

CONF-770599- - /

INFORMATION STORAGE AND
RETRIEVAL SYSTEM AT
WESTINGHOUSE HANFORD COMPANY*
HANFORD ENGINEERING DEVELOPMENT LABORATORY (HEDL)
P. O. BOX 1970
RICHLAND, WASHINGTON

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MICHAEL G. THEO
MANAGER, HEDL DOCUMENTATION CONTROL
RICHLAND, WASHINGTON

COPYRIGHT LICENSE NOTICE

BY ACCEPTANCE OF THIS PAPER, THE PUBLISHER AND/OR RECIPIENT ACKNOWLEDGES THE U.S. GOVERNMENT'S RIGHT TO RETAIN A NON-EXCLUSIVE, ROYALTY-FREE LICENSE IN AND TO ANY COPYRIGHT COVERING THIS PAPER.

FOR PRESENTATION AT THE NATIONAL MICROGRAPHICS ASSOCIATION CONFERENCE IN DALLAS, TEXAS MAY 16-20, 1977

*WORK PERFORMED UNDER THE AUSPICES OF THE UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISTRIBUTION OF THIS DOCUMENT IS UNLIM^{E8}

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Start with
both screens

1. Blank

Left	Right
Blank	Blank

GOOD AFTERNOON,

MY NAME IS MICHAEL THEO, AND I'M THE DOCUMENTATION CONTROL MANAGER FOR THE WESTINGHOUSE-HANFORD COMPANY IN RICHLAND, WASHINGTON.

I'M HERE TO TELL YOU ABOUT THE INFORMATION STORAGE AND RETRIEVAL SYSTEM WE HAVE DEVELOPED AT WESTINGHOUSE-HANFORD. OUR SYSTEM, WHEN COMPLETED, WILL BE ABLE TO STORE OVER TWO MILLION DOCUMENTS ON LINE - A TOTAL OF FIFTY MILLION PAGES OF MICROFILMED TEXT, AND THREE-QUARTERS OF A MILLION MICROFILMED ENGINEERING DRAWINGS.

TO RETRIEVE THE INFORMATION STORED ON THE MICROFILM, THE DOCUMENT AND LOCATION IDENTIFICATION SYSTEM, KNOWN AS DALIS, EMPLOYS AN INTERACTIVE MINI-COMPUTER SYSTEM WITH INTERFACING CRT TERMINALS, TO DO THE SEARCHING FOR DOCUMENTS, LINKED TO MICROFILM READER-PRINTERS THAT PROVIDE THE VIEWING CAPABILITY ONCE THE DOCUMENTS ARE FOUND. WE BELIEVE THAT OUR SYSTEM IS UNIQUE IN

THIS RESPECT, THAT IT LINKS INTERACTIVE COMPUTER TECHNOLOGY TO MICROFILM DEVICES TO PROVIDE FAST, EFFICIENT DOCUMENT RETRIEVAL.

BEFORE I GO INTO DETAILS OF HOW OUR SYSTEM WORKS, I WOULD LIKE TO DESCRIBE WHAT OUR COMPANY DOES THAT GIVES US A NEED FOR THIS SOPHISTICATED STORAGE-AND-RETRIEVAL SYSTEM. WE HAVE TWO MAJOR ACTIVITIES AT HANFORD FOR WHICH WE ARE UNDER CONTRACT TO THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION, OR ERDA.

2.

300 Area Double	Photo
--------------------	-------

② ONE OF OUR ACTIVITIES IS TO MANAGE THE HANFORD ENGINEERING DEVELOPMENT LABORATORY, LOCATED FIVE MILES NORTH OF RICHLAND. THE LABORATORY IS ONE OF THE MAJOR RESEARCH SITES IN THE UNITED STATES FOR DEVELOPMENT OF THE LIQUID-METAL FAST-BREEDER REACTOR.

3

400 Area Double	Site Photo
--------------------	---------------

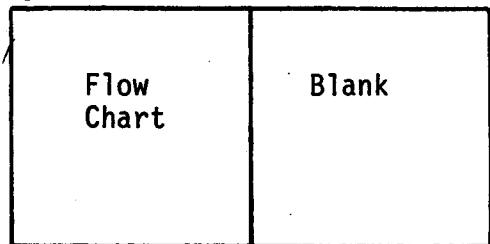
OUR SECOND MAJOR ACTIVITY AT WESTINGHOUSE-HANFORD COMPANY IS CONSTRUCTING THE FAST FLUX TEST FACILITY, KNOWN AS THE FFTF. THE FFTF WILL BE A LARGE TEST REACTOR, AND WILL TEST NUCLEAR

FUELS AND MATERIALS. WE HOPE TO GAIN INFORMATION FROM THE FFTF ABOUT REACTOR SAFETY, REACTOR PHYSICS, THE BREEDING PROCESS, AND OTHER REACTOR-RELATED AREAS. WE ARE THE PRIME CONTRACTOR FOR CONSTRUCTION OF THE FFTF.

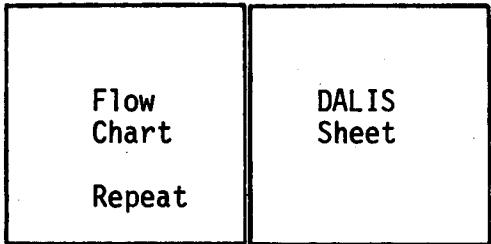
4

Blank	Blank
-------	-------

④ IN THE ACTIVITIES DESCRIBED -- OPERATING THE LABORATORY AND CONSTRUCTING THE FFTF -- WESTINGHOUSE-HANFORD AND ASSOCIATED ERDA CONTRACTORS GENERATE A LOT OF PAPER WORK CONTAINING DESIGN REPORTS, TEST RESULTS, PROCEDURES, STATEMENTS OF COMPLIANCE WITH PROCEDURES, ETCETERA, ETCETERA.


A SURVEY TAKEN IN 1973 ESTIMATED THAT, BY 1982, WE WILL PROBABLY STORE AND RETRIEVE SELECTED DOCUMENT TYPES RANGING FROM VARIOUS FORMS OF ONE- AND TWO-PAGES TO SEVERAL-HUNDRED-PAGE RESEARCH REPORTS AND SAFETY ANALYSES. THESE DOCUMENTS WILL BE USED DURING THE MAINTENANCE AND OPERATION OF THE PLANT. RETRIEVAL TIME FOR THE DOCUMENTS SHOULD BE ABOUT TWO ^{one} TO FIVE MINUTES FROM THE TIME OF USER REQUEST. THERE WILL ALSO

BE A NEED TO HAVE STORED IN CONVENIENTLY RETRIEVABLE FORM APPROXIMATELY 200,000 ENGINEERING DRAWINGS.


RECOGNIZING THAT SOME KIND OF CENTRALIZED INFORMATION STORAGE AND RETRIEVAL SYSTEM WOULD BE NEEDED TO HANDLE THE DEMAND, WESTINGHOUSE-HANFORD MANAGEMENT DECIDED THAT AN ENGINEER SHOULD BE APPOINTED TO OVERSEE THE ACQUISITION AND DEVELOPMENT OF SUCH A SYSTEM, SINCE MOST USERS WOULD BE ENGINEERS THEMSELVES.

WE SURVEYED THE USERS' NEEDS FOR INFORMATION AT THE LABORATORY, AND ALSO LOOKED AT OTHER BUSINESS ORGANIZATIONS, GOVERNMENT ORGANIZATIONS, AND MILITARY INSTALLATIONS THAT MIGHT HAVE A SYSTEM WHOSE METHOD OF OPERATION WE COULD USE. NONE TOTALLY SATISFIED OUR NEEDS -- NONE OF THE SYSTEMS WE REVIEWED WERE ABLE TO PROVIDE THE STORAGE CAPACITY, SPEED OF RETRIEVAL, OR SCOPE OF SEARCH CAPABILITY THAT WE HAD IN MIND.

