Argonne, IL 60439

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

ANL/MCS-TM-206

.
.

Users Manual for doctext
Producing Documentation from C Source Code

*Joa1ayy £ousBe Kue Jo JUSWIUIIAOL) $31BIS PN
3y} JO 3SOYY 109JaI 30 des K|LIESSI00U jou Op UPIOY passaidxs sioyne jo suormdo pue
SMOIA 94 “Jooray) Aousde Aue J0 JUSWUISAOY sIIRIG PoNUf) dY) Aq Sulioaej 10 ‘UonjBpUSW
~W002J JUSASIOpUS s)1 A[dwil 10 9)MINSUOD A[IIESS00U 10U S0P SSIMISYIO IO ‘IoInjoRjnuBW
“Jrewapen ‘oureu aper) AQq 90[AIes 0 ‘ssa001d “onpoid [eroIOWIWOS osiyads Aue 03 UIRILY 20Ud
-30J0Y 'SIYBU paumo A[9Ieaid BULIFUT 10U p[noM asn S)E JeY) SJUosaIdal 0 *pasoposip $52501d
1o yonpoid ‘smeredde ‘uoneurtojut Aue Jo ssSUMJasN Jo ‘ssauajaiduros ‘Aoernooe sy 10§ Aijiq
-isuodsar Jo Aypiqey [e35] Aue sownsse 1o ‘pardunt Jo ssoxdxs ‘Kyueirem Kue soyew ‘saokojdure
1Y) Jo Aue Jou ‘joareyy AousBe AU I0U JUSWIUISAOD SOIBIS PAYU() AY) JOYNSN IUSILIIACH
91815 pattup) Y1 Jo Aduode ue £q parosuods J10m Jo JUNOOOE Ue se paredord sem 110dal SIYL

JINIVIOSIA

by
William Gropp
Mathematics and Computer Science Division
Technical Memorandum No. 206
March 1995

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

JoYa

DISTRIBUTION O

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Contents

Abstract 1
1 Imtroduction 2
2 The doctext Program 2
2.1 Getting Started L e e 2
2.2 Structured Comments e e e e e e e e e e e e e e e e e 2
2.3 CRoubtines e e e e e e e e e e e e e 4
24 CMaCIos ot e e e e e e e e e e e e e e e e e e 4
2.5 Miscellaneous Documentation e e e e 4
2.6 Indicating Special Limitations L. 5
2.7 Indicating Include Files L L 5
3 Special Formatting 5
3.1 Describing Arguments L L e e e e 5
3.2 Common Blocks of Text e e e e 5
33 LineBreaks e e e e e e 6
3.4 Verbatim Blocks of Text e 6
3.5 Emphasis L e e e e e e e e 6
3.6 Codeand Filename Font 7
3.7 Pictures . . . L. L e e e e 7
3.8 Verbatim e e e e e e 7
3.9 Other Formatting Options i i e e e e e e 7
4 Command Line Arguments 7
5 Man Pages for Hypertext Documents 8
6 Making a Reference Manual 9
7 Making the man Pages Available 10
8 .Installing doctext 11
Acknowledgment 11
References 11

iii

Users Manual for doctext:
Producing Documentation from C Source Code

by

William Gropp

Abstract

One of the major problems that software library writers face, particularly in a research environment,
is the generation of documentation. Producing good, professional-quality documentation is tedious and
time consuming. Often, no documentation is produced. For many users, however, much of the need
for documentation may be satisfied by a brief description of the purpose and use of the routines and
their arguments. Even for more complete, hand-generated documentation, this information provides a
convenient starting point. We describe here a tool that may be used to generate documentation about
programs written in the C language. It uses a structured comment convention that preserves the original
C source code and does not require any additional files. The markup language is designed to be an
almost invisible structured comment in the C source code, retaining readability in the original source.
Documentation in a form suitable for the Unix man program (nroff), LaTeX, and the World Wide Web
can be produced.

1 Introduction

The tools described in this report are intended to help you create simple man-page-style documentation
quickly and easily. Specifically, the program doctext takes C programs and generates nroff (Unix man page
format), LaTeX [4], or HTML files. All of the information is embedded in structured comments, allowing the
documentation to be maintained along with the code. The design of the special markup language commands
emphasizes readability of the original source code (the structured comment). This approach differs from
approaches such as web [3], where special processing must be applied to produce a readable version of the
source code. Such approaches can do much more than doctext but are really aimed at documenting the
source code of a program rather than the use of the program.

