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SUMMARY

The Multicomponent Mass Transfer (MMT) Model is a generic compuczer
code, currently in its third generation, that was developed to predict the
movement of radiocontaminants in the saturated and unsaturated sediments of
the Hanford Site. This model was designed to use the water movement patterns’
produced by the unsaturated and saturated flow models coupled with dispersion
and so{1~waste reaction submodels to predict contaminant transport.

This report documents the theoretical foundation and the numerical
solution procedure of the current (third) generation of the MMT Model. The
present mecdel simulates mass transport frocesses using an analog referred to
as the Discrete-Parcel-Random-Walk {DPRW) algorithm. The basic concep:s of
this solution technique are described and the advantagéS and disadvantages
of the DPRW scheme are discussed in relation to more conventional numerical
techniques such as the finite-difference and finite-element methods. Verifi-
cation of the numerical algorithm is demonstrated by comparing model results

with known closed-form solutions. A brief error and sensitivity analysis of
the algorithm with respect to numerical parameters is also presented. A
simulation of the tritium plume beneath the Hanford Site is included to
illustrate the use of the model in a typical application.
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I. INTRODUCTION

Since 1944 the Hanford Site located in south-central Washington, has
been a location for radioactive waste storage, reactor development, and
chemical separation facilities for the production and purification of plu-
tonium needed in the development of nuclear weapons.(]) These activities
have involved the disposal of some radioactive waste to surface or near
surface disposal sites with a consequent coirtamination of some of the aduifers'
underlying the Hanford Site. An extensive groundwater monitoring prograem
conducted over the years at Hanford indicates that the movement of radio-
active contaminants thrcugh the grcundwater flow system toward biosphere
uptake points (primarily the Columbia River) is 1imited.(2) Nevertheless, a
program is being conducted to assure continued isolation of such contaminants

from the biosphere both now and in the future.

At present, the Atlantic Richfield Hanford Company operates the waste
management activities at Hanford under contract to the U.S. Energy Rasearch
and Development Administration. A Groundwater Management program has been
instituted in support of the waste management activitias to:

1. identify potential ways in which groundwater can come in
contact with high-level radioactive wastes;

2. assess data gathering and computer modeling requirements needed
for long-term prediction of subsurface contaminant migration
from high-level radioactive wastes areas into and through the
groundwater flow system;

3. examine the potential impact to the high-level radioactive waste
areas resulting from past, present, and projected activities at
Hanford, potentially hazardous incidents, and potential or exist-
ing water use activities adjacent to or within the Hanford
Site; and ‘

4. 1improve the management of the Hanford flow regime and identify
methods of controlling accidental contaminant releases and pre-

venting che contaminant from reaching the biosphere.




The procedure used in technical evaluation and management of the
Hanford groundwater system is shown in Figure }. System characterization
is established through data collection and interpretation which lead to a
conceptual model of the system. Such a conceptuul model may be used directly
for environmental assessment and managemerit decision purposes or it may first .
oe translated into mathematical form amenable to analytical or computer
solution methods. '

The conceptual model of the Hanford Qroundwater system and the mathematical
modeling capabilities needed for better understanding of possible contaminant-
movenent are discussed in detail in a report by Arnett et al,(3) In that report
the groundwater predictive models are divided into th2 major categories of fluid
flow and contaminant transport. The point was made that except perhaps for
extreme cases the fluid flow patterns could be assumed independent of the
concentration of any solutes that might be present. This allows the formulation
of a decoupled transport model. In practical terms, this means that a mass
conservative fluid flow field can be determined over the entire simulation period
and the resultant information preserved and input to the transport model at a
later time.

Early in the Hanford Groundwater Modeling Program, three independent
but interrelated models were developed by Battelle, Pacific Northwest
Laboratories: '

1. the Partially-Saturated-Transient (PST) Flow Model, ()
2. the Variable-Thickness-Transient {VIT) Flow Mode],(s)
* 3. the Multicomponent-Mass-Transfer (MMT) Transport Model.

znd

The PST Model was designed to predict moisture movement in the partially

. saturated zone as a function of time and space. Although the PST Model effort

was valuable in obtaining insight into partiaily or unsaturated flow phenomena

certain limitations in the numerical solution methods and the applicability

of the formulation to the entire range of Hanford unsaturated Flow problems .
prevented PST from becoming an 6perationa1 management model. Work is underway

A both at Battelle and at the Atlantic Richfield Hanford Company to develop

a set of operational flow models applicable to the unsaturated flow regiﬁe.
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The VTT Model predicts the two-dimensicnal flow patterns of groundwater in

the unconfined aquifer. The MMT Model is designed to combine either the

moisture movement rates generated by an unsaturaited flow model or the .
groundwater movement data generated by a saturated fiow model (VTT) with
dispersion and pertinent :oil-waste reactions to predict the spatiotemporal
distributions of important radiocontaminants in either tﬁe saturated or unsaturated
regime.

This rerort describes the theoretical basis and the numerical implementa-
“tion of the third developmental gereration of the MMT Model. This generation
of the model differs from previous versions primarily in the type of numerical
proiedure vsed to create the simulation. The new numerical algorithm is
called the Di-crete-Parcel-Random-Walk (DPRW)} technique. The mnemonic
selected for this version of the model to differentiate it from previous
gene.ations is MMT-DPRW. ' '

The MMT chemical submodel assumes that all dissolved or suspended

8

material can be segregated into two categories: 1) minerals naturally

present in relatively large quantities in groundwater systems (macroions!. §§
and 2) species that are present only in trace quantities (microions). %§
Macroion species, by definition, exist in concentrations large enough to f

significantly affect the chemical benavior of each cther and any wicroions
present. Microion species are assumed to exist only in minute quantities
relative to macroion concentrations and do not appreciably affect the
chemistry of the macroions or other microions in the sysiem. Important
radiccontaminants can usualiy be assumed to be present in microion

SRR

e
sy

concentrations.

In order to be compatible with the VIT Flow Model, the MMT code was
initially formulated to handle two-dimensional vertically-averaged systems. !
Although this assumpticn neglects vertical flow cohponents in the Hanford
unconfined aquifer, it does consider the varying aguifer thickhess (as does
the VTT Flow Model). The current formulation can easily and economically .
be extended to three dimensions, but this modification is presently awaiting
the completion of an operational three-dimensional Hanford groundwater flow model
and sufficient field data for calibration and verification. The MMT-DPRW




Model has yet to be applied to a partially saturated test case so that
adjustments may still be needed. Partially saturated applications of
MMT-DPPW are planned for the neay future.

The conceptual design of the MMT-DPRW Model is discussed in the
following section. In subsequent sections the DPRW computational scheme
is detailed; the numerical verification, error and sensitivity analysis
of the new algorithm are discussed; and a preliminary application of the
model to the Hanford system is given. Some details of the chemical
submodel are discussed in the appendix.

1-5
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II. THEORETICAL DEVELOPMENT OF THE MODEL

The development of a mathematical model of a given physicochemical
system or process may be approached using two different methods. One approach
first attempts to describe the system with a representative matirematical
equation and then tries to solve this equation with appropriate boundary
corditions, thereby creating_the simulation. The other approach attempts to
simulate reality more directly by defining numerical structures that repre-
sent specific constituents or physical structbres of the system and by
allowing these numerical represei..ztions to react and interact as determined
by the physical driving forces or constraints that are active in the real
system.

The first approach is termed the "model-equation" method and usually
leads to complex partial-diffefentia] equations which must be solved
numerically, most often by using finite-difference or finite-element
techniques. The seccnd or "direct-simulation" method normally requires
only that an efficient bookkeeping structure be established to control
the response of the numerical representations so that all physizal
constraints are satisfied. Each approach, if properly implemented, can
yield an adequate simulation of reality, but each approach has certain
inherent advantages and disadvantages.

Initially, the develooment of a subsurface transport code for Hanford
was based on the traditional model-equation type of approach. A preliminary
model was developed that used a finite-aifference, alternating-directicn-
implict (ADI) numerical solution technique, but it was soon recognized that
the numerical dispersion properties of this method prohibited its widespread
use. MNext, the particle-in-a-cell (PIC) numerical alcorithm used by Pinder

(€) was investigated. This method eliminated some numerical

and Cooper
dispersion prchlems, but it tended to have some stability and mass-

conservation problems for many required applications.

II-1




In 1973, developmental emphasis shifted toward adopting a direct-
simulacivn type of transport analog originated by Eliason and Foote(7) for
modeling thermal transport in coastal waters. A version of this numeri-
cal technique was adapted to operate in subsurface flow regimes and
subsequently formed the basis of the current version of the MMT model. 1Its

primary advantages are:

® always mass-conservative
®* no cumulative numerical dispersion
® inherent numerical stability

* facilitates handling of multicomponent systems.

The concepiual development of workable mathematical models using both
the model-equation and direct- s1mu1at1on approaches is outlinec below.
A]thOugh the model equation based viewpoint was not used in the formulation
of the current model. a discussion of this approach is included to
provide é point of reference and a basis of comparison for the following
explanation of the direct-simulation analog.

Although the current computerized version of MMT is a two- d1mens1ona1
vertically average formulation, the conceptual model development is
presented inr three-dimensions in anticipation of future model updates.
Assumptions specific to the vertically averaged version are discussed
when necessary. A brief analysis. of the advantages and disadvantages
of the direct approach follows the two conceptual descriptions.

Fundamentally, the MMT. Model and ail other mass transport models are
based on the law of conservation of mass. This law can be expressed in
non-mathematical terws as:

The rate of change of mass the net advective flux
concentration of chemical = of the species k into
species k within a given the control volume

centrol volume

the net diffusive flux
+ of species k into the
control volume




the net rate of pro-
duction of species k
+ within the control )
volume. (11-1)

THE MODEL-EQUATION APPROACH

A mathematical statement of Equation II-1 is usually referred to as an
equation of continuity. The general form of the equation of continuity for
a nonisothermal muiticomponent fluid consisting of k chemicai species can be

written as: (3)
20k k— % k
3t = - (Vgp v) - (V-J ) +r ' (II"Z)
‘ k= 1,2,3.::%
where
pk = the mess concentration of species k [M/L3]
t = time [T}
v = the Del operator
v = the mass average pore velocity of the fluid [L/T]
3% = the mass flux of k relative to v (diffusive flux) [W/LZT]
rk = the net rate of production of species k within the control volume

/LT,

The addition of k equations of this kind gives the equation of conti-
nuity for a mixture. Each term of Equation II-2 corresponds directly with
the terms of Equation II-1. Equation II-2 is written in general terms and
applies to both Tiquid and gaseous mixtures containing an arbitrary number
of ccawponents in any ratio at any temperature and pressure. Practical
mosels are by necessity much more limited. Before the simplifying assump-
tions necessary for a practical Hantcrd groundwater model are investigated,
it may be instructive to uiscuss the sicnificance and contribution of each
term of Eqdation 11-2.
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Transport Equation Terms

_ The term on the left-hand side of Equation II-2 is called the transient
term. It may be interpreted as the total rate of change of mass concentra-
tion of species k at a point in space at a given instance in time. The rate
of change of concentration is generally assumed to be a function of tempera-

ture, pressure, and location as well as the concentration of any other
species that might be present. If pk does. not change with time, this term
is identically zero and Equation I1-2 reduées to wkat is commonly

called a steady-state mass balance. In the groundwatar system beneath
Hanford, solute distributions have been observed to be changing over a number
of years. Since the primary function of a transport model is to predict and
quantify these changes in solute concentrations, the steady-state assumption
cannot be made. However, a hypothetical steady-state case can be postulated
assuming that all artificial discharges are eliminated and that all natural
sources of groundwater and solutes remain relatively constant.

The first term on the right—hand side of Equation II-2 is the
advective term. This term represents a change in concentration of the
system resulting from the gross movement of fluid in which species k is
transported. The mass average velociiy vector of the fluid mixture, v, is
a function of time, space, temperature, and the chemical composition of
 the mixture. If V is constant with respect to time, the flow field is
said to be steady. For applications at Hanford, the assumption of a steady-
flow field may be adequate for short-term simulations in the range of a few
years because the changes that occur in the flow field are relative?j slow
in most locations. For longer simulations, the velocity field cannot
reasonably be assumed to be constant. The assumption of stagnant ground-
water conditions (i.e. stationary fluid, v = 0) has very limited application
within the Hanford system.

The second term on the right-hand side of Equation II-2 is the diffu-
sive or relative flux term. This term r:presents the change in concentration
at a point in the system resulting from malecular diffusion and mechahica]
disnersicn.(g) Molecular diffusion is caused by the random motion of

11-4




molecules when a concentration yradient is present. Mechanical dispersion
results from the irregular porcus structure and other larger nonhomogeneities
in a subsurface flow system. The cortribution of molecular diffusion is
believed to be very minor for regional transport analyses, but the contribution
of mechanical dispersion is usually large enough to make the relative flux

term significant. The types of mechanical dispersion mechanisms that are
important depend upon the scale of a given problem. These mechanisms are
discussed in more detail later in this section.

