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ABSTRACT

A dielectric function E(w,2) appropriate to a small metallic sphere
is obtained within the semiclassical iafinite barrier model, where & is the
mtltipole order. An excitation diagram in the ¢,w plane based on the
structure of this functioa 1is proposed. It represents the spherical analog
of the excitation structure of an infinite medium in the k,u plane.

INTRODUCTION

It was many years ago that Frohlich predicted that a small dielectric
sphere would couple resonantlf to an electromagnetic field by means of the
excication of a surface mode. Such mode has been observed in particles
of different materials in optical as well as electron scattering experi-
ments.2>3 A theory that uses a local dielectric function e{w) predicts an
electric resonance at a frequency given by the solution of e(w) = —=(2+1)/%,
where £ 18 the pole order of the applied external potential. Thus, in a
uniform external field the dipole moment (£=1) is excited resonantly for
e(w) = -2. The width of the resonance 1s in this model determined by scat-
tering of the surface excitations that sustain it. It is known on the other
hand that nonlocal theories introduce a shift in the location of the reso-
nance and modify its wings due to additional excitations including bulk
plasmons and electron-hole pairs.*»5 In the quantum limit of very small
spheres (radius a { 10 A) the spectrum is quite complex and contains many
tesonances due to a size effect that discretizes the energy levels in the
available volume.® For not so small spheres (a ~ 30 A or bigger) weak
resonances associated with the excitation of bulk plasmons have been found
assuming a bulk dielectric funcstion may be used to characterize the response
of the metal.” 1In this latter case resonances associated with quantum size
effects are naturally absent.

In this paper we introduce the notion of a dispersion law in the
frequeacy w - angular momentum £, plane. This 1s a useful adaptation to
spherical excitations of the common w-k representation. Its motivation is



that spherical varifables are more natural in the description of physical
effects induced by geometry in the case of spheres. As we shall see expli-
citly for the case of not so small spheres a conceptually simple picture

in terms of multipolar excitations emerges, emphasizing the main physical
effects that take place when the particle is in the presence of an external
probe that induces elggtromagnetic interactions.

THE DIELECTRIC RESPONSE FUNCTION E(f,w)

We assume that the bulk dielectric response of the metal is described
by the nonlocal dielectric function e(ﬁ,m). The solution of the electro-
magnetic boundary problem for the interaction of the sphere with an external
field requires in this case the specification of an additional boundary con-
dition derived from the microscopic properties of the metal at the surface.
We here adopt the one appropriate to the semiclassical infinite barrier
model.® In this model the response of the sphere may be characterized by
the sequence of multipolar polarizabilities?

E(2,0) = g4

+
E(L,w) + -‘!'-[l— €o

az((ﬂ) = . (l)

Here €, 1s the dielectric constant of the medium the particle is placed in.
This formula is identical in form to the corresponding local expression only
that the dielectric function of the metal appears in the modified form

«© jZ(ka) -1

B(2,0) = |2 @ut)s | e a| (2)
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where jg(x) is the spherical Bessel function of order 2. Notice that E(2,w)
equals the usuwal dielectric function e(w) when the latter is k—independent
(local). We shall adopt it as a characterization of the response of the
sphere to an external potential of pole order & and frequency u.

EXCITATION DIAGRAM IN THE £,w PLANE

Figure 1 represents the structure in E(2,w) for a tin sphere of radius
30 A.8 Such structure is best brought about by the maxima in the function
R = Im(E(2,0)-1)"l. Three features are included in this graph. First there
is the Frohlich resonance labeled FR and extending through large values of
pole order L. For the case studied it represents the most prominent reso-
nance. It is the only feature present if a local dielectric function is
assumed, a case also included in the figure and labeled D since the Drude
model was used to obtain it. Notice that nonlocal effects shift the reso-
nance far into the high energy region of the graph. A second feature is the
sequence of resonances above w,. These correspond to the weak excitation of
a bulk plasmon and its harmonics in the presence of the sphere boundary.
Finally, there is the region where electron~hole pairs are created, delim-
ited in our figure by the rising dotted lines. These are the only excita-
tions possible at low frequencies. Unlike the other cases in which lines in
the figure correspond to resonances, here we encounter a broad region where
multipolar coupling is possible. The edges were arbitrarily set by the con-
dition that the quantity R reached its maximum value divided by 80 when a
relaxation time appropriate for the bulk metal is used.



In the w vs k representation one gets an approximate expression for the
electron-hole edges by requiring that energy and momentum be conserved when

the incoming photon takes an electron above the Fermi surface and a hole 1s
We can here use this same condition to sketch our edges if we

left behind.
keep in wmind that the wavelength of an excitation at the surface is approxi-

Using these relations we get

mately the sphere perimeter over &, or ka = L.
w, =2 (g + 2ak )L (3)
- maz F

where kg is the Ferml wave vector, m the electron mass and * refers to the
We remark that, as Eqs. (2) and (3) show explicitly the

left (right) edge.
details of the w vs & graph depend on the radius of the sphere as well as
The curves given by (3) are the rising

the metal the particle is made of.
The small discrepancy at the right edge 1s a

dashed lines in the figure.
manifestation of the arbitrariness of the criterion used in drawing the
The slope of these lines 18 correctly

dotted lines, as explained above.
glven by (3), however, providing evidence that the physical picture conveyed

by our diagram is essentially correct.

i
o. { 5! —
3 h
3
et e e ¢t e e A et s s ot s _;;._Q_._J
o 3
i [
0 ] 1 1 1 | A l 1
0 50 100

Fig. 1. Dispersion curves of the multipolar resonances for
a 30 A radius tin sphere in the multipole order £ -~
frequency w, plane. Full lines follow resonances
for the Lindhard-Mermin model while the dash—dotted
line is the Frohlich resonance (FR) in the Drude (D)
model. The dashed lines rising from the bottom

follow Eq. (3).
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The parameters used for tin are wy = 1.17x1016 gec™l, vy = 1.24x108
cm/sec and as a mean free path, the sphere radius.