2 The doctext Program

The doctext program reads C programs and generates documentation. Command-line options provide
control over the output.

2.1 Getting Started

Using doctext is easy. For example, the command
doctext foo.c

will generate Unix man pages for all of the commented routines in the file ‘foo.c’. But before this will do
you any good, you will need to add some structured comments to your file.

2.2 Structured Comments

The doctext program searches for C comments of the form /*c ... c*/, where c is a single character
indicating the type of documentation. The available types are @ for routines, M for macros, and D for other
miscellaneous documentation (such as introductions or descriptions of programs rather than routines). In
all cases, the structured comment has this form:

/*Q
name - short description

heading 1:

heading 2: .

Qx/

The structured comment for a routine must immediately precede the declaration of the routine (either K&R
or ANSI-style prototypes). Figure 1 shows the structured comment and the routine being documented.

The man (nroff-style) output of this is shown in Figure 2, and the LaTeX output is shown in Figure 3.

The body of the structured comment follows simple rules. Any line that ends in a colon (:) generates a
section title with the line as the title. In the example of Swap, the line Parameters: generates a section in
the man page with title Parameters.

The first column within a structured comment has a special meaning. A period followed by a space
indicates that the line begins the description of an argument (ended by another argument or a blank line).
This line has a special format. The first space-separated token is taken as the argument. The next character
should be a dash (~). After the dash comes the text. The Swap example shows this for the arguments
ptri,ptr2. Other commands are described below in Section 3.

/*e
Swap - Swaps two pointers

Parameters:
ptri,ptr2 - Pointers to swap
ox/
void Swap(ptri, ptr2)
void **ptrl, **ptr2;
{
void *tmp = *ptri;
#ptrl = *ptr2;
*ptr2 = tmp;
}

Figure 1. C code for a Swap routine with doctext-style structured comment

Swap (2) PETSc Swap (3)

NAME
Swap - Swaps two pointers

PARAMETERS
ptrd pte2
- Pointers 10 swap

SYNOPSIS
wid Swap({ ptel, pte2)
wid wptel, wpled;

LOCATIO N
swap.txt

Figure 2: Unix-style man page for the Swap routine

Swap Swap

Swap — Swaps two pointers

Parameters

ptrl,ptr2 Pointers to swap

Synopsis

void Swap(ptri, ptr2)
void **ptrl, **ptr2;

Location

‘swap.txt’

Figure 3: LaTeX page for the Swap routine

2.3 C Routines

C routines are indicated by the structured comment /*@ ... @+/. The doctext program provides a synopsis
automatically by reading the declarations of the routine. Arguments are specified as described in Section
3.1 [Describing Arguments], page 5.

2.4 C Macros

C macros are indicated by the structured comment /*M ... M*/. Unlike the case of C routines, macro
definitions do not provide any information on the types of the arguments. Thus, the body of a structured
comment for a C macro should include a synopsis section, containing a declaration of the macro as if it were

a C routine. For example, if the Swap example were implemented as a macro, the structured comment for it
would look like

/*M
Swap - Swaps two pointers

Parameters:
ptrl,ptr2 - Pointers to swap

Synopsis:

void Swap(ptri, ptr2)

void *#ptril, **ptr2;
M*/

It is important that the word Synopsis be used; doctext and related programs (bfort and doc21t) use this
name to find the C-like declaration for the macro.

2.5 Miscellaneous Documentation

In addition to routines, a library will often have a few additional manual pages, for example, an overview of
the members of the library or instructions on installing or debugging the library. In order to allow the same
tools to be used for all of the documentation, a comment of the form /#*D ... D*/ may appear anywhere
and wil] generate a manual page.

2.6 Indicating Special Limitations

Two modifiers to the structured comments indicate special behavior of the function. The modifiers must
come after the character that indicates a routine, macro, or documentation. The modifier C indicates that
this routine is available only in C (and not from Fortran). For example, the Swap program cannot be used
in Fortran, so its structured comment should be

/*QC

Q*/

The modifier X indicates that the routine requires the X11 Window System. This is intended primarily
for the program bfort [1], which is used to generate Fortran interfaces for systems that do not have X11.
The modifiers € and X may be used together and may be specified in either order (i.e., CX or XC).