SO, WE SELECTED BITS AND PIECES FROM OTHER SYSTEMS AND, IN EFFECT,

DEVELOPED OUR OWN SYSTEM. THIS FLOWCHART GIVES AN OVERVIEW OF THE SYSTEM OPERATION.

6 FIRST, A DALIS DATA SHEET IS MADE FOR EACH DOCUMENT, AND THE DATA ARE ENTERED IN THE DALIS COMPUTER. THE DALIS DATA CONSIST OF THE FIELDS OF INFORMATION SHOWN HERE. MOST OF THE FIELDS SHOWN ARE SELF-EXPLANATORY, SUCH AS DOCUMENT NUMBER, TITLE, AUTHOR, DATE, AND SO FORTH, BUT ONE FIELD IN PARTICULAR IS WORTHY OF NOTE, THE FIELD "KEYWORDS", NUMBER 24.

WE SET UP DALIS TO BE A KEYWORD SYSTEM, SO THAT DOCUMENTS WOULD BE RETRIEVABLE BY SEARCHES ACCORDING TO EXACT SUBJECT MATTER, AND ACCORDING TO THE WAY USERS TALK IN REAL LIFE. A LIBRARY-CARD CATALOG KIND OF SYSTEM, WHERE A PERSON HAS TO THINK OF THE EXACT INDEXING PHRASE IN ORDER TO FIND A DOCUMENT, WOULD NOT MEET OUR USER'S NEEDS. INSTEAD, WE DEVELOPED A SYSTEM THAT ALLOWED USERS TO FIND DOCUMENTS FROM A VARIETY OF PATHS, SINCE TWO DIFFERENT PEOPLE MIGHT THINK OF OR USE

TWO DIFFERENT SETS OF KEYWORDS TO DESCRIBE THE SAME DOCUMENT. WE ALSO WANTED TO MAKE NOTE OF THE FACT THAT DIFFERENT GROUPS OF PEOPLE TALK DIFFERENTLY FROM ONE ANOTHER -- ENGINEERS DO NOT USE THE SAME WORDS AS OPERATIONS PEOPLE, AND MAINTENANCE PEOPLE DO NOT USE THE SAME TERMS AS PROCUREMENT PEOPLE. ALL OF THESE VARYING GROUPS OF PEOPLE, AND MORE, WOULD SOMEDAY USE THE SYSTEM. WE WANTED A SYSTEM THAT WOULD ACCOMMODATE ALL THESE VARIOUS "CIRCLES" OF LANGUAGE, AND WOULD BE CONVENIENT AND SIMPLE FOR EVERYONE TO USE.

THE RESULT WAS TO CREATE A KEYWORD THESAURUS, WHICH IS PRESENTLY 14,000 WORDS LONG. WE EXPECT IT TO GROW SLIGHTLY LARGER, BEFORE WE'RE FINISHED. ALMOST EVERY DOCUMENT IN THE SYSTEM HAS ONE OR MORE KEYWORD PHRASES ASSIGNED TO IT. THAT WAY, IF A SYSTEM USER HAS SOME DOCUMENT IN MIND BUT DOESN'T KNOW EXACTLY WHICH ONE IT IS, HE CAN ASK FOR THE COMPUTER TO SEARCH THROUGH ITS LIST OF KEYWORD ENTRIES UNDER A GIVEN SUBJECT, THEN VIEW THE LIST TO SEE IF THE DOCUMENT

HE WANTS IS THERE. OR, HE CAN KEEP SPECIFYING SEARCH CRITERIA -- FOR EXAMPLE, HE MIGHT ASK FOR ALL DOCUMENTS ABOUT SODIUM SYSTEM PIPING WRITTEN BY ATOMICS INTERNATIONAL -- TO GET PRECISELY THE INFORMATION HE IS LOOKING FOR. KEYWORDING IS A VERY TIME-CONSUMING PART OF CREATING THE DATA BASE FOR THE DALIS SYSTEM, BUT BY FAR THE MOST REWARDING, IN TERMS OF RETRIEVABILITY. IT GIVES THE SYSTEM FAR MORE FLEXIBILITY AND USEFULNESS THAN THE SYSTEM WOULD HAVE WITHOUT IT. IN FACT, WITHOUT KEYWORDING, DALIS WOULD BE JUST AN INDEXING SYSTEM STORED ON A COMPUTER. BUT DALIS IS MORE. THE KEYWORDING SYSTEM IS CONVENIENT FOR THE USER, BECAUSE THE USER IS NOT LIKELY TO REMEMBER EXACT TITLES OR DOCUMENT NUMBERS, BUT IS LIKELY TO RECALL SUBJECTS OF INFORMATION HE IS FAMILIAR WITH AND INTERESTED IN.

7

Retrieval Flow	Blank
----------------	-------

⑦ To go back to the way the system works:

Once we have the document micro-filmed and a record made of it in the

DALIS DATA BASE, WE ARE FINISHED WITH THE INPUT PART. WE HAVE CAPTURED THE INFORMATION FOR LIFE. THE DOCUMENT WILL ALWAYS BE AVAILABLE TO ANY USER WHO ASKS FOR IT, EVEN IF A HUNDRED REQUESTS COME IN FOR THE SAME DOCUMENT ON THE SAME DAY. IT NEVER EXITS THE SYSTEM, WHICH IS A FUNDAMENTAL ADVANTAGE OF COMPUTER AND MICROFILM INFORMATION STORAGE OPERATIONS.

HAVING COMPLETED THE INPUT STAGE, WE COME TO THE OUTPUT, OR THE USER'S PART OF THE SYSTEM. HOW DO USERS GET INFORMATION OUT OF DALIS?

8 Find	Search
-----------	--------

GETTING INFORMATION FROM THE SYSTEM IS ACCOMPLISHED IN TWO STEPS 8 SEARCHING FOR THE MICROFILM LOCATIONS OF DESIRED DOCUMENTS, AND VIEWING DOCUMENTS ON MICROFILM.

To SEARCH FOR A DOCUMENT, A USER LOGS IN TO THE COMPUTER SYSTEM, THEN TURNS TO ONE OF TWO PROGRAMS: THE FIND PROGRAM OR THE SEARCH PROGRAM. FIND is A PROGRAM FOR BEGINNING COMPUTER USERS,

WHILE SEARCH IS A MORE ADVANCED AND SPEEDIER PROGRAM. THE TWO DIFFER MAINLY IN SPEED OF USE: FIND IS A HIGHLY STRUCTURED PROGRAM THAT GUIDES THE USER IN SMALL STEPS THROUGH A COMPUTER SEARCH; SEARCH IS A MORE FREESTYLE PROGRAM, FOR EXPERIENCED USERS, AND IS MORE CONVERSATIONAL AND INTERACTIVE. AFTER ONE LEARNS THE LOGIC BEHIND FIND, ONE CAN QUICKLY ADVANCE TO SEARCH, BECAUSE THE LOGIC BEHIND THE TWO PROGRAMS IS THE SAME. THE IDEA IS TO INPUT TO THE COMPUTER ENOUGH DESCRIPTORS OF A DOCUMENT TO FIND THE PHYSICAL LOCATION OF THAT DOCUMENT.

