

NUCLEAR CHEMISTRY RESEARCH AND SPECTROSCOPY WITH RADIOACTIVE SOURCES

Sixteenth Annual Progress Report

U. S. Department of Energy

Contract DE-AS05-76ERO-3346

R. W. Fink

Professor of Chemistry & Principal Investigator

October 31, 1980

MASTER

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF CHEMISTRY

ATLANTA, GEORGIA 30332

Tel. (404) 894-4050

NUCLEAR CHEMISTRY RESEARCH AND SPECTROSCOPY WITH RADIOACTIVE SOURCES

Sixteenth Annual Progress Report

U. S. Department of Energy

Contract DE-AS05-76ERO-3346

R. W. Fink

Professor of Chemistry and Principal Investigator

Telephone (404) 894-4030

October 31, 1980

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

School of Chemistry

Georgia Institute of Technology

Atlanta, Georgia 30332

2025

TABLE OF CONTENTS

	Page
1.0 Introduction	1
2.0 Nuclear Spectroscopy Studies	3
2.1 Decay of ^{201}At and ^{201}Po Isobars	3
2.2 Slow M4 Transitions from the $s_{1/2}$ intruder state in $^{199,201}\text{Bi}$	10
2.3 Decay of ^{203}At	10
2.4 Decay of ^{187}Au	10
2.5 Lifetimes of the $g_{7/2}$ intruder band levels in ^{109}Ag from ^{109}Pd (13.5 h) Decay	13
3.0 Systematic Investigation of Interacting Boson-Fermion Approximation Predictions and Comparison with Current Experimental Results for Odd-A Nuclei	16
4.0 International Intercomparison of ^{133}Ba Gamma-ray Standards	21
5.0 X-rays and Inner-shell Ionization Phenomena from Radioactive Sources	23
5.1 Studies of the L_1 Subshell	23
5.2 Studies of the L_2 and L_3 Subshells	24
5.3 The Decay Energy of ^{207}Bi (33.4y)	25
6.0 Miscellaneous Topics	27
6.1 Radiochemistry of ^{18}F (110 m) produced in the Georgia Tech Reactor	27
6.2 CDC Cyber 70/74 Computer Codes and Operations	27
6.3 Equipment added or fabricated	28
7.0 Personnel	29
8.0 List of Publications and Presentations at Meetings	30

Table of contents...

Fig. 1	5
Fig. 2	12
Fig. 3	15
Fig. 4	18
Fig. 5	20
Table I	8
Table II	9
Table III	22

1.0 INTRODUCTION

Owing to the extended shutdown of UNISOR to install an on-line laser spectroscopy system and to shutdowns of the Oak Ridge Isochronous Cyclotron for modification to accept heavy ion injection from the 25 MV folded tandem accelerator (HHIRF), our first UNISOR runs in more than 16 months did not begin until late July, 1980. Therefore, we used this period of time to reduce almost completely the large backlog of unanalyzed UNISOR data accumulated from previous runs; in particular, our investigations of the $A = 201$ mass chain (5 runs) and of ^{187}Au decay were carried out.

Our goal remains to establish the detailed nuclear spectroscopy (including the weak γ -ray transitions and conversion electrons) of nuclei in regions near the $Z = 82$ closed shell. Such completeness in the spectroscopic measurements is essential in determining the systematic trends which underlie the interpretation of nuclear structure far from stability. In view of this requirement, our July, 1980, run [$^{181}\text{Ta}(^{12}\text{C}, 6n)^{187}\text{Au}$] to study the γ -rays in the decay of 8.4 min ^{187}Au produced data of the best statistical quality ever obtained at UNISOR.

Considerable progress has been made this year in the systematic investigation of the Interacting Boson-Fermion Approximation (IBFA) predictions for odd- A gold isotopes ($A = 185-197$) and their comparison with current experimental results. The latest version of the computer codes PHINT and ODDA has supplanted the earlier one on the CDC Cyber 70/74 Georgia Tech computer. In addition, the IBFA code NPBOS was implemented this year on the Georgia Tech computer.

Our completed investigation of the highly retarded M4 transitions from the $s_{1/2}$ intruder isomeric states in $^{199,201}\text{Bi}$, on which a manuscript will shortly appear in Nuclear Physics A, was cited by the visiting UNISOR review committee as one of the major achievements in UNISOR research in the past year.

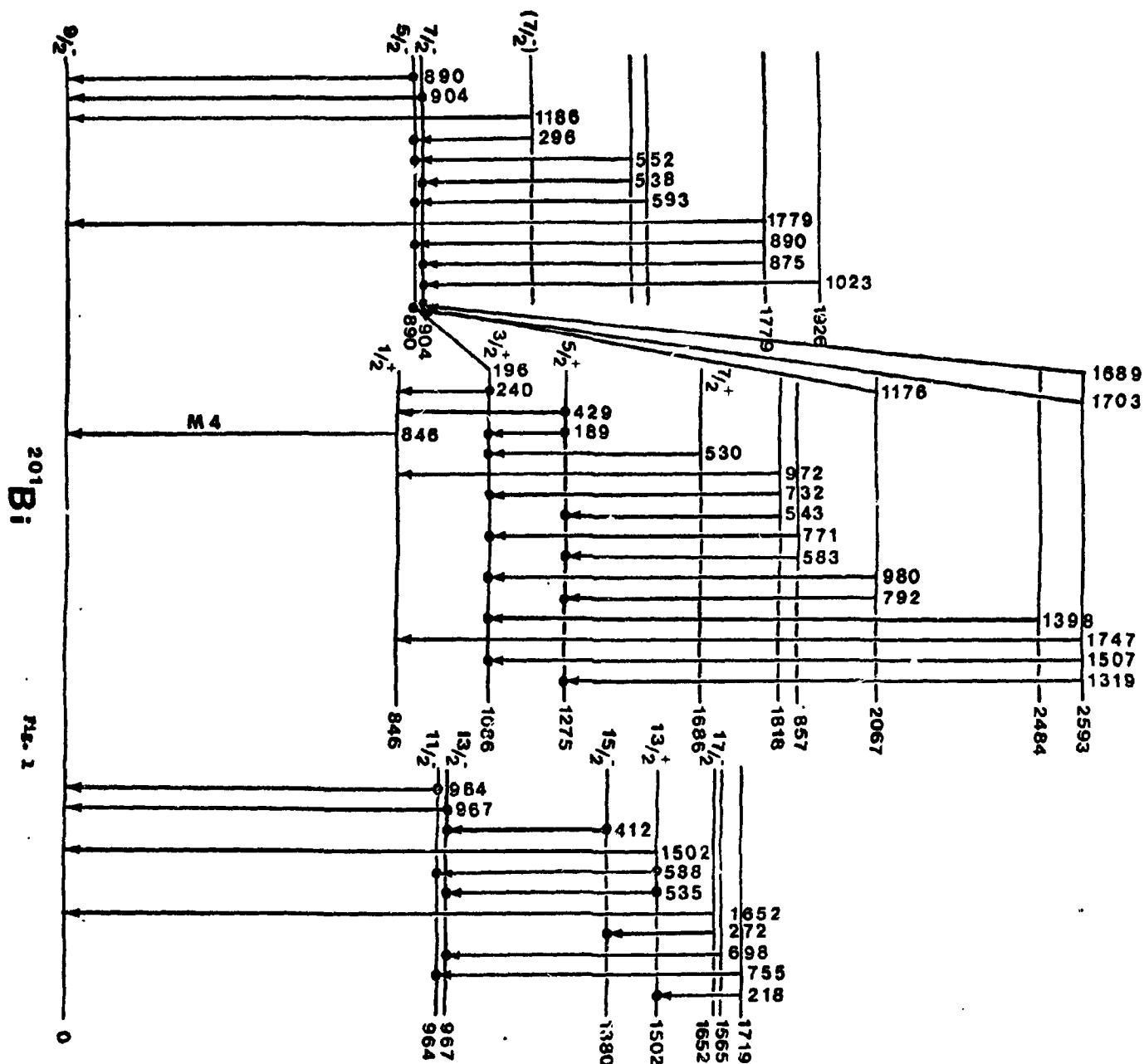
On campus, the three-parameter $XX \cdot t$, $Xce \cdot t$, and $X\gamma \cdot t$ x-ray coincidence measurements implemented on our ND-4420 multiparameter, multichannel analyzer are similar to coincidence measurements at UNISOR and provide excellent training for our graduate students and postdoctoral investigators who will then later participate in UNISOR research. Moreover, such coincidence measurements provide experience in handling the more difficult electronic timing problems inherent in low-energy photon and electron spectroscopy which is becoming exceedingly important at UNISOR.