2.7 1Indicating Include Files

It is often very important to indicate what include files need to be used with a particular routine. This may
be accomplished with a special structured comment of the form /*Iinclude-file-nameI*/. For example, to
indicate that the routine requires that ‘<sys/time.h>’ has been included, use

#include <sys/time.h> /*I <sys/time.h> I*/
in the C file. A user-include can be specified as
#include "system/nreg.h” /*1 "system/nreg.h" I*/

This approach of putting the structured include comment on the same line as the include of the file ensures
that if the source file is changed by removing the include, the documentation will reflect that change. Includes
are added to the synopsis of all routines in the file that contains the include comment.

3 Special Formatting

The structured comment format for doctext was designed to have a small impact on the appearance of the
C source code. As such, it provides minimal formatting for the generated manual pages. Three important
cases are provided: describing arguments, verbatim output, and common blocks of text. In addition, there
are some additional formatting controls for things like emphasis (italics text) and fixed-width fonts. This
section describes all of these in more detail.

3.1 Describing Arguments

Arguments to routines and command-line options for programs are described by using a period (.) in the
first column, followed by one or more spaces. The name of the argument or command line variable is next; it
must not contain any blanks (to put several arguments together, separate them with commas and no spaces,
e.g., ptri,ptr2, not ptri, ptr2). Follow this with one or more spaces, then a dash (=), optional spaces,
and finally the text of the description. The description may use multiple lines. For example,

. a - Pointer to
the data item
. 1,j -~ Sizes of data item

3.2 Common Blocks of Text

In some cases, it is useful to repeat a body of text in many man pages. For example, there may be a common
argument that has a lengthy description. A common block of text is defined with

/*N name
text
N/

The name may be any blank-delimited string.
To insert this block of text into a man page, use the . ¥ format command

/*Q
.N name

Q*x/ -

The definition must precede all uses. Once defined, the definition is remembered; if multiple files are
processed and the first file contains a definition of a named block, all subsequently processed files may refer
to that named block. This feature allows different replacement texts for different situations. For example,
the replacement text for a man page should contain the entire text, whereas the replacement text for a
manual (LaTeX) may reference a common section.

Currently, a named block should not contain any formatting commands or section definitions. This
restriction will be removed in a later release.

3.3 Line Breaks

A new line may be begun with the .n command at the beginning of a line. The rest of the line is read. For
example, to provide a list of items, use

.0 This is the first item
.n This is the second item
.n This is the third item
!

Note that a final line containing only .n is used to ensure that the next line of text begins on a new line
rather than at the end of the third line.

3.4 Verbatim Blocks of Text

To display a block of text in a fixed-width font, use the .vb command to begin the block and .ve command
to end the block. These commands, like the other dot commands, must begin in the first column. For
example, to display two lines of shell commands, use this text in the structured comment:

.vb

cd .

echo "I’m here®
.ve

3.5 Emphasis

To emphasize some text, include it between back quotes: ‘this text is emphasized‘. Emphasized text
may appear in italics (this text is emphasized) or in bold face (this text is emphasized). (Whether italics
or bold face is used depends on the implementation and the output format). This effect requires the use
of the -quotefmt command-line option; if the option is not used, back quotes are intrepreted as a simple
character.

3.6 Code and Filename Font

To display some text in a font appropriate for code and filenames, include it between single forward quotes:
"this text is code’. This will appear in a form such as this text is code. This effect requires the use
of the ~quotefmt command-line option.

3.7 Pictures

This section described a proposed feature; comments are welcome.
In the HTML and LaTeX formats, pictures (postscript files) can be included by using the .p command:

.p filename

The file must be a postscript file. A caption for the picture can be included with the .cb and .ce command.
This caption is not displayed in the Unix man-page document but does appear in the LaTeX and HTML
versions. For example,

.p sample-out.ps

.cb

This image shows the output of the ’foo’ command
Note particularly ...

.ce

(not yet implemented)

3.8 Verbatim

A dollar (8) in the first column indicates a verbatim line. In most situations, this can be used for forcing a
line break at the end of the line. An example is

$ This is a test

$

$ Here is a sample command line

$

$ And the start of the description about
it.

This version of verbatim is deprecated and supported for backward compatibility.

3.9 Other Formatting Options

The program doctext is designed so that it is easy to add additional formatting commands of the form
.command. Other commands beyond those described in this document may be added in the future, so you
should not rely on any particular behavior of . character. If you need some particular formatting option,
please send the suggestion to petsc-maint@mcs.anl.gov.

