere and seat respectively, in the deformed state. From

the geometry of the problem the following relationships may be stated:

QA = ;T + TA = (es6)cosg 4R, 201 (¥-§)

G,B=R, o (H.2)

BA = 0,A-0,8=(e+8)coa$+R, £01 (V-8)-F,
(H.3)
where e = R2 - R].
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SPHERICAL SEAT

Fig. H.1. Sphere interpenetrating a spherical seat

232




-

233

NoW consider the case where R2 = R] and § << R], hence ¢ * ¢,

With these assumptions equation (H.3) may be written as

AR €(LodY-1) +Sroa Y (H.4)
Recalling that BA - Wyt o,
W,tW, + € (I-co1¥)—bcos ¥ =0 (H.5)

Equation (H.5) is an approximate contact criterion based on radial

displacements.




APPENDIX 1

RELATIONSHIP BETWEEN THE ELASTIC CONSTANTS
IN PLANE STRESS AND PLANE STRAIN

Given the displacement and stress fields in a state of plane
stress in terms of the elastic constants E and v, the equivalent
fields for the identical problem in plane strain may be found by

substitution of E for E and v for v where

E
E: Ut (1.1)
and
- y
Y = -y | (1.2)

This can be verified by substitution of (I - 1) and (I - 2)
into the stress-strain relations for plane stress. The stress-strain

relationships for a linear isotropic material are

/
€y = ZE' (’¢7§ -V 0y )

/ (1.3)
455 = ZE- ('Cﬂ% -V Ox )
2(14v)
rx‘ - E Tx,
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Substituting equations (I = 1) and (I = 2) into (I - 3) yields

Ex = -k—f-{(n-v‘)o; - v(nv)a:,}

63 = —é—{(l-v‘)m’-v(lw)d‘, } (1.4)

ajxg = 2 2;*4J) ‘T;,

Equations (I ¢ 4) are the stress-strain relations for plane
strain.
Similarly, a solution in plane stress may be obtained from

a solution in plane strain by substituting E' for E and v' for v

where
(1+2v)
£I= E‘ (Hv)z (1.5)
" Y
y = 14V (1.6)

Substituting relations (I - 5) and (I - 6) into equations (I « 4) one

obtains equations (I + 3) for plane stress.




APPENDIX J

HERTZIAN FORMULAS FOR A SPHERE
INDENTING A SPHERICAL SEAT

For the case of a sphere of radius R] indenting a spherical
seat of radius R2, Hertz's theory predicts the following relation-
ships between load F, approach &, and the radius of the contact

region a (see Timoshenko and Goodier, 1970 pp. 409-14):

Q-= L % (J.1)
4 R, 'RI

—
pane —

|
9m2  F2 k¥ R,-R) |3

¢S = (J.2)
K R, @,
where
1-v,2 1-v,*
A? - ! + _ (J.3)
TE mE,;

1 and v, are Poisson's ratio for the sphere and seat respectively
and E] and E2 are the respective values of Young's modulus.
The pressure at a radius of r from the center of the contact

region is given by

3F :
Pry=aa\!- 3 (-4
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These formulae are only valid for contact regions which have dimen-

sions small compared to both Ry and R,.




APPENDIX K

HERTZIAN FORMULAS FOR A CYLINDER
INDENTING A CYLINDRICAL SEAT
For the case of a cylinder of radius R1 indenting a cylin-
drical seat of radius R2, Hertz's theory predicts the following
relationships between load F per unit length and the half width of the

contact region b (see Timoshenko and Goodier, 1970 pp. 418-19):

!
4FRkRR |2
b 2 (K.1)
k)_"R,
4bz' (‘a;"ﬁ%}
F = ~TrrA (k.2)
where
-y -t
k= Al it (K.3)

TE, e,

2 and v, are the Poisson's ratio of the cylinder and seat respec-
tively while E] and E2 are the respective values of Young's modulus.
The pressure distribution at a distance of r from the center

line of contact region is given by

- 2F [,
P(r) - =y \// X (K.4)
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These formulae are only valid for b << R]. The approach for cyl-
inders in contact or the contact of a cylindrical seat is predicted
to be infinite by Hertzian theory which is clearly not'possib1e. For
an explanation of this inédequacy and the derivation of an appro-

priate formula for cylinlers in line contact see Singh [August 1974].