These $XX \cdot t$ three-parameter measurements with high resolution Si(Li) and Ge(HP) x-ray detectors are used to obtain the L_1 -subshell yields ω_1 , f_{12} , and f_{13} and L_2 -subshell Coster-Kronig transition probability f_{23} . The experimental data on L_1 -subshell yields are sparse because of the lack of suitable radioactive sources that produce L_1 atomic vacancy states. There is a need to collect reliable experimental information for comparison with the theory. In the case of f_{23} , the most recent relativistic calculations indicate that our current experimental values agree well with the theoretical estimates. Recent advances in the analysis of the coincidence spectra to measure these yields are effectively employed to complete a comprehensive set of measurements on $Z = 82$, in order to obtain all the parameters of interest, i.e., the fluorescence yields ω_i , the Coster-Kronig yields f_{ij} , and the radiative branching ratios s_i .

2.0 Nuclear Spectroscopy Studies

2.1 Decay of ^{201}Po and ^{201}At Isobars

An analysis of the decay of ^{201m}gPo (9 min, 14 min) is nearing completion under the coordination of Dr. R. A. Braga. The activity was produced at UNISOR by bombarding natural Ir with 113 MeV ^{14}N ions, and the data acquired includes γ -ray and ce^- singles, $\gamma\gamma\text{t}$ coincidence, and γ -ray and ce^- multispectral data. Prior to our study the most comprehensive investigation of the excited states in ^{201}Bi was that of Korman, et. al.¹⁾.



¹⁾ A. Korman, D. Chlebowska, T. Kempisty, and S. Chojnacki, *Acta Phys. Polon.* (Warsaw) B7, 141 (1976)

In Table I we list the γ -rays assigned to transitions in ^{201}Bi , along with their intensities and tentative multipolarities, and Table II is a listing of observed coincidence relationships. From these data, we construct the decay scheme shown in Fig. 1. (A number of weak, unassigned γ -rays observed in the spectra are not listed in the tables nor shown in Fig. 1.) A major portion of this scheme is the band built upon the $s_{1/2}$ shell-model intruder state and the M4 isomeric transition depopulating this state in ^{201}Bi , (see Sect. 2.2). In addition we observe a level structure populated by the decay of the high-spin 13/2+ isomeric state of ^{201m}Po (9 min), (shown in Fig. 1, right side), as well as a structure fed by the decay of the 3/2- ground-state of ^{201}gPo (14 min) (shown in Fig. 1, left side). We observe both ^{201}Po isomers, since the high spin upper state, produced almost exclusively in the heavy ion reaction, feeds the lower spin ground-state via an isomeric cascade.

This work is part of a UNISOR effort to investigate the systematics of the light $Z = 83$ nuclei. It is of particular interest to study the coupling of the single-particle or hole states to the even-even Pb or Po cores. In this description, the 5/2-, 7/2- and the 11/2-, 13/2-, 15/2-

Fig. 1 - Partial decay scheme of ^{201}Bi populated in the decay of $^{201\text{m},g}\text{Po}$ (9 min, 14 min). Relative intensities appear in Table I, along with tentative multipolarity assignments. The right side of the decay scheme is populated from the decay of the $13/2^+$, 9 min $^{201\text{m}}\text{Po}$ isomer, while the left-side arises from decay of the $3/2^-$, 14 min ^{201g}Po ground state.

state in ^{201}Bi result from the coupling of the $h_{9/2}$ single proton state to the $2+$ one-phonon and $4+$ two-phonon states of the ^{200}Pb core. The resulting coupling scheme can also be compared to the $Z = 81$ proton-hole system ($\pi h_{9/2}^{-1} \otimes ^{200}\text{Pb} + ^{199}\text{Tl}$). Upon completion of this study, publication is planned in Nuclear Physics A.

Also this year we have continued our investigation of the decay of ^{201}At . This is part of an effort to obtain information on excited states of Po isotopes. These comprise part of a region which forms a completely new family of transitional nuclei and provide tests for models and concepts that have been developed to describe nuclei with $Z \leq 80$. In particular, excited states of the odd-mass Po isotopes, and especially the low-spin states due to the coupling of the $i_{13/2}$ unpaired neutron to the core, would reveal the shapes of the nuclei, the location of the Fermi energy, and the validity of the Meyer ter Vehn triaxial rotor model in this region.

Since ^{201}At decays via an alpha branch as well as by β^+ /EC decay, some information on levels in ^{197}Bi as well as its decay is expected. Activities of ^{201}At were produced via the $^{nat}\text{Ir}(^{16}\text{O}, 6n)$ reaction at UNISOR. The data acquired so far consist solely of γ -ray multispectral singles. The analysis of these data has resulted in the identification of several γ -rays associated with the ^{201}At decay. The γ -rays observed at 494, 763, and 849 keV decay with halflives ranging from 1.2 to 1.7 min, consistent with the previously-reported halflife of 1.5 min reported for ^{201}At ²⁾, while several others decay with a halflife consistent with ^{197}Bi decay (6.4 min)³⁾ (10 min⁴⁾). We note that the decay curves we obtain for

²P. Hornshøj, P. G. Hansen, B. Jonson, Nuclear Phys. **A230**, 380 (1974)

³M.S. Rapaport, in Ann. Prog., Rept. ORO-3346-173 (edited by R.W. Fink); p. 22 (1975)

⁴Y. LeBeyec, M. Lefort, J. Livet, N.T. Porile, and A. Siivola, Phys. Rev. C9, 1091 (1974)

the γ -rays associated with ^{201}At decay exhibit curvature typical of a growth

and decay relationship. We believe that this shape of the decay curves is the result of the feeding of the ^{201g}At ground-state by some unknown isomeric state decay. Additional analysis is in progress, as well as a planned $X\gamma\cdot t$ experiment, in order to distinguish these γ -rays associated with ^{197}Bi following the alpha decay of ^{201}At from those belonging to ^{201}Po from the β^+/EC decay branch. (R. A. Braga and P. B. Semmes)