The last term is usually called the source/sink, reactive or nonconserva-
tive term. It represents all internal processes that tend to change the net
amount of species k present in a control vo]ume‘including injection, with-
drawal, radicactive decay, and chemical reaction. The reactivity of a
chemical system may be a fumition of temperature and any or all of the %
mass concentrations in the mixture. Ideally, this term should consist of a
series of rate expressions that represent all known mechanisms by which

species k can react with its immediate environment. Species for which rk i

S
zero are referred to as conservative substances because they are neither
produced nor consumed within & control volume. Nitrate is an example of a
conservative species in groundwater systems, because it is essentially
nonreactive and is simply carriec along with the water. An example df'a
nonconservative species is ]06Ru which is lost from the system as a result
of radioactive decay.

Simplifying Assumptions

Equation II-2 serves as the starting point to explain assumptions made
to create a practical model for the Hanford subsurface system. These simpli-
fications were made for one or more of the following reasons:

® A portion of the gereral equation, based on an analysis of the best
available information, appeared to be relatively insignificant for the
anticipated applications of the mcdel.
The quality of existing data or additional data that can be reasonably
obtained does not justify considering anything above a certain level of
complexity.
® A reduction in complerity was required to allow a computer simulation
within reasonable time and economical constraints, based on present-
day computing hardware limitations.
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Each simplifying assumption will be denoted by italics when it appears
in the text.

First, it is assumcd that the effects of changing atmospheric pressure
will be negligible. This should be a valid assumption for sub-surface water
systems ev rywhere except within a few feet of the ground surface or near a
well.

The velocity Jistributions required for a transport simulation can be
derived from a flow model simulation or by analysis of the data produced by
a fairly extensive field measurement program. Regardless of the method used
the ve1ocity field 15 determined prior to computing the transport simulatior.
The assurption inherent in this practice is that the advection patterns are
not dependent on the chemical composition or temperature of the solutiom.
In other words, the momentum, mass, and energy transport processes are decoupled.
This assumption is valid for systems that are nearly isothermal and that
contain relatively tow concentrations of contaminants.

The decoupling simplification should usually be valid in the groundwater
zone, but is probably not satisfactory near the ground surface where large
temperature grad.ents are present or when some of the species present in
the mixture are reacting and producing significant amounts of heat. For
example, the heat producing decay of radionuclides and the high salt
concentrations near a possible leak from a high-level waste storage tank may
invalidate this assumption.

Resclution of flow natterns below a certain scale in large-scale
environmental flow systems is usually not feasible when calculating or
measuring advective fields. In surface water systems, the small-scale
unresolved motion is usually referred to as turbulence. In porous media.
systems, analogous small-scaie advective motion is called mechanical
dispersion.

"Mechanical 4ispersion is often subdivided into micro- and macroscopic
dispersion mechanisms.(]o) Micro-dispersion orcurs because the complicated
network of interconnected passages that comprise the microstructure of soil
causes a continuous division and re-division of a fluid mass-as it flows
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though the ground. Variations in local velocity, both magnitude and direc-
tion, along the tortuous flow paths and the velocity distribution within
each pore then cause a contaminant to spread and occupy an ever increasing
volume of the porous media. '

Macro-dispersion is the apparent mixing prcduced by unresolved
variations in the porous medium, such as local variations in lithologic
units which cause changes in the direction and speed of groundwater Flow.
The magnitude of this mechanism is therefore often a function of the scale

€
(10) and it becomes more significant

of porous material property identification
as the degree of nonhomogeneity of the medium increases. In a regionally
sized heterogeneous groundwater system such as the Hanford unconfined

aquifer, there is a strong likelihood that macrcscopic dispersion is consider-

ably more important than dispersion caused by micro-processes.

These two dispersion mechanisms achieve essentially the same result
(i.e., spreadina material) as molecular diffusion, but much more rapidly.
In some respects the tortuous movement of fluid through the soil can be
thought of as a random process, occurring on a larger scale, but having
many characteristics in common with molecular scale diffusion. Because of
these similarities, it was asswned that the mechani>al dispersion processes
can be included with the molecular diffusion in the relative mass flux
term, j. The combined effect of all dispersive and diffusive mechanisms is

called hydrodynamic dispersion.(g)

If it is assumed that the relative mass flux can be adequately des-
eribed by expressions having the form of Fick's First Law, then it can be
expresseq_for species k as:

3 K= -obRuwk (11-3) -
where
p = total mass density of the solution {M/L3]
D% = hydrodynamic dispersivity tensor {LZ/T]
wk = the mass fraction of species k& (ok/p).,
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Inherent in Fick's First Law formulation are the assumptions that
the mixture is an ideal solution and that only binary interactions at the
molecular level are significant. v

The dispersivity tenscr, Bk, is generally a function of both space and time.
If the dispersion is asswm2d to be isotropié in the directions lomjitu~ - -
dinal and trangverse to the dirzction of jlow, then the component of Bk can be
represented by: ’

X = pX coso? cos¢? + pk (sin?$ + sin26 cos?¢) (11-4a)
XX L= T
n’;y = (0f - 0%) sine coso cos? (11-4b)
. |
Diz = (D¥ - Dt) $inB cosf cos¢ ' (1i-4c¢)
kK Lok , (11-4d)
Dyx ny
v y 2 2 o 2 22
D&Y = Dt cos6 sing * D7 (cose + sing sing) - (I1-4e)
DSZ = (D%-DE) cosf sind sind (11-4f)
ko ok : ,
sz = sz (I1-4g)
k ok o
Dzy Dyz | (1I-4h)
2 2
p¥, = of sine + p¥ coss | (11-4i)

where

¢ = angle between the direction of 1w and the (X,Y,Z) coordinate
system jn the X-Y plane measured from the X axis (See Figure III-2,

- page III-5) |

8 = vertical angle between the direction of flow and the X-Y plane, .
measured from tne X-Y plane. (See Figure III-2)
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DE = dispersion coefficient in the direction of flow [LZ/T]

D? = dispersion ccefficient in the direction transverse to flow [L‘/T]

Jf and D¥ are omwnonly(g) assumed to be represented byu:
DX = a |V | 11
L= a vl ; (I1-5a)
0y = arl¥| - (11-5b)

where a and a; are dispersicn length scalars that are characteristics o*
a given porous medium. This implies that D is only a function of soil type not
. of each species, k. Herce, the‘k superscript is dropped. Inherent in the
form of Equations II-Sa and II-SB i8 the asswmtion that the contribution

of tne molecular diffusioniis negligible or at least constant for all species.
The advective term can be expanded giving:
ke Ko o - ok
Vepv = p"(Vev) + (veVpT) (11-6a)

The pore velocity, v, can be expressed as EVv where q is the Darcian
velocity and v is the volumetric moisture content or porosity in the case
of saturated flow. Substituting this expression in Equation II-€a and
expanaing again gives:

— X
ye kv = pFSevy + E(v-q) + VevoX (1I-6b)
kY

If the transporting medium (water) is asswmed to be incompressible,

which is valid except near the boiling point:

Veq =20 for saturated systems

and
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Vg = - %%- in unsaturated systems.
In the Hanford subsurface the only anticipated regions where the fluid
may be hot enough to invalidate this assumption would be in the imme-

diate vicinity of a leak of high-level waste from a subsurface storage

tank.

If all of the above assumptions are incorporated into Equation II-2,
and alse assuming that the total mass density, p, of the mixture remains
relatively congtant. The equation for saturated systems becomes:

k v — =
-B_%E + pk %— (V\)) + V-Vpk = V'DVDk + rk (II‘7a)

and for partially saturated flow systems:

"2 % x I - -
-§%-~ 9;—(%%) + ph %»-Vv + v-Vpk = V-DVpk + rk _ (I1-7b)

In either of these forms with the exception of the reactive term, the continuity

equation is amenable to a numerical soluticn.

k

In groundwater systems the reactive term r~ is a complex function:

1 2 3
TR N (11-8)

consisting of a series of rate expressions which describe the influence of

- all the species present on the reactivity of species k. However, for most
problems of practical interest the chemical kinetics are simply not known,

- mor are these relationships likely to be obtained soon beciuse of over-
whelming experimental problems inherent in this type of.determinaticn.

If the kinetics are kncwn for a given system, *he problems associated with
obtaining a stable num rical solution still place a stringent constraint on the
utility of the model.
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Consequently. an alternate chemical submodel was developed based on
the assumption that most groundwzter systems are at or near chemical equilib-
rium at all times. At the end of each numerical time step all constituents
are constrained to be in equilibria with each othar. The dissolvad or
suspended material is scgregated into two classifications: 1) macroions
which are defined to exist in comcentrations largae enough to affect the
chemical behavior cf each of the other specice present, and 2) microions
that are asswned to exist in only minute quantities relative to macroions

axd do not appreciably affect the chemistry of each other or the macroions.

» A more complete discussion of the techniques usad to simulate the
reactive term is ayai]ab]e in the Appendix. Details of the development and
rationale of this scheme are gfzen by Routson and Serne.(I])

Two-Dimensional, Vertically Averaged Formulation

The model equation that describes the existing vertically averaged model
can be derived using basically the same assumptions that were discussed
above.(]z) This equation, which is representative of the current computerized
version of the model 2.4 is suitable for use in simulating transport in
saturated uniform pcrecsity systems, is:

k = k _ k k
%{z_ +<V - %vu) Vo =V:DUp 4+ r ' (11-9)

where H is the aquifer thickness which is allowed to vary spatially but is
assumed to remain nearly constant in time. The d=] oberators, V. are in
this case 2-D operators and D is a second order tensor.

Boundary Conditions

Only two boundary types need to be defined for a transport simulation
of the Hanford region (Figure II-1). The first boundary type is the no-flow
or impervious condition which is specified by:

(v-e5)| =0 (11-16)
nc-flow boundary
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FIGURE II-1. Hanford S:te Unconfined Aquifer Boundary Test
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The other type of boundary is an outflow or recharge flow boundary.
At the point where the aquifer flows into the Columbia River, the following
condition is applied:

=0 - : (II-11a)
river boundary

Because of the extremely high ratio of Columbia River flow versus the rate

of discharge of the unconfined aquifer, the river is assumed to be an

infinite sink of zero concentration. At a recharge boundary:

okl = o’é(X.y.z,t) : | (1I-11b)
recharge boundary

where pﬁ is the masc concentration of species k in the recharge stream.

This concentration is in general a function of time and location. No
significant levels of radiocactive contaminants above natural groundwater
levels have been identified in the recharge flow to the Hanford aquifer.
Consequently, Equation 1I-11b reduces to:

&5l =0 | (I1-11¢)

recharge boundary

for these species. All acditions or withdrawals of material inside these

boundaries are assumed to be included in the souvrce/sink term, rk.

THE DIRECT SIMULATION APPROACH

The intent of the direct-simulation approach is to create a numerical
analog that directly represents the physical behavior of a system. Besides
satisfying the principle of conservation of mass, all other important
physicai constraints or driving forces that are present in the model system
must be accounted for. A direct-simulation apprcach applicable to Hanford
subsurface transport problems is outlined below. Each important assump-
tion will again be indicated by italics. ’

Particles of Mass

An important first step in creating a direct analog of a mass transport
system is to define a numerical construct with which to represent the

IT-13




chemical species of inierest. Enginearipg-oriented approaches to mass
transfer processes traditionally have tended to view chemical solutions as
continuums that are defined with respect to a tixed or ‘Eulerian’ frame of
reference. 1t can also be useful to view material systems as being com-
prised of a large number of discrete particles of matver. Carried to the
molecular or atomic level, this concept has been established as a reliable
description of the nature of matter.

It is not feasible at present to consider moleculir-scale subdivisions
when attempting to model large environmental systems, but the same corcept
can be used to create a workable analog. The direct agprouch assumes that
the material that is dissolved or suspended in subsurface water can be
represented as an ensemble of a finite number of discrete particles of
matter. Computational restrictioﬁg usually limit the number of particles
that can efficiently be used to something on the order of ’IO4 or 105.

The water mass that is carrying the material is assumed tc be a continuum
subject only to laminar flow. All particles arz assumed to move with the

continuwn and a$ i1ts velocity.

Each particie has a defined location and a finite méss quantity associ-
ated with it. The particles are asswmed to Le independent of one another,
or in other words any one particle is not affected by the proximity or
behavior c¢f others. This assumption is strictly valid oniy for dilute
solutions, but is approximately true for all except very highly concentrated
systems. The particlas occupy zero volume by ¢efinition. Because of
their relatively large mass, the motion of the particles is assumed to be

governed by Newtonian rather than relutivistie mechanics.

Advective Transport

The advective motion of the particles is controlled by the host medium
in which they are immersed. It is asswred that the [low properties of
the host madium (water) are not significanily affected by the number or type
of particles present. This simplification is analogous with the assumption
that the momentum and mass balance equations are dacoupled in the equation-
based approach. This also implies that the advective motion of each particle
is only a function of the physical properties of the carrier and the
geometry of the system.
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The flow properties of the host water body usually are represented as a
matrix of velocity components. This matrix must represent a mass conservative
flow field if a proper transport simulation is to take place. Of course, this
requirement is also necessary when the model is develored from an equation-
based approach. Several methods are available for constructing the required
flow fields, but mest cormonly they are the result of a flow model simulation,
Each particle is allowed to move for a time interval, At, as determined by
its location in the flow field. For best results the time-<tep size should
be restrinted so that the maximum distance moved by a particle is not larger
than the matrix spacing of the flow field.

