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Abstract 

Results derived from calculations based on a one-dimensional 

ballistic model are presented to indicate the extent to which a current 

pulse of 150~keV electrons containing l µC of charge and having a duration 

of 15 nsec (FWHM) can be bunched by a combination of accelerating and 

decelerating voltage gaps followed by a drift space. To be useful,the 

bunched current must be accelerated by an existing accelerator (ORELA), 

so.the calculated results include estimates (upper and lower limits) of 

the fraction of the bunched beam that will be accelerated." It is found 

that with 8 voltage gaps the 15-nsec (FWHM) pulse can be reduced to a 

pulse of~ 4 nsec (FWHM) in a length ~ 400 cm and that~ 50% of this 

bunched pulse will be accelerated by ORELA. The fraction of the bunched 

pulse that will be accelerated is approximately the same as that for an 

unbunched pulse. 
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INTRODUCTION 

The Oak Ridge Electron Linear Accelerator (ORELA) was designed to 

produce intense short neutron pulses for the measurement of neutron 

cross sections by time-of~flight techniques. 1' 2 The number of neutrons 

in an ORELA burst is determined by the total energy of the electrons 

incident on the target, and thus the suitability of the machine for 

neutron time-of-flight measurements would be improved if the electron 

energy in a pulse of given duration could be substantially increased. 

It is proposed to accomplish this by 11 prebunching 11 the electron beam 

before it enters the accelerator, that is, it is proposed to reduce the 

pulse without Substantially changing the charge in the pulse by passing 

the beam through a combination of voltage gaps and drift spaces before 

it enters the accelerator. In this paper, calculated results are pre-

sented of the degree of bunching that can be achieved with various 

combinations of voltage gaps and drift spaces. 

In obtaining the results presented here, only the longitudinal 

motion of the electrons has been considered in detail. The radial motion· 

of the electrons is neglected and the rotational motion of the electrons, 

due to the presence of a longitudinal magnetic confining field, is in-

eluded only approximately. Because of the very high charge densities 

considered here, space-charge effects are large and are taken into account 

in the calculations. Since the, iibunchedi1 electron beam is useful only 

insofar as it will be accelerated by the existing accelerator, the results 

presented here include calculated estimates of the fraction of the bunched 

electron beam that will be accelerated by ~RELA. 1 ' 2 
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In Section 2 the calculational models .are developed and discussed. 

In Section 3 the results are presented and discussed. 

2. CALCULATIONAL PROCEDURE 

2.1 Geometric Configuration and Physical Data 

In Fig. 1 a schematic diagram of the geometric configuration 

is shown. The prebuncher is basically a conduction cylinder of radius 

a·(= 2.5 cm) with a series of gaps across which a time-dependent voltage 

is applied in such a manner that an electron experiences a change in energy 

as it crosses.a gap. In the work reported here, the radius of the elec­

tron beam is assumed to be a constant, r
0

, throughout the motion. That is, 

no radial motion is considered, but the rotational motion of the electrons 

due to the presence of the inhomogeneous (see below) magnetic field is 

taken into account approximately. 

For convenience it is assumed in the calculations that the change in 

energy of an electron at a qap is instantaneous so that the finite transit 

time of an electron through a gap may be neglected. The potential dif­

ferences as a function of time at a gap that can.be achieved experimentally 

and that are used in the calculations is shown in Fig. 2. Two different 

potential difference curves labeled "decelerating gap" and "accelerating 

gap" are shown. At a particular gap, i, one or the other of these 

potential difference curves apply depending on whether the gap is designated 

as decelerating or accelerating. The time, ti' is the time when the first 

electron in a pulse croises a gap, i.e., in all of the calculations it is 

.. assumed that the voltage transient at a gap is timed relative to the time 

when the first electron in the pulse crosses the gap. Basically, a 

.,. 

.. 
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decelerating gap, while slowing down all of the ~lect~ons in a pulse, 

reduces the kinetic energy of the electrons in the front of the pulse 

relative to the kinetic energy of those in the back of the pulse. An 

accelerating gap, while accelerating all of the electrons in a pulse, 

increases the kinetic energy of the electrons in the back of the pulse 

relative to those in the front of the pulse. It would, of course, be 

more efficient if deceleration and acceleration coul~ be accomplished at 

a single gap, but experimentally this has not been possible. The com-

bination of accelerating and decelerating gaps, eight gaps in all, shown 

in Fig. 1, is the case that is of most interest here, but calculations 

for other cases will also be shown. The distances between gaps shown in 

Fig. 8 are determined by the physical dimensions of the gap structure. 

Any combination of accelerating and decelerating gaps is, in principle, 
J 

possible, b'ut· in practice good. "bunching" is obtained only if the electrons 

in the front of the pulse do not attain negative velocities and this 

limits the number and positions of decelerating gaps than can be used. 

Because space charge effects are large there mµst be a longitudinal 

magnetic field to prevent the beam from spreading radially. In the 

vicinity of the gaps, however, the magnitude of the longitudinal magnetic 

field that can be produced experimentally is very limited. In the work 

reported here, a magnetic field of l kilogauss is used in the vicinity of 

the gaps, and this field is increased to 3 kilogauss in the drift space. 

The longitudinal field that is used is shown in the lower right of Fig. 1. 

The assumption of a linear increase in the field over a distance of 25 cm 

is thought to be realistic but is otherwise somewhat arbitrary. 
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The shape of the current pulse used in the calculations is shown in 

the lower left of Fig. 1. A linear "rise" and "fall" time of 1.5 nsec 

is used. This linear assumption and the value 1.5 nsec are somewhat 

arbitrary, but do not have any appreciable effect on the results. The 

width of the incident current pulse at half maximum is taken to be 

15 nsec so the total duration of the incident pulse is 16.5 nsec. The 

current, 1
0

, is determined so that the total charge in the pulse is 

1 µC. All electrons are assumed to enter the prebuncher with a kinetic 

energy, T
0

, of 150 keV. 

