

## GAS PRESSURE SINTERING OF SILICON NITRIDE TO OPTIMIZE FRACTURE TOUGHNESS

T. N. Tiegs, S. D. Nunn, T. M. Beavers, P. A. Menchhofer, D. L. Barker and  
D. W. Coffey  
Oak Ridge National Laboratory  
P. O. Box 2008, Oak Ridge, TN 37831-6087

### INTRODUCTION

Silicon nitride materials are the leading ceramics for structural applications at elevated temperatures. To increase the Weibull modulus and improve their reliability, high toughness materials are being developed using gas-pressure sintering (GPS) techniques [1,2]. During gas pressure sintering at elevated temperatures, silicon nitride materials exhibit elongated grain growth which leads to materials with high fracture toughness.

A study was initiated to examine the effects of GPS processing parameters on the densification and mechanical properties of silicon nitride materials to maximize the fracture toughness. Important parameters affecting the microstructural development include the densification temperature, densification time, grain growth temperature, grain growth time and heating rates. Because of the number of variables to be studied, a Taguchi experimental array was formulated to assess the impact of each of the variables on a two-step gas-pressure sintering process. In addition, two compositions of silicon nitride with different intergranular phases were tested. These compositions were  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$ , and  $\text{Si}_3\text{N}_4$ - $\text{Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  (at 8 equivalent % oxygen).

### EXPERIMENTAL PROCEDURES

Five GPS parameters were examined in the experimental array as shown in Table 1. The starting materials consisted of appropriate amounts of  $\text{Si}_3\text{N}_4$ ,  $\text{Al}_2\text{O}_3$ ,  $\text{La}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ ,  $\text{Yb}_2\text{O}_3$ , or  $\text{SrO}$  to form the desired intergranular phase.<sup>a</sup> The oxygen content of the silicon nitride powders was taken into account in the calculation of the silica addition and milling was done in isopropanol to minimize

<sup>a</sup>  $\text{Si}_3\text{N}_4$ - Ube, Japan, E10;  $\text{Al}_2\text{O}_3$ - Reynolds, Malakoff, TX, RC-HP DBM;  $\text{La}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ ,  $\text{Yb}_2\text{O}_3$ - Molycorp, White Plains, NY; >99.9%;  $\text{SrO}$  as  $\text{SrCO}_3$ ; Mallinckrodt, St. Louis, MO; Reagent Grade

The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-84OR21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

MASTER

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

any oxygen pickup during processing. The powders were turbomilled for ~2 h (1.3 wt.% PVP<sup>b</sup> and 1 wt.% Darvan<sup>c</sup> were added as dispersants) to fully deagglomerate and mix the various constituents. The mixtures were dried, screened to -200 mesh and isopressed at 207 MPa into discs approximately 7 cm in diameter and 2 cm thick. Binder burnout consisted of a heat-treatment to 600°C in air prior to sintering. Sintering was performed in a graphite element furnace with gas overpressure capability.

Densities were determined by the Archimedes' method. Selected samples of high density were machined into bend bar specimens with nominal dimensions of 3 mm x 4 mm x 50 mm. Flexural strength testing was done in four point bending with inner and outer spans of 20 mm and 40 mm, respectively. Fracture toughness was determined by an indentation and fracture method.

## RESULTS AND DISCUSSION

The test results on densification, flexural strength and fracture toughness are given in Table 1. As shown, high densities were achieved for all of the samples in the Taguchi array. Consequently, no significant effects on the densification were due to the processing conditions chosen. The conditions had been selected to obtain high densities so the effects on the flexural strength and fracture toughness could be better determined.

Analysis of the results for optimizing the processing conditions to maximize the flexural strength and fracture toughness are shown in Tables 2 and 3. For the Si<sub>3</sub>N<sub>4</sub>-6% Y<sub>2</sub>O<sub>3</sub>-2% Al<sub>2</sub>O<sub>3</sub> samples, only moderate effects were observed for the processing conditions in the experimental array. For the strength, the most important conditions appeared to be the grain growth temperature and the densification time as illustrated in Figs. 1 and 2, respectively. The fracture toughness for the Si<sub>3</sub>N<sub>4</sub>-6% Y<sub>2</sub>O<sub>3</sub>-2% Al<sub>2</sub>O<sub>3</sub> samples was most affected by the densification temperature as shown in Fig. 3.