Table I - Gamma rays assigned to ^{201}Bi populated in the decay of $^{201\text{m}}\text{gPo}$
(9 min, 14 min)

<u>Energy (keV)</u>	<u>Intensity (relative)</u>	<u>Multipolarity</u>
188.7 <u>3</u>	7.76	M1 + E2
195.8 <u>3</u>	0.54	(E1)
217.5 <u>5</u>	0.66	M1 + E2
240.1 <u>2</u>	70.38	M1 + E2
272.2 <u>3</u>	7.36	
296.0 <u>6</u>	1.90	
411.9 <u>2</u>	33.56	
428.1 <u>2</u>	13.24	E2
529.6 <u>5</u>	10.58	(E1)
534.7 <u>6</u>	10.58	
537.4 <u>3</u>	29.19	
543.8 <u>5</u>	3.59	
551.8 <u>3</u>	7.67	
583.3 <u>3</u>	5.48	
593.1 <u>2</u>	15.07	M1
697.6 <u>5</u>	4.67	
754.4 <u>3</u>	7.32	
771.7 <u>5</u>	4.46	M1
791.3 <u>4</u>	14.21	
846.2 <u>2</u>	8.35	M4
874.7 <u>4</u>	4.86	
890.2 <u>2</u>	98.10	E2
904.3 <u>2</u>	50.61	
964.1 <u>3</u>	81.71	
967.6 <u>3</u>	100	
978.7 <u>5</u>	4.54	
1175.2 <u>3</u>	10.59	
1186.9 <u>4</u>	18.93	M1
1398.3 <u>5</u>	5.35	
1502.1 <u>8</u>	3.53	

732, 972, 1023, 1319, 1507, 1652, 1689, 1703, 1747, and 1779 keV
observed only in coincidence.

Table II - Gamma-ray Coincidence in ^{201}Bi from decay of $^{201\text{m}\alpha}\text{Po}$ (9 min, 14 min)

<u>Gate</u>	<u>coincidences observed</u>
189	240, 543, 583, 792, 1319
218	964
240	189, 530, 732, 771, 980, 1398, 1507
272	412, 967
296	890
412	272, 967
429	583, 792
530	240
535	218, 967
538	218, 904, 964
543	189, 240
552	890
583	189, 240, 429
593	890
698	967
755	964
771	240
792	189, 240, 429
875	904
890	196, 296, 552, 593, 890, 1176
904	538, 875, 1023, 1689
964	538, 755
967	272, 412, 535, 698
980	240
1176	890
1398	240
1507	240
1689	904
1703	890

2.2 Slow M4 Transitions in $^{199,201}\text{Bi}$ and the $s_{1/2}$ Intruder State

The completed study of the band built upon the $1/2^+$ shell-model intruder state in $^{199,201}\text{Bi}$ and of the 846 keV M4 isomeric transition depopulating this state in ^{201}Bi has been accepted for publication in Nuclear Physics A (ref. 1 in Sect. 8.0 below). In addition to being the only known " ℓ -forbidden" M4 transition in odd-A nuclei, the isomeric transition in ^{201}Bi appears to be further hindered because it is a hole \rightarrow particle transition.

2.3 Decay of ^{203}At

While the investigation of the decay of ^{203}At (7 min) remains a priority project, no data in addition to the previously measured γ -ray singles spectrum, have been obtained to date, owing to the extended UNISOR and ORIC shutdown periods. A run is scheduled for the latter part of 1980. This problem had been part of the doctoral thesis of Mr. Chris Papanicopoulos, who has resigned, and will be continued by Mr. Paul Semmes and other members of the nuclear chemistry group.

2.4 Decay of ^{187}Au (8.4 min)

The detailed study of the decay of $^{187m,g}\text{Au}$ to ^{187}Pt has been continued with a recent successful $\gamma\gamma\cdot t$ coincidence experiment. This was the first time that gold isotopes were mass separated at UNISOR, made possible by the development of a new high temperature ion source by R. L. Mlekodaj and using the $^{181}\text{Ta}(\text{C}^{12}, 6n)^{187}\text{Au}$ reaction of 95 MeV. Preliminary analysis indicates that these data represent the highest quality (both in statistics and in resolution) ever taken on a single isotope at UNISOR, amounting to approximately 2×10^7 $\gamma\gamma\cdot t$ events.

A preliminary decay scheme, Fig. 2, was developed by Marvin Grimm as part of his PhD thesis⁵⁾. There are numerous assignments in his scheme that are in apparent disagreement with the recent publication of Braham, et al.⁶⁾ It is hoped that the present work, and our planned γ - γ coincidence experiments will be able to resolve these discrepancies, in order to better our understanding of the structure of the odd-mass Pt isotopes.

A preliminary experiment, mentioned in last year's annual report, ORO-3346-236 (1979), indicated that a short-lived isomer of ^{187m}Au (< 1 sec) may exist. We plan to investigate the existence and decay characteristics of this isomer.

The nuclide ^{187}Pt is especially important in that it lies on the borderline between the near-spherical nuclei for $A \geq 187$ and the strongly-deformed shapes of the far neutron-deficient region $A \leq 186$. It is also important in that the odd-mass Pt isotopes possibly can be used to study the coupling of an odd neutron to a Pt core, in order to ascertain whether or not there are distinct proton contributions to the collective degrees of freedom, as is suggested by the interacting boson-fermion approximation (IBFA)⁷⁾.

⁵⁾ M. A. Grimm, Jr., PhD Thesis, Georgia Institute of Technology (1978)

⁶⁾ A. Ben Braham, et al., Nuclear Phys. A332, 397 (1979)

⁷⁾ F. Iachello, "How Well Can We Predict Nuclei Far from Stability?" in Future Directions in Studies of Nuclei far from Stability, edited by J.H. Hamilton, E. H. Spejewski, C. R. Bingham, and E. F. Zganjar (North-Holland Publishing Co., Amsterdam, 1980); p.281ff

It has been suggested that the proton (neutron) contributions can be probed by the coupling of the collective modes to an unpaired neutron (proton). The decay scheme $^{187m,g}\text{Au} \rightarrow ^{187}\text{Pt}$ will form part of the PhD thesis of Mr. Bruce Gnage.