2.2 Trajectory and Current Calculations 

The calculations reported here are based on.a one-dimensional 

ballistic model such as that developed by Tien et az., 3 and used by 

Williams and McGregor4 and by Tallerico5 as well as many other 
. (_) . . 

* investigators. The starting point of the model is the use of the super-

position theorem to express the electric field at a given position and 

time from the current pulse as a function of parameters describing the 

current pulse. This is do.ne by means of the equation 

t' 
E(z,t) = f 0, dt 0 I 0.(t

0
)E5[z,z5(t,t

0
), a

5
(t,t

0
)] 

' 
( 1) 

where 
t' = t 

* 

if t < t
0
M 

if t ~ t 0M 
(2) 

.A detailed discussion of the ballistic model and references to the exten-
sive literature on this subject has been given by Rowe6. 
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and 
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E(z,t) = the electric field at position z and time t due to the 

current pulse in the prebuncher, 

I 0 (t0 ) = the current that leaves the electron gun and enters the 

prebuncher, at time t
0

, · 

t 0M = the total time required for the current pulse to enter the pre-

buncher (= 1~.5 nsec). (Note that the zero of time is 

taken to be the time when the first particle enters the 

prebuncher.), 

z5(t,to) = the position at time t of the charge that entered ·the pre­

buncher at time to, 

a5(t,t 0) = the velocity at time t, divided by the velocity of light, 

of the charge that entered the.prebuncher at time t
0

, 

E5[z,z5(t,t 0 ), a5(t,t 0 )] 

= the electric field at position z and time t per unit 

source charge at the ·position z5 with vela.city e5. 

It is assumed in the model that the integral in Eq. (1) may be approxi­

mated by a finite sum .· . If N is an integer that specifies the number of 

intervals used in approximating the integral in Eq. (1) then 
N' 

E(z,t) :o: ?:1 Q.E5[z,z.,f3.], 
J= J J J 

(3) 

where 

(4) 
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N' Integer value of t 
t < toM = t.to (5) 

= N t > t M - 0 

toj 
. 6t0 = J6to - -2-

6t
0 

Q. 
f t,/-2 

= 6t
0 

dt 0I 0(t 0 ) j = 1, N (6) 
J 

toj- 2 

The equations of motion of the charge Qi are determined from the 

relativistic equations of motion of an electron in the electric field, 

E(z,t), given by Eq. (3), the time-dependent voltage discussed in 

Section 2.1 and the magnetic field discussed in Section 2.1. 

It is assumed throughout this work that there is no radial motion 

so only the longitudinal and azimuthal equations are of interest. For 

an electron these equations may be written as 

1 dpz NG 
c cit= eE(z,t)+e L Vk(t)o(zGk-z) 

k=l 

- g_ r .Q1 Hr(r,z) c dt 

4-. [~ .Q1 + g_ rA ( r z)] = 0 
dt c2 dt c ~ ' 

(7) 

(8) 

(9) 
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1 

z,r,~ = the polar coordinates of the electron, 

c = the velocity of light, 

Pz = the momentum of the electron multiplied by the 

velocity of light, 

e = the electronic charge, 

NG = the number of voltage gaps, 

Vk(t) = the time-dependent voltage on the kth voltage gap, 

zGk = the position coordinate of the kth voltage gap, 

Hr(r,z) = the radial component of the magnetic field, 

m = the rest energy of the electron, 

( 10) 

( 11) 

( 12) 

A~(r,z)= the azimuthal component of the magnetic vector potential, 

i.e., H =curl A, 
and in writing Eq. (7) the approximation of infinitesimally thin gaps has 

been made; i.e., the finite transit time of the electron across the gap 

has been neglected. If the magnetic field has only an r and z ·component 

and if 

= 0 ( 13) 
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where 

Hz(z) = the z component of the magnetic field, 

the A¢(r,z) may be written as 8 

A~{r,z) = ..!:. H (z) 
'!' 2 z 

and since 

one has 

( 14) 

. ( 15) 

( 16) 

It will be assumed that the electrons are emitted from the cathode of the 

electron gun with ~ = 0 and that the cathode is shielded from the magnetic 

field so the constant of integration in Eq. (8) may be taken to be zero and 

thus one has 
l .Q1 = - (llz(z)) 
c dt e 2rny • ( 17) 

Combining Eqs. (16) and (17) w1th Eq. (7) gives 

dp NG 
~ d~ = eE{z,t)+e ~l Vk(t)o(zGk-z) 

2 aHz(z) 
- e2(4~) Hz(z) az ( 18) 

where 

l 
( 19) 
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Equation (19) is the equation of motion of a single electron. To find 

the equation of motion of the charge Qi' Eq. (19) must be averaged over 

the spatial distribution of charge within Qi. The basic assumption of the 

ballistic mod~l as used here is that as~ result of this averaging process 

z in Eq. (19) is evaluated at z. defined in Eq. (6) and r2 in .Eq. (19) 
l . 

2 
is evaluated at the mean value ro where r

0 
is the radius of the beam. 

2 
With this ansatz the equation of motion of the charge Qi becomes 

l dp. . 
l - Q c dt - ; 

Y· = l 

+ Q. 
l 

- Qi 

p. 
I 

Si 

N' 

LQ . E ( z . 'z . 's . ) 
j=l J s l J J 
j;q 

N . 
G L: Vk(t}o(z6k-zi) 

k=l 

. [r~ ] aH2 (z1) 
e 8my Hz(zi) -a~ 

= M.yiR· 
l 1 

= l dzi 
c dt 

l 

(i = l to N) (20) 

(21) 

(22) 

(23) 
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where 

Mi =the rest energy of the charge Qi. 

The term i = j in the first sum on the right of Eq. (20) has been omitted 

since it is assumed that the charge Qi does not exert a force on itself. 