The Si<sub>3</sub>N<sub>4</sub>-Sr<sub>2</sub>La<sub>4</sub>Yb<sub>4</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> samples showed significantly more deviation in the flexural strength and fracture toughness results depending on the processing conditions. The most significant factor affecting the flexural strength was the grain growth temperature as shown in Fig. 4. The analysis indicated that temperatures  $\geq 1900^{\circ}\text{C}$  were required to achieve high strength values. The fracture toughness was significantly dependent on several factors including densification and grain growth temperature plus the heating rate to the densification temperature. These effects are shown in Figs. 5, 6, and 7, respectively. Microstructural analysis revealed that the lower densification temperature results in generally larger grains with higher aspect ratios, and this probably related to the nucleation and growth of the  $\beta$ -Si<sub>3</sub>N<sub>4</sub> grains during the initial densification stages. At the lower densification temperature, there are generally fewer  $\beta$ -nuclei which can grow into larger grains before impingement

<sup>b</sup> GAF Chemicals, Wayne, NJ: Polyvinylpyrrolidone K-15    <sup>c</sup> R. T. Vanderbilt, Norwalk, CT, 821A,

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

into another grain. On the other hand, at the higher densification temperature, the  $\beta$ -nuclei concentration is higher and as grain growth occurs impingement into an adjacent grain occurs sooner. This results in a finer overall grain size with lower aspect ratios. The grain growth temperature results indicate that the higher temperatures result in larger grain sizes and increased fracture toughness. As with the densification temperature, the improved fracture toughness with the slower initial heating rate is probably related to the early  $\beta$ - $\text{Si}_3\text{N}_4$  nucleation and growth during sintering.

## CONCLUSIONS

Gas-pressure sintering (GPS) can be used to densify silicon nitride containing a wide variety of sintering additives. Parameters affecting the sintering behavior include densification temperature, densification time, grain growth temperature, grain growth time and heating rates. The  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$  samples sintered to high densities at all conditions used in the present study, whereas the  $\text{Si}_3\text{N}_4$ - $\text{Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  samples required the highest temperatures and longest times to achieve densities  $\geq 98\%$  T. D. The main effect on the fracture toughness for  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$  samples was the use of a lower densification temperature, which was 1900°C in the present study. For the  $\text{Si}_3\text{N}_4$ - $\text{Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  composition, fracture toughness was sensitive to and improved by a slower heating rate (10°C/min), a lower densification temperature (1900°C), a higher grain growth temperature (2000°C), and a longer grain growth time (2 h).

## ACKNOWLEDGMENTS

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology Project of the Propulsion System Materials Program, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

## REFERENCES

1. E. Tani, et al, *Am. Ceram. Soc. Bull.*, 65[9]1311-1315(1986)
2. C. Boberski and R. Hamminger, pp. 440-450 in Proc. 4th Internat. Symp. on Ceramic Materials and Components for Engines, Elsevier Applied Sci., New York, NY(1992)

Table 1. Taguchi experimental design array for optimization of densification parameters to obtain silicon nitride ceramics with improved mechanical properties. Compositions are  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$  and  $\text{Si}_3\text{N}_4\text{-Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  (at 8 equivalent % oxygen). The design is a L8 ( $4^1 \times 2^4$ ).