APPENDIX L

DERIVATION OF A CONTACT CRITERION FOR CONTACT OF A SPHERE
AND SPHERICAL SEAT WITH A CONSTRAINED
DISPLACEMENT FIELD

Consider an elastic sphere of radius R] indenting an elastic
spherical seat of radius RZ' For a given force applied to the sphere,
the bodies will approach by § and the contact area will extend to wmax
on the sphere. It will be assumed that a point located at ¢ on the

sphere will contact a point at ¢ on the seat and

R, dim O
— 2 (L.1)
,?z Awn ﬂwr

This is physically equivalent to requiring points with the same x
coordinates as shown in figure L.1 to contact after deformation. Only
displacements in the z direction will be considered in the criterion.
Consider the sphere interpenetrating the seat (although this is
physically impossible) by an amount §. The distance between points A
and B is labeled f.

Noting the geometry at hand and the constraint equation (L.1)

the gap f may be written as

f"'- (Rz’ﬁ,)"’é +R,M1’V-R2M¢ (L.2)
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SPHERICAL
SEAT

A
—> X

Fig. L.1. Sphere interpenetrating a spherical seat

INTERPENETRATED
SURFACE OF SEAT

)
P ~ WNTM PENETRATED
= y! SURFACE OF SPHERE
CONTACT R
SURFACE > .

W, AND W, ARE DIME NSIONLESS

Fig. L.2. Detail of interpenetration surfaces of sphere and seat
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This gap must be closed by the dimensionless elastic disp]acements

ﬁ] and Wz on the sphere and seat respectively. (see fig. L.2) Thus

RW, +R W, =(R,-R,) + 8 ~(Rycoad -Rroay) (L.3)

Writing equation (L.3) for points on the outer boundary

° o -— - -
p,w, +Fsz - kz"kl +6 (RzMﬁmx F(M”M‘)
(L.4)
Equation (L.4) may be solved for §. Substituting the resulting value

of § into equation (L.3) and rearranging terms gives
— — — _
(W, -W°)R +(W,-W,°)R, =
~ R, (404 P-c00 By ) t R, (204 ¥ ~002 Fmar) (L.5)

Writing equation (L.1) for points on the outer boundary

T B max
R, Aim Vimax
Dividing equation (L.5) by R, and substituting in relation (L.6) the

(L.6)

final expression for the contact criterion becomes

(-, ) +(w,-w,°) :m""y""" =

Pmax

_ an Bmax

" Aon Vma (m}‘ 404 Byuny )+ (£0d ¥ - 08 Youy) (L.7)
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The above expression (L.7) is the contact criterion used in the
analysis of Goodman and Keer [1965] who omit the bar over the dimen-

sionless quantities W], WZ.




APPENDIX M

DERIVATION OF CONSTRAINED DISPLACEMENT FIELD FOR
SURFACE POINTS OR AN ELASTIC SPHERE
CONTACTING A RIGID SEAT

Consider an elastic sphere of radius R] in contact with a
rigid spherical seat of radius R2. It is known a priori that the
contact surface will be of radius R2. Assume that all points on the
surface of the sphere move in a direction parallel to the line of the
applied load. For a given contact angle Ymax® the displacement field
is then uniquely determined and will be derived below.

The displacement of surface points on the sphere consists of
a rigid body translation § and an elastic displacement field u, (y).
Consider a sphere which has undergone the rigid body translation so
that its surface interpenetrates the seat as illustrated in figure M.1.
The elastic displacement of point A on the sphere is then defined by
u_ in accordance with the given assumption. Taking vector components

Z NN A N
of OB, 0'A and 00' the magnitude of u, can be derived to be

)

Iﬁ;l =-|08leoe ¥ +/5?)'I+/-o_';lm (1)
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RIGI1D
SPHERICAL

- SEAT

N>

\~ Q161D SEAT

Fig. M.2. Components of surface displacement on sphere
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which can be expressed as
[Tl = R, (1-1088) - R, (1-20a¥) + 8 (M.2)

Let a ¥ - t coordinate system be defined at point A such
that v is directed radially inward on the sphere and t is directed w/2
clockwise of ¥. Then the components of Gz, w]? and u]f, may be com-

puted by

D%‘ = "izfg , £od Y (M.3)

and

U = [ U | any (M.4)
The initial assumption requires A and B to be located such that