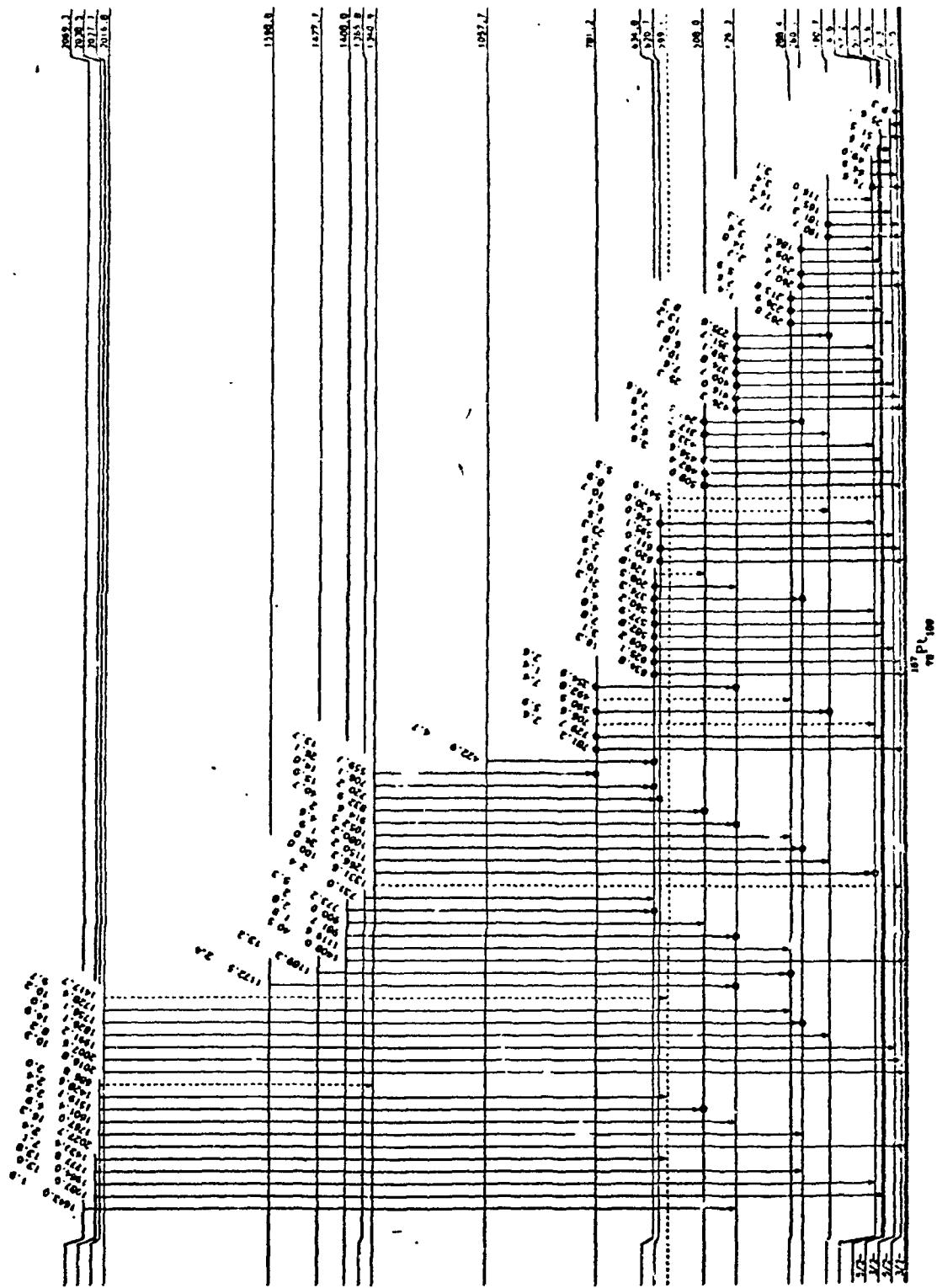


Figure 2 Decay Scheme for ^{187}Au . Coincidences are denoted by •

2.3 Lifetimes of the $g_{7/2}$ intruder State Band Levels in ^{109}Ag from ^{109}Pd (13.43 h) Decay

The measurement of lifetimes of states in ^{109}Ag believed to be members of the $g_{7/2}$ intruder band has been performed with delayed coincidence techniques (300 picosec to 20 nanosec) at Georgia Tech. A system, consisting of a plastic scintillator and a Ge(Li) detector utilizing state-of-the-art amplitude and risetime-compensated (ARC) timing modules, was used to study lifetimes of levels populated in the decay of 13.43 h ^{109}Pd , sources of which were prepared in the Georgia Tech Research Reactor by the enriched $^{108}\text{Pd}(n,\gamma)$ reaction. The evaluation of the present data results in a value of approximately 0.8 nanosec for the lifetime of the $3/2^+$, 724.4 keV level, believed to be the second member of the intruder band, consistent with our previous determination of the approximate range of this lifetime.

Data of excellent statistical quality were obtained, and even though only 0.0018% of all decays populated the $1/2^+$, 707.0 keV band head member, no measurable lifetime of the 707.0 keV member was obtained. This observation is consistent with a possibility that a doublet exists near 707.0 keV, an ⁸ that the member populated in the decay of ^{109}Pd is not the band head.

The latest data also indicate the presence of a γ -ray at 697 keV in coincidence with low-energy transitions. The tentative placement of this transition between the 697 keV level and the $1/2^-$ ground-state in ^{109}Ag would conflict with the reported deexcitation of the 697 keV level to the $9/2^+$, 132 keV level and the $7/2^+$, 88 keV isomeric state ⁸⁾ (see Fig. 3).

⁸ F. El-Bedewi, Z. Miligy, and H. Hanafi, Acta Phys. (Hungary) 38, 153 (1975)

Fig. 3 - Partial decay scheme for ^{109}Ag showing the $1/2^+$ and $3/2^+$ states at 707 and 724.4 keV which are possible candidates for members of the $g_{9/2}$ intruder band. Also shown is the 697 keV level which on the basis of its decay to both high-spin states ($7/2^+$ and $9/2^+$) and possibly to a low-spin state ($1/2^-$) indicates a questionable assignment of this level.