| Test No. | Final Sinter. Temp. (°C) | Initial Sinter. Temp. (°C) | Initial Sinter. Time (h) <sup>a</sup> | Final Sinter. Time (h) | Heating Rate to Initial Sinter. Temp. (°C/min) | Si <sub>3</sub> N <sub>4</sub> -6% Y <sub>2</sub> O <sub>3</sub> -2% Al <sub>2</sub> O <sub>3</sub> . |                         | Si <sub>3</sub> N <sub>4</sub> -Sr <sub>2</sub> La <sub>4</sub> Yb <sub>4</sub> (SiO <sub>4</sub> ) <sub>6</sub> O <sub>2</sub> |                         |
|----------|--------------------------|----------------------------|---------------------------------------|------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|          |                          |                            |                                       |                        |                                                | Sintered Density (g/cm <sup>3</sup> , % T.D.)                                                         | Flexural Strength (MPa) | Sintered Density (g/cm <sup>3</sup> , % T.D.)                                                                                   | Flexural Strength (MPa) |
| 1        | 2000                     | 1900                       | 2 (Min)                               | 2                      | 25                                             | 3.24                                                                                                  | 679±41                  | 8.4±0.3                                                                                                                         | 3.51                    |
| 2        | 2000                     | 1950                       | 2.5 (Min+1)                           | 1                      | 10                                             | 3.24                                                                                                  | 749±49                  | 8.0±0.1                                                                                                                         | 3.50                    |
| 3        | 1950                     | 1900                       | 2 (Min)                               | 1                      | 10                                             | 3.24                                                                                                  | 542±37                  | 8.3±0.1                                                                                                                         | 100.0                   |
| 4        | 1950                     | 1950                       | 2.5 (Min+1)                           | 2                      | 25                                             | 3.21                                                                                                  | 817±62                  | 8.0±0.2                                                                                                                         | 94.2                    |
| 5        | 1900                     | 1900                       | 3 (Min)                               | 2                      | 10                                             | 3.25                                                                                                  | 627±52                  | 8.2±0.2                                                                                                                         | 3.48                    |
| 6        | 1900                     | 1950                       | 1.5 (Min+1)                           | 1                      | 25                                             | 3.24                                                                                                  | 651±87                  | 7.5±0.3                                                                                                                         | 99.2                    |
| 7        | 1850                     | 1900                       | 3 (Min)                               | 1                      | 25                                             | 3.23                                                                                                  | 662±37                  | 8.2±0.1                                                                                                                         | 3.50                    |
| 8        | 1850                     | 1950                       | 1.5 (Min)                             | 2                      | 10                                             | 3.22                                                                                                  | 653±65                  | 8.0±0.6                                                                                                                         | 100.0                   |

<sup>a</sup> Minimum time to obtain closed porosity (1900°C - 2h, 1950°C - 1.5h) with either no further hold time or a 1h additional hold time. Times defined as minimum (min) or minimum plus 1h (min + 1).

Table 2. Optimum sintering conditions to maximize flexural strength and fracture toughness of  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$  during gas pressure sintering.

| Sintering Condition Variable        | Optimum Condition to Maximize Strength | Variable Significance | Optimum Condition to Maximize Toughness | Variable Significance | Combined Optimum Conditions |
|-------------------------------------|----------------------------------------|-----------------------|-----------------------------------------|-----------------------|-----------------------------|
| Grain Growth Temp. (°C)             | 2000°C                                 | Moderate              | 2000°C                                  | Very Low              | 2000°C                      |
| Densification Temp. (°C)            | 1950°C                                 | Moderate              | 1900°C                                  | Moderate              | 1900°C                      |
| Densification Time (h) <sup>a</sup> | 3 (Min+1)                              | Moderate              | Either                                  | None                  | 3 (Min+1)                   |
| Grain Growth Time (h)               | 2                                      | Low                   | 2                                       | Very Low              | 2                           |
| Heating Rate (°C/min)               | 25 °C/min                              | Moderate              | 10°C/min                                | Very Low              | 25°C/min                    |

<sup>a</sup> Minimum time to obtain closed porosity (1900°C - 2h, 1950°C - 1.5h) with either no further hold time or a 1h additional hold time. Times defined as minimum (min) or minimum plus 1h (min + 1).

Table 3. Optimum sintering conditions to maximize flexural strength and fracture toughness of  $\text{Si}_3\text{N}_4$ -Sr<sub>2</sub>La<sub>4</sub>Yb<sub>4</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> (at 8 equivalent % oxygen). during gas pressure sintering.

| Sintering Condition Variable        | Optimum Condition to Maximize Strength | Variable Significance | Optimum Condition to Maximize Toughness | Variable Significance | Combined Optimum Conditions |
|-------------------------------------|----------------------------------------|-----------------------|-----------------------------------------|-----------------------|-----------------------------|
| Grain Growth Temp. (°C)             | 2000°C                                 | High                  | 2000°C                                  | Moderate              | 2000°C                      |
| Densification Temp. (°C)            | 1900°C                                 | Moderate              | 1900°C                                  | High                  | 1900°C                      |
| Densification Time (h) <sup>a</sup> | 3 (Min+1)                              | Low                   | 2 (Min)                                 | Moderate              | 2 (Min)                     |
| Grain Growth Time (h)               | 2                                      | Low                   | 2                                       | Moderate              | 2                           |
| Heating Rate (°C/min)               | 25 °C/min                              | Very Low              | 10°C/min                                | High                  | 10°C/min                    |

<sup>a</sup> Minimum time to obtain closed porosity (1900°C - 2h, 1950°C - 1.5h) with either no further hold time or a 1h additional hold time. Times defined as minimum (min) or minimum plus 1h (min + 1).