ONE DESCRIPTOR THAT MIGHT BE INPUT, FOR EXAMPLE, TO OBTAIN A MICROFILM LOCATION ON A SPECIFIC DOCUMENT IS THE DOCUMENT'S NUMBER -- NORMALLY THERE IS ONLY ONE DOCUMENT OF A GIVEN NUMBER IN THE DALIS FILE. A USER CAN ASK FOR A DOCUMENT BY NUMBER, AND THE COMPUTER WOULD GIVE HIM ITS MICROFILM LOCATION.

9 Find (1)TR976	Search Doc. No. TR976
-----------------------	-----------------------------

IF OUR USERS ALWAYS KNEW THE NUMBERS OF THE DOCUMENTS THEY WANTED TO

FIND, WE WOULD HAVE STOPPED THERE. BUT USERS DO NOT ALWAYS KNOW THE DOCUMENT NUMBERS, AND SO THEY MUST HAVE SOME CAPABILITY TO SEARCH FOR DOCUMENTS THAT MIGHT CONTAIN THE INFORMATION THEY NEED.

BECAUSE OF THIS, WE GAVE DALIS ITS VERSATILE KEYWORDING FEATURES.

10

Find Program	Search -- -- --
-----------------	--------------------------

To illustrate, let's use a typical example. Let's say a user has logged ¹⁰ in, and asked for the SEARCH program. I will show you now how the system works, in its most basic form. After that, I will describe a couple of other capabilities of the DALIS system.

11

Search FSAR	Find FSAR
----------------	--------------

The user's first command is the ¹¹ keyword FSAR; that is, he is asking for all the documents in the system related to the Final Safety Analysis Report of the FTTF. In this case, the user is telling the computer to search through its index of keywords for documents keyworded FSAR. Unless otherwise specified, the computer assumes that any request made to it is a request to search through the keyword index.

THE INDEXES FOR EACH DESCRIPTOR ARE "INVERTED FILES" FROM THE DOCUMENT DESCRIPTOR INDEX. THAT IS, IN MAKING UP THE DOCUMENT DESCRIPTOR INDEX, WE LISTED ALL THE DESCRIPTORS THAT APPLIED TO A GIVEN DOCUMENT. TO LOGICALLY INVERT THAT FILE TO MAKE AN INDEX FOR EACH DESCRIPTOR, WE MADE UP A LIST OF ALL THE DOCUMENTS THAT APPLY TO A GIVEN DESCRIPTOR. IN THE FIRST CASE, WE HAVE A LIST OF DESCRIPTORS FOR EACH DOCUMENT; IN THE SECOND CASE, WE HAVE A LIST OF DOCUMENTS FOR EACH DESCRIPTOR. IT IS THIS INVERTED FILE THAT ALLOWS THE USER TO RUN SEARCHES.

TO RETURN TO THE EXAMPLE, THE USER HAS ASKED FOR ALL DOCUMENTS PERTAINING TO FSAR. THE COMPUTER RESPONDS THAT IT HAS FOUND 1810 "HITS", OR DOCUMENTS RELATING TO THE FSAR.

12

Search	Criteria
FSAR 1810 hits	FSAR

AT THIS POINT, THE USER HAS SEVERAL CHOICES: HE CAN ASK TO EXAMINE THE DALIS RECORD OF EACH HIT; HE CAN ASK TO SEE JUST A FEW DESCRIPTORS FOR EACH HIT; HE CAN NARROW DOWN HIS SEARCH BY INCLUDING ADDITIONAL DESCRIPTORS; OR HE CAN START

A NEW SEARCH, IF HIS PREVIOUS ANSWER SUGGESTED TO HIM THAT HE WAS NOT ON THE RIGHT TRACK. LET'S SAY THAT THIS USER CHOOSES TO NARROW DOWN THE SEARCH FURTHER.

13

Search	Criteria
FSAR 1810 hits and Stress Analysis	and Stress Analysis

14

86 hits	and Stress Analysis
---------	------------------------

15

and Piping	and Piping
------------	------------

16

8 hits	and Piping
--------	------------

13

HE DOES SO BY TYPING THE COMMAND AND STRESS ANALYSES. HIS SEARCH CRITERIA NOW READ FSAR AND STRESS ANALYSES. THE COMPUTER PERFORMS THIS SEARCH, AND 14 REPLIES THAT THERE ARE 86 HIT RECORDS RELATING TO BOTH OF THESE.

OUR USER HAS NARROWED DOWN HIS SEARCH FROM A POSSIBLE 1,810 DOCUMENTS TO 86 DOCUMENTS, HOWEVER, LET US ASSUME THAT THIS IS STILL TOO MANY HITS FOR HIM TO EXAMINE. HE CHOOSES TO NARROW DOWN 15 THE SEARCH STILL FURTHER AND TYPES AND PIPING. HIS SEARCH CRITERIA NOW READ FSAR AND STRESS ANALYSES AND PIPING. HE WANTS ONLY THOSE DOCUMENTS THAT HAVE ALL THREE OF THESE INCLUDED IN THEIR KEYWORDS.

THE COMPUTER PERFORMS THE SEARCH, AND REPLIES THAT THERE ARE 16 EIGHT DOCUMENTS SATISFYING THESE SEARCH CRITERIA.

FOR THE PURPOSES OF THIS EXAMPLE, WE WILL SAY THAT THE USER WANTS TO NARROW DOWN THE SEARCH STILL FURTHER, AND WANTS ONLY THOSE DOCUMENTS THAT WERE ORIGINATED BY BECHTEL Power Corporation RELATED TO ALL THESE THINGS. THE ABBREVIATION FOR BECHTEL Power Corporation IS BPC, SO THE USER TYPES AND ORIG=BPC. NOTE THAT THIS IS THE FIRST TIME HE HAS ASKED FOR ANYTHING OTHER THAN A KEYWORD SEARCH. THIS TIME HE WANTS A SEARCH THROUGH THE ORIGINATOR INDEX, SO HE PREFACES THE COMMAND WITH THE CHARACTERS ORIG.

17

orig. BPC	BPC
-----------	-----

THE COMPUTER PERFORMS THE SEARCH, AND REPLIES THAT THERE IS ONLY ONE DOCUMENT IN THE SYSTEM THAT WAS ORIGINATED BY BECHTEL Power Corporation AND IS KEYWORDED FSAR, STRESS ANALYSES, AND PIPING.

18

1 hit	BPC
-------	-----

AT THIS POINT, THE USER ASKS TO DISPLAY THE DALIS RECORD FOR THE HIT, AND IT IS SHOWN HERE. YOU SEE THE TITLE, DATE, AUTHOR, THE ORIGINATOR, MICROFILM LOCATION, AND KEYWORDS.

19

Display	BPC
---------	-----

NOTICE THAT THERE ARE SEVERAL KEYWORDS SHOWN HERE. A DIFFERENT USER MIGHT HAVE ARRIVED AT THIS DOCUMENT BY A DIFFERENT ROUTE THAN THE ONE WE CHOSE -- HE MIGHT HAVE THE AUTHOR AND DATE OF THE DOCUMENT BUT NOT THE TITLE, OR MAYBE A COUPLE OF DIFFERENT KEYWORDS WOULD HAVE COME TO MIND. HE CAN SEARCH WITH DIFFERENT DESCRIPTORS, IF THOSE DESCRIPTORS WERE USED WHEN THE DOCUMENT WAS KEYWORDED, AND ARRIVE AT THE SAME DOCUMENT BY A DIFFERENT ROUTE.