Equation (20) is taken to be valid for all i from 1 to N .. This set of 

equations then forms a complete set for the determination of zi(t) and 

8i(t) for all i. In the approximation used here the equation of motion 

of the charge Qi is essentially the equation of motion of a single electron, 

i.e., the basic ansatz of the model is that the motion of the charge Qi 

may be identified with the motion of an electron. The presence of the 

magnetic confining field is included only approximately in Eq. (20), but 

.the approximation does allow for the fact that as an electron enters the 

higher magnetic field it acquires additional rotational energy and this 

energy must be removed from its longitudinal motion. It should be noted 

that the approximation used determines only the central position (in z) 

of Qi and not the distribution in space of the charge Qi. The assumption 

that is made to calculate the current at a particul~r position as a 

function of time when only this central position is known is discussed below. 

Before the set of equations given.by Eq. (20) can be solved numerically, 

it is necessary to specify the form of E5. The fonn used in the work 
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reported here is essentially that derived by Williams and McGregor4* 
and is 

2 
~. . y . [2J1( yr+)]2 . 
I exp ( -y . r l z .- z . !) J ( ) s 1 gn ( z ( z j ) 

r 2 r= i z.J 0 1 J Yr l Yr 
0 

y ... 
ZJ 

1 

11-s~ 
J 

, 

Williams and McGregor 4 apparently used for the exponential in Eq. (24), 

1 Yr I I . 
exp[-t<Yzi+yz.j) a Z;-Zj ] " 

rather than the expression 
Yr 

exp(-yzj -alz1-zj I) , 

which is used here. Both forms are, of course, very approximate. The 
derivation of the form used here is given in Appendix I. 

(24) 

(25) 



where 

14 

r 0 =the radius of the· beam; 

a = the radius of the conducting cylinder; 

Ja = a Bessel function of the first kind, 7 

y = the ~ root of J0• r . 
With the boundary conditions specified previously, i.e., that for all 

i the electron at the center of O; enters the prebuncher {z = 0) at the time 

t . , Eqs. (20)-(23) may'be solved to give 
01 ' 

z = z{t,t 0 ) 

i = 1 to N1 

or,provided that the center of particle i actually reaches the depth z, 

Eqs. (20)-(23) may be solved to give 

where 

ti = the time when the electron at the c~nter of Qi' that enters 

the p~ebuncher at time t
0
i, is at position z. 

There is nothing in the model to prevent negative velocities and thus it 

is .possible, and sometimes happens; that the center of charge Qi does not 

reach a depth z,in which case Eq. (29) does not yield a real value fort .. 
' l 

(2~ 

(28) 

(29) 

In the trajectory calculation this possibility causes no difficulty, but it 
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does necessitate special consideration when the current as a function of time 

at a depth z is considered. 

To calculate the current as a function of time at a particular point z 

due to~ all charge, let us first consider the current due to a small element of 

charge. By conservation of charge one has 

(30) 

where 

I 1 (z,t) - the current at z at time t due to the current that 

entered the prebuncher at time t
0

• 

If the right side of Eq. (30) is integrated over the interval t
0
j to to,j+l' 

if l 1 (z,t) is assumed to be constant during this integration, and if the 

centers of the charges Qj and Qj+l reach the depth z>then 

(if the centers 
of Qj and Qj+ 1 
reach the depth z) (3l) 

where 

F(t,tj,tj+l) = [e(tj+1-t)e(t-tj)e(tj+l-tj) 

+ e(tj-t}e(t-tj+l}e(tj-tj+l)J 

e(x) = l x > 0 

= 0 x < 0 

Ij(z,t) = the current at z at tirrie t due to the charge that 

enters ths prebuncher in the titt~ interval t . to t 
OJ O,j+l' 

(32} 

(33) 
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and since 

(34) 

(35) 

The absolute value in Eq. (31) must be introduced since particles may pass 

during the motion and thus there is no assurance that tj+l > tj. It should be 

noted that in writing Eq. (31) the drastic assumption has been made that even 

when particles pass during the motion; i.e., when tj+l < tj' the charge that 

entered the prebuncher in the time interval t . to t
0 

·+l crosses the plane 
OJ ,J 

at z in the time interval itj+l~tjl. If the center of charge Qj+l does not 

reach the depth z then it is assumed that 

(if center of Qj+l (36 ) 

and the current I j ( z, t) is defined by 
does not reach depth z) 

(if centers of Q. 
and Qj+2 reachJ ' 
depth z and the 
center of Q.+l 
does not) J 

where F(t,t.,t.+· 2) is defined by Eq. (32). Equations analogous to 
.J J . 

Eqs. (34) and (35) are used if the centersof two successive charges, i.e., 

Qj+l and Qj+2,do not reach the depth z. 

With the current Ij(z,t) defined for all j, the total current I(z,t) 

from all charges including the all important overlap of charge is given by 

(37) 
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N'-1 
I ( z , t ) = L; I J. ( z, t ) 

j=l 
(3a) 

For simplicity in writing the current equations, the small amount of charge 
bt

0 
bt

0 that enters the prebuncher in the time interval 0 to~2~ and 16.5 nsec - ~2~ 

to 16.5 nsec has been neglected. There is no difficulty about including this 

charge and it was included in all calculations. 

2.3 Fraction of the Current Pulse That Will Be Accelerated 

. Only some portion of the current pulse that is incident on the accel­

erator will actually be accelerated to high energy and emerge from the 

accelerator. This portion is known to be of the order of 50% at ORELA 

under present operating conditions with an unbunched beam.a However, this 

fraction is dependent on the energy distribution of the particles in the 

current pulse, and this energy distribution is very different in the bunched 

pulse from that in the unbunched pulse, so it is important to have estimates of 

the fraction of the bunched pulse that will be accelerated. Such estimates 

have been obtained by using a theory developed by Slater.a The theory is 

described in detail in Ref. a so only a brief outline will be given here. 