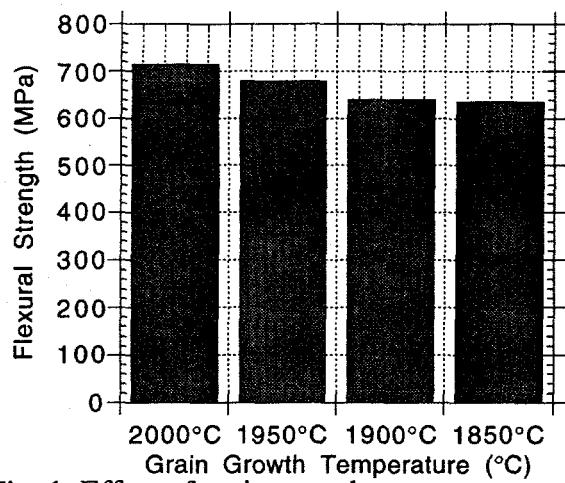



Fig. 1. Effect of grain growth temperature on the average flexural strength of gas pressure sintered  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$ .

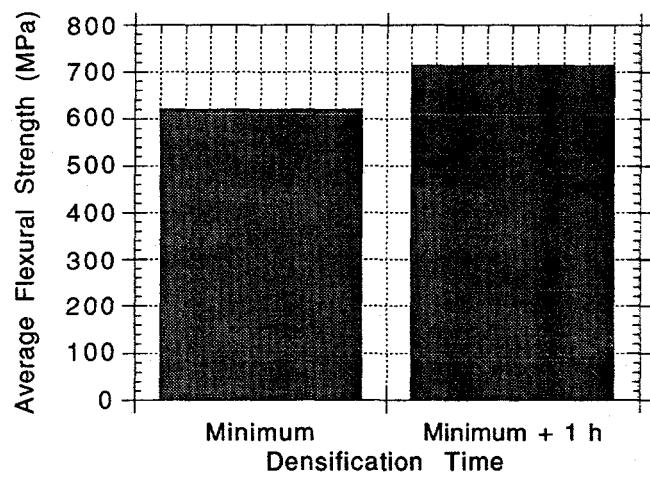



Fig. 2. Effect of densification time on the average flexural strength of gas pressure sintered  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$ .

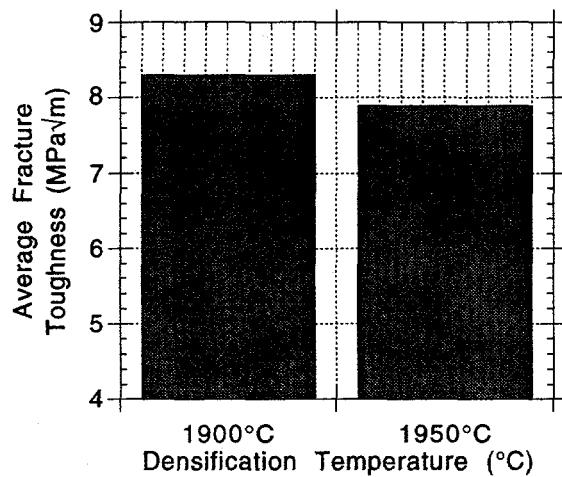



Fig. 3. Effect of densification temperature on the average fracture toughness of gas pressure sintered  $\text{Si}_3\text{N}_4$ -6%  $\text{Y}_2\text{O}_3$ -2%  $\text{Al}_2\text{O}_3$ .