Dispersive Transport

The next transport process that must be accountéd for is the readily
observable property usually referred to as diffusion or dispersion, wnich
results in a net flux relative to the ambient velocity. A qualitative
discussion of the mechtanisms causing mechanical dispersior was giver in
the section on the model-equation approach. Molecular diffusicn which also
contributes to dispersion will take place in the absence of fluid motion
when mechanical dispersion ceases. However, both have the same net result
of causing foreign material o spread throughout the medium as the result
of apparently random movements.

The particles of mass used to simulate dissolved or suspended material
are subject to the various dispersive mechanisms which are assumed to
cause statistically rendom displecements. Consider a single particle at
position x at t = 0 which has moved to x' at a later time, t, viewed from
a Lagrangian frame of reference moving with the fluid. Its displacement
x'~x is then a random function of time wnich can be described in terms of
a spatial probability distribution function, P(x'-x,t). As more steps are
taken, the particle trajectory can be described as having the properties of
a process known in statistics as a random walk. The probability distribution
of a particle executing random steps is a standard problem of probability

(13-17)

theory. The following discussion is based on a summary of random

(9) (18)

walk theory given by Bear and Csanady.
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The main features of the problem can be understood most simply by the
analysis of a random walk in one dimension with each step having a unit
length and the probability of a step in either direction being exactly one
half. Thus, assuming a particle is released at the origin of an arbitrary
coordinate system, it could he at any‘of the points:

=M, -N41, N2, ... N-2, N-T, N

after N steps.

-

The problem then is determining with what probability a particle
reaches a given point m where -N<m<+N. That probability, deroted by
P(w,N), can be calculated by enumerating all of the pessible outcomes of a
random walk consisting of N steps and determining which ones of those will
result in the particle finishfﬁg up at point m.

The probability of any one sequence of N backward and forward steps
is given by (1/2)N. The required probability is therefore this value
times the number of distinct sequernces which wili lead to the point m
after N steps. If the number of forward steps taken is f and the number
of backward steps b, in order for the particle to arrive at m after N

—

steps, the following relationships must be true: -
f+b=N (I1-12a)
f-b=m (II-12b)

which yields
f

L]

(N +m)/2

b= (N-m)/2

The number of different sequences consisting of exactly f forward and
b backward steps is:

N! ‘ (11-13)
Tfb!)
therefore:
| P(m,N) = N} (as2)N (11-14)
_ ? 172N mY T [1/2{N-m) ]! .
(19)

which is known as a Bernoulli distribution.
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For modelinﬁ large-scalr. groundwater flow the case of most interest
occurs for very large N. For this case the resuit for P(m,N} can be simpli-

fied by making use of Stirling's formu]a:(lg) _ '
In(N!) = (N+1/2)In{N) - N + In( 27n) _ (II-15)
. \
After some algebraic manipu]ation,(19' fquation II-14 reduces to:

P(m,N) =\/;%-e'(m2/2N) ‘ - (11-16)

which is a Gaussian or normal distribution with standard de:iation vii The
convergence of the Bernoulli to the Gaussian distribution is quite rapid

as N increases. For example, the differenrnces are within a few percent for
N=10 except at the égtremes of ‘the distributions.

The "discrete" distribution éxpressed by Equation II-16, can be made
continuous by assuming that the individual steps are small compared to
the lengih X over which we may want to define particle concentrations.
If the step length is %, which is asswmed to be characteristic of-a

particular medium, then:

m= x/% ' (11-17)

where x is the displacement trom the origin. The total probability of
finding a particle over a range Ax, centered at x, is then approximately:

P(m,N)s(ax/22) (11-18)

The factor 2 is in the -denominator because the discrete neighboring probability

points are always separated by two step lengths. In a diffusing cloud of
independent particles, having total mass Q, the fraction of the material
contained within the range &x is then given by:

x+1/2 &x

. i o x
total mass = am = Q-P(m,N) 77 (11-19)

x-1/2 tx
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which can.be expressed in terms of concentration as:

e e

The total number of steps, N, may be related to a diffusion time, t, i/
the particle is assumed to undergo n displacements per unit time:

x2
() |
2ng? (ML) ; (11-20)

g= N (11-21)

and a "diffﬁsion velocity," u, can be &efined as:
Cu =k%ns B [L/7] | (11-22)

Defining a dispersion coefficient, D, as:

D =%ne’ = ue /11 | (11-23)
‘yields:

2
o(x,t) = L—e ~(aDe) (11-28)
2J?ﬁf~A

This equation is recognizable as a Gaussian distribution with standard
deviation v/2Dt and also as a solution to the classical one-dimensional diffusion

9
ecuation.(‘o’Z]) The above arguments have been extended to three dimensions
(16)

for a homegenecus isotropic systca by Scheidegger, yielding:
. 2 :
D(X-y.z,t) = ———L—je : - - (11'25)

(2/nDt)

which is a solution to the three-dimensicnal diffusion equation.
Chandrasekhar(]7) has shown for.a general, three-dimensional Markovian
random walk that this probablistic approach can be connected directly to

* " the diffusion equation without having to enumerate all possible sequences

of displacements. A brief summary of Chandrasekhar's arguments is pre-
sented by Csanady‘]e) showing that the asymptotic (N»«=) temporal transition
" probability of the random walk problem has a form identical to the classical

diffusion equation. .
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In Scheidegger's(16) formulation the motion of a particle through a
specific mediun was assumed to be made up of a sequence of straight
elementary displacements of equal duratior in which the directiom and length
cf each displacement take on random values. However, his model does not
take into account the observed difference in rate of dispersion with respect
to the directions longitudinal and transverse to flow. De Jong(zz) shows
that for a homogeneous system the longitudinal dispersion can generally be
expected to be five to seven times larger than the transverse component
because of the shorter residence times in the pores oriented in the direction
of flow. However. when irregularities are present in the system this ratio
is not readily predictable or quantifiable.

The most important point ¢t0 be gained from this very brief discussion
of the stacistical description of dispersion is that the rms (root-mean-
square) distance that an ensemble of parcels which are undergoing a random
walk will move during a time step, At, can be expressed (for the one-dimen-
sjonal case) as:

Xyms = 2Dt (I1-26)

based upon the result shown in Equation II-24. Similar displacements will
also occur in the other spatial directions. The numerical analog adopted

for the disperﬁion portion of the direct simulation model approach is based
on Equation II1-26 and is similar to Scheidegger's approach with the extension
that the rates of dispersion are allowed to differ with respect to the
longitudinal and transverse flow directions.

TJotal Rarticle Movement

To summarize particle movement, a particle of mass is defined that is
assumed to be subject to dicplucements resulting from both advective and
dispersive mechanisms during a given time step. If a large number of particles
are released at a concentrated location after several time steps, an
ellipsoidal cloud will result with a center point moving with the average flow
velocity and the major semi-axis coincident with the direction of flow.
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Another significant point to note is that based upon the assumptions
‘presented above, the motion of a particle is dep~ndent only on the nature of
the rlow system and not on the type of species being transported. This
suggests that each particle can be tagged with more than one mass quantity,
each representing a different species. By computing the mocvement of one sct
- of particles, the transport of several species can be simulated simul-
taneously with considerable savings in computer time.

Concentration Distribution

At the end of any desired time step, the solution can be halted and the
amount of mass residing within any defined volume can be tabulated yielding
an average concentration value for the volume. The solution can then con-
tinue transporting each particle from where it was halted, stopping again
to compute another concentration distribution when desired. This procedure
is completely mass conservative as opposed to some earlier Lagrangian solu-
tion techniques such as the PIC method(s) which tagged each particle with
a concentration rather than a mass. Averaging a set of concentrations to
calculate an overall cell concentration can often lead to serious mass '
conservation problems.

Source/Sink Terms

The simple injection or withdrawal of contaminants from the system is
easily simulated by adding or removing particles at appron “ Tlocations.
Other types of source/sink mechanisms such as radioactive deca, or chemical

“reaction require that the mass quantities associated with each particle be
adjusted or redistributed. All of these types of source/sink contributions
are important for simulations of the Hanford subsurface.

Prior to the computation of one of the mofé complex types of non-corn-
servative mechanisms it is usuaily most convenient to convert the pértic!e
location distributions into a set of concentration distributions. New con-
centrations for each subdivision are calculated from a reaction rate or
equilibrium type of reactive submodel. The concentration change within
each summation interval (Ax,*y,Az) for each species is accounted for by
appropriately adjusting the mass quantities associated with each parcel
within the interQal.‘ ' ’
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The current MMT soil-waste reaction chemical model uses the equilibrium
constraint approach which assumes that all species within a summation
interval must be in equilibrium at the end of each time step. This model
is discussed briefly in the Appendix and is explained in detail by Routson
and Serne.(]])

Boundary Conditions

The boundary conditions for the direct approach model can be specified
quite easily. Two distinct types can be identified:

1. Free flow boundary - any particle transported out of the system
across this type of boundary is assumed to have exited from the
system. New particles with appropriate mass are created at
inflow boundaries.

2. Reflecting or no flow boundary - any particle encountering this
type of boundary is reflected back into the system.

Assumptions for the Vertically Averaged Version

The preceding discussion accufately describes the assumptions in the
current vertically averaged version of MMT-DPRW with one exception. Local
reductions on aquiter thickness should hinder horizontal spreading and
increases in thickness should increase the spreading rate. In a fully
three-dimensional model this is taken care of by specifying the aquifer
top and bottom as reflecting boundaries. However, in the 2-D vertically
averaged version the particles do not have a vertical coordinates assrciated
with them that could make use of this boundary condition.

Fortunately, it is still relatively easy to account for this phencmenon
in the 2-D model. Ir Equation II-9 this spreading rate odjustment is computed
by the -%VH-Vpk term. Careful‘examination of Equation II-9 indicates ;hat the
net result of this term is to increase or decrease the pore velocity, v.
Consequently, the vertically averaged modgl formulaticn approximates these
spreading rate pertubations by adding a —g-VH component to eacr velocity
veetor of the flow field. This assumption is discussed turther with
appropriate examples in Section IV, ’
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ADVANTAGES AND DISADVANTAGES OF THE DIRECT SIMULATION APPROACH

Advantages

" The direct approach to model development has béen found to have the
following significant advantages over more traditional model-equation based
approaches:

® Always Mass Conservative - The fundamental approach of the algorithm

is inherently mass conservative in contrast to the somewhat simil=r
PIC technique. )

® Inherent Stability - The response of this numerical analog is
inherently stablé with redpect to “ime step size and nther model
parameters such as the dispersion coefficient and the magnitude
of the velocity (see Trent(23)).

No Cumulative Numerical Dispersion - Most of the numerical smearing

problems often found in other numerical schemes are eliminated (see
Trent(23)). The main reason for this is the Lagrangian approach to
advectioh’computation. Many of the stability and numerical dispersion
problems of Eulerian methods arise ffom the approximations made to
the advective term. This property was one of the primary motivating
factors for development of the direct approach. The on]y'numerical
dispersion in this approach occurs when concentrations are computed.
This results from calculating an average ccncentration for each grid
cell. However, this numerical dispersion is not carried fcrward in
time since particle positions and associated masses are not affected
by this averaging process.

® Ease of Control of Solution Accuracy - The accuracy of the solﬁtioh
can be easily controlled by specifying the number of particles to
be used in the simulation. This allows a rough preliminary debug
solution to be computed for the full length of a simulation using

only a few particles at a substantial reduction in cost compared
to a more accurate run using a large number particles (see Sensitivity
and Error Analysis Section).
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Solution Stacking - If nonlinear source/sink terms are_not present 1in

a given simulation (based upon the previously stated assumption this

is the only way nonlinearity can enter the problem), the results of one
solution for a given prublem may be averaged with subsequent solutions
of the same case to give more accurate results. For instance, suppose
that after computing a simulation it was apparenrt that tco few particles
had been used, the entire simulation need not be re-computed using

more particles. Instead, an additional run of the same simulation can be
computed (making sure the random number generator continues where it
left off) and its results averaged with the previous run. This process
effectively increases the particle density in each cell and can be
repeated as many times as necessary to achieve the desired solution
accuracy.

Adaptability to Small Economical Computer Systems - The fact that each
particle is independent of any other makes this solution technique

particularly easy to program for small computers with 1imited addressable
memory but with fairly large mass storage (disk) resources. Only a ‘
few sets of particle data need to be in memory at any one time with

the remainder of the data residing on disk. The smaller machines,
although somewhat slower than most larger systems, are‘usually much

more cost effective and allow real-time user interaction. The
~independence of the particle trajectory calculations also makes this
model attractive for use on computers designed with a high degree of‘

parallelism.

Ease of Coupling New Source/Sink Models - The capability of being able
to simply re-distribute particie mass as a means of responding to an
externally defined reaction scheme and the simplicity of adding or

removing particles to simulate injection or withdrawal allo» a great
deal of flexibility.