20

Blank

Blank

20

A FEW ADDITIONAL CAPABILITIES OF DALIS ARE NOTEWORTHY. FOR EXAMPLE, WE HAVE A LOGICAL SEARCH CAPABILITY, BY WHICH USERS CAN SEARCH FOR SOMETHING OR SOMETHING ELSE, NOT JUST SOMETHING AND SOMETHING ELSE. FOR INSTANCE, WE MIGHT SPECIFY FIND KEYWORD REACTOR SODIUM SYSTEMS OR REACTOR PLANT SYSTEMS. THEN, IN ORDER TO QUALIFY AS A HIT, A DOCUMENT WOULD HAVE TO BE FOUND IN THE INDEX UNDER EITHER REACTOR SODIUM SYSTEMS OR REACTOR PLANT SYSTEMS, AND NOT NECESSARILY BOTH, AS WOULD HAVE BEEN THE CASE WITH THE COMMAND AND. THE LOGICAL STRUCTURE

OF THE JOB CONTROL LANGUAGE WORKS MUCH THE SAME WAY AS THE PROCESSES OF LOGIC IN MATHEMATICS.

WE ALSO HAVE A LOGICAL NOT SEARCH CAPABILITY -- WE CAN SEARCH FOR A DOCUMENT WHOSE KEYWORDS DO NOT INCLUDE SOMETHING. FOR INSTANCE, WE MIGHT TELL THE COMPUTER TO FIND KEYWORD REACTOR PLANT SYSTEMS AND NOT REACTOR SODIUM SYSTEMS, IN WHICH CASE WE ARE ASKING FOR ALL DOCUMENTS HAVING TO DO WITH REACTOR PLANT SYSTEMS OTHER THAN REACTOR SODIUM SYSTEMS. THIS CAPABILITY IS USEFUL FOR NARROWING LARGE SEARCHES.

A USER CAN ALSO SEARCH FOR DOCUMENTS BY USING A DATE-RANGE SEARCH, THAT IS, HE CAN SEARCH FOR DOCUMENTS PUBLISHED BETWEEN TWO DATES OR BEFORE OR AFTER ONE SPECIFIED DATE. WE HAVE ²¹ A SIX-DIGIT CODE FOR ENTERING DATES OF DOCUMENT PUBLICATION, IN WHICH THE FIRST TWO DIGITS ARE USED FOR THE YEAR, THE NEXT TWO FOR THE MONTH, AND THE LAST TWO FOR THE DAY OF THE MONTH. FOR EXAMPLE, A SEARCH FOR ALL DOCUMENTS WITH DATE

21

75 06 01	Blank
----------	-------

22

Less than Greater than	
---------------------------------	--

-16-

(22) GREATER THAN 750601 AND LESS THAN 750630
YIELDS ALL THE DOCUMENTS WRITTEN IN
JUNE 1975.

23

Blank	Blank
-------	-------

IN ADDITION, WE HAVE WHAT WE CALL A
"BEGINS WITH" SEARCH. THIS GIVES US THE
CAPABILITY TO SPECIFY ONE OR MORE BEGINNING
LETTERS OF A DESCRIPTOR. (23) FOR EXAMPLE,
IF WE WANTED TO FIND DOCUMENTS KEYWORDED
"PRINCIPAL ...", WE COULD USE THE COMMAND
"PR" TO FIND ALL THE DOCUMENTS THAT HAD
KEYWORDS BEGINNING WITH THE LETTERS PR.
THIS IS PARTICULARLY USEFUL WHEN THE
PROPER SPELLING OR FORM OF A SEARCH
CRITERION IS NOT KNOWN, OR WHEN A WORD
OR PHRASE IS LENGTHY.

ONE MORE CAPABILITY WORTHY OF NOTE
IN THE DALIS SYSTEM IS THE ABILITY TO
SEARCH FOR CHARACTER STRINGS IN A GIVEN
DESCRIPTOR. FOR INSTANCE, A USER MIGHT
SEARCH THROUGH DOCUMENT TITLES FOR EVERY
TITLE THAT MENTIONS THE PHRASE "REACTOR
SAFETY"; THE WAY THE SOFTWARE PACKAGE IS
PROGRAMMED, HE CAN ONLY DO IT ONE WORD
AT A TIME, SO THE COMMAND WOULD BE FIND
TITLE=REACTOR AND TITLE=SAFETY. THE

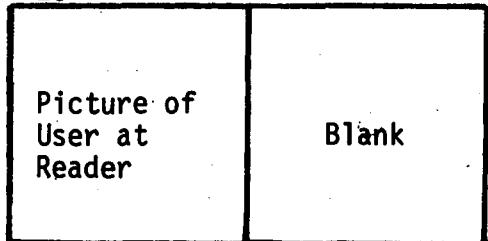
MENTION OF THESE WORDS COULD COME ANYWHERE IN THE TITLE; THEY WOULD NOT HAVE TO BE AT THE BEGINNING, OR AT ANY OTHER SPECIFIC POINT WITHIN THE TITLE OF THE DOCUMENT.

24

Picture of Mini Computer	Blank
--------------------------	-------

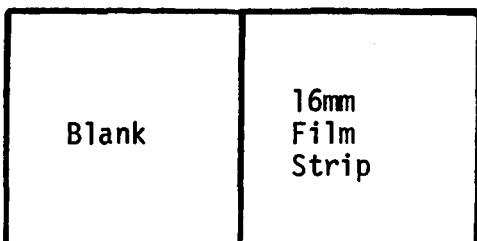
Mike is Zytron provides new 35's mm, replace here.

THESE CAPABILITIES AND OTHERS ARE PROVIDED BY A MINI-COMPUTER WITH A 64K CORE MEMORY, AND AN ACCESS MEMORY CONSISTING OF FOUR 200-MEGABYTE DISCS, EXPANDABLE TO 2.1 BILLION BYTES. USER-ORIENTED SOFTWARE FOR THE DALIS IS WRITTEN IN BASIC.


25

Display of Record	Cartridge Number
-------------------	------------------

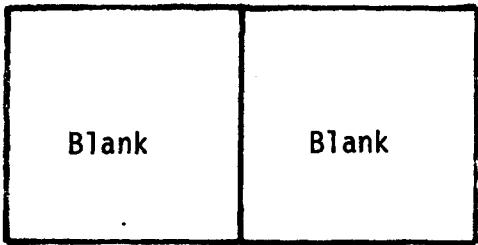
25 RETURNING NOW TO THE FIRST EXAMPLE I SHOWED YOU, LET US SUPPOSE THAT THE USER WANTED TO EXAMINE THE DOCUMENT HE FOUND ON MICROFILM. THE MICROFILM LOCATION CODE IS A NINE-DIGIT CODE, WHERE THE FIRST FIVE DIGITS ARE USED TO DESIGNATE A CARTRIDGE NUMBER, AND THE ^{FOUR} LAST ~~FIVE~~ DESIGNATE A FRAME NUMBER. THEREFORE, IN OUR EXAMPLE, THE DOCUMENT IN QUESTION IS LOCATED ON MICROFILM CARTRIDGE NUMBER 05063, FRAME 1341. THE USER THEN TURNS TO THE MICROFILM LIBRARY, TAKES THE APPROPRIATE CARTRIDGE, AND INSERTS IT INTO THE MICROFILM READER-PRINTER.


THE MICROFILM READERS ARE LINKED TO THE CRT'S, SO THAT A USER CAN BE GUIDED BY THE COMPUTER THROUGH HIS VIEWING OF SEVERAL MICROFILM HITS. THIS COMPUTER-ASSISTANCE CAPABILITY IS ESPECIALLY EFFECTIVE FOR VIEWING LONG LISTS OF DOCUMENTS.

26

26) AFTER THE MICROFILM IS IN THE READER, THE USER DIRECTS THE COMPUTER, VIA THE CRT TERMINAL, TO ADVANCE THE FILM TO THE SELECTED FRAME (1341). THE USER CAN ALSO MOVE THE MICROFILM FORWARD AND BACKWARD, ONE FRAME AT A TIME, USING THE CRT TO CONTROL THE ADVANCE OR REWIND.