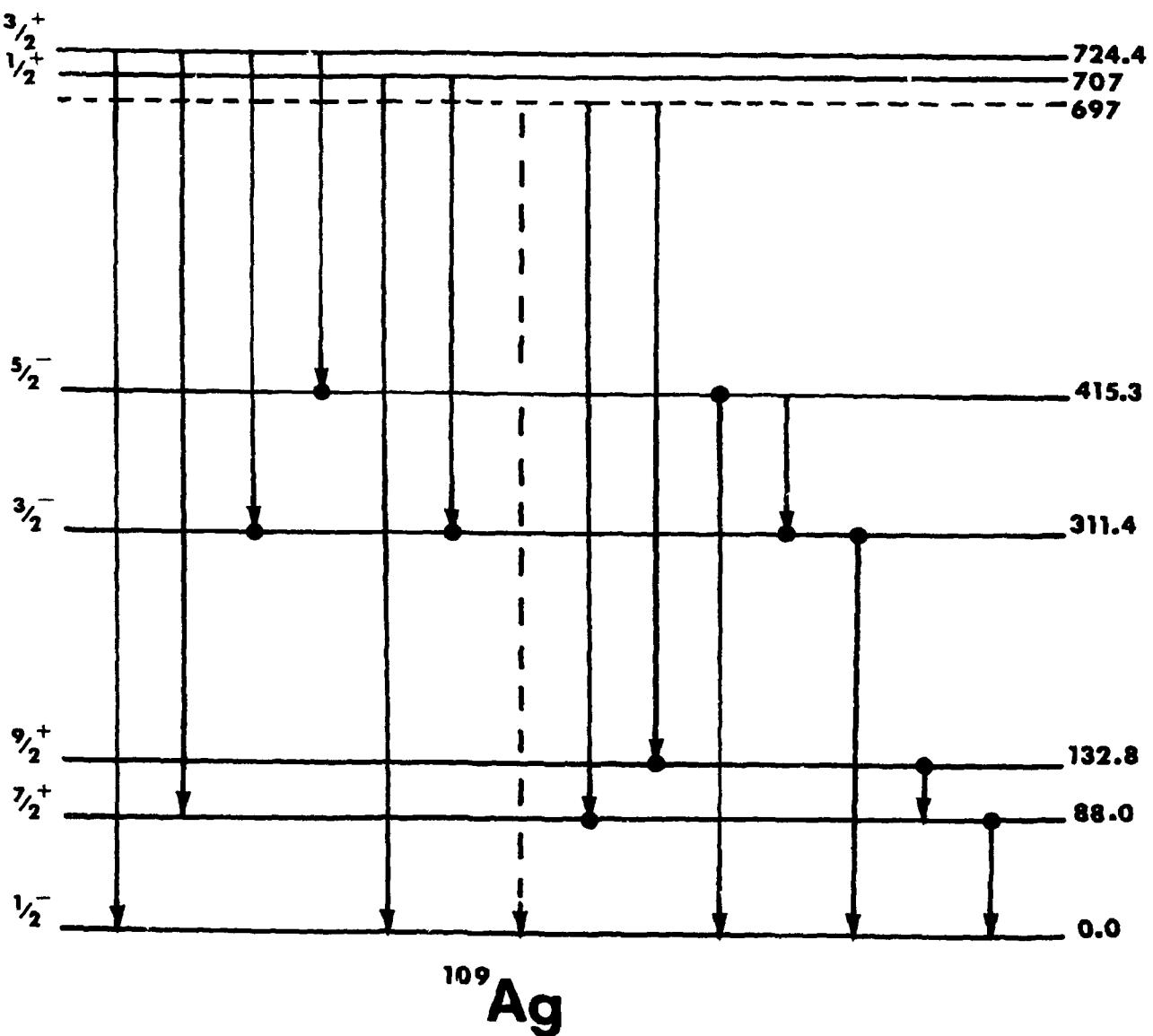


Fig. 3

3.0 Systematic Investigation of Interacting Boson-Fermion Approximation

Predictions and Comparison with Odd-A Gold Isotopes

An extensive systematic comparison of the Interacting Boson-Fermion Approximation Model predictions with current experimental data on neutron-deficient gold isotopes was performed. To our knowledge, this is the only investigation of a systematic region using the IBFA model. The calculations were carried out with the computer codes "PHINT" and "ODDA" with initial parameters graciously supplied by F. Iachello and O. Scholten (of Yale University and K.V.I., Groningen, The Netherlands, resp.) and in collaboration with an evaluation of the model by J. L. Wood (School of Physics, Georgia Tech).

In this comparison, our emphasis has been on the odd-A gold isotopes, and in particular, the coupling of the $h_{9/2}$ proton to the even Pt cores. The model predictions for this coupling for $^{187-195}\text{Au}$ are shown in Fig. 4 for levels below 1.0 MeV, while Fig. 5 shows a comparison of the experimental data with the IBFA calculations for ^{189}Au . The agreement between experiment and theory is quite impressive, considering that in this prescription the parameters used are applied within a given shell and are not the result of a fitting to experimental data. (R. A. Braga)

Fig. 4 - Calculated energy spectra for the coupling of the $h_{9/2}$ proton to the even Pt cores for $^{189-193}\text{Au}$. As the neutron number decreases and boson number increases, there is a transition away from the $O(6)$ (γ -soft rotor) limit toward the $SU(3)$ limit (axial rotor).

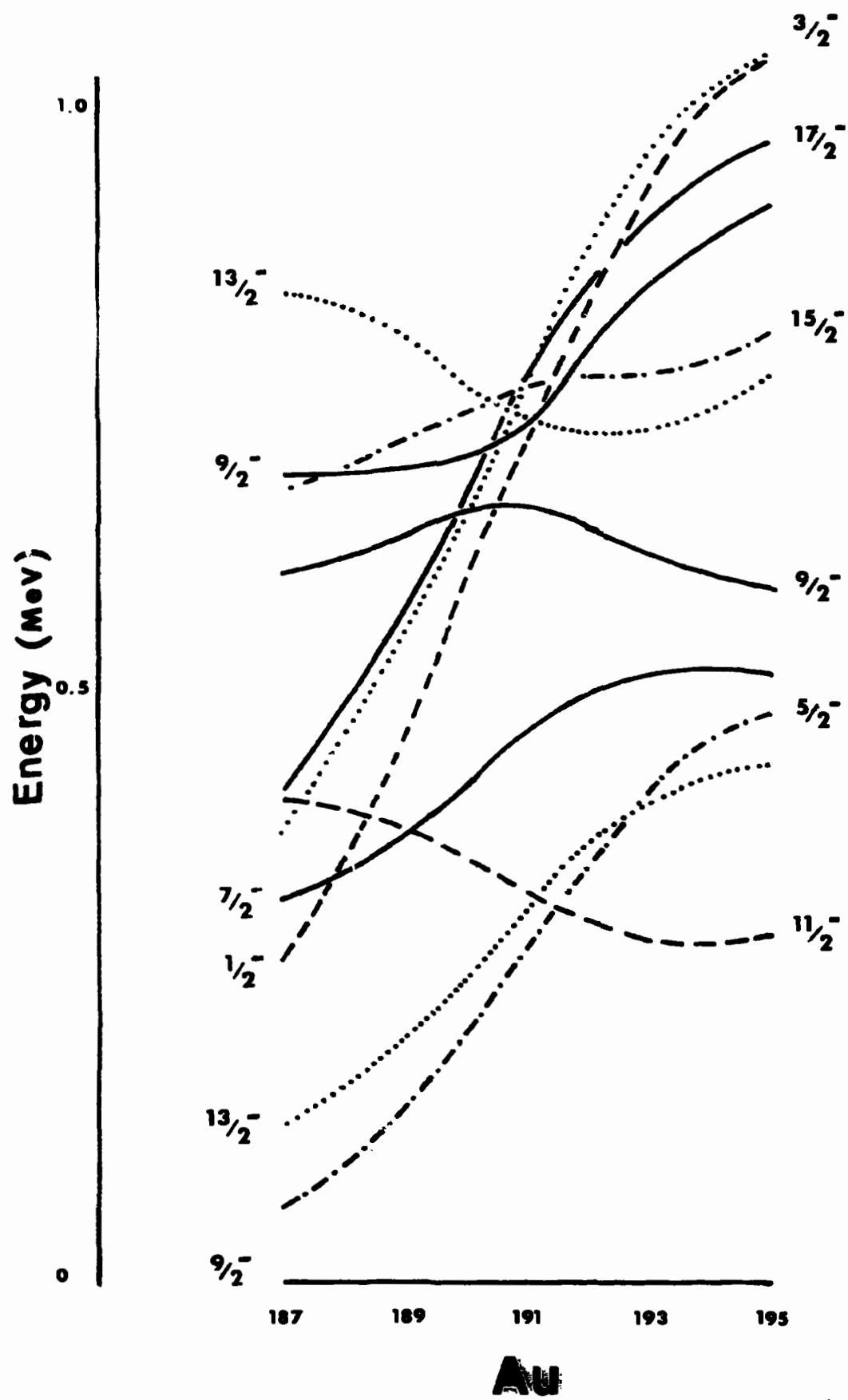


Fig. 5 - Comparison of the IBFA calculated energy spectra with experimental energy levels for ^{189}Au for levels below 1.0 MeV. Agreement is very good considering that the only adjustable parameter is the number of bosons ($n_T = n_\pi + n_\nu = 10$; $n_\pi = 2$, $n_\nu = 8$).