Complicated Mathematical Structures are Avoided - The direct, discrete-
particie solution approach is basically simple. The entire scheme

can be described with a few simple algebraic expressions. The main
task in implementing this algorithm is concerned with creating an

7
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efficient tuokkeeping structure for keeping track of particles. This
type of code is much easier for nonprofessional computer technicians
to understand than complex numerical solution schemes necessary for
solving the differential equations upon which models are usually based.
This allows more rapid program development and debugging as well as

-‘making the resulting code easier to maintain and modify.

Easy to Use for Three-Dimensional Applications - Assuming the accuracy.
is to remain constant, computation time increases linearly with the

number of vertical levels used. This is a much less rapid increase

in computaticn time than is the case with other methods. Also,
problems that often arise from very high aspect ratios (the ratio of
the horizontal size of a system to its vertical extent) are nonexistent.

® Complex Boundaries are Easily Handled - A1l that is necessary to
account for boundaries is a knowledge of the coordinates of the
boundaries and the location of each particle. When a boundary is
encountered by a particle, appropriate action, as discussed above,
is taken based on the boundary type.

Disadvantages

In addition to these advantages three primary disadvantages of the dis-

crete particle method have been noted:

Computation Speed - The primary drawback of the particie-based method

outlined above is the computational speed. For circumstances where
model parameters have values that are within the stability range of a .
finite~difference or finite-element solution schemes, these types of
a]goriihms are usually faster for a given degree of accuracy except
perbaps for some three-dimensional cases. This problem is most acute
when high accuracy solutions are required, and nonlinear terms are
present. The convergence of the discrete particle scheme improves
only as the square root of computation time. (Four times as many
particles must be used to double the accuracy.) When the‘problem

is nonlinear the entire solution set of particles-must be brought for-
ward in time before the next time steép can be computed. This eliminates

- many of the advantages gained from the assumed independence of each

particle.
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The relatively large computation times are partially offiet by
the reliability of the algorithm for any combination of values of
model parameters, and by the compatibility of this method with small
economical computer systems. However, this approach very likely is
. not the best method to use for problems requiring a solution with a
very high degree of accuracy. Fortunately, most envirormental
simulation problems are not of this type. For most large-scale
environmental simulations the required input data are usually not
known within an eccuracy of better than a few percent. Consequently
a simulation using a reﬁative]y small number of particles is usually
acceptable.

® presence of Random Noise - R certain amount of statistical random noise

is always present in solutions computed with the direct simulation scheme.
As more particles are added, the amplitude of the noise decreases, but
Secause of the staiistical nature of the random walk analog, it is

always present to some degree. The random noise portion of the solution
zan be reduced, quite markedly in some intances, by post-processing the
results with various smoothing or filtering methods (see the section

on Error and Sensitivity Analysis).

Number of Particies - A general criterion has yet to be developed for
selecting the number of particles need»d to obtain acceptable solution
accuracy. Although the solutinn stacking procedure can be helpful in
this regard, much depends upon the experience of the user. ‘

Although the discrete particle approach has been shown to have
several advantages and ~ommendable properties, it should not be viewed as
the best method for all prublems. The possible applications of this scheme
are quite broad, but it probably should not be used when the computed solu-
tion accuracy must be within 5% of the true value. However, for environmental
simulations, where predictions that might be in error by a few percent are-
totully acceptable, this method holds a great deal of promise.
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ITI. NUMERICAL IMPLEMENTATION

The numerical scheme resulting from the direct simulation approach
is the Discrete-Parcel-Random-Walk (DPRW) method. The basic device or
numerical tool employed by this procedure is a hypothetical entity referred
to as a computational “parcel". The term "parcel" was chosen to distinguish
the numerical tool from the more general but slightly vague “particles”
referred to in the previous section. The continuum of dissolved or suspended
matter to be modeled is represented as consisting of a finite ensemble of
these parcels. The parcels have, by definition, zero size, tut each has
associated with it a set of Cartesian spat1a1 coordinates (x s yp, Z"%) and
a set of discrete quantities of mass g ™. where:

p = the parcel index (p = ,L,3...Np) where Np is the total number of
parcels used to represent a given quantity of matter.
k = the transported species index (k = 1,2,3...K) where X is the
total number of constituents present in the system.
‘n =~‘he time leval index (»= 1,2,3,. ‘Nt) where Nt is the number of

time increments to be computed.

' 5 s
For example, the location of parcel 3 after five time steps is (X3, ¥3, Z3).

If the problem is concerned with five distinct constituents, thisSpgrcelswould
2,5 3,5 4,

5

have associated with it five separate mass quantities &3 £3° &3 &3,
5,5

and 53, -

During a givén time step a new location for each parcel is computed as
determined by advective ard dispersive mechanisms, and the weights associated
with each parcel are adjusted to account for any source/sink processes. The
sequence of these computations is as follows: ’

1) First, the new location as determ1ned by advective motion is
calculated.

2) This new location is then modified by a random .tep to simulate
dispersion.

3) If necescary, parcel weights are adjusted to account for f1rst-
order source/sink mechanisms such as radioactive decay.

34) A matrix of concentrations-is calculated for a specified cell matrix
(Figure III-1) by adding the mass of the particles within each cell
and dividing by the cell volume.
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5) Concentration changes within each cell during the time interval
resulting frem higher order source/sink mechanisms are computed.

6) The parcel weights are then adjusted to reflect the concentration
changes. .

Each of these steps is discusséd in more detail in the following subsections.

ADVECTIVE COMPONENT

The MMT-DPRW transport code regquires as input a set of mass conservative
Vercity componenté that describe the flow patterns of the Fost grouncwater
system. These velocity components must be arrangea in a reqularly spaced,
rectangular matrix that remains stafionary atthough the magnitude and
directicns of the vectors are allowed to vary with space and time. Three
velocity components (u, v, w) are*defined at each nodal point of the matrix
(see Figure III-1). The individual parcels are then advected through this network
as determined by the velocity vectors immediately surrounding their present
Tocation. The three spatial velocity components at the location of parcel "p",
(UZ’ v;, w'), are linearly interpolated from the surrounding matrix of
values. The advective transport contribution is then computed by:

»

x_ = x*+ at™? / J1I-1a)
p p P

*  evy 4
Y, y; + At {(111-15)
25 = 2+ st (111-1c)
p r p

where At is the computaticnal time increment, and * denotes an intermediate
value. In order to ensure a smooth continuous solution, the value of

ot ’s limited such that the maximum distance that any parcel is transported
during a given time step is less than or equal to the distance between
surrounding nodal points of the velocity matrix.

DISPERSIVE COMPONENT

A dispersive transport component is then calculated for each parcel by
assuming that the ensemble of parcels is subject to Brownian-like random

ITI-3
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"motion resulting from the tortuous path that the host fluid takes through a
;\;omplex medium such as soil. Equation 1II-2 shows rms distance moved by

the ensemble of parcels, with respect to the advective flow of the system,
for a given time step, At, in a homogeneous one-dimensional system:

~‘(See_Equation 11-26)

d = v (111-2)

with the direction of motion of each parcel assumed to be random. The

" current version of the model allows two options for determining the dispersion

coefficient D. It can be input directly and used as a constant, or it can
be calculated by:

D . a' v, ' =4

where a is a characteristic length parameter that is read in. "D" and
"a" are the same variables used in the dispersion discussion in Section II
with the subscripits omitted.

In three-dimensional porous media systems it has been generally observed
that the rate of dispersion is higher in the direction of flow than in the
direction lateral to the f]ow.(g’zz)
flow is expressed as: -

The rms step size coincident with the

d = J?ﬁLAt (ITI-3a)

L,rms

and in bbth transverse directions as:
dT,rms = JZDTum. ‘ (111-3b)

If an ensemole of parcels initially concentrated at a point is al]owed to
disperse in this type of envircnment for a time At, an ellipsoid shaped cloud,
such as that illustrated in Figure I1I-2, will be formed. The major semi-axis
of the ellipsoid will be coincident with the direction of flow and the rms

- value of the parcel displacements in this direction are given by Equation III-3a.
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The other two semi-axes of the ellipsoid are perpendicular to the flow. The
rins parcel displacement in the transverse directions is specified by
Equation II1I-3b. This spreading process is numerically simulated in the
DPRW algorithm as follows. -

A second set of right-hand coordinate axes (X', Y', Z') is defined
having its origin at (x*, y;, z*) with the positive X-axis oriented in the
direct.on of the velocity vector, v . The transformation to the new
coordinate system can be made by rotating the base coordinate system (X,Y,2)
through a horizontal angle ¢ and vert.:al angle 6 (Figure III-3) and then

translating the origin.

A dispersive step length for parcel p is generated by selecting a

“value from a distribution of step lengths having the proper rms value

~ (Equations I1I-3a or 111-3b) and a zero arithmetic mean. The exact shape of
the chosen distribution is not critical; however, sdme types of distributions
are much more convenient and economical to generate than others. Regardless
of - the shape of the distribution, if it has a zero mean and the proper rms '
value after @ few time steps, the shape of a diffusing cloud of arcels will

be statistically equiva]ént. This is a reéult of the well-known central limit
theorem which states that the distribution of the sums of a series of sets of
random samples from any arbitrary probabi]ify distribution will always approach

a normal distribution.(]g).

For convenience the MMT-DPRW code uses a uniform probability distribution
from wihich to select dispersive step sizes. The generation of a dispersive
step in the x'-direction can then be expressed by:

: =
x'_ = [R] (111-4)
p -
L
. tZ S :
where [R] L indicates a random number from a population that is uniformly
. =

" distributed in the range - to T, with L selected so that the constraint

v - . crs
Xrms dL,rms is satisfied.
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To determine T the rms value of parcel step sizes in this range must
be calculated. The mean of the square of the step size is given by:

31
Xt =/ P(x)x%dx (111-5)

-(’L

where P(x) is a probability distribution function. For a uniform distri-
bution in the interval (-CL, +cL):

P(x) = -2-];’1- | (111-6)

&

Evaluating the integral in Equation III-5 and taking the square root yields:

¢ =t
Xems © L

Equating this expression to the required dispersive step length, d

L, rms®
given in Equation III-2 yields:
o = VT )
which aliows Equation I1I-4 to be rewriliten as:
+ /BDEZT
x' = [R] (ITI-8)
p - VB &t

Tie random number generator routines available on most computer
systens commonly return values uniformly distributed in the range [0,1].
Adapting Equation III-8 to use this type of random number generator gives:

A — 1 |
xp = /24DLAt (5-[R]0) (IT1-%a)
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Similarly, it can be shown that in the lateral directions:

¥, = /28Dyat (.5-[R]2)) ‘ (I11-9b)
2! = JZADLAE (S'ERJE)) | (111-9¢)
p

The only remaining computation in the dispersive portion of the code involves
transforming the current parcel location from the (X', Y', Z')vcoordinate
system to the base system (X, Y, Z):

x;+] = x; + x;cosecos¢ - y;sin¢ -.z;sinecos¢ _(III-]Oa)
- ¥ + xicosesing + ycose - 2!sinesing (111-10b)
ntl _ _, s .

zp = zp + xp51ne + zpcose _ (IT1-10c)

Parcel "p" has thereby been transported by advection and dispersive mechanisms
from (XZ’ v, z;) to (x"+]. y"+], z"+?) during time step n. A trace of a

parcel during this time step is illustrated in Figure III-2.

To clarify the system geometry examples are given in Figures IIi-3,
I11-4 and III-5. These fioures are photographs taken from a cathode ray
tube display of an ellipsoidal distribution of parcels calculated by the
model. A total of 3000 parcels werc released at a point in a uniform
flow field with the direction of flow at ¢ = 45° and 6 = 45° as indicated
by the arrow pointing toward the center of the ellipsoid. Figures III-3,
I1I-4 and I1I-5 are projections in the Y-Z, X-Y and X-Z planes, respectively.
All views are from the positive side of the plane.

CONVERSION TO INTENSIVE VALUES

When the advective and dispersive computations have been completed
for every parcel in the system, a grid network can be superimposed upon
the spatially distributed ensemble of parcels (Figure III-1). The nodal .
potnts of the grid are labeled with ¢,7,7 indices where

111-8




FIGURE I1I-3. Cemputed Ellipsoidal Parcel
; ‘ -Cloud, Y-Z Planar View

FIGURE IIT-4. Computed Ellipsoidal Parcel
Cloud, X-Y Planar View

. : | 111-9




FIGURE ITI-5. Computed Ellipsoidal Parcel
Cloud, X-Z Planar View

number of nodal points in x-direction

7z =1,2,3...1, I=
J = 1,2,3...J, J = number of nodal points in y-direction
1=1,2,3.:.L, L = number of nodal points in z-direction

The nodal points form tha vertices for (I-1) x (J-1) x (Z-1) rectangular
solids which are referred to as cells. The dimensions of cell (Z,7,1) are
ax, by c‘yj,by £z,

where

v X.iy = XK.
Axt x4 7

;= Yia t Y
8z, =2, "%
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Parcel "p" is said to lie within cell (2,4,1) if:

X; < xp < X4 : : (I11-11a)
n+l | ' '

_yj i_yp < yj+'| | | (ITI-11b)
n+] .

2, < zp <24 (I1I-11c)

The total amount of mass of each species within cell (Z,j,1) is computed

by sunming the mass quantities, gg'", for all parcels that lie within the cell:
Nigt
* k’n
g = X (ap );jz : : (111-12)

nijl = number of parcels within cell (Z,7,1)

In this case the asterie: (*) again indicates an intermediate value.
Here it denotes a value obtained after parcel movement, but prior to
source/sink adjustment within a given time step computation.