27



IN OUR SYSTEM, THE COUNTING OF FRAMES IS DONE BY MEANS OF A BLIP CODE ON THE EDGE OF THE 16MM FILMSTRIP. THE BLIP CODE²⁷ AS YOU CAN SEE IN THIS VIEW OF A MICROFILM STRIP, IS JUST A HEAVY RECTANGULAR SPOT IN AN AREA WHERE THE MICROFILM IS USUALLY CLEAR. AT THE START OF OUR EXPERIMENTS WITH THIS SYSTEM, WE EXPERIENCED SOME DIFFICULTIES WITH QUALITY CONTROL OF THE BLIP CODES -- SOME BLIPS WOULD COME OUT TOO LIGHT OR

BLURRY, IN WHICH CASE THE MICROFILM MACHINE DIDN'T SEE THEM. THE UPSHOT OF THIS QUALITY CONTROL PROBLEM WAS THAT ON LONG FILM ADVANCES OR REWINDS, THE MACHINE WOULD BE SEVERAL FRAMES OFF, AND THE USER WOULD HAVE TO ADJUST THE MICROFILM MANUALLY.

THIS WAS NOT A BIG PROBLEM, BUT IT WAS ANNOYING, AND IT WAS FAIRLY SIMPLE TO SOLVE -- IT WAS JUST A MATTER OF MORE CAREFUL QUALITY CONTROL DURING MICROFILM PROCESSING. I POINT THIS OUT AS ONE OF THE PROBLEMS WE FACED WITH THIS SYSTEM THAT WE HAVE ELIMINATED. ²⁸

28

28
THIS DESCRIBES, IN A BRIEF WAY, THE INFORMATION STORAGE AND RETRIEVAL SYSTEM AT WESTINGHOUSE-HANFORD AS IT IS IN OPERATION TODAY.

ONE OF THE MAJOR NEAR-TERM ADVANCES WILL BE THE INSTALLATION OF A CLOSED-CIRCUIT TELEVISION SYSTEM FOR REMOTE VIEWING OF ENGINEERING DRAWINGS, WHICH IS AN AREA OF GREAT CONCERN AND EXPENSE AROUND THE LABORATORY. WE ALREADY HAVE

29

Picture of Mosler	Blank
-------------------	-------

29

AN APERTURE-CARD MACHINE, WHICH WE OBTAINED FROM GOVERNMENT SURPLUS, WHICH WILL STORE ABOUT 200,000 IMAGES OF ENGINEERING DRAWINGS ON 35MM APERTURE CARDS. WHAT WE NEED IS A USER CAPABILITY TO REQUEST AT THE COMPUTER TERMINAL THAT AN ENGINEERING DRAWING BE SHOWN TO HIM OVER CLOSED-CIRCUIT TELEVISION. A TELEVISION SCREEN WOULD BE SITUATED AT EACH USER STATION. THE COMPUTER WOULD THEN SELECT THE REQUESTED DRAWING OUT OF THE APERTURE-CARD CARTRIDGE, DISPLAY IT ON THE TELEVISION SYSTEM, AND RETURN THE CARD TO ITS APPROPRIATE CARTRIDGE IN THE MACHINE WHEN THE USER WAS FINISHED WITH IT. THE USER, MEANWHILE, COULD VIEW THE DRAWING ON THE SCREEN, AND OBTAIN A PORTION OF THE DRAWING IN HARD COPY, IF HE NEEDED IT, SIMPLY BY PRESSING A BUTTON, OR REQUEST A 1/2-SIZE HARD COPY PRINT FROM CENTRAL FILES. 30

30

Blank	Blank
-------	-------

WE ALREADY HAVE APPROVAL FOR ONE EXPERIMENTAL USER STATION OF THIS SYSTEM, TO BE LOCATED IN THE MAIN ENGINEERING ADMINISTRATION BUILDING AT THE LABORATORY. IMPLEMENTATION OF THIS EXPERIMENTAL

STATION IS AWAITING THE RUNNING OF A VIDEO CABLE FROM THE MAIN ENGINEERING BUILDING TO OUR SERVICE BUILDING. THIS SHOULD BE IN OPERATION THIS YEAR.

IN SUMMARY, WE FEEL THAT WE HAVE DEVELOPED A SYSTEM THAT SUITS THE LABORATORY'S NEED WELL. IN THE AREA OF DOCUMENT SEARCHES, WE WILL CENTRALIZE MOST OF THE INFORMATION THAT VARIOUS USERS AROUND THE LABORATORY ARE LIKELY TO NEED, MEETING OUR REGULATORY REQUIREMENTS AND PROVIDING USERS WITH A FLEXIBLE SYSTEM FOR FINDING INFORMATION. THIS FLEXIBILITY ALLOWS FOR RAPID DOCUMENT SEARCHES, AND ALLOWS A USER TO SPEND A LITTLE TIME TO FIND OTHER DOCUMENTS THAT HE MIGHT BE INTERESTED IN.

SIMILARLY, WE FEEL WE HAVE A VERY EFFICIENT METHOD OF HANDLING THE STORAGE AND RETRIEVAL PROBLEM FOR ENGINEERING DRAWINGS, WITH MINIMUM EFFORT AND SPACE.

THE CRUCIAL FACTOR IN THE SUCCESS OF A DOCUMENT RETRIEVAL SYSTEM, WHETHER DOCUMENTS ARE STORED IN MICROFILM OR IN

HARD COPY, IS THE EASE OF DOCUMENT RETRIEVABILITY THROUGH THE INDEXING SYSTEM. ANY STORAGE SYSTEM IS WORTHLESS UNLESS DOCUMENTS CAN ALSO BE RETRIEVED EASILY. WE BELIEVE THAT THE KEYWORDING METHOD IS THE MOST FLEXIBLE INDEXING METHOD FOR A DOCUMENT STORAGE SYSTEM THAT MUST ENCOMPASS THE VARIETY OF DOCUMENT TYPES THAT WE HANDLE. WITH KEYWORDING, WE CAN STORE DOCUMENTS BY SPECIFIC AND GENERAL SUBJECT MATTER, USING KEYWORD PHRASES THAT CORRESPOND TO THE WAY USERS TALK IN REAL LIFE ABOUT A SPECIFIC PROJECT OR PROGRAM.

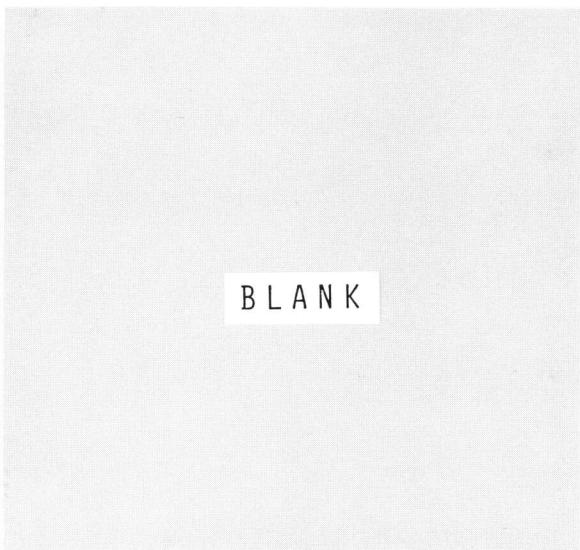
31

Blank

Cartoon of
Engineer's
Search

IN CLOSING, I ALSO LEAVE YOU WITH THIS THOUGHT -- THAT THE SYSTEM I HAVE DESCRIBED IS THE RESULT OF AN ENGINEER'S SEARCH FOR A UNIVERSAL DOCUMENT RETRIEVAL SYSTEM. I WILL BE HAPPY TO ANSWER ANY QUESTIONS YOU MIGHT HAVE ABOUT OUR SYSTEM AND OUR PLANS, AND I THANK YOU FOR ALLOWING ME THE PLEASURE OF SHARING THIS INFORMATION WITH YOU THIS AFTERNOON.