In the Slater theory, only the longitudinal motion of the electrons 

is considered, and it is assumed that only a single-velocity component, 

i.e., the "dominant" mode, of the traveling wave in the accelerator need 

be considered. Furthermore, it is assumed that the electric field strength 

of this dominant mode in the longitudinal direction is sufficiently large 

that space-charge effects mijy be neglected. Under these circumstances, 

the equations of motion of the ;th electron to enter the accelerator may 

be written8 

( 39~ 
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PA; = 
m aAi 

11-a~; 

13Ai = 1 dz Ai -c dt 

PA; = the longitudinal momentum of the ith electron in the 

accelerator; 

e = the electron charge, 

m = the electron rest energy,, 

EAo =the amplitude,·before any electron acceleration, of the 

longitudinal electric field for the dominant mode of the 

traveling wave {= 0.1 MV cm-I in ORELA), 

v = the frequency of the dominant mode of the traveling wave 

{= 1.3 x 109 sec-I in ORELA), 
" 

( 40) 

( 41.) 

tAlO = the time when the first electron in the current pulse enters 

the accelerator; 

zAi = the longitudinal coordinate of a particle measured from the 

entrance to the accelerator~ 

c = the velocity of light and the velocity of the dominant mode of 

the traveling wave in ORELA, 

~ = an arbitrary phase; 

and from the equations of motion, it follows that H, defined by 
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is a constant of the.motion. The constant tAio could be absorbed into the 

arbitrary phase ~, but for clarity this has not been done. By analyzing H 

as a function of the argument of the cosine, Slater shows that there is a 

minimum incident momentum of an electron (pA)MIN' given by 

c )2 
m2 - 4(e EA 0 ~ (p) =~~~~~~-

A MIN 

such that an electron that enters the accelerator with momentum less than this 

minimum cannot be accelerated to high energy. Furthermore, from H it can 

be shown that if 

where 

and 

PA· o ~ (pA) 
· 1 MIN 

the longitudinal momentum of the ith electron at the PAio = 
entrance to the accelerator, 

() F. _E__. 
H - v'mi + ( )2 - PA MIN + e ·Ao 2Ttv 

L PA MIN 

then those electrons such that 

where· 

tAio = the time when the ith electron in the current pulse enters 

the accelerator, 

(44 ) 

(45) 

~6.) 
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will be accelerated. The phase of the wave in ORELA when the first particle 

in the current bunch enters the accelerator is arbitrary. To simulate this 

in the calculations, the arbitrary phase 4> is introduced and an average is 

carried out over all values.of 4>· 

The probability, Pu(L,pAiO'~) that the ith electron which enters the 

accelerator will be accelerated to high energy may be written as 

Pu(L,pAi 
0

,4>) = l · if Eq. (46) is satisfied 

= 0 if Eq. (46) is not satisfied, ~7 ) 

where L denotes the entrance to the accelerator (see Fig. 1) and the proba­

bility averaged over all phases, Pu(L,pAio), is 

- l 2n 
Pu(L,pAiO) = 2n f Pu(L,pAio'~)d4>. 

0 

(48) 

The subscript U means "upper" since the theory presented in this Section gives 

an upper limit on the current that will be accelerated as exp~ained in 

Section 2.4. The assumption will be. made that Pu(L,pAio) may be applied to a 

group of electrons, but, even so, the fraction of the current I .(L,t), given by 
J 

Eq. (46) that will be accelerated cannot be found by multiplying 

Ij(L,t) by Pu(L,pAio) because Ij(L,t) contains electrons with a variety of 

momenta. To overcome this difficulty, let 

n(j)6t = tj+l - tj (49·) 

where n(j) is the smallest integer such that 

and l1tMIN is a time interval which must be specified. Then let 

t. k = t. + k6t 
J J k = 0 to n(j) ~1 ) 
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k = 1 to n(j) , 

where the momentum p j k associated with the current I j k is found at 

tjk - A2t by linear interpolation between pj(z) and Pj+l(z). Then 

N.! 1 n ( j) 

lu(L,t) =J~ ~ IjK(L,t,pjK)Pu(L,p jk) 

where 

Iu(L,t) = the cu~rent {upper limit) as a function of time at 

(52) 

(53) 

the entrance to the accelerator that wili be accelerated. 

In the calculations, the time ~tMIN was taken to be 0.05 nsec. If 

Eq. (37) rather than Eq. (35) applies then tj+2 rather than tj+l is used 

in Eq. (49). 

2.4 Beam Loading 

The theory described in Section 2.3 allows a determination of the 

fraction of the current pulse incident on the accelerator that will be ac­

celerated if the amplitude 9f the longitudinal electric field for the 

dominant mode of the traveling wave in the accelerator, EAo' is known. For 

a constant gradient linear accelerator like ORELA, 1 however, this amplitude 

is not a constant but varies with the amount of charge that is accelerated, 

and thus, to calculate the fraction of the incident current pulse that will 

be accelerated, it is necessary to take into account this variation. The 

theory of how this amplitud·~ varies under transient conditions has been 

discussed· in detail by Nea1· 9 and by Leiss, 10and.it is the results of these 
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authors that will be utilized here. In this section, only a brief discus­

sion is presented, but ·a detailed derivation of the results used here is 

given ·in App~ndix 2. 

If 

EA{zA,t- tA10) =the amplitude of ~he longitudinal electric field 

of the dominant mode of·the traveling wave at 

position zA and any time t after the first electron 

in the current pulse enters the accelerator, 

1t can be shown that for sufficiently large zA 

(5.4) 

where 

K = a constant, 

;A = the accelerated current {assumed constant in the derivation 
I 

of Eq. { 54)) , 

c = the particle velocity in the accelerator which is assumed to be 

approximately the .velocity of light. 

The equation of motion of the ith electron traveling down the accelerator 

may be written approximately as 

·and then E{zA,t) evaluated at the position of the ith electron becomes 

where 

QAi = the charge that is being accelerated ahead of the ith 

electron. 

{ 55) 

{ 56) 
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Basically, Eq. (54' is applicable only for zA values such that the current 

iA may be assumed to be constant (i.e., particles are no longer being lost 

from the beam that is being accelerated) and such that the electron 

velocity is sufficiently relativistic that it may be assumed to be ap­

proximately the velocity of light. 