4 Command Line Arguments

To use doctext, you need only to give it the name of the files to process:
doctext *.[ch]

Commeand-line options to doctext allow you to change the details of how doctext generates output.

A complete list of the command line options follows. Some of these will be used often (e.g., —ext and
-mpath); others are needed only in special cases (e.g., ~outfile).

The choice of output format is selected with these switches:

-latex Generate LaTeX output rather than man (nroff) format files.

-html Generate HTML (WWW) output rather than man (nroff) format files.

If neither of these is used, the output is in man (nroff) format.
The following options control some aspects of the appearance and content of the generated page, as well
as the name of the output file.

-mpath path Set the path where the man pages will be written.

-ext n Set the extension (1-9,}, etc.). The default value is 3. This is the man page chapter and is used as
the extension on the filename. For example, doctext creates the file ‘Swap.3’ for the Swap routine.

-heading name Name for the heading (middle of top line). The default value is PETSc. This is used only
for Unix man-page (nroff) format.

-nolocation Suppress the generation of a line that indicates the source file that contained the structured
comment.

-quotefmt Enable the use of single quotes and back quotes to use code and emphasis fonts.

-I filename filename contains the public includes needed by these routines; it will automatically be added
to the synopsis of the routines. The file should contain exactly the text to be added to the synopsis.
For example, to specify that the include <stdio.h> be included, use a file with only the text #include
<stdio.h>in it.

The following options control the generation of additional data about HTML-format output that may be
used by other programs to automatically generate links to the files created by doctext.

-index filename Generate an index file appropriate for tohtml [2] (for generating WWW files). This
appends to any existing file; make sure that you don’t add duplicate entries.

-indexdir dirname Set the root directory for the index file entries. This allows you to specify an absolute
URL for the generated files to be used in the generated index, for example,

~index foo.cit -indexdir "http:/www.mcs.anl.gov/home/gropp/man”
The following option controls the output filename and the list of files to process.

-outfile filename Put the man pages in the indicated file. Normally, a separate file is created for each
routine. This may be appropriate for HTML output. The output filename is normally made up of the

name of the routine, followed by the extension (-ext n) for nroff, . tex for LaTeX, or .html for HTML
files.

After the command-line arguments come the names of the files from which documents are to be extracted.

5 Man Pages for Hypertext Documents

One of the most difficult tasks in creating extensive hypertext is generating the initial documents and
providing an easy way to link to them. For the the hypertext to be useful, there must be an easy way to
create links to the generated documents. This section describes how to do this. The information produced
by doctext may be used by tohtnl [2] to generate documents that have extensive cross-links to hypertext
versions of their man pages.

To generate HTML man pages for a collection of source files in ‘/home/me/fo00’, do the following:

cd

mkdir www

mkdir www/man3

cd foo

doctext -html -index ../foo.cit \
-indexdir http://www.mcs.anl.gov/me/foo/www/man3 \
-mpath ../www/man3 *. [ch]

cd ..

This puts the HTML files into the directory ‘www/man3’ and the index (in the correct format for the -mapman
option of tohtml) into the file ‘foo.cit’. The -indexdir option is used to specify the ultimate location
for the files (in this case, the directory me/foo/wuu/man3 at the Web site www.mcs.anl.gov). Once you are
sure that the files are correct, you can move them into the Web area with

cp -r www /mcs/www/home/me

(assuming that ‘/mcs/wew’ corresponds to http://www.mcs.anl.gov in the ~indexdir argument).
To generate an HTML listing of the routines, you can execute the following script, with, of course, the
appropriate changes to the text:

#! /bin/sh
echo ’<TITLE>Web pages for My Routines</TITLE>’ >> www/index.html
echo ’<Hi1>Web pages for My Routines</H1>’ >> www/index.html
echo ’'<H2>My Routines</H2>’ >> www/index.html
echo ’<MENU>’ >> www/index.html
1s -1 www/man3 | \
sed ~e 's% \(.*\).htm1$$%\1%g’ \
>> www/index.html
echo ’</MENU>’ >> www/index.html

This example may be found in the file ‘mkhtml.sam’ in the source directory for doctext.

If you have only a few routines to document, you can dispense with the second directory level above (the
‘man3’). However, you might find it valuable to follow (at least loosely) the Unix man page format, with
commands and installation instructions in ‘mani’ and routines spread across ‘man2’ through ‘man8’.