I?, Aw’}”'-'-/?z,uh?‘ (M.5)

thus

gb = Qredim (;igé'alén.QV) (M.6)
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Combining equations (M.3), (M.4), and (M.6) one finds
: ' P _
M4 = l?z (7’—»42*![2bb¢4&41 (j§:4¢on'y-)]} Ah§¢‘$p
- R, (I-M'Y")M’}’ td e ¥ (M.7)
and
U = W lan iy’ o (M.8)
du]
The derivative TR may be expressed as
du R / —
! ' R .. 1
— Awn Lod |- = AmY

- Ry ot [ancin (2 ain ) ) oty

= Rdin® ¥ + K, co0¥ - R, (1-40a¥)cocy +J coty

This latter derivative is useful in computing the surface strain

€

by




APPENDIX N

COMPUTATION OF THE ORIENTATION OF TANGENTIAL COMPONENTS
OF DISPLACEMENT ON SPHERICAL SURFACES

Consider the spherical surface of radius R illustrated in
figure N.1. The surface is subjected to a load F at point B located
at (wB, BB). The tangential displacement Uy s at a given point A
located at (wA, 0), lies along the tangent to the great circle
connecting A and B and is directed away from B for positive values.
The angle between the positive Uy direction and the tangent at A which
lies in the oty plane is defined at 1. ¢ is the angle measured
between OA and 0B. For purposes of integration of the tangential
displacement influence function it is desired to find T in terms of
wA, wB and BB.

Consider.the portion of the spherical surface A M B as
illustrated in figure N.2. The spherical angle at M is BB and the
opposite angle is ¢. The adjacent angles to M are wA and wB' The
spherical angle at A is t. - From the law of cosines for spherical

trigonometry

000 = £0A Vg codVy + 4im Vg Aim Yy cosfg (N.T)
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GREAT CIRCLE
FASSING THROUGH

N& AND B
\

\

Yy

A
'3
Fig. N.1. Orientation of tangential displacements due to a

point load on a sphere.

Fig. N.2. Spherical triangle
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The law of sines for spherical trigonometry states:

ain T = ZnPe Aim Vg
A ©

(N.2)

combining equations (N.1) and (N.2) and taking the inverse of sin 1,

Mﬁs Adim Vg
aim [.anc o8 (cot Yy con Y +ain Yy aim Yy coup )
(N.3)

T = arcdin

The above result can also be derived with cartesian vectors.




APPENDIX O

INTEGRATION OF INFLUENCE FUNCTION
FOR CYLINDRICAL GEOMETRIES

The influence functions for a cylinder under two diametrically
opposed line loads, normal to the surface as derived in section 4.7

are

GO¥, v €)= - K, {oa (Vi) L Fon e}

+ 4_:3- am (V- ) (0.1)

H, (Y, ¥\ v, E) = - K, 4im(¥-9) L fam “"‘"

Xa
- 17? 42’4(”’” ¥) (0.2)

where G] (p, v', E]’ v]) is the influence function for the displace-
ment of a point at ¢ due to a load at wl (wl 2 P) and

Hy (w] v, Ey> v]) is the influence function for the tangential
disp]acement-E] and v, are elastic constants of the cylinder and the

constants K]] and K]2 are given by

i 20-v]) BN
K = 7rE" (¢=42) (0.3)
¢ , . A ,
-V )-2Y)
/(2‘ = A‘) i . (e=h2) (0.4)

2E;
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Similarly for the cylindrical seat under two diametrically opposed

normal line loads the influence functions as derived in section 4.8

are '.
GV, E) = - Kicoa (F-8) b Lam S —
= K dm C$-) 0.5)
and

H, (4,6 ,6,) = K tin($"6) L ton 552

- k' co ($-4) 0.6)
where kf and ké are given by equations (0.3, 0.4)
G2 represents the radial displacement influence function and
H2 is that for the tangential displacement on the cylindrical seat.
Consider the loading p (¢') on the cylinder between ¥y and
vy (v, > w]) as shown in figure 0.1. p (¢ ') is a constant pressure
P and ¢ is located such that y < Uy (see fig. 0.1). The displacement

wy at y due to p ( ¢ ') can be computed as

+
W, = ., £(v) 6, (%¥. vV, E)R,d¥’
‘ Y ,
= PR Go('VSV;V:,E,)‘d’V( (0.7)