The value of Kin Eq. (56) was determined from measurements made at 

ORELA by Pering and Lewis. 1 If the ambiguity in the energy change of the 

particles at small zA is neglected, then it follows from Eq. (56) that the 

energy spread of the beam as. it leaves the accelerator, ~£, is given by 

where 

QA = the total charge accelerated, and 

LA = the length of the accelerator. 

(57) 

The relation in Eq. (57) has been verified for a range of QA values by the 

me~surements in Ref. 1, and from these measurements, the value of K for 

ORELA was determined to be 7.27 MV {µC)- 1 m-
1

• This is the value used in 

obtaining the results with beam loading given in s~~tion 3. 

Equation (56) indicates that the amplitude of the electric field at 

the position of the ith particle .as it travels in the accelerator is a con­

stant independent of time. This means that the theory of Section 2.3 could 

be applied except that Eq. (56) is valid only for large zP.i' and the theory 

of Section 2.3 must be applied at small zAi" When Eq. {56) is used at 

small zAi' it is not clear what value of QAi should be used, but it is clear 

that a lower limit on the field, and thus the fraction of charge accelerated, 

will be obtained if QAi is put equal to all of the incident charge that has 

entered the accelerator from tA to tA. , and this is the approximation 
10 l 0 . 

that is .made here. 



24 

With EA(zAi't) determined from Eq. (56), the probability, 
- . th . 
PL(L,pAio)' that the i-. electron that enters the accelerator will be 

accelerated may be defined in the same manner as Pu(L,pAio) with EAo 

replaced by EA' and then 

N~ 1 n {j) 

= ~ ~ IJ.K(L, t ,pJ.K)PL(L ,p .. k) 
J-1 K-1 J 

where 

(58) 

IL(L,t) =the current as a function of time at the entrance to the 

accelerator that will be accelerated when beam loading in 

the approximation described above is used. 

Since the effects of beam loading have been overestimated, the quantity 

IL(L,t) is a lower limit on the current that will be accelerated. On the 

other hand, lu(L,t) is obtained by neglecting beam loading and gives, 

therefore, an upper limit on the current that will be accelerated. 

3. RESULTS AND DISCUSSION . 

Calculated results for several cases of interest in the design 

of the ORELA prebuncher are given in Figs. 3-6. Each figure corresponds 

to a particular configuration of decelerating and accelerating voltage 

gaps and specific values of the magnetic field parameter, zM' (see Fig. 1). 

In all cases, the radius of the conducting cylinder, a, is 2.5 cm, an.din 

all cases except that considered in Fig.· 6, the radius of the beam, r
0

, 

is 0.4 cm. The total charge in the incident beam was taken to be 1 µC. 
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The results presented in each figure represent.the current as a function 

of time (at the entrance to the accelerator) that will be accelerated for 

specific values of the length, L, of the prebuncher~ For each L value, 

the zero of time is taken to be the time when the first electron enters 

the accelerator. For each L value considered, the current as a f~nction 

of time is given "without beam loading" and "with maximum beam loading. 11 

As explained in Section 2.4, the beam-loading approximation used here gives · 

an overestimate of the effects of beam loading, and thus the current "with 

maximum beam loading" is a lower limit on the current that will be accel­

erated. Similarly, the calculated current "without beam 1oading 11 is an 

upper limit on the current that will be accelerated, and thus the two curves 

for each L value bracket the current,as a function of time,that will be 

accelerated. Because of the many ®functions which occur in Iu(L~t) and 

IL (L,t) given by Eq. ( 53) and (58) these functions contain many stepwise 

discontinuities. To avoid these dis~ontinuities, insofar·as possible, the 

functions Iu(L,t) and IL(L,t) have been averaged over a sequence of small 

time intervals to produce histograms. It is these histograms that are pre­

sented in Figs. 3-6.. Also given for each L value in each figure are the 

total charges that will be accelerated and the second moments of the current 
distributions defined by 

Q (L) = (~ I (L,t)dt 
a o a. 

- l ~ . 
ta(L) = QQ(L) ! Ia(L,t)tdt 

a"(L) = {QJ) ( I°'(L,t) [t-ta(L)]2dt} i, 

where P takes values U for the case without beam loading and L for the case 

with maximum beam loading. 
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In Figs. 3-5, calculated results are given for the case of 7, 8, 

and 9 voltage gaps, respectively. The results in Fig. 4 were obtained 

with the decelerating gap-accelerating gap configuration shown in 

Fig. 1. The voltage gap configuration used in obtaining the results· 

in Fig~ 3 is the same as that shown in Fig. 1 except that the last de­

celerating gap before the drift space was removed. The voltage gap 

configuration used in obtaining the results in Fig. 5 is the same as 

that shown in Fig. 1 except that an additional decelerating gap has been 

added at 3a.48 cm after the last gap shown. In obtaining all of the 

results in Figs. 3-5 the decelerating gap-accelerating gap configuration 

for the first seven gaps is the same. The actual configuration of these 

seven gaps is somewhat arbitrary, but not entirely so since, as a general 

rule,it seems undesirable that the particles in front.of the pulse attain 

a negative velocity. 

In obtaining Fig. 3,the magnetic field parameter zM (see Fig. 1) was 

taken to be 25a cm, and in obtaining Figs. 4 and 5, zM = 275 and 3aa cm, 

respectively. In all cases, the value of zM was chosen to be near the 

beginning of the drift space. As stated previously, the magnitude of 

the magnetic field that can be produced in the vicinity of the gaps is 

limited; and, therefore, the assumption is made that to prevent 

the radial spreading of the beam it is desirable to increase the magnetic 

field strength to its final value near the beginning of the drift space. 