6 Making a Reference Manual
With the -latex option of doctext, it is easy to create a reference manual containing the manual pages
produced by doctext. The style file refman.sty (in ‘docs/refman.sty’; in either the PETSc or doctext
distribution) provides the necessary LaTeX definitions. Below is an example skeleton for a reference manual:
\documentstyle[refman]{article}

.. page size commands ...
\begin{document}

.. title page commands ..
\pagenumbering{roman}
\tableofcontents

\clearpage

\pagenunbering{arabic}
\pagestyle{headings}

\section{Introduction}
. regular textv ...

\section{My commands}
\input ref/refl

. additional sections .
\end{document}

To generate the LaTeX files for the individual man pages using doctext, you can use the following
commands:

doctext -latex -mpath ref/refl *.c
followed by

cd ref
1s ref1 | sort | sed ’s/"/\ input /g’ > refl.tex

If named replacement blocks of text (.N namse) are used, it may be appropriate to use a different definition
for the manual from that used for the man page. For example, if the file ‘common.txt’ contains

/*N defs
Definitions are described in Section 2.
N/

then changing the doctext command to
doctext —~latex —mpath ref/refi common.txt *.c

will cause each .N defs command to include the text “Definitions are described in Section 2.”

7 Making the man Pages Available

In order to make the regular man pages available, a directory tree containing directories ‘man’, ‘man/mani’,
ete. (for all of the man page extensions used) needs to be created. In addition, a “whatis” database should be
built within the primary man directory so that man -k topic will find the command or routines with topic
in their description. This is done with the program ‘/usr/etc/catman’. If this program is not available, the
“whatis” database cannot be created. The following C-shell code will create the database:

unalias cd
if (~e /usr/etc/catman) then

(¢d man ; /usr/etc/catman -w -M .)
endif

Some catman programs may behave erroneously; at least one system, instead of using the .SH NAME entry,
looks for .SH NAMESH. What this means is that if the first text after the routine’s description is not a
section title (i.e., a line ending with a colon), the catman program will generate an incorrect whatis database.

It is easy to provide an X11 interface to the man pages by using xman and the MANPATH variable. Here is
a simple shell script that provides access to the man pages in ‘/home/me/man’:

#! /bin/sh

MANPATH=/home/me/man

export MANPATH

xman -notopbox -helpfile /home/me/man/me.help "$Q" &

In order to get man and xman to display the correct names for the various sections (corresponding to the
directories ‘man/manl’, ‘man/man2’, etc.), a file ‘man/mandesc’ is required. Here is the ‘man/mandesc’ for the
PETSc package:

r(r)Introduction

1(1)Sparse Matrix Routines
2(2)Vector Routines
3(3)simplified Solvers
4(4)Iterative Methods
5(5)High Level Communications
6(8)Low Level Communications

10

7(7)System Calls
8(8)Miscellaneous
9(9)Domains and Grids
b(b)BLAS

x(x)X Window System Tools
n(n)Nonlinear Solvers

no default sections

Finally, xman displays a help page when it starts. To change the file, use the ~helpfile argument and
provide a simple text file (not a man) page.

8 Installing doctext

The doctext program is part of the PETSc package of tools for scientific computing, but can be installed
without installing all of PETSc¢. The program is available from ‘info.mcs.anl.gov’in ‘pub/petsc/textpgn.tar.Z’.
Directories and files such as ‘refman.sty’ referred to in this manual are provided in this implementation
and may be found in the installation.

Please send any comments to petsc-maint@mcs.anl.gov.

¥

Acknowledgment

The author thanks Lois Curfman McInnes and Barry Smith for their careful reading and vigorous use of the
doctext manual and program and Ewing Lusk for valuable suggestions about additional functionality.

References

(1] William Gropp. Users manual for bfort: Producing Fortran interfaces to C source code. Technical
Report ANL/MCS-TM-208, Argonne National Laboratory, March 1995.

[2] William Gropp. Users manual for tohtml: Producing true hypertext documents from LaTeX. Technical
Report ANL/MCS-TM-207, Argonne National Laboratory, March 1995.

[3] Donald E. Knuth. The web system of structured documentation. Technical Report 980, Computer Science
Department, Stanford University, September 1983.

(4] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley, 1986.

11