The tangential disp]aéement u1 due to load p (¢ ') can be expressed as

Y v
Uy f OorH, (%99, €)R v

Y
= PR H, ('yr,'y';y,) E,)d')"" (0.8)
v,




- A\WH‘_‘_&_'

Fig. 0.2. Pressure loading on a cylindrical seat
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Similarly on the cylindrical seat the radial and tangential displace-

ments at ¢ due to p (¢') are

| ,
< PR ) Gu(B 0, E)d# )
and
oo |
Uz < sz Hg (¢, ¢: vz')Ez)d¢ ©(0.10)
¢

respectively (see fig. 0.2)

The integrals in equations (0.7), (0.8), (0.9) and (0.10)
may be evaluated analytically. In each case the first term in G],
H], G2 and H2 can be integrated by parts while the integration of

the second terms is trivial. The indicated integration resu?ts in

W,z PR, [- km(«r-vu..zm"f—”f-/«,mw w} 0.1)

qr
U= PR, [ K/ (cou (i) Lo Zom (52 - _ton i (v-v))
| N (j ]'V‘fv"rg | 0.12
Ky win (V-7v) e, (0.12)
W, = PR, [- K} am (8" ¢),t«zzm(ﬁ Tt A (¢ ¢)
Fete (0.13)

- 5 con(3-0) ),
27 PR, [~ Kot (B-B) hntom B2 4 bon tim (3-8
¢’ ¢,

- K, M(¢"¢)j¢,= 2 (0.14)
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These expressions for u],'uz,‘w]‘and w, are valid for w], wz, ¢] and

¢, less than 5 In order to extend the domain of the integration to
m, symmetry of the displacement fields must be considered. For w],

TT i
wz, ¢] and ¢2 less than E these conditions may be expressed as

Wi (%%,%,P)= W, (Y, T-%,T-V,, P) (0.15)

U (¥, PY s = U (¥, -, Ty, P) (0.16)

W ($,0,6,,P) = W, (¢, 76, T-4, rv)> (0.17)

U2 ($, ¢,,8,,P) = ~Uy(6,7-6, 74, P) (0.18)
The above analysis is valid only for ¥ < ¥, < ¥,. If

V2 U, > Y, (or ¢ > o5 > ¢]) then the absolute values of ¥ - ¥,

(i =1, 2) and ¢ - ¢i in equations (0.11)-(0.14) should be considered
in the evaluation of Wis Wos Uy and Us - In additién to the above,
the direction of Uy and Uy must be accounted for by considering these
quantities as being + U (or + “2) when ¥ < y, < ¥ (¢ Sy < ¢2) and
as - u (- uy) when y > vy > ¥y (¢ 2 9 >9,).




APPENDIX P
DERIVATION OF A PLANAR APPROXIMATION TO THE
. ELEMENTAL AREA. ON A SPHERICAL SURFACE

‘Consider the area ABCD on a spherical surface of radius R as
shown in figure P.1. vais desired to approximate this curved area
with a plane element so that the integral of the Boussinesq influence
functions can be approxima%ed for the spherical element.

The area on the sbhere is bounded by y' * A and B' + A where
A << 1 radian. A cone generator is defined such that its apex N falls
on the n axis and points A, B, C, and D fall on the surface of the
“cone (see fig. P.1). The surface ABCD on the cone closely approxi-
mates the surface on the sphere for shail A. Let point G be located
midway between A and D,‘and let G' be its projection on the n axis
(as shown in.fig. P.Z). From figures P.1 and P.2, the following rela-
tions may be established:

AG =GD = Rama

06 = Reoa A | (P.1)

NG = 0G Lam V'= Reos & lan v’
. Ram (¥l
NA = NG-AG = R (£015 Jam '~ aima): —— ’P"A)
ND = NG +tAG = R(cosafam V' sina) = ’RM('P"M)
=Tz oLy’
pei GG (24) , v
= = A cod
& TG 4
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Fig. P.1. Elemental area.on spherical surface
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Fig. P.2, Section view of cone generator

Fig. P.3. Annular segment
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Finally, for small A, the area ABCD on the cone can be closely approx-
imated by a planar annular element including points N, A, B, C, and D.
Figure P.3 illustrates an annular segment ABCD with inner radius rys
outer radius r, and half angle of p. In relating the equation (P.1)
to the geometry of the annular element the quantities rys and

can be described as

;=NA=Raim (V'-a)/eoe V' (P.2)
h SND = Rain (V'ta)/eoa V'’ (P.3)
P=acosyv' (P.4)

The corresponding areas of the original spherical element may
be compared to the area of the planar annular element. For the sphere
Via pra

Lim Vdy | df
A "-4

- 2 ved
e R ZA [‘1604 V]'V"—A‘

= 4R UMYy b A

A = R?
S .