The curves at the top of Fig. 3 are for L = a.a cm and thus cor­

respond to the case when the current pulse enters the accelerator directly · 
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ORNL-DWG 77-1$049 

- WITH MAXIMUM BEAM LOADING 

------ WITHOUT BEAM LOADING 

L• 0.0 cm 

Ou= 0.61 µ.c oL • 0.43 µ.c 
uu = 4.4 nsec uL = 3.8 nsec 

------------------------, 

4 

... , 
L= 235 cm 
Ou., 0.64 µ.c oL • o. 51 µ.c 

~~2.9 nsec uL • 2.7 nsec 

t.l 
-, 

I 

L • 325 cm 
I Ou• 0.62 µ.c oL • 0.48 µ.c 
-~ uu • 2.6 nsec uL .. 2.4 nsec 

-., 
!.--

' I 

L • 375 cm ., 
1 Ou - 0.62 µ.c 
L., _,,,. •• ., u11 - ...... naec 

L ... 
I 
L • ., 

I 

OL •0.48µ.C 
ul = 2.3 nsec 

OL• 0.48µ.C 
0\. •£.£ nHC 

1 L =400 cm 

·1 Ou•0.62µ.c 

6 

L., o; = 2.4 nsec L., U 
L., 

I 
L 

OL = 0.47µ.C 
O'L • Z.Z nsec 

8 10 12 14 16 18 20 

TIME (nsec) 

Fig. 3. Current that will be accelerated vs time for a 7-voltage 
gap configuration. (The dashed histogram is the upper bound and the 
solid histogram is the lower bound) (Q = l µC, r

0 
= 0.4 cm). 
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from the electron gun. The decrease with increasing time of the solid 

curve for L = 0.0 cm is due to beam loading (i.e., the electric field 

strength decreases as particles are accelerated and thus the particles 

that enter the accelerator at the later time find a much reduced field 

strength and have a correspondingly lower probability of being accelerated). 

The total charge that will be accelerated without beam loading, QU' 

equals .61 µC and the total charge that will be accelerated with maximum 

beam 1 o~ing, QL' equals .43 µC. ORELA operating ~xperience indicates 

that approximately -0~5 µC of a 1 µC pulse will be accelerated,thus con­

firming that Q0 and QL as calculated here are upper and lower limits on 

the current that will be accelerated. 

The other sets of histograms in Fig. 3 correspond to increasingly 

larger values of L. The second set of histograms from the top of the 

figure {L ~ 235 cm) show the result when there is no drift space, that is, 

the current pulse enters the accelerator immediately after passing through 

the last voltage gap. At L - 325 cm a modest amount of bunching has 

occurred and the amount of bunching - as indicated by cr0 and crl - increases 

slowly as L increases to 400 cm. At all L ~ 235 cm the upper and lower 

limits on the current distributions are similar in shape. It should be 

noted that QU and QL for all L values considered are not significantly 

different so that the total charge that will be accelerated has not been 

appreciably affected by the bunching process. The largest L value con­

sidered (= 400 cm) was primarily dictated by the available space at 

ORELA3, but because of radial confinement problems that are not considered 

here, it seems desirable to keep the total length of the prebuncher as 

short as possible. 
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To obtain more bunching than that shown in Fig. 3, a larger 

velocity gradient across the current pulse is needed so in Fig. 4 

results are shown for an 8-gap configuration (see Fig. 1). The 

various sets of.histograms in Fig. 4 correspond to different L values 

as indicated. The histograms for L = 0.0 ~m are not shown since they are 

the same as those shown in Fig. 3. The histograms at L = 242 cm again 

correspond to the case when the particles enter the accelerator im­

mediately after leaving the last voltage gap. At L : 325 cm the bunching 

in Fig. 4 is somewhat better than the bunching in Fig. 3 and this con­

tinues to be the case at the larger L vaiues. The total current that 

will be accelerated is very approximately the same at all L values in 

both Figs. 3 and 4. In Fig. 4, the best bunching is achieved at L = 400 cm, 

but the degree of bunching is changing only slowly with distance so the 

exact length of the prebuncher is not of critical importance. 

In Fig. 5 results are given for the 9-voltage gap configuration; i.e., 

for one decelerating gap in addition to those used in obtaining the results 

in Fig. 4. The set of histograms at the top of the figure (L=273) cor­

respond to the case when the particles enter the accelerator immediately 

after leaving the last voltage gap. The most striking feature of the 

results for L ~ 325 cm in Fig. 5 compared to those in Figs. 3 and 4 is 

the appearance of a 11 tail 11 on the current distribution calculated without 

beam loading. This 11 tail 11 corresponds to particles that lag behind the 

main pulse. In Fig. 5, the 11 tails 11 are shown only out to 20 nsec, but 

they do extend beyond this time. Tails similar to those shown in Fig. 5 

also occur in Figs. 3 and 4, but the magnitude of the current in the tail 
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ORNL-DWG 77-45048 

--- WITH MAXIMUM BEAM LOADING 

------· WITHOUT BEAM LOADING 

4 

-, 
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, 

L • 242 cm 

Oum 0.62 fLC OL • 0.49fLC 

uu • 2 .9 nsec uL • 2. 7 nsec 

-"'-"' _,_, 
L.., 
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-l.. O"u • 2.4 nsec O"L • 2.2 nsec 
1.., 
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Ou•0.60p.C 

O"u • 2.• nsec 

8 

TIME (nllC) 
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Fig. 4. Current that will be accelerated vs time for an 8-voltage 
gap configuration. (The dashed histogram is the upper bound and the 
solid histogram is the lower bound.) (Q = 1 µC, r

0 
= 0.4 cm). 
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ORNL-DWG 77-45046 

- WITH MAXIMUM BEAM LOADING 

-----· WITHOUT BEAM LOADING 
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Fig. 5. Current that will be accelerated vs time for a 9-voltage 
gap configuration. (The dashed histogram is the upper bound and the 
solid histogram is the lower bound.} (Q = l µC, r

0 
= 0.4 cm}. 
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is so small that it cannot be shown on the graph. It is important 

to note that the tail occurs only on the dashed histogram, i.e., on the 

upper bound. Since the "tai,.. occurs.on the upper bound as calculated 

here and not on the lower bound the actual extent to which this tail 

will occur experimentally is not known from the present calculations. 