The volume of each cell, vijZ’ is a known quantity (Axi X ij X Azz).
Consequently, an average-intetisive quality variable, usualiy a concentration,
can be computed for each constituent in each cell by the equation:

6k ,
pey =gl o o (111-13)
“é 151141
where
A Gk - an appropriate coaversion factor to convert gk to the units
desired by the user (e.g., the factor for converting from
Ci/ft3 to pli/ml).
“ijl = volumetric moisture content or effective porosity of

cell (2,4,1).

The concentrations, Prjpr are defined at the center of each cell (Figure III-1),
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SOURCE/SINK CONTRIBUTIONS

To complete the numerical scheme the contributions of the source/sink’
term must be accounted for. The method used to model these contributions
varies depending upon the type of mechanisms represented by rk: If the
source/sink mechanism is simply a discharge of material into tne system or
a removal of material from it, parcels are either added to or removed from

appropriate areas of the solution matrix.

Decay Losses

“Some simple sourcc/sink mechanisms such as first crder decay processes
can be computed very simply by adjusting each parcel's associated weights
by:

k
kyntl k,n_-A"At
’ = gkong I11-14
& & ( )
where % is the first-order decay constant for species k. If the daughters
of the decay process are among the species that are being considered by a
simulation their weights must be incremented by:

Kantl _ ko, [kan _ kot AT 111-15
Ep Ep (Ep E‘p ) (Awk ) ( )

where k' indicates a daughter of species k and AW is tha atomic weight.

Most source/sink mechanisms in real systéms. however, are of a more
complicated type incorporating simultaneous interactions among many-of the
solutes present as well as their interactions with the surrounding soil ‘
matrix. The MMT-DPRW code allows these complex mechanisms to be approximated
by reaction rate expressions or as a set of equilibrium constraints.

Rate Expressions

A reaction rate expression is a predefined function that describes the

-rate of change of pk as a function of the concentration of all constituents

present. Typicaily the rate expression for species k in cell (2,7,Z) of an
isothermal system is of the form: :
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k= ak[’:1 (o?jz)um] - b {mn (otJZ)Ym] (111-16)

=1 =

where a and b are experimentally determined combined rate constants and
a and y are experimentally derived exponents that indicate the order of
dependence of rk on the concentration of each species. For example, the

ratz equations in cell (4,4,21) for a three-component system might be
expressed by:

' ) (111-17a)

r o=a (o Z) ‘ngz) b; (ngz
2_ i 2 3 2 3 .3
r =a; (pijl) (pijZ? - b (pijl) (pijl) (III°]7b)
[ =)
3 2 3 2,1 2 172 i
ro=aj (p Z) (p ) - b3 (pijl) (pijl) (pijl) (III‘..“
' L ’ . k, n+l
The new concentration in a cell at the end of a time step, p » Can
*
be calculated explicitly by substituting the pk' values into the rate

k,*

sexpression, multiplying by At, and then adding this value to p~* .

Equilibria Constraints

The MMT-DPRW model code provides an alternate method for simulating
simultaneous chemical reaction by requiring the system to be at equilibria
within each cell at the end of each time step. The approach is justified
only when the rates of reaction are very fast with respect to the flow rate
of the system and the numerical time step size. If a portion of the source/
sink term is to be computed using this assumption, a solution of a set of
simultaneous nonlinear algebraic equations is usually required for each

‘cell. These equations represent mass and charge balances and either mass-

action expressions or functions that specify the minimization of the Gibbs
Free Energy.
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As an example, consider the reactions of threa elemental species A, B and
~ C within cel (i,j,1) where the following reactions occur very rapidly with
respect to the numerical time step size: '

A+ 2B% AB, : (111-18a)

: . .
3B + 2C + C283 | (I11-18b)

The éystem will then contain five distinct chemical species. To determine
the equilibrium state of this cell it is necessary to solve a set of five
equations that deseribe equilibrium requirements. Two of these equations
may be mass-action expressions derived from Equation II1I-18:

X = (AB,] - | | (111-19a)
[A] [B)

K, = _[CB3] | : ~ (I11-19b)
(813 [c1?

where the brackets, [ ], denote the activity of the components, and Ky and
K2 are equilibrium ¢onstants that are measurable in the laboratory.

Three additiondl retationships are provided by forming a mass balance
for species A, B, and C:

My = (A) + (ABZ) , | » (ITI-19¢)
MB = (B) + Z(ABZ) + 3(CZB3) » (I11-19d)
MC = (C) + 2(C283) (I1I-19e)

where the parentheses indicate molar concentrations. The volume of the cell,
V..Z, which is constant, is included in each of the mass constants, M,, MB
1 .
and MC‘
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Systems of equations of the above type (Equation III-19) are usually
solved by a Newton-Raphson iteration or scme other alternative type of
iterative procedure. The concentration values obtained immediately following
the advectien-dispersion computations (indicated by an *) are used to provide
starting values for the iterative procedure. The reactive sutmodel in
the current MMT-DPRW model is of this type and is discussed in some

.detail in the Appendix.

Once the concentration at the next time level, °§3;+]' has been deter-

mined by a set ef rate expressions or equilibria constraints, the mass
associated with each parcel is adjusted by the ratio of thic value to the
initial or asterisk value: '

' pk,n+1
(5;;'””) . z‘zil(’* g[’j’* (111-20)

The conversion of & (mass} to p (concentration) does not necessarily
have to be made prior to computing some types of source/sink term contri-
butions (Equation III-14), but concehtration is usually a much more
convenient quantity to work with than mass.

The entire procedure is repeated for as many time steps (Nt) as
required to reach the desired simulation length. If non-zero concentrations
of material are present at the beginning of a simulation, a specified number
of parcels, no, are allocated to each distributed randomly within each cell
and an initial mass is assigned to each parcel by:

k,0
(a§°> = Pig Vign (111-21)
171 ' :
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Although the discussion has been directed towards computing the transport
of qus; the computer code is aiso capable of simulating the trédsport of heat. - -
If the words, heat and temperature, are substituted for mass and concentration
in the development ¢f the model and analogous assumpticns made, the functional
form of the mathematical analeg is identical to that developed for mass transport
calculation. This prbperty allows heat to be treated as another species of

groundwater contaminznt that can be considered simultaneously with other
chemical constituents.

, - 111-16
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IV SENSITIVITY AND ERROR ANALYSIS

The general characteristics of a DPRW solution can be illustrated by

considering a particular test problem which is simpie enough to analyze in

detail, i.e., diffusion from an instantanous point source.

varied to show how they affect the solution.

For this discussion the region of interest is assured to be suffi-

The important
numerical parameters associated with the DPRW numerical mcdel will be

ciently restricted so the flow field can be considered constant in space and

time. The general transport equation reduces to simple diffusion with
respect to a coordirate system maving with the transporting fluid.
governing equation then become% the classical diffusion equation:

2 2 2
P .p 2P ap ap
_a_t.._D +0 +DZ +r

X ax Y ay? 92%
where

concentration [M/L3] ‘
dispersion coefficient [L2/T]
time [T]

source/sink term [M/LST]

S & O o
n

The source term is a Dirac delta function, &, in
time and space:

r=Q8(x - x)) 8y - Yo) 8(z - z,) 8(t - t)

(1v-1)

which states that an amount of material Q is released at time t_at location

(xo, Yo zo). The analytical solution to this problem is:
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o o x- 'xo)2 (y - yo)2 (z - zo)2 :

(Zy) 0,9y%2 9y oy 20,
where

oy = Y2, {E-ET .

Gy = y t~‘.t0 . ’ . -

o, = DZ t—tb

In order to simplify the presentation ard clarify the parametric
relationships only a one-dimensional case will be considered. For one
dimension, Cquation IV-2 reduces to:

-(x _xo)Z
‘ B : (Iv-3)
- Q
P = i — o = -t

which will be used as a reference in the subsequent discussion. Equation

- Iv-3 is also recognizable as a normal distribution with standard deviation
a. _For the numerical simulation a number of parcels, Np, were released at
Xy = 0 at t, = 0, and were allowed to diffuse by a random walk process with
characteristic root meamr square step length.AxrmS and time step &. The
relation between &x___, At and the desired dispersion coefficient was shown

rms
in Equation II-26 to be given by:

BXpms = veD it . (1v-4)
Figure IV-1 shows a typical plot of a parcel distribution fer the point
source spreading problem resolved on a grid with unit spacing. For this
simulation 500 parcels were used. The analytic solution (Equation Iv-3)
has been plotted as a olid line for comparison. The accuracy was quantified
in two ways. First, the standard deviation of the computed distribution, O

was calculated:
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1/2

N
P 2
o =11 oY ‘ (IV-5)
m —N-BZ (Xj X)
L
where
X5 = displacement of parcel j
Np = total'number of parcels

X = mean value ef parcel displacements

(o]

A relative standard deviation error, €_, is then computed by:

e =1-" ' (IV-6)
o e S . S

In this example, Oy = 13.81 when its expected value, o, at this time
is 14.14 from Equation IV-3. The standard deviation can be considered a
measure of the width of the distribution. Consequently, this is a good
parameter for checking the spreading rate of the numerical solution.
The second check on the solution is the variance about the true function.

Here it 1s called the "error variance" €y and is calculated by tic

formula:
«© 4 .
- 2 '
e, = &x 25 (0 - 0y) (1v-7)
N ‘
where
X = grid spacing used to resolve the conceptration distribution
pi = expeCtéd concentration from Equation IV-3
pio = computed concentration at Xy3 c].0 = ni/Npr
N o number of parcels between xi—AxIZ and xi+Ax/2

Tocation index along the x axis

-
1
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The error variance is a measure of the roughness or noisiness of the
numerical solution. Figure IV-2 shows the same case as Figure IV-1 but with ‘
2000 parcels or four times as many. Both the values of €y and €y have
improved. This result indicates that the quality of a solution can be
expected to improve as the number of parcels is increased. Figure IV-3
shows the effect of increasing the size of the summation interval to 5 ft.

The solution shows an improved accuracy over Figure IV-2 but a lower spatial -
resolution.

These empirical results can be understood in a more general sense
through the following arguments. Let P(x,t) be the probability distribu-
tion function over the range of parcel displacements. The probability that
a parcel will reside within the interval Ax at time t is given by:

P; = P(x;,t)ax ' (1Iv-8)

When Np parcels are released simultaneously, the expected number of parcels,
E("i)’ within the ax interval will be:

E(n1) = Npp'i = NpP(xi,t)Ax ‘ (Iv'g)

where n; is the number of parcels within Ax. The variance of the expected
value, VAR(n;), is given by:(1%)

VAR(n;) = NpPi(eri) - (1Iv-10)

When Ax is small with respect to the range of P(x,%), Pi << 1 and
Equation IV-10 can be rewritten as:(]g)

VAR(ni) = Npp'i = NpP(xi,t)Ax (1v-11)

N
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As discussed in Section III, a concentration (in one dimension) can be
computed as:

Gni

i * BxNp | . - (1v-12)

where ny is the number of parcels in the interval Ax and G is a proportionality

-constant used to express 05 in any desired units. The expected value and
~variance of p; can then t2 expressed as:

Gn;

E(o;) = Bz = s E(ny) = 6P(xjat) (1v-13)
P P
VAR(pi) = VAR(Apr) = (Apr) VAR(ni) = Z;ﬁ;-P(x‘,t) (Iv-14)

The squared term in Equation IV-14 results from a property of variances
that can be expressed as:

VAR(bx)= bZVAR(x)

where b is a constant.

From the definition of variance the expression for the variance in the
interval Ax can also be written as:

VAR(Di) = Ax(p,i - P )2

where Pio is the expected concentration at X3 given by Equation IV-3. The
total squared error or error variance for the distribution is given by:

iz o

R MR ' (1v-16)

i 5 -
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Equation IV-14 can be used to express the variance in ine interval Ax.
This substitution allows €y to be expressed in terms of Ax, N:

\w G2 \ 62 = G2
e, = &x :E:: POt = pw Px;t)ax = gog- (1v-17)
i = 00 P " P i = o P .
since in the limit
lim® E P(xi,t)Ax =] . (1v-18)
X >0 - o .

In the following tests thqﬁinternal spacing Ax is small enough that the
error introduced is small compared to the variance. ‘

Equation 1V~17 was checked by running cases where grid spac{ng Ax was
held constant and the number of parcels Np varied (Figure IV-4). Also the
cases are plotted with Np constant and a variable ax (Figure IV-5). In both plois
the error variance was calculated from Equation IV-16. Each data point
represents one run made with the parameters set at the values specified and
analyzed at the indicated time. The data points were plotted on a log-log
scale and a least squares straight line fit was made and plotted. The slope
of the fitted line is indicated on each plot. Clearly, the points lie fairly '
close to the straight 1ine on both plots. Moreover, the slope in both cases l
is within a few percent of -1. Thus an inverse relationship is indicated
betwéen error varience and number of parcels (Figure IV-4) and grid size
(Figura 1V-5). Thié is the result expected from Equation IV-17 where €, is
proportional to 1/Apr. The ;tandard error is equal to /E; :

R ‘ (1v-19)

From this equation the general behavior’bf two of the important trade-offs
in the numerical model are apparent. - In order to reduce.the statistical error
component to half of its original value an increase by a factor of 4 in N
is required. The same error reduction could be achieved by increasing-the grid

V-9
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spacing #x by a factor of 4. In a typical problem this means that the

grid spacing should be made no smaller than the spatial resolution require-
ments of the problem demand. In regions where the concentration gradient is
low a larger grid spacing could be used to advantage.