(P.5)

For the annular element
2 2 2\
Ao= EEm(n>nt)
R 2aim (¥ia)-R%im® (V*4)
<0a? ¥’

zax V' (
= 44 R 4inV'amA cor A

For smaHA,Aa x AS.
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NOMENCLATURE

area of annular segment

area of cell i

§rea of cell ij

coefficients defined in equations (4.20) and (A.3)
area of sector on sphere

coefficients in equations (4.18) and (A.1)

radius of contact region in chapter 5,
semi-major axis of ellipse in appendix D

non-dimensional radius of contact region
coefficients defined by equation (2.12)
coefficients defined by equations (4.21) and (A.4)
coefficients in equations (4.19) and (A.2)
coefficients defined by equation (2.10)

half width of contact region in appendix K,
semi-minor axis of ellipse in appendix D

distance between field point 1 and a point in cell sij
distance between field point 1 and centroid of cell S5
hypothetical interpenetration

initial interpenetration inspheres

-~ Young's modulus

Young's modulus of body i

equivalent Young's modulus for plane stress
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F CONSPHERE

FHertz
*

FCONSPHERE

*
F Hertz

f

e

equivalent Young's modulus for plane strain
difference in radii of curvature, R2—R]

force in context of point loads, force per unit
length in context of line loads

force at node i
nondimensional force

force resulting from analysis by CONSPHERE

force resulting from Hertzian analysis

nondimensional force resulting from analysis by
CONSPHERE

nondimensional force resulting from Hertzian analysis

profile function or initial separation between two
points which merge after deformation

vector describing initial spearation fo two points
which merge after deformation

initial separation of field points i

fN+1 - fi

components of f in r, t and ® directions respectively
f evaluated at point (x,y)
distance of surface i from x-y plane evaluated at (x,y)

modulus of rigidity

influence function for displacements normal to a
surface in a cartesian coordinate system

influence function for displacements normal to a
surface in a polar or spherical coordinate system

G (. )-for body.i ;. . . .
CoEe Gt e A e e
nondimens1oha1 influence function

at
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nondimensional influence function for displacements in
the radial direction

nondimensional influence function for displacements
in the tangential direction

influence function for displacements tangential to a
surface in a cartesian coordinate system

influence function for displacements tangential to a
surface in a polar or spherical coordinate system

H( ) for body i

numerically generated nondimensional influence func-
tion for displacements in the radial direction

numerically generated nondimensional influence func-
tion for displacements in the tangential direction

total integral over an annular segment

/

Si3 i bin 2
elastic parameter gﬁ%;%?)_
elastic parameter (]-ZEE 1+v

1+v

-elastic parameter E

Ki evaluated for body j

1-vf '1-v§
elastic parameter st OE

initial value of constant in point mating procedure

th

constant in point mating procedure for j~ solution

on body i

inverse of Poisson's ratio in chapter 4 and appendix A,

constant in mapping function in appendix D,
number of equal sectors in Q in chapter 7
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NCOH

P2k (cos 6)
p()

P(x,y,2)

AR

Sy oS> s

S

number of cells in simply discretized solution

number of cells within rcon

unit normal vector to surface of body i
constant pressure
constant pressure in cell i
maximum pressure
nondimensional pressure, kPi

*
kP
max
Legendre polynomial in cos ©

interfacial contact pressure in polar or spherical
coordinate system

interfacial contact pressure in cartesian coordinates
radius of curvature

radius of curvature of body i (k = 1,2)

ZR]R2

R2+R]

(not§: in conformal theory -R, is substituted for
R
2

R2 - R1

mean radius of curvature,

coordinate of generic point

- nondimensional coordinate of generic point, r/R

unit vector 'in mean radial ‘direction

position .vector

~position vector to point on surface of body i

kadiﬂs:of‘bléhdjpg?pOﬁhj‘6fjpft on sphere
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S, S, S
w
S], 52, 53