For L ~ 325 cm the total charge that will be accelerated is slightly 

smaller in Fig. 5 than in Figs. 3 and 4. If one considers only the solid 

curves and al in Fig. 5.then the bunching is slightly better than that 

in Figs. 3 and 4, but because of the effects of the tail the cru values 

in Fig. 5 are appreciably larger than those in Fig. 3 and 4. Since the 

presence of the tail is undesirable experimentally, it seems that it may 

be necessary to accept only the bunching provided by the 8 gap config-:­

uration in order to avoid a substantial tail. 

The results in Figs. 3, 4, and 5 are based on the idealized assumption 

that the electron beam does not spread radially during its motion. To 

obtain a very approximate estimate of the effects of radial spreading on 

the bunching the calculations with the 8-gap configuration have been repeated 

under the assumption that the beam has a radius of 1.0 cm (rather.than 

0.4 cm). The results of this calculation are shown in Fig. 6. 

The most striking feature of the results in Fig. 6 are the tails on 

the distribution for L ~ 325 cm and the fact that the charges that will 

be accelerated, i.e., QU and QL,are somewhat lower for L? 325 cm than in 

the previous figures. Note in particular that at L : 242 cm, QU = .61 µC 

and QL = .46 µC whil~ at L = 325 cm QU = .44 µC and QL = .30 µC. The basic 

reason for this decrease is the change in the magnetic field that occurs 
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77-15047 

- WITH MAXIMUM BEAM LOADING 

-----· WITHOUT BEAM LOADING 
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Fig. 6. Current that will be accelerated vs time for an 8-voltage 
gap configuration and a beam radius. r0 , of l cm. (ThP. rlashed histogram 
is the upper limit and the solid histogram is the lower limit.) 
( Q = l µC). 
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between 275 and 300 cm in this case. This inhomogeneous magnetic field 

acts as a 11 magneti c mi rror 11 and thereby decreases ,the 1 ongi tudi na 1 

energy of the particles so that they are less likely to be accelerated 

when they enter the accelerator. (In some cases the particles attain·a 

negative longitudinal velocity and thereby never reach the accelerator.) 

This same effect is present in the other cases considered, but it is 

much smaller when the beam radius is small. The tails on the current 

distribution calculated without beam loading in Fig. 6 are very similar 

to.those in Fig. 5 and all of the previous discussion concerning these 

tails applies to those in Fig. 6. The presence of the tails in Fig. 6 

indicates that even a configuration that appears to give reasonable 

bunching (see Fig. 4) may be unsatisfactory from a bunching point of 

view if there is appreciable radial beam spreading. 

SUMMARY 

The results of essentially one-dimensional calculations indicate that 

a 15 nsec (FWHM) electron current pulse can be bunched to approximately 

4 nsec (FWHM) by the prebuncher considered here. The bunched beam, .however, 

has a tendency to develop an undesirable 11 tail 11
, and it may be necessary 

experimentally to accept a modest amount of bunching in order to avoid 

a substantial tail. 

• 
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APPENDIX 1 

SPACE CHARGE FIELD 

In this appendix the space charge electric field given by Eq. (12) 

is derived. The derivation presented here is very similar to that of 

Williams and McGregor 4, but the result is slightly different from that 

obtained by these authors. 

The potential of a point charge at rest inside a conducting cylinder 

(assumed infinite in length) may be written7 

where 

m m J (µ b)J (µ p) 
V' 2e - a2 l l (2-o 0 )exp[-µ lz'.-z'.IJ s r s r os s(¢-~ 0 ) 

r=l s=O s r , J µr[Js+l(µra)]2 

at·= the radius of the conducting cylinder; 

z~ ,b,¢ = 
J 0 

zi ,p ,¢ = 

JS = 

the polar coordinates of the point charge; 

the polar coordinates of the field point; 

a Bessel function of the first kind~ 

o0 = l s 

= 0 

if s = 0 

if s 'I 0 

and µr is defined from the zeros of J
0 

by the equation 

The- electric field in the z direction is given by 

. "'V' E' = - -~ z az. , 

(Al. l) 

(A 1 • 2) 

(Al .3) 

(Al .4) 



so 

E' 2e 
z = a2 

36 

co co 

~ ~ (2-8°)exp[-µ lz~-z~IJsign(z1

1·-ZJ~) r~l s~O s r 1 
· J · 

• Js(µrb)Js(µrp)cos s($-$o) 

(Js+l (µia)]2 

(Al .5) 

This is the electric field in the system where the point charge is at rest. . . 
If the point charge is moving in.the z direction with a velocity ~. and if . . . J 

it is assumed t~at the Lorentz transformation is.valid when the conducting 

cylinder is present then 

where 

2e co co 

Ez = -a2 l l (2-8;)exp[-µry"'J.lzi-ZJ·IJsign (zi-zJ.) 
r=l s=O "' 

Js(µrb)Js(µrp)cos s($-$o) 

[Js+l(µra)] 2 

' ' 

Ez = the electric field in the laboratory system; 

zj,b,$
0 

=the polar coordinates of the point charge in the 

laboratory system; 

zi,p,$ =the polar coordinates of the field point in the 

laboratory system. 

(Al.6) 

(Al. 7) 

In obtaining (Al.6) the fact that Ez is invariant under a Lorentz 

.transformation along the z axis and that 

z.'-z~ = y /z.-z.) 
1 J ZJ 1 J 

(Al. 8) 

have been used. 
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Equation (Al.6) is the field from a point charge, but to obtain the 

field Es that appears in Eq. (Al.5) it is necessary to integrate over the 

spatial extent of the source 11 disk 11 and to average over the spatial extent 

of the fixed 11 disk 11
• That is, 

E (z ., z,s.) = s 1 J J 

where 

qs = the charge density of the source 11 disk 11
; and 

qf = the charge density of the field 11 disk 11
• 

(Al.9) 

Assuming that the charge densities are constant over the 11 disks 11 the inte­

grations in Eq. (Al.9) may be carried out in a straightforward manner as 

shown by Williams and McGregor4 to give 

2 00 y 
Es(zi,zJ.,sJ.) = - l exp[-yZJflzi-ZJ·IJ 

r 2 r=l 
0 (Al.10} 

This expression for Es is still not directly useable in Gq. (Al.5} because 

Eq. (Al.10} was derived assuming sj to be constant and the Sj in Eq. (Al.5} 

is changing with time. It will thus further be assumed that Eq. (Al.10) 

remains approximately valid when Bj is changing with time, i.e., the 

Lorentz transformation used in the derivation is assumed to be approximately 

valid if carried out at the instantaneous value of sj. 
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The expression for Es given in Eq. (Al.10) differs from that used 

by Williams and McGregor 4 only in that they replace the exponential factor 

by 
1 Yr 

exp[-2(Y zi+y zj ~a-I zi-zj I]. 