This slow convergence property of a solution means that it is unreasonable
in most cases to reduce the relative error below 1%. A typical two-dimensional
problem m?ght use from 2 x 104 to 2 x 105 parcels and haye an error
range of 2-10%.

With most large-scale simulations thé uncertainty in the input data
is at least 5%. Thus, the practical numerical accuracy is usually not a serious
limitation. However, if the data will permit a more accurate solution and the
case in question requires it, therl the trade-offs should be examined more
carefully. It may be practical to run the model long enough to achieve the
desired ¢:curacy range or it might be necessary to consider a different type
of model. In a pariicular case the practical accuracy limits can usually
be estiuuted from a fairly short trial simuletion.

Another way of checking the solution is to look at its spreading rate
measured by the rate change of the variance of the particle distribution,
gigil. From the one-dimensional diffusion equation it can be shown that:

dt

d 02 | |
! é__lt =.2D . (Iv-20)

Thus we can see if the solution is spreading at the proper rate by
computing the rate of change of its variance. The rate of change was computed
for two cases as depicted in Figures IV-6 and IV-7. In Figure IV-6 the
variance of the distribution of a group of 100 parcels was calculated
and plotted at each of 20 eaually spaced time intervals. A least squares
fit of the points was computed and plotted as a solid line. One half
the slope of this line should be equal to the diffusion constant D. In

‘this case the error was 8.78%. The same procedure was used for Figure IV-7

with 2000 parcels. The error in the slope was reduced to 2.22%. The residual
variance, oi,\is a measuve of the quality of the least squares fit.

Iv-12
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FIGURE IV-6. A Least Squares Plot of the Increase in the
Variance of the Distributiomwith Time for
100 Parcels
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SOLUTION VARIANCE

TIME (SEC)

FIGURE IV-7. A Least Squares Plot of the Increase in Variance

of the Distribution With Time for 2000 Parcels
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SMOOTHING AND FILTERING FOR VARIANCE REDUCTICN

,'It is often helpful to think of a DPRW solution as being exact but
contaminated with random noise. The process of running a solution with
more parcels improves the "signal to noise ratio" since the cdherent
part of the s»lution adds linearly and the incoherent or noisy paert adds

" only as /ﬁ;. This occurs because added noise tends to partially cancel

itself while the signal adds coherently. Thus, the signal to noise ratio
improves as /ﬁ;.

Another way to improve the signal to noise ratio is by preferentially
filtering the noise. Many times the solution is fairly smooth and
slowly varying inbgpace, and superimboéed‘upoﬁ.the solution is the random
short periua statistical "noife". Thus, by taking advantage of the predominatly
high frequency nature of this portion of the solution the noise may be removed
by low pass filtering.

The simplest type of filter to apply is a moving average filter in
the space domain. The one used most often to smooth DPRW results has
the form:

s ., s, s
. + 0. N
st1 _Pi-1 T Pi TP

fi

(Iv-23)
3

where the s superscripts indicate the number of times the data has been
passed through the filter. When s=0 the ¢® values ar~ the raw unfiltered
concentraticns. Filtering can also be accomplished in the frequency domain.

The smoothing filter of Equation 1V-21 was applied to the solutions
of Figures IV-1 and IV-2 to produce the improved solutions in Figures IV-8
and IV-9. The 500 point case was smoothed 15 times and the 2000 point
case 5 times. The error variance has been considerably reduced in both
cases and the standard deviation slightly increased. To achieve the
same reduction by increasing the parcel count would have required about
a factor of 10 increase in the number of parcels-and consequently 10 times

the computer time.
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FIGURE IV-8. A Plot of the Parcel Distribution Shown in Figure IV-1
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"FIGURE IV-9. A Plot of the Distribution She . in Figure IV-2
Smoothed 5 Times With a 3 Point Moving Average Filter
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Figures IV-10 through 1V-12 depict the frequency domain filtering of the
same two cases. Figure IV-10 shows the long high frequency tail containing most
of the noise in the solution, which can be eliminated by low pa. filtering
to considerably imorove the accuracy of the solution. The comparison
of results is shown in Figure IV-12. The error variance has been reduced by
an order of magnitude. The same procedure has been apnlied to the 2000
point case in Figures IV-13 through IV-15. Here the high frequency
component is smaller and the filtering more successful. The variance
was reduced by a factor of 20.

Generally it can be seen that when the desired solution does not
contain high Spatia] frequencies, filtering may be s:cessfully applied to
reduce error. The savings of computer time over :ine alternative of using
more parcels can be considerable. A moving average filter will work nearly .
as well as exact frequency domain low pass filter and is much less time
consuming to apply. In these examples the Fast-Fourier-Transform (FFT)
was used for fregquency filtering. However, whén applied in two or more
dimensions this type of filter would consume a significant portion of the computer

time it was attempting to save.

Iv-18
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10. . Np = 500
) t =100 seg
9, D =1.0 ft%/sec
' €g = .0262
8 - e, = 1.39 x10-4
8 .
2 7.
=
;::5 5. - Filtered Solution-—
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w S. T Analytic Solution
=
E q. |
P |
£ 3
2,
1.
8. J
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FIGURE 1V-12. Frequency Domain Low Pass Filtered Version of the
' Distribution From Figure IV-1
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VERTICALLY AVERAGED TRANSPORT EQUATION

R This section considers the modifications required in the previously
described solution techniques for the special case of the verticaily
averaged transport equation. Again for simplicity the one-dimensional case
will be examined. In one-dimension, Equation II-9 reduces to:

3 DdHy 3p _ 3 .y 20 2
L H(v-Fa0 5T e 05 tr (1v-22)
where
p = concentration [M/L3]
v = advective velocity [L/T]
D = dispersion coefficient [Lz/T]
H = aquifer thickness [L]
r = source/sink term [M/T] -
% A1l that distinguishes this equation from the tiransport equation for

E uniform thickness is the term %‘%23 The effect and origin-of this term
will be detailed in the following text. Because this term has units of
velocity (ft/day) and depends directly on the rate of change of aquifer
thickness, it appears as a thickness and slope dependent addition to the
convective velucity. Its origin, however, is in the unbalanced diffusive
flux caused by the thickness variation. This -effect can be seen from an
analysis of Figure IV-16. Here J(x) refers to the vertically-averaged
horizontal diffusive flux. The net rate of change of material in the .
trapezoidal region as a result of diffusion is given by:

|t

T = G(xH - J(xsnx) (Hea) " (1v-23)

(>

B T L e O

Substituting the Taylor series expansion for J{x+AX)

R & T

J(x+Ax) = J(x) + %%152- + Ax + higher order terms in Ax,
Equation IV-23 reduces to the following:

- g—(tl - -%;]—(iileH - J(x)aH - g—%ﬂleAH (1v-28)




v X ' ' X + AX

-_t> J (x +ax)

J (x) = vertically averaged flux at x
H = thickness:

FIGURE I1v-16. Diagram Used in Deriving One-Dimensional Vertically
’ Averaged Transport Equation
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The concentration 0 = AT TAL making this substitution and taking
the 1imit as ax, At + 0 yields the equations:

30 _ _ 3(x) _ J(x) dH | (1-25)
ot ax H dx i

Then, since the diffusive flux is proportional to the concentration
ap

v the equation can be written in the form:

gradient, J = -D

32 90y , D di 3p | 1V-26
) ax (D ax) A dx ax ( )
The last term in this equation is of particular interest. This term results
from the unequal transfer area across the trapezoid in Figure IV-16. The

~n

convective flux will only add the expected term v %g-since v is conservative
and in one dimension inversely proportional to the thickness H. These
results were checked by reformulating Equation IV-24 slightly to produce the

following difference equation inp:

2
HiAx AP . H

o 5t " M2 e - (B2t His1/2) oj i+1/2 Pi+] (1v-27)

Here Hi’ p; @re the thickness and concentration, respectively, in a node
centered finite difference scheme.

If the usual Crank-Nicolson approximation is made in time the result
is a tri-diagonal system of equations:

Dn+1 n+l n¥l _ _
Ai j-1 T By Py ot Ei:°i+1 Fi (1v-28)
i
where
A; ==H; 12 ,
H.g
._ _ ,iuX
Bi = Z[Hi + a] 3 o= DAt"—'
By = -ty

- n n n
Fi = Hiyy2pio1 = 2Hy =) o3 + Hipy s 044

1v-27



Here the subscript i refers to howizontal position at the node centers
-and the superscript n refers to the time step. These equations were
sclved with 500 nodes for two cases, Figures IV-17 and IV-18. The first
case has a uniform thicknezs of 50 ft and the second a uniformly varying
thickness with %¥-= .i. For each case the mean position and variance of
the solution were calculated at each time step and stored. A least squares
straight Tine fit was made for each set of points to obtain the slopes.
These slopes were used to compute the convection and dispersion from the v

equations.
- d =1d .

v = g M(x) and D = 5 S VAR{x) (1v-29)
where

v = effeective cohvective velocity

M(x) = mean position of the solution p{x,t)

D = effective dispersion coefficient

VAR(x) = variance»of the x coordinate of the solution p(x,t)

The listed velocities and dispersion coefficients were obtained from
the above equations. The effect of the slope term can be seen in Figure IV-18.
This term produces the sltight drift of the solution in the positive x
direction. The velocity obtained from the drift of the mean of the solution
.0203 ft/day compareas favorably with the value .019 ft/day found by
evaiuvating the term: ‘

;0 _ _DdH _ _ 10 ft°/day , _ o
VT Rdx 518 x - .1 ft/ft = .0193 ft/day

The small difference is mainly caused by the slight skewing resulting from
the higher drift rate with decreasing thickness. This differential velocity
increases the effective diffusion coefficient from 10. to 10.26.

The same case was solved with a two-dimensional random walk model. The
dimensions are in the x and z directioné; The normal component of flux = 0
cqnditions was simulated by making the upper and lower boundaries act as
perfect reflectors. The vertically averaged concentrations are computed

1V-28
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] NO. OF NODLS 500.
. = . PLOT INTERVAL (DAYS) 109,
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TIME STEF (DAYS) 2.
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o
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» e. 100, 2ee. 30¢. 408, 50¢. 630, 760. £es. 2ee. 12¢0.
:
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T.ME MEAN POSITION VARTANCE From least syuares fit:
2 Velocity ( T/DAY) = 0
(DAYS) (FL) . (FT7/DAY) Diffusion Coeff. (FT2/Day) = 10.
100 476. 2225.9
200 476. 4226.2
300 476. 6225.9
400 476. 8225.8
500 476. 10225.4

FIGURE IV-17. Finite Difference Solution tc Uniform Thickness Case
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DIFF. COFF., (FT«~2/0AY) 12.0

NO. OF NODES 500.

PLOT INTERVAL fCAYS) 100.

TATAL TIME (DAYS) 500. ‘
TIME STEP (DAYS) S 2,

SLOPE (FT/FT) A

| . I T : T T 7 T 7
19, 200, 3c0. 426, <¢0. £ca. 720. 5¢3. =co. 1233,
LENGTH (FT)
TIME MEAN POSITION VARIANCE From least squares fit
2 Velocity (FT/DAY) - 0209
(DAYS) (FT) (FT /DAY) Diffusion Coeff. (FT¢/DAY) = 10.26
100 477.9 2235.5
200 479.9 4261.4
300 482.0 ©305.8
400 484.1 8372.8
500 486.3 10466.5

FIGURE IV-18. Finite Difference Solution to Variable Thickness Case

—
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and plotted in Figure IV-19. The mean and variance were calculated as

in the finite difference case and also appear in Figure IV-19. The

results agree with the finite difference solution as well as would be

expected for 3000 parcels. B; examining a number of runs, it was determined

that the average velocity error was about 1.6024 ft/day, for the random

walk solution. The main object of this simulation was to establish that

the simple random walk diffusion with a reflecting boundary condigion

would lead to the same result obtained from the vertically averaged

differential equation. In the direct simulation the additional velocity term

cones about naturally from the particle reflections off the sloping boundaries.
The most practical way to incorporate this term, however, is to simply

niodify the convective velocity field by the amount Av = -%-gg , for one

dimension. The two-dimensional case is given by Equation II-9. A one-

dimensional case of this type was éo]ved and plotted in Figure IV-23. Here

the ambient velocity field was 1 ft/day. The average slope contribution to

the velocity was about .01 ft/day. The calculated diffusion constant is

somewhat large but the accuracy could be improved by increasing the number

of particles.

Examples of the application of the model to twn-dimensional cases
of realistic complexity can be found in References 7 and 28.