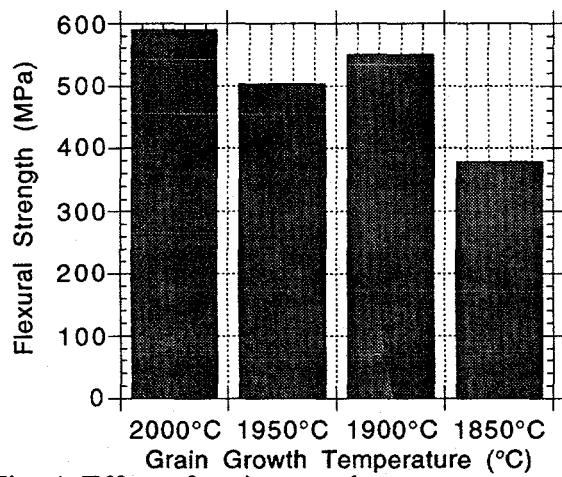



Fig. 4. Effect of grain growth temperature on the average flexural strength of gas pressure sintered  $\text{Si}_3\text{N}_4$ - $\text{Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  (at 8 equivalent % oxygen).

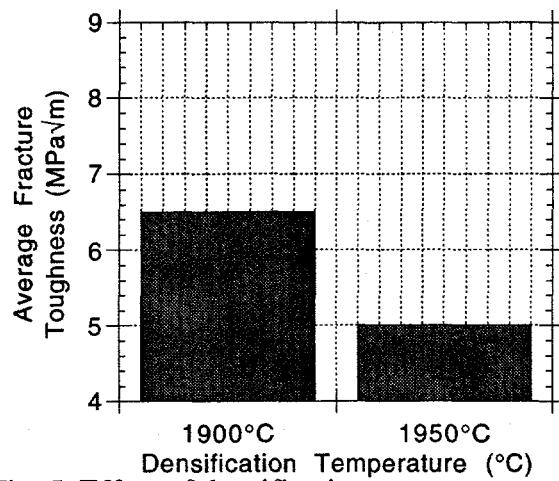



Fig. 5. Effect of densification temperature on the average fracture toughness of gas pressure sintered  $\text{Si}_3\text{N}_4\text{-Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  (at 8 equivalent % oxygen).

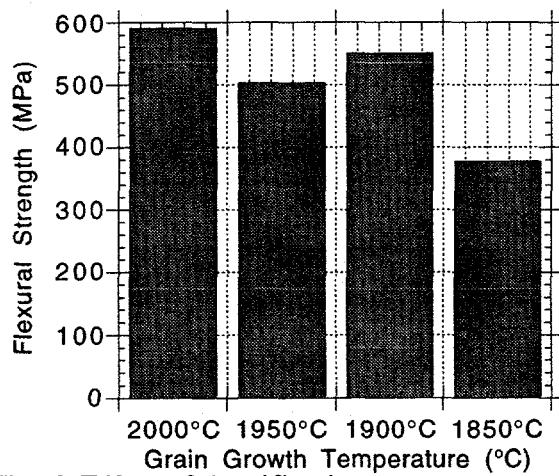



Fig. 6. Effect of densification temperature on the average fracture toughness of gas pressure sintered  $\text{Si}_3\text{N}_4\text{-Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  (at 8 equivalent % oxygen).

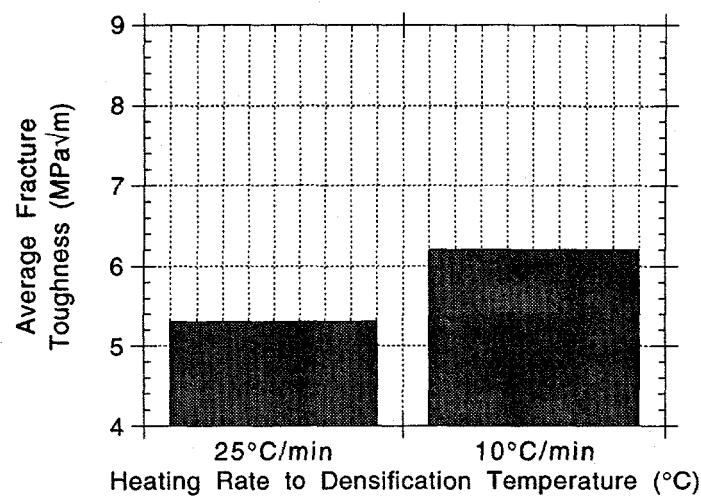



Fig. 7. Effect of heating to densification temperature on the average fracture toughness of gas pressure sintered  $\text{Si}_3\text{N}_4\text{-Sr}_2\text{La}_4\text{Yb}_4(\text{SiO}_4)_6\text{O}_2$  (at 8 equivalent % oxygen).