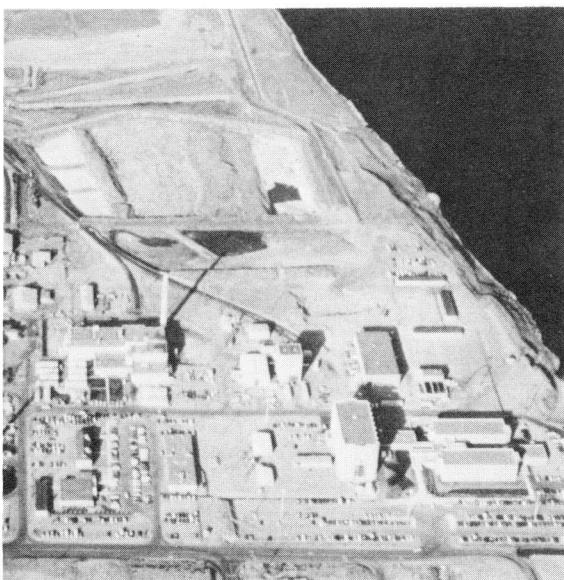
31


32

Blank

Blank

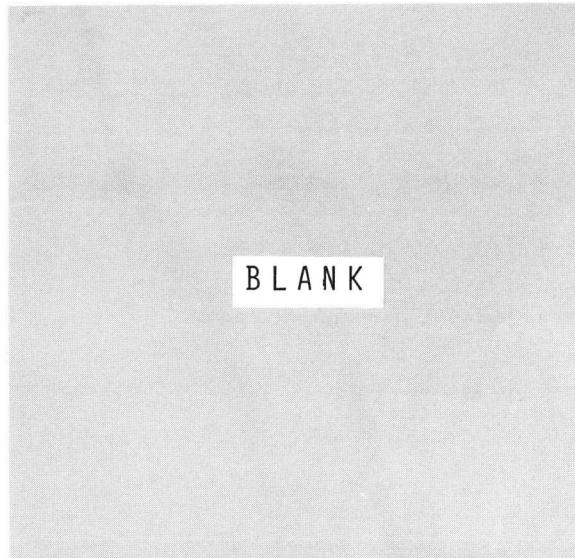
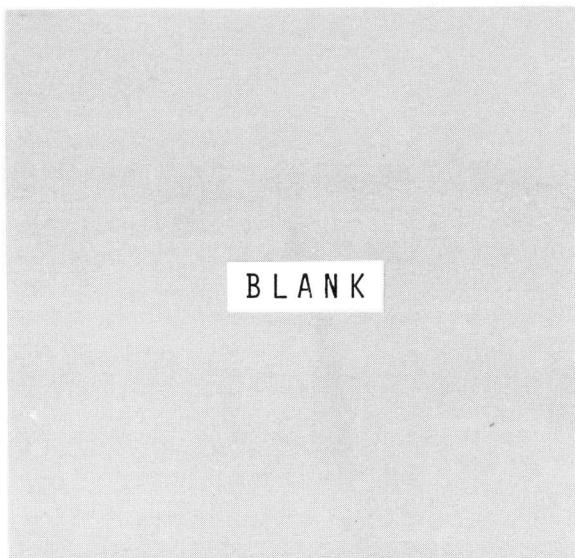
32


LEFT

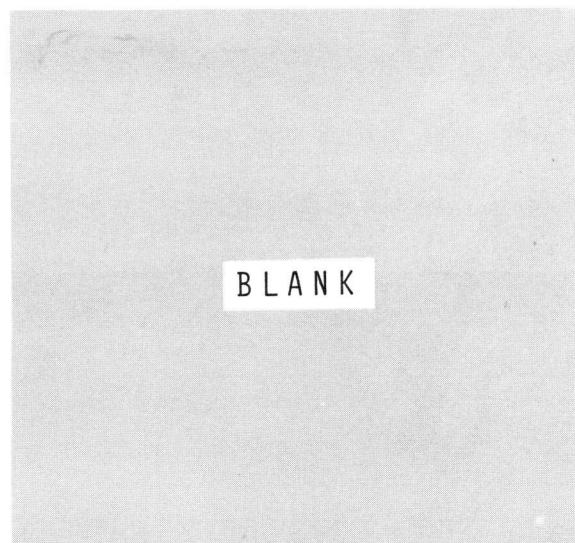
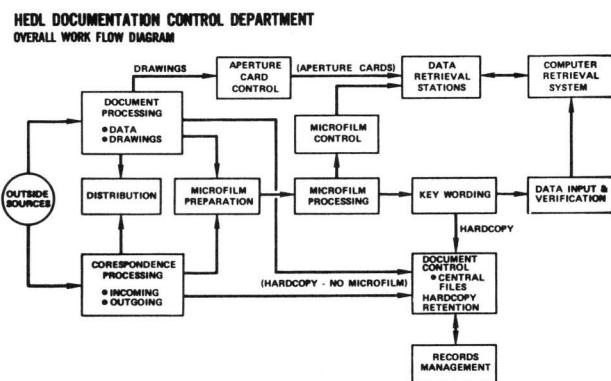