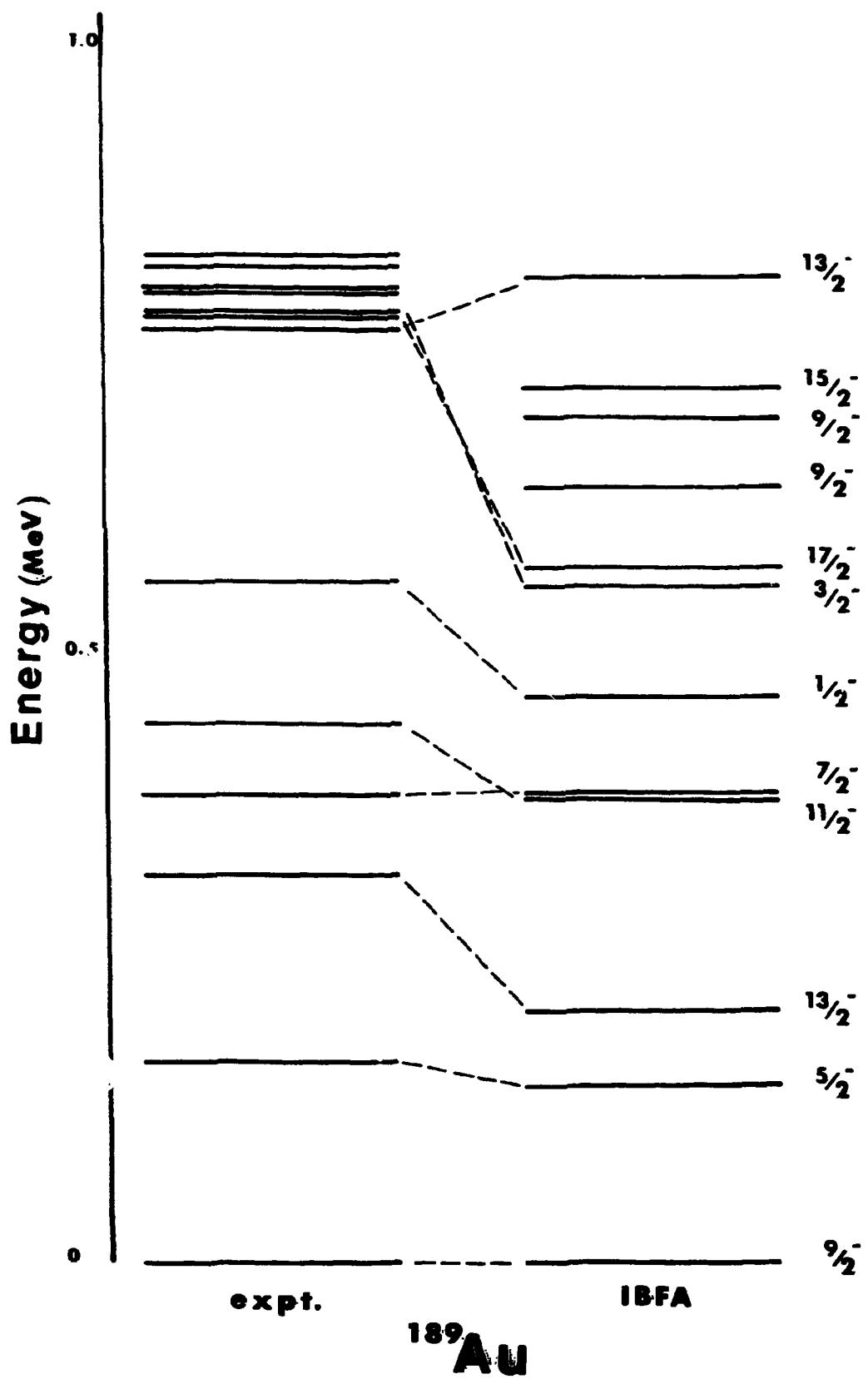


Fig. 5

4.0 International Intercomparison of ^{133}Ba Gamma-ray Standards

The participation of our group in the international comparison of γ -ray emission-rate measurements on ^{133}Ba (10.74 y) sources, organized by the Working Group on Alpha-, Beta-, Gamma-ray Spectroscopy of the International Committee for Radionuclide Metrology (ICRM), under the chairmanship of J. Legrand (France), and administered in the USA through the National Bureau of Standards, has been completed and a preliminary report circulated among the participants. A summary of our measured emission rates is given in Table III.

Our participation in this investigation is the result of our ongoing interest in characterizing the efficiency response of large-volume Ge detectors (such as those used at UNISOR) for the energy region below 200 keV. In this region, the efficiency response exhibits a rapid curvature, and the ability to obtain accurate intensities for the γ -rays observed in our decay scheme studies have previously been hindered by the lack of emission-rate standards in this energy region.

Table III - Emission Rates of Gamma-rays from ^{133}Ba (10.74 y)
 Present work

Energy (keV)	Emission rate per 100 decays
30.625 } $K_{\alpha_2,1}$	99.87
30.973 }	
35.4 K_{β}	23.22
53.155	2.181
79.621	2.848
80.997	35.50
160.6	0.6559
223.2	0.4584
276.4	7.006
302.9	18.02
356.0	61.10
383.8	8.746

5.0 X-rays and Inner Shell Ionization Phenomena from Radioactive Sources

5.1 Studies of the L₁ Subshell

Measurement of L₁ subshell x-ray fluorescence and Coster-Kronig yields has been difficult for two important reasons: (1) at high Z, most of the L₁ atomic vacancy states decay by Coster-Kronig transitions that transfer vacancies to the L₂ and L₃ subshells, thus making it difficult to observe L₁ characteristic x rays separately; and (2) unlike L₂ and L₃ vacancy states, which are final states from the K_{α₂} and K_{α₁} radiative transitions, respectively, the L₁ vacancies are not final states in the radiative decay of K vacancy states, thus precluding the use of x ray and x-ray coincidence techniques. However, nuclear transitions, in which L₁ vacancy production has a high probability, have been used in the past as convenient sources for study of L₁ atomic vacancy states. With the presently available high resolution x-ray detectors and state-of-the-art timing coincidence techniques, these measurements can be extended to a wide range of elements, using nuclear transitions to generate the L₁ vacancies.

The present measurements of the L subshell yields for Z = 82 are made using the long-lived (33.4 y) ²⁰⁷Bi sources which decay by electron capture to ²⁰⁷Pb. An XX-t three-parameter arrangement with the ND-4420 multiparameter analyzer is used to collect the coincidence spectra as two of the parameters, as well as the TAC spectrum as the third parameter. A fourth ADC unit is also used to collect the necessary singles spectra. The true coincidence events fall into a broad peak (60 to 100 nsec) in the TAC spectrum and stand over a very small continuous distribution of events that are primarily due to chance coincidences. An analysis of the profile of the TAC spectrum was first carried

out to make sure that all of the true coincidences in any required spectrum are completely included. This completeness is critical to an accurate determination of all L subshell quantities.