· Both forms are, of course, very approximate. 
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APPENDIX 2 

BEAM LOADING 

In this appendix the beam-loading results introduced in Section 2.4 

are derived. The derivation given below is taken from the work of Neal9 

and Leiss. 10 

The equation governing the flow of rf power in the accelerator may be 

written 9 

where 

P(zA,t) = the power at point zA at time t, 

IA(zA) =the voltage attenuation coefficient at zA' 

i(zA,t) = the electron current at zA and t, 

· EA(zA,t) = the electric field amplitude at zAt' 

(A2. l ) 

and where the approximation has been made that the electrons travel on the 

crest of the wave from the time they enter the accelerator and are not lost 

to the walls. These approximations are not valid near the beginning of 

the accelerator, and thus the derivation presented here is not applicable 

for small values of zA. Using the expression for the shunt impedance, r, 

of the wave guide, 10 

(A2.2) 

and the expression for IA(z) derived by Neal'?/' for an accelerator of the 

ORELA type, 

(A2.3) 
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yA = the average power expenditure per unit length in the 

accelerator (= constant), 

P
1 

= the input rf power, 

Eq. {A2.l) may be rewritten as 

where 

v = the group velocity in the wave guide. 
g 

(A2.4) 

To solve Eq.{A2.4), the Laplace transform with respect to time is taken to 

give 

(A?.5) 

The general solution to Eq. (A2.5) may be written 

z 
- r f A dzAIA(zp) exp[--t- (zA-zA)J i(zA,s) 

0 g 

ZA E(zA,O) s 
+ J dzA v exp[- v (zA - zA.)J 

0 g g 
(A2.6) 

and inverting the transforms 



-, 
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z zA - zA' z - z ' 
f A d ' I ( ' ) ,. (zA' t - ) ""(t - A A) - r zA A zA J 11::1 J 
0 v

9 
v
9 

(A2. 7) 

z ZA - ZA z - z I 
- r f A dzP, l(z)l.) i(z,,{,t - v ) @(t - A A) . (A2.8) 

o g vg 

For boundary conditions, it will be assumed that 

where EAo = constant, so Eq. (A2.8) becomes 

where the lower limit has been determined from the 9 function in Eq. (A2. g) 

To proceed further, the current, i(zA,t), will be specified to be 

(A2. 10) 
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iA = constant, 

tAio ~ the time when first electron enters the accelerator, 

c = the particle velocity in the accelerator which is 

assumed to be constant and equal to the velocity of light, 

that is, the current in the accelerator will be assumed to be a constant 

except that it is turned on at t = tAio· If Eq. {A2.10) is substituted in 

Eq. {A2. 9), a-nd T is defined by 

one finds 

ZA 1 1 
T = t - tAl 0 - - + z I {- - - ) vg A vg c 

ZA 
_. riA ;t-tA1oc 

ZA ZA 
{ t-tA --)0{ t-t --) g in v A10 v g g 

{A2. 11) 

(A2. 12) 

Equations {A2.11) and {A2.12) may be used to obtain an exact expressi~n 

for EA(z,t), but for our purposes it will be convenient to proceed in a 

much more approximate manner. First, note that current pulses of only 

- 15 nsec duration are of interest and vg = 0.007 c,1, 2 so.the lower limit 

on the integral in Eq. {A2.ll) is different from zero during the pulse only 

for za ~ 3 to 4 cm. Since Eq. {A2.ll) is not valid in any case at small zA 

,,, 
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because.of the constant current assumption, the lower limit may be taken 

to be zero with· the understanding that small values of zA are not to be 

considered. Then, using the mean-value theorem, for sufficiently large zA 

Eq. (A2. 11 ) becomes 

" (A2.13) 

where 

~ = some mean value of IA that is· to be specified. 

Now let us evaluate Eq. (A2.13) at the position of the i th electron as it 

moves in the accelerator. Since 

where 

tAi =the time when the i!.h.electron enters the accelerator, 

one finds 

where 

-
= EAo - r IAvgQAi 

QAi = the charge that is being accelerated in front of the ith 

electron. 

(A2. 14) 

(A2.15) 

(A2. 16) 

(A2.17) 

Equation (A2J6) indicates that the electric field amplitude at the position 

of the ith electron as it moves in the accelerator is approximately a 

constant independent of time. 
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To determine the constant in Eq. (A2.16), tbe. energy change ·at. the 

electrons at small zA' is neglected as it is negligible compared with the 

energy of the electrons at the end of the accelerator, and thus the energy 

spread of the electron pulse, ~£, as it leaves the accelerator is given 

approximately by 

where 

QA = the total charge that is accelerated, and 

LA = the length of the accelerator. 

(A2.18) 

Measurements of the energy spread of the current pulse as a function of 

accelerated charge have been made at ORELA, and the linear relationship 

given in Eq.(A2.18) has been shown to be quite valid.1 , 2 Furthermore, from 

the measurements the constant in Eq.(A2.18) can be obtained and is found 

to be 

K = rTAvg 

7.3 MV = _,,____ 
µC m 

It is this empirical value that was used in obtaining the results presented 

in Section 3. The manner in which the beam-loading results are used is 

discussed in Section 2.4. 

,, 
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