RIGHT

1

2

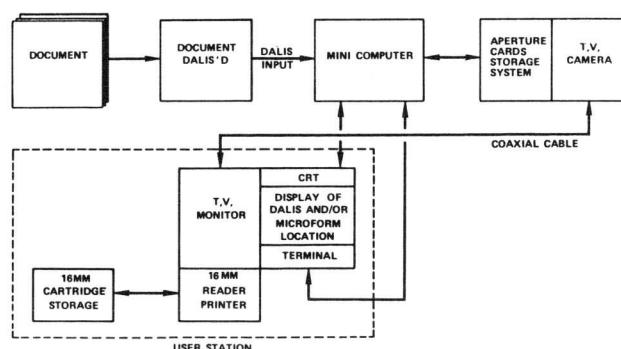


3

1



LEFT

RIGHT

4



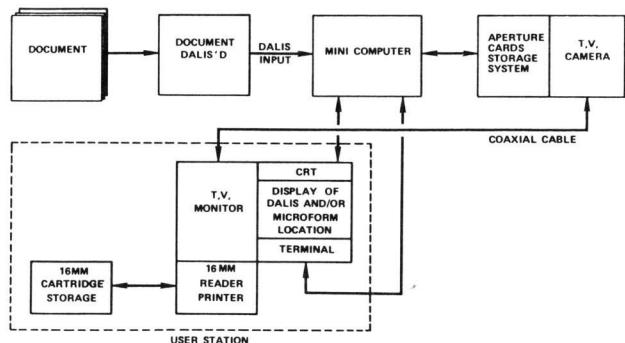
5

6

DOCUMENTATION CONTROL AND RETRIEVAL SYSTEM

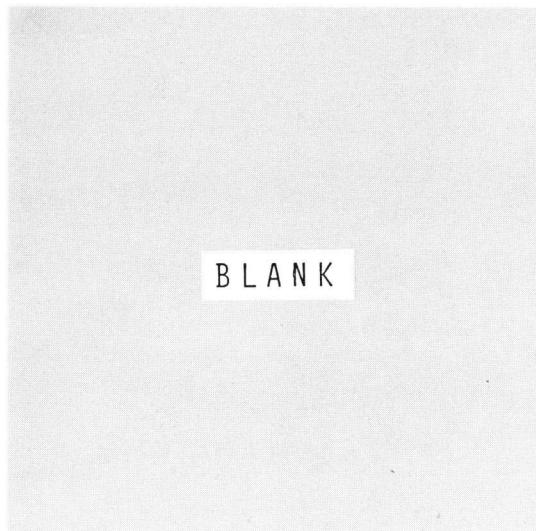
**DOCUMENTATION
AND
LOCATION
IDENTIFICATION
SYSTEM**

DATA INPUT SHEET


FILM IDENTIFICATION NUMBER	
FIELD NO.	DESCRIPTOR
1	DOCUMENT NUMBER
2	SHEET NUMBER
3	REVISION
4	DATE
5	TITLE
6	ORIGINATOR (CORP.)
7	RECEIVER (CORP.)
8	SYSTEM
9	CROSS REFERENCE
10	SPECIFICATION
11	DOCUMENT TYPE
12	LOCATION
13	hardware NUMBER
14	ITEM SERIAL NUMBER
15	BUILDING NUMBER
16	AFFECTED DOCUMENTS
17	REFERENCES
18	HANFORD INDEX NUMBER
19	VENDOR PART NUMBER
20	VENDOR DRAWING NUMBER
21	VENDOR DRAWING TITLE
22	NEXT USED ON
23	
24	KEY WORDS

BD-7400-057 (5-76)

G.P.O. 1976 807-089


LEFT

DOCUMENTATION CONTROL AND RETRIEVAL SYSTEM

RIGHT

7

FIND

SEARCH

8

FIND PROGRAM

- 1 (1) DOCUMENT # : TR976
- 2 (2) SHEET #
- 3 (3) REVISION
- 4 (4) DATE
- 5 (5) TITLE
- 6 (6) ORIGINATOR
- 7 (7) RECEIVER
- 8 (8) SYSTEM
- 9 (9) X REFERENCE
- 10 (10) SPEC.
- 11 (11) DOC TYPE
- 12 (12) LOCATION
- 13 (13) HARDWARE #
- 14 (17) REFERENCES
- 15 (24) KEYWORDS

(VALID COMMANDS ARE \$N, \$D, <NEWLINE>, .)
 CORRECTIONS (\$N, Q <NEWLINE>) :

SEARCH

VERSION 113.0

S:

S: DOC NO - TR976

yellow

9

LEFT

RIGHT

10

FIND PROGRAM

1 (1) DOCUMENT # :
2 (2) SHEET #
3 (3) REVISION
4 (4) DATE
5 (5) TITLE
6 (6) ORIGINATOR
7 (7) RECEIVER
8 (8) SYSTEM
9 (9) X REFERENCE
10 (10) SPEC.
11 (11) DOC TYPE
12 (12) LOCATION
13 (13) HARDWARE #
14 (17) REFERENCES
15 (24) KEYWORDS

SEARCH

VERSION 11/3.0

S:

S: _____

(VALID COMMANDS ARE \$N,\$D,<NEWLINE>,.)

11

SEARCH

VERSION 11/3.0

S:

S: FSAR

CRITERIA

FIND ALL DOCUMENTS KEYWORDED FSAR

12

SEARCH

VERSION 11/3.0

S:

S: FSAR

1810 HITS

CRITERIA

FIND ALL DOCUMENTS KEYWORDED FSAR

LEFT

SEARCH
VERSION 11/3.0
S:
S: FSAR
1810 HITS
S: AND STRESS ANALYSIS

RIGHT

CRITERIA
FIND ALL DOCUMENTS KEYWORDED FSAR AND
STRESS ANALYSIS

13

SEARCH
VERSION 11/3.0
S:
S: FSAR
1810 HITS
S: AND STRESS ANALYSIS
86 HITS

CRITERIA
FIND ALL DOCUMENTS KEYWORDED FSAR AND
STRESS ANALYSIS

14

SEARCH
VERSION 11/3.0
S:
S: FSAR
1810 HITS
S: AND STRESS ANALYSIS
86 HITS
S: AND PIPING

CRITERIA
FIND ALL DOCUMENTS KEYWORDED FSAR AND
STRESS ANALYSIS AND
PIPING

15

LEFT

RIGHT

16

SEARCH

VERSION 11/3.0

S:

S: FSAR

1810 HITS

S: AND PIPING

86 HITS

S: AND PIPING

8 HITS

CRITERIA

FIND ALL DOCUMENTS KEYWORDED FSAR AND

STRESS ANALYSIS AND

PIPING

17

SEARCH

VERSION 11/3.0

S:

S: FSAR

1810 HITS

S: AND STRESS ANALYSIS

86 HITS

S: AND PIPING

8 HITS

S: AND ORIG. = (BECHTEL POWER CORP) BPC

white
(BPC)

BPC.
yellow

CRITERIA

FIND ALL DOCUMENTS KEYWORDED FSAR AND

STRESS ANALYSIS AND

PIPING AND

ORIG BY (BECHTEL POWER CORPORATION) BPC

18

SEARCH

VERSION 11/3.0

S:

S: FSAR

1810 HITS

S: AND STRESS ANALYSIS

86 HITS

S: AND PIPING

8 HITS

S: AND ORIG. = (BECHTEL POWER CORP) BPC

1 HIT

CRITERIA

FIND ALL DOCUMENTS KEYWORDED FSAR AND

STRESS ANALYSIS AND

PIPING AND

ORIG BY (BECHTEL POWER CORPORATION) BPC

LEFT

WESTINGHOUSE DOCUMENT INFORMATION

FILM-REFERENCE NO. 050631341 HIT NO. 1

(1) DOC NO BCL3529
(2) SHEET NO
(3) REV
(4) DATE 720211
(5) TITLE FFTF STRESS ANALYSIS-PIPEING NEW CRELAX PROGRAM
(6) ORIG BPC
(7) RECVR
(8) SYSTEM 51
(9) X REF FSAR 10.6R024
(10) SPEC REPORT
(11) DOC TYPE
(12) LOC 050631341
(13) HDW
(14) I SER NO
(15) BLDG NO
(16) AF DOC
(17) REF
(18) HINDEX
(19) V PART NO
(20) V DWG NO
(21) V DWGT
(22) NEXT
(23) EXTRA
(24) KWDS FFTF, FSAR, APPLIED TECHNOLOGY, COMPUTER CODES, CREEP DAMAGE, PIPING SYSTEMS, PIPING STRESS ANALYSIS, HTS.

TYPE 'NEW LINE' TO CONTINUE: _____

RIGHT

CRITERIA

FIND ALL DOCUMENTS KEYWORDED FSAR AND
STRESS ANALYSIS AND
PIPEING AND
ORIG BY (BECHTEL POWER CORPORATION) BPC

19

BLANK

BLANK

20

7 5 0 6 0 1
YY MM DD

BLANK

21

LEFT

RIGHT

22

SEARCH

VERSION 11/3.0

S:

S: DATE/750601, 750630

670 HITS

7 5 0 6 0 1
YY MM DD

BLANK

BLANK

23

BLANK

24

LEFT

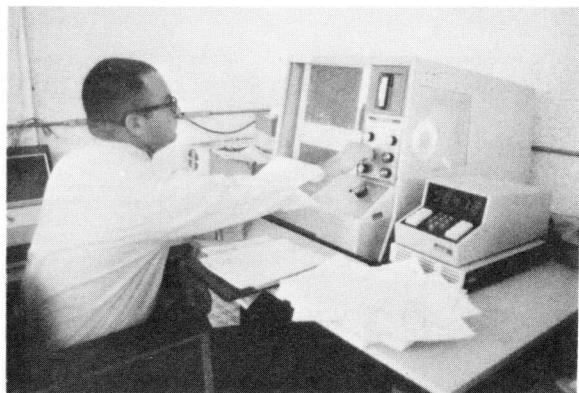
WESTINGHOUSE DOCUMENT INFORMATION

FILM-REFERENCE NO. 050631341 HIT NO. 1

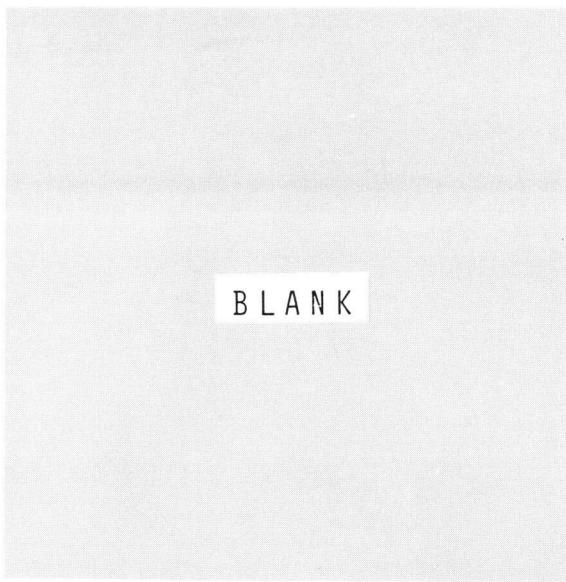
(1) DOC NO BCL3529
(2) SHEET NO
(3) REV
(4) DATE 720211
(5) TITLE FFTF STRESS ANALYSIS-PIPEING NEW CRELAX PROGRAM
(6) ORIG BPC
(7) RECVR
(8) SYSTEM 51
(9) X REF FSAR 10.6R024
(10) SPEC REPORT
(11) DOCTYPE
(12) LOC 050631341
(13) HDW
(14) I SER NO
(15) BLDG NO
(16) AF DOC
(17) REF
(18) HINDEX
(19) V PART NO
(20) V DWG NO
(21) V DWGT
(22) NEXT
(23) EXTRA
(24) KWDS FFTF, FSAR, APPLIED TECHNOLOGY, COMPUTER CODES, CREEP
DAMAGE, PIPING SYSTEMS, PIPING STRESS ANALYSIS, HTS.

TYPE 'NEW LINE' TO CONTINUE: _____

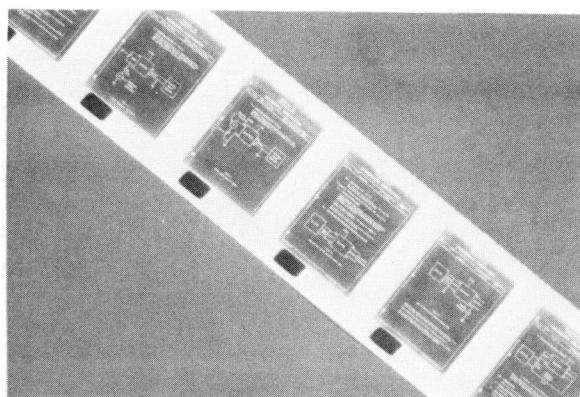
RIGHT

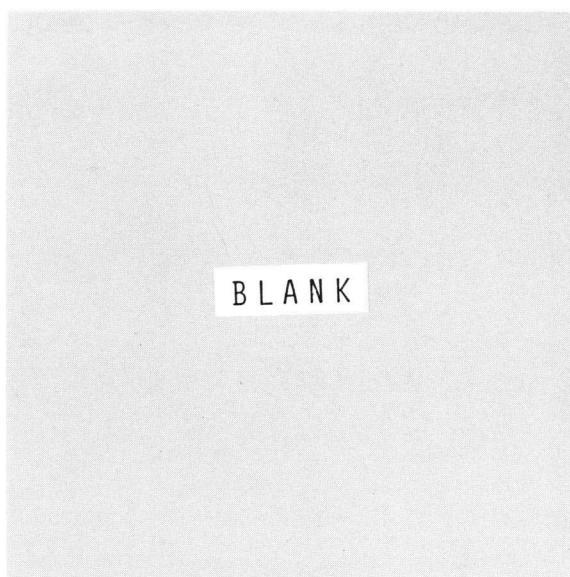

MICRO FILM

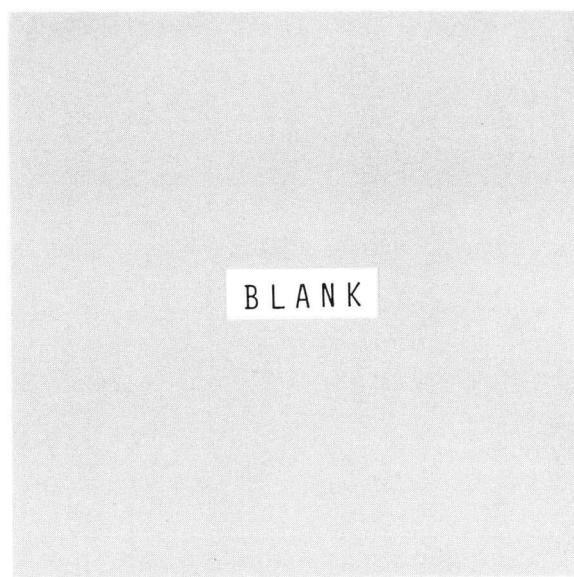
LOCATION NUMBER


25

0 5 0 6 3 1 3 4 1


CARTRIDGE # FRAME #


26

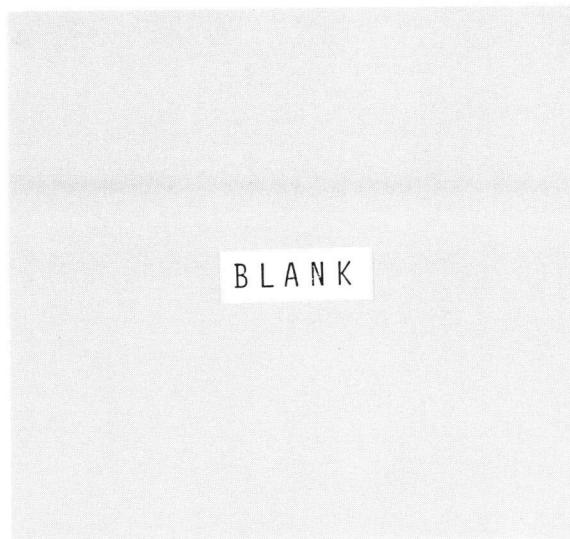

27

LEFT

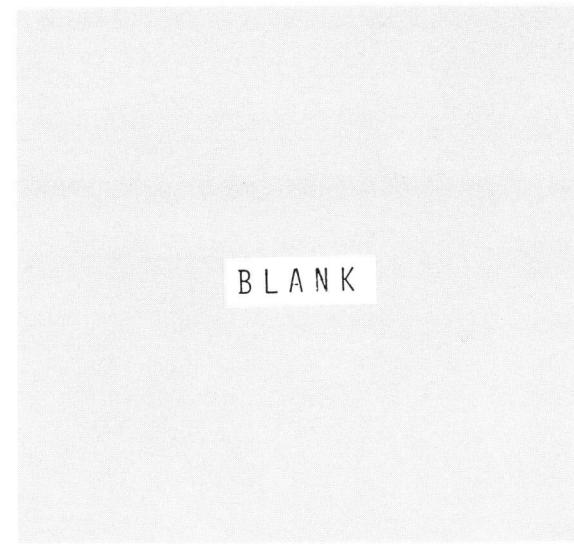
RIGHT



28



BLANK


29

30

BLANK

10