The L_1 subshell yields are obtained from the analysis of the L x rays in coincidence with the L conversion electrons resulting from the 1063 keV transitions which produce predominantly L_1 vacancies. Two alternative procedures were used in analyzing the coincidence spectrum. In the first, the coincidence rates of $L_{\alpha+\beta}$, $L_{\beta+\gamma}$, and L_{γ} x rays were evaluated separately, and using the relations given by Rao, et al. ⁹⁾, the values of

⁹⁾ P. V. Rao, R.E. Wood, J. M. Palms and R. W. Fink, Phys. Rev. 178, 1997 (1969)

ω_1 , f_{12} , and f_{13} are deduced. In the second procedure, the spectrum of coincident L_{γ} x rays was analyzed into its two components characteristic of L_2 and L_1 subshells, and ω_1 was obtained directly from the number of L_1 characteristic x ray present. The second procedure also leads to a direct determination of the radiative branching ratio s_1 for the L_1 subshell.

The L_1 subshell yields at $Z = 56$ will be determined using the radioactive source ^{137}Cs (29.9 y) which decays to ^{137}Ba . The L x rays in coincidence with 656 keV L-conversion electrons will be analyzed using the techniques employed in the case of ^{207}Bi . (M. Tan, P. V. Rao, R. A. Barga and R. W. Fink)

5.2 Studies of the L_2 and L_3 Subshells

The L_2 and L_3 subshell yields were obtained from the L x-ray — K_{α_2} x ray and L x-ray — K_{α_1} coincidence rates, respectively. In particular, the measurement of f_{23} , the Coster-Kronig transition probability of $L_2 \rightarrow L_3$ vacancy transfers, was obtained in two alternative procedures. The first made use of the observed ratio of L_3 characteristic x rays and L_2 characteristic

x rays present in the spectrum of L x rays in coincidence with a K_{α_2} x-ray gate. The second procedure was based upon observing the ratio of K_{α_2} and K_{α_1} x rays in coincidence with an L α x-ray gate. The analysis of the coincidence spectrum was based upon the improved method for tailing corrections given by Gnade, et al.¹⁰⁾.

¹⁰ B.E. Gnade, R. A. Braga, W. R. Western, J. L. Wc i and R. W. Fink, Nucl. Instr. Meth. 164, 163 (1979)

A completely new set of measurements of f_{23} is being undertaken using the improved techniques available for the analysis of coincidence spectra. These measurements, as a function of atomic number Z, are very important and necessary to compare with the theoretical estimates based on the recent relativistic calculations¹¹⁾ of the radiationless transitions of L-subshell vacancy states. The next measurement will be that of ^{170}Tm (130 d) to ^{170}Yb to measure f_{23} at $Z = 70$.

¹¹ M.H. Chen, E. Laiman, M. Aoyagi and Hans Mark, Phys. Rev. A19, 2053 (1979)

The new results at $Z = 82$ from ^{207}Bi decay will be published in the near future. (M. Tan, P.V. Rao, R.A. Braga and R. W. Fink)

5.3 The Decay Energy of ^{207}Bi (33.4 y)

The only available estimate of the total decay energy in the electron capture decay of ^{207}Bi to ^{207}Pb is based upon a very early measurement of the L x-ray - 1770 keV γ -ray coincidence rate (which determined the L-capture fraction $P_L = 0.663$ from which $Q_{EC} = 62.4$ keV to the 2339 keV level in ^{207}Pb) obtained using proportional and NaI(Tl) counters¹²⁾. It was assumed from the

¹² De Beer, Blok, and Blok, Physica 30, 1938 (1964)

experimental data existing at that time that there is no K capture to the 2339 keV level. This evidence remains to be verified and substantiated. The

currently accepted ^{207}Bi - ^{207}Pb mass difference (2400.4 keV) rests on the validity of this assumption and on this single early measurement of the L capture probability. In view of the fact that the nuclide ^{207}Bi is an important calibration standard and the necessity to use an accurate value of the decay energy in estimating the K and L electron capture probabilities and other inner shell ionization rates, a measurement of the rates of K and L x rays in coincidence with 1770 keV γ -rays is in progress, utilizing a large volume high resolution Ge(Li) γ -ray detector and high resolution Ge(HP) x-ray detector, together with three-parameter $X\gamma\cdot t$ analysis. This work will provide a precise value of the decay energy Q_{EC} and the individual L-subshell orbital electron capture probabilities for comparison with theory. (M. Tan, P. V. Rao, R. A. Braga and R. W. Fink)

6.0 Miscellaneous Topics

6.1 Preparation of Reactor-Produced, Carrier-Free ^{18}F as the Potassium 18-Crown-6 Complex for Synthesis of Labelled Organic Compounds

An anion exchange and distillation procedure has been developed for preparing reactor-produced carrier-free ^{18}F as K^{18}F complexed with 18-crown 6 in acetonitrile for subsequent syntheses of labelled organic compounds. The reaction sequence $^6\text{Li}(\text{n},\text{t})^4\text{He}-^1\text{H}^{16}\text{O}(\text{t},\text{n})^{18}\text{F}$ produced yields of approximately 250 milliCuries of ^{18}F per hour per gram of 96% enriched ^6Li as $^6\text{LiOH}\cdot\text{H}_2\text{O}$ target in a reactor thermal neutron flux of $3 \times 10^{13} \text{n/cm}^2\cdot\text{sec}$. Yields of tritium-free carrier-free ^{18}F dissolved in the crown ether solution typically reach $85 \pm 5\%$ within 20-30 minutes required for the radiochemical procedure. A full manuscript has been accepted for publication in the International Journal of Applied Radiation & Isotopes by B. E. Gade, G. P. Schwaiger, C. L. Liotta, and R. W. Fink

6.2 CDC-Cyber-70/74 Computer Codes

The computer code "NPBOS" (written by O. Scholten, K.V.I., Groningen, The Netherlands) has been adapted for operation on the Georgia Tech CDC Cyber 70/74 computer. This code calculates energies and eigenvalues for positive and negative parity states for even-A nuclei in the framework of the interacting boson-fermion approximation model. This calculation differs from that of the code "PHINT" in that a distinction is made between proton and neutron bosons.

During the past year, we have made a major effort to reduce the core requirements of our data handling codes; an effort made necessary because of the decreased computer availability resulting from the increased demands

upon on the Georgia Tech Cyber system. Since the majority of our computer usage is in data processing (ie, sorting of coincidence spectra, peak-shape analysis, etc.) as opposed to numerical calculations, our jobs require extensive mass storage, as well as peripheral devices, although for short periods of time (1 - 2 min). Our core-efficient data handling codes now provide satisfactory data processing without extremely long "turn-around" times. (R.A. Braga)

6.3 Equipment added during 1980

During this year, we added a Nuclear Data Model ND-570 Analog-to-Digital converter (ADC) to our ND-4420 multiparameter multichannel analyzer. This 80 MHz ADC now gives us four compatible ADC's providing the ability to perform more sophisticated multiparameter multiconfigurational experiments.

In addition, we are replacing old (> 10 years) NIM logic modules with new state-of-the-art models. A logic shaper and delay (Canberra Model 2055) and a constant-fraction timing single-channel analyzer (Canberra Model 2035A) have been ordered. The modules will provide better timing characteristics, noise reduction, and count-rate stability for logic signal processing in our timing circuits.