1v-31




LA [ WP

(TS

J1

fv/ DIFF. COFF. (FT«-2/DAY) 10.0

9. CONV. VELOCITY (FT/DAY) 0.0

e PLOT INTERVAL (DAYS] 100,
'] TOTAL TIME (DAYS) <00,

(RN TIME STEP (CAYS) 2.

6. NG. OF PARTICLES 3000.
N SLOPE (FT/FT) A

3. -

'R

3

"]

100,

150, .

i i T T I. I L { 1 1
c. 1o, 208, 32C. L2, 00, ecg, 7¢C. eCco, 53¢ 1300,
LENSTH (FT)
TINME MEAN POSITION VARTANCE From 1oast squares fit:
2 N Velolity (FT/DAY) = L0174 .
(DAYS) (FT) (FT"/DAY) Siffusion Coeff. (FT2/DAY) = 9.71
100 476.9 - 2163.8 |
200 | 479.5 392).5
300 179.9 6113.8
400 481.6 8256.8
500 484.5 9791.3

FYGURE IV-19. Vertically Averaged Two-Dimensional Random Walk
Solution to the Variable Thickness Case
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CONCENTRATION

THiCKNESS (T T)

10.

v
|

DIFF. COFF. (FT++2/DAY) 50.0

) j CONV. VELOCITY (FT/CAY) 1.0
g, _ PLOT INTERVAL (DAYS) 1500.

TOTAL TIME (DAYS) 6000.
TS TIME STEP (DRYS) 25.
6. ] DV) NO. OF PRRTICLES 3000.
o SLOPE (FT/FT) .01
- T
4. oy
3. ]
2.
e.. - = — -

.
19Ca. -~
1580, .
2683, ‘ ‘ . : : : : : 1 |
0. 1CC2. 2023, 3208, 4220, S023. 60CT. 7020. 820Q. a0cd. 10008.

LENGTH (FT)

TIME MEAN POSITION VARIANCE
(DAYS) (FT) (FT/DAY)
1500 2247. 162634.
3000 3756. 326436.
2500 5272. 488214,
6000 6798. 652688

From least squares fit:
Velocity (FT/DAY) = 1.011
Diffusion Coeff. (FTZ/DAY) = 54.4

FIGURE 1V-20. One-Dimensional Random Walk Solution to Vertically
Average Traasport tquation
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V. PPRELIMINARY APPLICATION OF THE MMT-DPRW MODEL

A preliminary application of the MMT-DPRW model consisted of simulating
tritium movement in the Hanford unconfined aquifer between 1968 and 1976. The
purpose of this simulation was to test the model with existing Hanford field
data in order to determine any insufficiencies in the present hydrological
data base and/or in the model formutlation. Tritium was chosen for this
application for several reasoas:

® Several trftium concentration measurements have been made throughout

the Hanford unconfined aquifer. These data are the most

complete data set now available to provide initial conditions and

also to check the model results.

The current extent of measurable tritium levels defines a plume that

Ties beneath a substantial portion of the Hanford Site. ,

® It can be assumed that tritium will not chemically interact with the
porous medium or with other dissolved species. Consequently, except
for dispersion phenomena and radivactive decay, tritium can be considered
water coincident. This property avoids introducing the additional
uncertainties associated with sorption and other chemical reactions
during this preliminary application. '

The starting point or "initial condition” for the 'MT-DPRW Hanford runs
was supplied by preparing a hand-interpreted concentration contour map of the
tritium plume as of January 1968 (Figure V-1). Tritium values were then
read from this interpreted map and entered into the initial condition file
of the model. The 1968 tritium concentration contour map was considered the:
earliest 3dequate map that could be prepared with reasonable accuracy from
historical data. Tritium was not recogn}zed as a fission product until 1958(24)
and analysis of tritium in Hanford groundwater did not begin until 1962.(25)
A second manually interpreted tritium cencentration contour map for January 1976
was constructed using data collected duriﬁg the last quarter of 1975 (Figure V-2).
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It is important to point out that Figures V-1 and V-2 are interpreted
maps based upon available analyses of samples from approximately 250 wells.
Although the sample density for the radioactive contaminants is probably
greater at Hanford than for other comparably sized groundwater systems,

- considerable judgment and extrapolation is still required to prepare these
maps. The result of a model simulation such as that presented in this section
ig particularly sensitive to inaccuracies, misinterpretations or data gaps

in the initial condition distribution (Figure V-1).

For the purposes of this initial application, tritium in the groundwater
in the reactor areas north of Gable Mountain and Gable Butte was ignored. The
volumes and concentration of significant tritium discharges to groundwater
for the 1968-1976 period were obtained from direct measurements wherever
possible. It was necessary in some cases to estimate tritium concentrations
from an empirical relationship between fuel expoéure.time and tritium
content. Before presenting the model runs, it should be pointed out that the

“groundwater velocity field is represented by its vertical average value, and
the tritium is assumed to be completely mixed over a variable aquifer depth
so that the tritium concentration as predicted by the model is also a
vertical averaye. If the groundwater velocity fields are supplied by the
VTIT flow model, a vertically integrated version of the MMT-DPRW model must
be used. This version is necessary because the VIT model is formulated as
a vertically integrated model which assumes that the properties of the porous
medium as we'l as the flow field can be adequately represented by their
respective vertical averages.

The first MMT-DPRW simulation starting with the 1968 initial condition
(Figure V-1) was performed assuming that the tritium from the various
near-surface discharge sites was transmitted to the groundwater without delay
in the zone between the water table and land surface (vadose zone). The
depth to groundwater from the land surface is approximately 300 ft in the
southeast portion of the 200 East Area where the most significant tritium
discharges were located. The model-predicted tritium plume for January.1976

is shown in Figure V-3. Comparing Figure V-3 with Figure V-2 shows some
qualitative agreement but clearly indicates that tae predicted tritium plume
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is moving too rabjdly towards tke -.0lumbia River, particularly in the north-
east direction. It therefore appears that the approximation of no delay in

tritium transit time from the near-surface waste discharge sites to ground-

water is probably invalid. ’

s

T

In order to obtain a nreliminary evaluation of the etfect of the vadose . ,%'

‘zone delay, a second series of simulations were performed using various delay g
periods between waste discharge and its appearance in the groundwater. The 'g*
most satisfactory match was obtained with a delay of 3 years. The results of %
v e

the 1968-1976 tritium simu]atipn with the 3-year delay in the vadose zone are %
shown in Figure V-4 and the combined contours from Figure V-2 and Figure V-4 @

are shown in Figure V-5.

During the course of the model runs, it was determined through trial-and-

error procedures that dispersion scalars of 100 ft in the Tongitudinal and

60 ft in the lateral directions seemed to give the best results relative to

the 1976 interpreted map. These vaiues are-high compared to typical labora-
tory values; field valuss of dispersivity are likely to be much higher than
laboratory measurements as a result of unidentified variations in the porous
media properties. The lateral disgersivity used herein is much larger relative
to the longitudinal dispersivity than has been suggested by de Jong.(zz) This
may also be due.to the unidentified inhomogeneities present in the aquifer

system.

Although the model results indicate some qualitative agreeﬁent as to
the directions of flow, examination of Figure V-5 shows that some important
differences between the 1976 interpreted and model-predicted tritium plumes
remain. As poinu.d out earlier, one of the most likely reasons for these
differences lies in the preparation of the initial condition surface (Figure V-1).
It shculd aiso be noted that most of the groundwater samples were collected
near the water surface of the unconfined aquifer by lowering a glass hottle

(26)

enclosed in a steel bail into the water. Thus, the data used in preparing

Figures V-1 and V-2 of this report represent at best the surface tritium
concentrations and not the vertical average values as calculated by the model
(Figures V-3 and V-4).
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A high degree of vertical mixing may occur near the 200 Easi Area waste
discharge sites where the bulk of the post 1967 tritium has been discharged.
However, there is a strong possibility that vertical contaminant stratification
exists throughout most of the Hanford groundwater system covered by the tritium
plume. A limited study using three-dimensional groundwater models indicates
that vertical velocity components may be important in predicting contaminant
movement.(27) Vertical velocity components currently are not considered by
the VIT flow mode](s) and the VTT compatible form of the MMT-DPRW.

Other likely causes for the differences between the model-predicted
results and the January 1976 interpreted tritium map are:

® uncertaintias tn the definition of the system properties such as hydraulic
conductivity and porosity, )

® uncertainties in the period of delay within the vadose zone,

uncertainties in the contaminant concentrations of the Hanford
plant discharges, and

® uncertainties in the interpretation of the unconfinad aquifer bottom.

The Hanford contractor responsible for radicactive waste management,
presently the Atlantic Richfield Hanford Company (ARHCO), is proceeding with a
comprehensive field data collection program designed to improve characterization
and modeling of the Hanford groundwater system. A series of piezometers are
being installed to obtain information on vertical groundwater potentials and
contaminant distributions. An extensive drilling and pump testing program
together with geologic and lithologic studies will allow improved definition
of aquifer medium properties and boundaries. Efforts are also being conducted
to improve the measurement of both liquid quantities and contaminant concen-
trations of the active discharges to groundwater recharge sites. In addition,
ARHCO is proceeding with a program to adapt three-dimensional flow and transport
models to predict vertical groundwater and contaminant movement and to simulate
vertical variations in the contaminant distributions.
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APPENDIX

THE SOIL-WASTE REACTION CHEMICAL SUBMODEL

The current version of the soil-waste reaction submodel that is used by
the MMT-DPRW Model embodies an equilibrium constraint approach very similar to
that proposed by Routson and Serne.‘]’ The following discussion is based orn
their chemical model desceiption given in BNWL-1718. Reaction types con-
sidered in.iude ion exchange, precipitation-dissolution,'and aqueous compiex
formation. |

Ongoing programs at Hanford(z) have indicated that radionuclides
reaching the accessible environment are present only in vefy minute (trace)
amounts. A trace solute, hevreafter, referred to as a micrnion or micro-
solute, is definad as one whose presence does not measurably affect the
chemical behavior of any other species present. In contrast, the appreciable
concentrations of some species (macroions or macrosolutes) may affect the
sorption of trace radionuclides.

The first-crder chemical reactions which mathematically describe the
chemical submodel are separately discussed in macrosolute and microsolute
categories. Division into these two categories was made for two reasons.
First, mathematical simulation of the chemistry of the cormon macrosolutes
in n2tural (Na, K, Ca, and Mg) soil systems requires successive iterations
to c:lculate the equilibrium states. In contrast, the sorption of a micro-
solute can be adequately calculated empiricaliy“wiihout iteration; thus,
computer time is saved by separating the two systems. Secondly, the sorhtion
of trace radionuclides is often so Compléx that theoretical methods have not.
been developed to account for all different types of sorption which may occur.,
The method seiccted empirically solves the microion sorption reactions.

Macrosolute Chemistry

The macrosolute chemical model represents a mathematical description of
the soil-solution interactions between three phases: a cation exchangezble

A-1




solid phase, a solution phase, and a crystalline salt phase. Interactions
which may occur between these three phases are sorption, ion exchange,
cemplexation, dissolution, and precipitaticn.

Below the zone of root penetration the finely divided mineral surfaces
of the soil solid phase are ge.erally negatively charged. The negative
charge results larcely from the isomorphous replacement of Al+3 for Si+4
ions and/or Hg+2 and Fe+2 for arts and to & lesser extent, by hydrolysis
of hydroxyl groups which are structurally a part of the soil matrix. To
maintain electroneutrality, positively charged ions counter the net negative
charge of the soil and are susceptible to exchange with other species in
the percolating solution.

Matnematical descriptions of gie cation exchange reactions between
soil and solution used in the model are a combination of theoretical exchange
equations and empirical results. It is assumed that multicomponent exchange
reactions can be approximated as a system of binary reactions.

pp i

The mass action equation for a general heterogeneous reaction such 2s:

+m +n +n +m
aA  + Bb X +bB "+ Aa X

at constant temperature and pressure canr be written as:
[8*"1° [A,""x]

K = —
(A" 2, "X

(A-1)

where

>
co
L]

exchangeable fons in solution or on the soil,

ionic charge of Aor B

>3

.

=]
]

>
i

total solid phase soil matrix,

[ ] = activities of constituents. .

Since no direct means currently exists fer estimatin? solid phase
3
Data from ’

)

scil activities, an empirical approach has been utilized.




batch system eXperiments for binary exchange reactions were anaiyzed and
found to approximate a linear relationship when plotted as a log-log
function. The log of the solute activity ratio:

[B+n3b
. [A'Hn]a

was plotted on the ordinate and the log of the ratio of the concentrations in
the soil solid phase,

+n
(8, ")
+m
(A, 7X)
was plotted on the abscissa. The slope of the line yields a solid phase
activity correction and the antilog of the intercept yields the empirical

selectivity constant. The general empirical exchange expression obtained
by this method is:

p
+m
+n.b A TX
i (a+) | (A-2)
(A% | (8,"x)
where
( ) = concentrations of constituents
K* = selectivity constant
p = empirical activity correction

The activities of the soluticn phase are defined-as: ‘
[Al = v5(8) (A-3)
where

Yo < activity coefficient of ion A

The activity coefficient is calculated from Davies' extension of the Debye-
Hickel theory at 2s°c.(%)
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: 2 i
-log v, = .509 Z {(-v—) - .21 (A-8)
A A REE

where

ZA = valence of jon A 3
I = ionic strength of solution. 5
. 5
4 &
The ionic strength of the solution is calculated from the expressionS ) ;
N; , ¢
=1 z : 2 - _
i=1

where

C. = molal concentration of ion i

=
il

number of jonic species in solution.

