
PAPER FOR THE

INTERNATIONAL SYMPOSIUM ON THE PHYSICS AND CHEMISTRY OF SMALL CLUSTERS
Virginia Commonwealth Univers i ty , Richmond Virg in ia

October 28-November I , 1986

CONF-8610159—1
By accaptanca of this article, the
publither or recipient acknowledges DE87 002170
the U.3. Government'*right to
retain a nonaxclucive, royalty-free
Ucante in and to any copyright
covering, the article..

MULTIPOLAR EXCITATIONS IN SMALL METALLIC SPHERES

F. Claro and R. Fuchs

SOLID STATE DIVISION
OAK RIDGE NATIONAL LABORATORY

Operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.

Under
Contract No. DE-AC05-84OR21400

With the
U. S . DEPARTMENT OF ENERGY

OAK RIDGE, TENNESSEE

October 1986

DISTRIBUTION OF THIS DOCUMENT 18 UNLIMITED



f

r

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



MULTIPOLAR EXCITATIONS IN SMALL METALLIC SPHERES

F. Claro

Oak Ridge National Laboratory
Oak Ridge, TN 37831

R. Fuchs

Ames Laboratory and Iowa State University
Ames, Iowa 50011

ABSTRACT

A dielectric function E(U,JO appropriate to a small metallic sphere
is obtained within the semiclassical infinite barrier model, where i. is the
multipole order. An excitation diagram in the A,w plane based on the
structure of this function is proposed. It represents the spherical analog
of the excitation structure of an infinite medium in the k,u plane.

INTRODUCTION

It was many years ago that Frohlich predicted that a small dielectric
sphere would couple resonantly to an electromagnetic field by means of the
excitation of a surface mode.* Such mode has been observed in particles
of different materials in optical as well as electron scattering experi-
ments.2'3 A theory that uses a local dielectric function e(w) predicts an
electric resonance at a frequency given by the solution of e(u) - -(l+l)/l,
where I is the pole order of the applied external potential. Thus, in a
uniform external field the dipole moment (£•!) is excited resonantly for
e(o)) - -2. The width of the resonance is in this model determined by scat-
tering of the surface excitations that sustain it. It is known on the other
hand that nonlocal theories introduce a shift in the location of the reso-
nance and modify its wings due to additional excitations including bulk
plasmons and electron-hole pairs.1* »5 In the quantum limit of very small
spheres (radius a < 10 A) the spectrum is quite complex and contains many
resonances due to a size effect that discretlzes the energy levels in the
available volume.6 For not so small spheres (a ~ 30 A or bigger) weak
resonances associated with the excitation of bulk plasmons have been found
assuming a bulk dielectric function may be used to characterize the response
of the metal.7 In this latter case resonances associated with quantum size
effects are naturally absent.

In this paper we introduce the notion of a dispersion law in the
frequency u - angular momentum I, plane. This is a useful adaptation to
spherical excitations of the common <u-k representation. Its motivation is



Chat spherical variables are more natural In the description of physical
effects Induced by geometry In the case of spheres. As we shall see expli-
citly for the case of not so small spheres a conceptually simple picture
in terms of multlpolar excitations emerges, emphasizing the main physical
effects that take place when the particle is in the presence of an external
probe that induces electromagnetic interactions.

THE DIELECTRIC RESPONSE FUNCTION E(£,»)

We assume that the bulk dielectric response of the metal is described
by the nonlocal dielectric function e(k,ai). The solution of the electro-
magnetic boundary problem for the interaction of the sphere with an external
field requires in this case the specification of an additional boundary con-
dition derived from the microscopic properties of the metal at the surface.
We here adopt the one appropriate to the semiciassical infinite barrier
model.5 In this model the response of the sphere may be characterized by
the sequence of multipolar polarizabllities7

, s E U » U ) ) " Eoa (cu)
E(£,u) +^f-e o

Here e o is the dielectric constant of the medium the particle is placed in.
This formula is identical In form to the corresponding local expression only
that the dielectric function of the metal appears in the modified form

E(£,(o)
j2(ka)
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where j^(x) is the spherical Bessel function of order £. Notice that E(£,co)
equals the usual dielectric function e(u>) when the latter is k-independent
(local). We shall adopt it as a characterization of the response of the
sphere to an external potential of pole order £ and frequency u.

EXCITATION DIAGRAM IN THE £,« PLANE

Figure 1 represents the structure in £(£,&>) for a tin sphere of radius
30 A.8 Such structure is best brought about by the maxima in the function
R - Im(E(£,w)-l)~1. Three features are included in this graph. First there
is the Frohllch resonance labeled FR and extending through large values of
pole order £. For the case studied it represents the most prominent reso-
nance. It is the only feature present if a local dielectric function is
assumed, a case also included in the figure and labeled D since the Drude
model was used to obtain it. Notice that nonlocal effects shift the reso-
nance far into the high energy region of the graph. A second feature is the
sequence of resonances above o)p. These correspond to the weak excitation of
a bulk plasmon and its harmonics in the presence of the sphere boundary.
Finally, there is the region where electron-hole pairs are created, delim-
ited in our figure by the rising dotted lines. These are the only excita-
tions possible at low frequencies. Unlike the other cases in which lines in
the figure correspond to resonances, here we encounter a broad region where
multipolar coupling is possible. The edges were arbitrarily set by the con-
dition that the quantity R reached its maximum value divided by 80 when a
relaxation time appropriate for the bulk metal is used.



In the u vs k representation one gets an approximate expression for the
electron-hole edges by requiring that energy and momentum be conserved when
the incoming photon takes an electron above the Fermi surface and a hole is
left behind. We can here use this same condition to sketch our edges if we
keep in mind that the wavelength of an excitation at the surface is approxi-
mately the sphere perimeter over £, or ka = £• Using these relations we get

•ft

ma 2
(3)

where kp is the Fermi wave vector, m the electron mass and ± refers to the
left (right) edge. We remark that, as Eqs. (2) and (3) show explicitly the
details of the w vs I graph depend on the radius of the sphere as well as
the metal the particle is made of. The curves given by (3) are the rising
dashed lines in the figure. The small discrepancy at the right edge is a
manifestation of the arbitrariness of the criterion used in drawing the
dotted lines, as explained above. The slope of these lines is correctly
given by (3), however, providing evidence that the physical picture conveyed
by our diagram is essentially correct.
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Fig. 1. Dispersion curves of the multipolar resonances for
a 30 A radius tin sphere in the multlpole order I -
frequency u, plane. Full lines follow resonances
for the Lindhard-Merrain model while the dash-dotted
line is the Frohlich resonance (FR) in the Drude (D)
model. The dashed lines rising from the bottom
follow Eq. (3).
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