Our Chemistry Machine Shop fabricated beam-line flanges and a port viewing window for on-line operation of the laser spectroscopy facility at UNISOR.

7.0 Personnel

Senior Staff

Dr. R. W. Fink, Professor of Chemistry
Principal Investigator (1/4 time, 12 months)

Dr. R. A. Braga, Research Associate
(65% DOE + 35% teaching in School of Chemistry, 12 months;
full-time DOE from September, 1980)

Dr. Mustafa Tan, Asst. Prof. Physics on leave from Ataturk Univ., Turkey
Research Associate (1/2 time DOE, 9 months from May, 1980)

Dr. P. Venugopala Rao, Assoc. Prof. Physics, Emory University
Research Associate (1/2 time DOE, 2 months, summer, 1980)

Graduate Students

Mr. Bruce E. Gnade (Chemistry). Continuing PhD thesis research utilizing
UNISOR facilities (1/2 time Research Assistant, DOE, 12 months)

Mr. Paul Semmes (Chemistry) [B.S. Chem, June, 1980. Georgia Tech]
Beginning PhD thesis research utilizing UNISOR facilities
(1/2 time Research Assistant, DOE, from September, 1980;
1/2 time Teaching Assistant, June - August, 1980;
Special problem student in nuclear chemistry 1979 - June, 1980)

Mr. Gary P. Schwaiger (Nuclear Engineering). Completing M.S. in N.E.
Special problem student in nuclear chemistry since August 1979. Plans
to join nuclear chemistry upon completion of M.S. degree and to do PhD
research utilizing UNISOR facilities. No DOE support

Mr. Chris Papanicolopoulos (Physics) Terminated March, 1980

Mr. W. S. Lewis (Chemistry) Terminated April, 1980

Special Problem Students

Mr. William Pekny (Chemistry). Senior Special Problem Student in
nuclear chemistry, finishing June, 1980. No DOE support. Worked
on A = 201 UNISOR data analysis.

Mr. Steve Sewell, Summer program high school student 1980. No DOE support.
Worked on UNISOR data analysis.

Miss Lisa Coffman, Summer program high school student 1980. No DOE support
Worked on UNISOR data analysis.

8.0 List of Publications and Presentations at Meetings

- 1) "Very Slow M4 Transitions and Shell-Model Intruder States in ^{199,201}Bi," R. A. Braga, W. R. Western, J. L. Wood, R. W. Fink, R. Stone, C. R. Bingham, and L. L. Riedinger, Nuclear Phys. A (in press, 1980) and Bull. Am. Phys. Soc. 24, 836 (1979) Knoxville, Tenn., October, 1979). [ORO-3346-238]
- 2) "Decays of ¹¹⁷Xe \rightarrow ¹¹⁷I \rightarrow ¹¹⁷Te," R. S. Lee...W. D. Schmidt-Ott, A. C. Xenoulis, R. W. Fink, and other UNISOR coauthors, Phys. Rev. C (submitted, 1980) [ORO-3346-239]
- 3) "The Use of Systematics in the Interpretation of Nuclear Structure far from the Beta Stable Region," J. L. Wood (invited paper) in Future Directions in Studies of Nuclei far from Stability, edited by J. H. Hamilton, et al. (North-Holland Publishing Co., Amsterdam, 1980); pp. 37-48
- 4) "Excited States in ^{189,190}Pt from Decays of ^{189m, 190g}Au," B. E. Gnade, J. L. Wood, and R. W. Fink, Bull Am. Phys. Soc. 25 (1980)[ORO-3346-241]
- 5) "Studies of Z = 81 Transitional Nuclei I. ¹⁹⁷Pb Decay," L. L. Collins, L.L. Riedinger, G. D. O'Kelley, C. R. Bingham, M. S. Rapaport, J. L. Wood, and R. W. Fink, Phys. Rev. C (submitted, 1979)[ORO-3346-221]
- 6) "Studies of Z = 81 Transitional Nuclei II. ¹⁹³Pb and ¹⁹⁵Pb Decays," L. L. Collins, L.L. Riedinger, A. C. Kahler, C. R. Bingham, G. D. O'Kelley, J. L. Wood, R. W. Fink, A. G. Schmidt, E. H. Spejewski, H. K. Carter, R. L. Mlekodaj, E. F. Zganjar, and J.H. Hamilton, to be submitted, 1980 [ORO-3346-222]
- 7) "The $h_{9/2}$ Bands in ¹⁸⁵⁻¹⁹⁵Au and the Interacting Boson-Fermion Approximation, R. A. Braga and J. L. Wood, Bull. Am. Phys. Soc. 25 (in press, 1980) (Minneapolis, Minn, October, 1980) [ORO-3346-240]
- 8) "An Inexpensive Pulser for the Adjustment of Subnanosec Walk in Timing Circuits," R. A. Braga, G. E. O'Brien, and R. W. Fink, Nucl. Instr. Meth. 163, 527 - 529 (1979)
- 9) "An Improved Measurement of the L₂₋₃-Subshell X-ray Fluorescence and Coster-Kronig Yields at Z = 64 and 67," B. E. Gnade, R. A. Braga, and R. W. Fink, Phys. Rev. C21, 2025 - 2032 (1980) and Bull Am. Phys. Soc. 24, 835 (1979) Knoxville, Tenn, October, 1979) [ORO-3346-233]
- 10) "Preparation of Reactor-Produced, Carrier-Free ¹⁸F-fluoride as the Potassium 18-Crown-6 Complex for Synthesis of Labelled Organic Compounds," B. E. Gnade, G. P. Schwaiger, C. L. Liotta, and R. W. Fink, Int. J. Appl. Radiat. Isotopes (accepted and in press, June, 1980)
- 11) BOOK CHAPTER: "Analysis of Zn and Cu," R. W. Fink and J. Carden, Chapt. 2,3, in Zinc and Copper in Medicine, edited by R. M. Sarper and Z. A. Karciooglu (C.C. Thomas Publishers, Springfield, Ohio, 1980); pp.
- 12) BOOK CHAPTER: "Properties of Si and Ge Semiconductor Detectors for X-ray Spectrometry," R. W. Fink (invited paper), Proc. Symp. on Energy Dispersive X-ray Spectrometry (National Bureau of Standards, 1980) pp.

- 13) BOOK CHAPTER: "Tables of Experimental Values of X-ray Fluorescence and Coster-Kronig Yields for the K-, L-, and M-Shells," R. W. Fink and P. V. Rao, in Handbook of Spectroscopy, Vol. 3 (CRC Publishing Co., Boca Raton, Florida, 1980); pp.
- 14) BOOK CHAPTER: "Thermal Neutron Cross Sections and Resonance Integrals for Activation Analysis," R. W. Fink, in Handbook of Spectroscopy, Vol. 3 (CRC Publishing Company, Boca Raton, Florida, 1980); pp.
[ORO-3346-206(rev.)]
- 15) R. W. Fink (invited member of the panel), Workshop on Instrumentation and Analysis for Nuclear Fuel Reprocessing Hot Pilot Plant, May 5 - 7, 1980, Oak Ridge National Laboratory, cosponsored by the Subcommittee on Nuclear and Radiochemistry of the Committee on Chemical Sciences of the National Research Council