Dissolution-precipitation reactions in the soil-solution system are repre-
sented by their heterogenesus equilibria:

»> At 4+ yp7X
AB(s) 2 "™ + yB

Slightly solubfe salt and complex ion formation reactions are based on the
solubility product rule in which the solid phase activity is assumed to be
one, so thkat: ' .

ko 2 A7 (87T (A-6)
The solubility product, Ksp’ is defined as the product of the
activities of the interacting ions at the point of first precipitation.
At this point the product reaches its maximum value. Consequently, in -
solutions devoid of precipitate the product of activities is always less N
than Ksp which necescitates the inequality representation of Equation A-6.
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Presently, the submodel considers the effect 1 binary cation exchange
of four species (K+, Ca+2, Na+, Mg+2) and the surrounding soil matrix. The
effect can be described in terms of a set of any three independent exchange
expressions. For example:

k' + Nax 2 Nat o+ kx

ca*? + Na,X

2

v

2Nat + cax

Ca+

4

M *2 4 cax + MgX

The ereirical equations for calculating the equilibrium concentrations are
then: (see Equation A-2)

o ') {(sz }’a (A-7)

Na-K (k") L(Nax)

Yea(Ca™) P2 |
Koot = gy 1N22%) and (A-8)
Wa2(lah)? | Tax)

2 P3
‘ (ca*?) {(M X } (A-9)

*
Ca-Mg (Mg+2) CaX

It should be noted that the activity coeffficients of like valenced ions

in the same ionic strength solution are equal and tnus cancel out in
Equations A-7 and A-9. A careful examination of these equations reveals
that a1l other binary exchanges, i.e., K-Ca, can be represented as a linear
combination of the above (4.7, A-8, A-9) expressions, and consequently

do not constitute additional independent relationships.

Two slightly soluble salts and one complex ion formation are also
included in the present chemical submodel. These are gypsum (CaSO4 ° 2H20),
1imestone (CaC03). and undissociated calcium sulfate (Ca504)aq

A-5




The equilibrium concentrations for the gypsum reaction,
Casy, ° 2H,0+ 2 Ca*? + 50,72 + 21,0
4 2 4 2

are determined using the solubility product rule and assuming the activity
of water to be one. The mass action equation is then:

+Z -2 _ +2 -2
KSp 3[Ca ][504 ]— YCa(Ca )YSO4(SO4 ) . (A-10)

The reaction of the -queous complex calcium sulfate,

+2

Cas0,(aq) £Ca‘ + 504‘2~"

is mode]ed using the d1ssoc1at1on constant as fo]]ows

+2 (™) Yso (50,7°)
ca*?||so,” ‘ (A1)
Kdiss =~ TCas0 ] T c -(C35°45 | -

The activity coefficient of the undissociated species, Yca SO , is one
.as predicted by Equation A-4.

The solubility of limestone is calculated dsing the solubility product rule
and carbonic acid equilibria. relationships. Since bicarbonate (HCO3 ) 1s
' wore easily measurable in the soil-solution system than carbonate (CO3 ),
it is convenient to consider the overall reaction:

2+ 2HD3™ % CaC0yv + HyCOq

The ‘equilbrium equation'is!

'A-';,‘ _ ¢ - [cacog} [H co ] | | (A-12)
T [Qaf?}{HC03.J ? |




The activity of carbonic acid is a constant if the partial pressure cf
carbon dioxide is constant:

€0, (g) * Ho0(gy = HyLOy

yielding,

H,CO0 H, 0
o0yl T%s] K, (A-13)
[H,01[c0,] Pcoz(g)

where Ko is an equilibrium constant, and PCOz(g) ic the partial pressure

of CO2 in the ambient atmosphere. The partial pressure of CO2 in the earth's
atmosphere at sea level is relatively constant at 10'3'5
activity of H2C03 can te assumed to be a constant, Ké:

atm., hence the

[H2C03] = K, (PCOZ) = K, (A-14)

The tifstvand second jonization constants of carbonic acid, K, and Ky» are
given by: '

[H'] [HCOy™1
[H,C0,]

it

K, (A-15)

+ -
[H'] [20,7%] |
—_— K2 , (A-16)

[HCO3 ] ‘ ,
Combining Equations A-13, A-14, and A-15 gives:
=21 Ko -2 o

The solubility product constant of limestone is given by:

ks, > [ca™] [003] | (a18)




assuming again that the activity of the solid phase is unity. Substituting

Equation A-17 for [003’2}, yields the final carbonate cquilitria
relationship:

(A-19)

In the sofl-waste model, anion exchange is considersd negligible. Anions
other than those involved in slightly soluble salt or complex ion formation
are considered to be non-reactive.

It should be noted that inherent in the model is the assumption that the
influent seepage velocity is slow enough to allow chemical equilibria

to be attained continuously throughout the system. Percolation velocities
have gererally been found to be slow enough to justify the use of this assump-
tion at Hanford. ‘

Microsolute Chemistry

Microions species are assumed to be present in such small quantities that
they do rot measureably affect the macroion chemistry or the behavior of
other microions. The sorption of micro constituents is modeled as a shecia]ized
exchange reaction.

A general expression for ion exchange of a trace species {microion) in a
macroion environment may be formulated as a replacement reaction:

xC +A Y

micro macro ycmach + Amicro

wiiere C indicates a fluid phase consituent and A indicates the presence of
the constituent in the soil matrix. This expression indicates the
competition between the micro and macroions for scrption sites on tb2 soil.
The mass action relationship for this system at equilibrium is:

y .
K = [cmacro] [Amicro] . (A-20)
X ' :
[Amacro] [Cmicro]
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Several approximations can be made to simplify Equation A-20 for a
system consisting of simple binary exchange of like valenced {x=y) macro and
trace constituents. Because of the very minute quanties of microion present,
the soil concentration of macroions (Amacro) can be assumed to be essentially
independent of microinn concentration. Similarly, the small amount of
macroicns displaced by sorbed microions will not significantly alter the

1iquid phase macroion concentration (C ) that is present in the

macro
absense of micro constituents. With these assumptions Equation A-20 can be

rewritten as:

Pracro! ! _ (Anicro)
macro) micro’
Y Y
A o
where y' = - macro Y.micro
o

A_.
macro micro

which is also assumed to be constant with respect to microion concentration.
When written in this form it is apparent that the expression on the left

side of Equation A-21 represents a microion distribution (cr sorption)
coefficient which can be represented by Kd' The sorbed microion concentration
can then be expressed as:

A=KyC (A-22)

where the micro subscripts have been dropped for convenience.

Obviously, in the above formu]afion‘Kd is a function of the type of
macroion that is being displaced. In more complex (three or more component)
systems the observed Kd becomes a function of all of the macro constituents
in solution. It then becomes necessary to experimentally determine the
distribution coefficient, Kq» for each microion cf interest as a function
of macroion concentrations.
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The investigation of the effects of the macrofon variables on Kd is
amenable to factorial experimentation. Factorial experiments allow the
study of the effects of several variables and their interactions in one
experimental design. The experimental procedures and multiple regressicn
techniques used to quantify vhe functional relationship of Kd and macroion
concentrations for some Hanford soil-waste systems are detailed in -
aNwL-1721., (3) -

As an example, the following procedure was used to calculate an empirtcal
Kd function for the radionuclide strontium (BSSr). It was determined that
the macroions 45 a typical Hanferd soil solution which competa with strontium
in the cation exchange-sorption reactions include Ca+2. K*, Na+. and
H* (pH). A 24 factorial, batch system, sorption experiment was set up to
determine the effects of the abcVe four variables on strontium sorp:fon.
Two levels of concentration for each variable, high {H) and Tow (L), were
permuted to yield sixteen observations (see Table A-1).

TABLE A-1. Permutation Used in the Factorial Design Experiment

Experimont

Number ca*? 5: yi pH
1 H H H H
2 H H H L
3 H H L H
] H H L L
5 H L K H
6 H L H L
7 H L L H
8 H L L L
9 L H H H
10 L H H L
n L H L H
12 L K L L
13 L L H H
14 L L K L
15 L L L H
16 L L L. L
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The observed Kd vaiues were statistically analyzed to yield the four
main and twelve interaction effects of the variables studied. These six-
tean effects are used as the multiplz linear regression coetfficients tn an
equation describing Kd 3s a functicn of the four variables studied. Within
the range of pH investigated (5-8) this variable was found to hace little
influence on strontium sorption and was neqlected in further calculations.

The Kd predictor equation becomes:

= Y A=
Kagsr) ™ ¥ca**na* <Xk ¥ea nat e ea c* FAna*k ¥ ca nak (A-23)
where a,..., g are the coefficients derived from the factorial design experi-
ment and x(i) are nomalized concentration variables'covering the range of
concentration (H-L) used in the factorial experiment. For example:

1, oL
Y (Ca) - ?(BCa * LCa)

ca ” (A-24)

1
5(He, = Lea)

where

e o
L}

Ca high calcium concentration used in the factorial
design experiment

LCa low calcium concentration used in the factorial

design experiment
(Ca) = value of calcium concentration for which kd is
being calculated

The X(i) variables will lie between :1 for any concentration within the range
used in the factorial design experiment.

thétion A-23 is an approximation of a phenomenon which is complex and
often nonlinear. Therefore, to obtain a more accurate fit, the variables'
concentration ranges were -ubdivided and separate factorial experiments
were performed for each smaller range. Additional details of the oxveri-
mental studies can be found in BNNL-1719.(6)




Cemputation of Radionuclide Sorption

As seen above, the chemical submodel in current use by the MMT-DPRW
model fs a semi-empirical equilibrium constraint type of‘formu!ation with
“the built in assumption that the soil-waste reactfions cctcur rapidly with
respect to the flowrate of the groundwater system so that the system is
essentially always at equilibrium. »

The model divides the subsurface into a finite number of rectangular
solids referred to as cells (Figure I1[-1). At the end of each time step the
material that has been transported into each cell is required to be in
chemical equilibria. The mass of each micro element §s redistributed among
the species present as specified by the equations that describe the equilibirum
state. When the macroion equilibria has beeﬁ determined, the sorption
coefficient for each micro species present is evaluated from an expression
of the form of Equatfoa A-23. The change in microion concentration as a
result of sorption processes 1s then calculatéd as follows.,

For simplification a single cell in a system with only one trace cantaminant
{s considered. At the end of time step n the concentration of the fluid and
solid phases of this tracer within the cell are C" and A". respectively. Advection
and dispersion then cake place and the fluid concentration changes to the inter-
" mediate value, C'. After this cell has equilibrated, the concentrations at the
n+] time level will be given by:

PO UL (A-25)

™ e gt ™! ' (A-26).

From Equation A-22 we know that:

AT gt et (A-27)

v SRR 2 1T EYRE MR e .
A R e TN e P S e i A

or

(A-Co)
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Frem quation A-22 we also know that:
A" - xg c” (A-29;

The charnge of mass of tracer in the fluid phase must equal the change of mass
in the solid phase if mass is to be conserved. If soil concentrations are
expressed in terms of msss of m;croion/mass of soil and the fluid
concentration are given in terms of mass of microion/volume of fluid, the
changes in concentrations in each phase are related ty:

+

&n*]‘ - _BMn+] (A'30)

*

where

£ = the soil-to solution ratio [M/L3]

1

Substituting A-29 and A-30 into A-28 solving for o™ gives:

n.n n+l %
n+l e(Kd": - Ky c)

o {A-31)
1+ bK n+]
d
Using the results of A-31, Equation A-26 can now be rewritten as:
w n.n
y C + BK.C
™. 4 (A-32)
1+ BKy

Using the nomenclature of Section [Tl, Equation A-32 would be expressed
as:

k,*

N kyn
Jontt o Piqn t K eiy (A-33)
ij1 1+ sxg*‘

The new parcel weights as a result of sorption can then be computed by
Equation 111-20.
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APPENDIX SYMBOLS

exchangeable ions in solution or on fhe sofl matrix

sot! phase concentration of tracer at time level i [m/L3]
calcium fon

carbon dioxida gas

carbonate {on |

fluid pnase concentration of tracer at time level ¢ [m/L3]
molal corcentration of ion i [m/L3]

water

bi@arbonate ion

high concentration of spectes 1 in factorial [m/L3] experiment
total fonic strength of solution

pbtassium ion '

sorption coefficient [L3/m]

solubility product ;

sclectivity constant of i-j exchange

equilibrium constants :

low coincentration of species 1 in f&ctorial [m/L3] design experiment
magnes ium o

fonic charge of A and B

sodium ion

number of ionic species in solution

emperical activity correction parameter of ith exchange
sulfate ion

total solid phase soi! métrix

normalized concentraticn variable of species i in factorial design
experiment

) A‘ls




stoichiometric coefficients of A and B
Vafance of ion {

enclosed quantity is an activity
enclicsed quantity is a concentrat(on'
sofl to solution ratio [m/L3]

activity coefficient of fon {
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