SCF

~ cylinder in chapter 4 and appendix B (i = 1,2),

radius of curvature at "edge" of pit in chapter 7, ‘;;;
radius of centroid in appendix G

radius used in convergence studies
radius of inner boundary of contact. region
chords used in analysis of influence functions for a

radius of inner boundary of ith cell in chapter 7

:?dius of outer boundary of contact region

x and z components respectively of vector ?1

r/Rm
rb/R

rc/Rm

m

length 6f cell

width of cell

separation of merging field points
separation vector of merging field points
r, t, and & components of 3

singularities in influence function for radial dis-
placements on a sphere

stress concentration factor

region included in ring i between rays j and j + 1
distance along contour curve of body i (i = 1,2)

s; on ith solution

tolerance used to determine merging of field points

singu1arities in influence function for tangential
displacements on a sphere

unit vector in mean tangential directions
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displacement tangent to surface
displacement in radial direction
displacement in tangential direction
displacement in z direction

displacement in tangential directidn
tangential displacement on body i (i = 1,2)
coefficients defined in equation (2.11)
displacement in » direction on body i (i = 1,2)
displacemeht normal to surface

normal displacement on body i (i = 1,2)

W; at outer boundary of contact region
nondimensional normal displacement wi/Ri

coordinates of generic point in cartesian coordinate
system

unit vectors on body i

generic vector in Z plane, Re16

vector in x direction in Z plane
vector in Z plane
conjugate of Z]

value of fi(x;y)

wangle between mean radial direction and the Z axis

angles defined in figures 4,12‘and B.1

coordinate of generic point in spherical coordinate
system .

centroidal radius of sector S}j '
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Y] ’Y2

SCONSPHERE
*

S CONSPHERE

SHertz
*

§ Hertz

6r’6t

. angle .between ﬁ and Z axis

unit vectors- in cartesian coordinate systems fixed to
bodies 1 and 2 respectively

shear stress

sma]l ang]e << ] rad1an

’constant def1ned in equat1ons (4 22) and (A.5)

r1gld body trans]at1on of body i (i =1,2),
.triangle i (i

= 1,6) defined in appendix G only

©. approach -

SR

'approach pred1cted by CONSPHERE

GCONSPHERE/R

approach predicted by Hertz1an theory

/R

GHertz m

*approach in the r and t d1rect1ons respectively

root mean square error
components of strain in appendix I
strain tensor (i,j = B, ¢, r, w, ¢)

generic vector in g-plane

unit vectors in cartesian coordinate system fixed on

bodies 1 and 2 respectively

- unit vectors in cartesian coordinate system fixed on

bod1es 1 and 2 respect1ve]y

generic angle used in spherical and polar coordinate .

systems

elastic parameter equal to 3-v forp]ane stress and

3-4v forplane strain Ty
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A A 3 -
A angle between normal vector n, and r direction

u modulus of rigidity, Lame's constant

v Poisson's ratio

vy Poisson's ratio of body i (i = 1,2)

V' equivalent Poisson's ratio for plane stress

v equivalent Poisson's ratio for plane strain

3 angle between %~and r

P half vertex angle of annular segment in chapter 5

and appendix P,
a boundary radius (rI or ro) of the contact region in

chapter 7

T, oy components of stress in appendix I

9 vector in g-plane

6] conjugate of o

T angle defined in equation (7.9) in chapter 7,
angle describing orientation of'ut in appendix N

Xy shear stress |

U regularization parameter

) generic angle in spherical and polar coordinate sys-
tems fixed to body 2

¢max angle defining boundary of contact region on body 2

Ao 2n/m in'chapter 7

Y : gener1c angle in spher1ca1 and po]ar coordinate
systems fixed to body 1

wmax angle_def1n1ng boundary of.contact region on body 1

Y(P.) function which is m1n1m1zed in Funct1ona]

! Regu]ar1zat1on method o .
f contact reg]on |
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projection of contact region onto x-y plane in
chapters 2 and 7 only

region of cell i in chapters 2 and 7,
contact region on body i in chapters 3-6

contact region of cell j on body i

candidate or tentative contact region

- tentative contact region of cell j on body 2

unit vector defined by equation (3.3b)

mapping function

_ angle between Fi and X (i =1,2)
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