

Ling-Lie Chau
 Physics Department
 Brookhaven National Laboratory
 Upton, New York
 UNITED STATES

MASTER

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any representation, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, process, or publication referred to in this report. Such information may be protected by copyright. It is the intent of the copyright owner to encourage and promote scientific reproduction for educational, research, and similar non-commercial purposes provided the source is cited. The copyright owner makes no license available for other kinds of reproduction without specific permission.

ABSTRACT

The characteristics of a totally integrable system for the self-dual Yang-Mills equations are pointed out: the Parametric Bianchi-Bäcklund transformations, infinite conservation laws, the corresponding linear systems, and the infinite dimension Kac-Moody algebra.

Introduction

It has become increasingly clear that, besides its mathematical beauty, the Yang-Mills theory^{1]} may provide the key to our understanding of strong interactions. Despite many interesting theoretical and phenomenological observations such as confinement, asymptotic freedom^{2]}, QCD (quantum chromodynamics) perturbative studies and lattice numerical analysis^{3]}, the non-Abelian gauge theory is far from being solved.

In the past few years, with many colleagues of mine, we have investigated whether the beautiful and powerful techniques developed in solving the many so-called totally integrable systems in two dimensions can be used to solve the Yang-Mills fields in four dimensions. We have found, using the J formulation, that the self-dual Yang-Mills fields strikingly possess many of the characteristics of a totally integrable system^{4,5]}. The parametric Bianchi-Bäcklund transformations^{6]}, infinite conservation laws^{7]}, and the corresponding linear systems^{4,5,8]}. Recently we have added a new entry, the infinite-dimensional Lie algebra for the "hidden symmetry" of the self-dual Yang-Mills (SDYM) fields^{9,10,11]}. It is the Lie algebra $sl(N, \mathbb{C}) \otimes \mathbb{C}(\lambda, \lambda^{-1})$ for the gauge group $SL(N, \mathbb{C})$, and a symmetric-space over the subalgebra $su(N) \otimes R(\lambda)$ for the real gauge fields of $SU(N)$.

As for the full Yang-Mills system, it was hoped that similar progress can be made after the beautiful loop-space chiral equation was formulated for the Yang-Mills fields. However there have been many difficulties and not much progress has been made⁵].

Because of limitation of space, in the following I shall mainly list the results.

I. The J Formulation of SDYM Field in Complexified E^4 Space.

In the complexified E^4 space, $\sqrt{2}y = x_1 + ix_2$, $\sqrt{2}\bar{y} = x_1 - ix_2$, $\sqrt{2}z = x_3 - ix_4$, $\sqrt{2}\bar{z} = x_3 + ix_4$. The self-dual Yang-Mills equations $F_{\mu\nu} = 1/2 \epsilon_{\mu\nu\rho\sigma} F_{\rho\sigma}$, are

$$F_{yz} = 0 = F_{\bar{y}\bar{z}}, \quad F_{y\bar{y}} + F_{z\bar{z}} = 0.$$

The first two equations imply that the gauge potential A_μ can always be written in the following form

$$A_y = D^{-1} \partial_y D, \quad A_z = D^{-1} \partial_z D, \quad A_{\bar{y}} = \bar{D}^{-1} \partial_y \bar{D}, \quad A_{\bar{z}} = \bar{D}^{-1} \partial_z \bar{D}.$$

For the gauge group $SL(N, C)$, $\det D = \det \bar{D} = 1$. For real $SU(N)$ potentials A_μ , one can show that D and \bar{D} are related, in real coordinate space, as $D^\dagger = \bar{D}^{-1}$. Defining a matrix J by

$$J \equiv D\bar{D}^{-1}, \quad (1.1)$$

which can be shown to be gauge invariant, and $\det J = 1$ for the gauge group $SL(N, C)$, and that J can be made Hermitian, $J^\dagger = J$ in the real coordinate space for real $SU(N)$ gauge fields. Now the SDYM equation can be written as

$$B_y \equiv J^{-1} \partial_y J, \quad B_z \equiv J^{-1} \partial_z J, \quad \text{and} \quad (1.2a)$$

$$\partial_{\bar{y}} B_y + \partial_z B_{\bar{z}} = 0, \quad (1.2b)$$

which we call the left SDYM-J equation; or equivalently the SDYM equation can be written as

$$\hat{B}_y \equiv J \partial_{\bar{y}} J^{-1}, \quad \hat{B}_{\bar{z}} \equiv J^{-1} \partial_z J \quad \text{and} \quad (1.3a)$$

$$\partial_y \hat{B}_{\bar{y}} + \partial_z \hat{B}_{\bar{z}} = 0, \quad (1.3b)$$

which we call the right SDYM-J equation.

II. Two Parameter Bianchi-Bäcklund Transformation.

One can easily show that the following transformation is a Bianchi-Bäcklund transformation

$$J^{-1} \partial_y J - J'^{-1} \partial_y J' = e^{i\alpha} \partial_{\bar{z}} (J^{-1} J'), \quad (2.1)$$

with the algebraic constraint $J'J^{-1} - J^{-1}J = BI$, and α, β real, i.e. if J satisfies Eqs. (1.2, 1.3) so does J' .

III. Infinite Non-local Conservation Laws

Consider B_y and B_z of Eqs. (1.2, 1.3) being the first conserved currents,

$$v_y^{(1)} \equiv B_y = \partial_{\bar{z}} \chi^{(1)}, \quad v_z^{(1)} \equiv B_z = -\partial_{\bar{y}} \chi^{(1)}, \quad (3.1)$$

$\chi^{(1)}$ exists because Eqs. (1.2, 1.3). From this first current we can generate infinite number of them by the following iterative procedure

$$v_y^{(n+1)} = \mathcal{D}_y \chi^{(n)}, \quad v_z^{(n+1)} = \mathcal{D}_z \chi^{(n)}. \quad (3.2)$$

IV. The Linear System for the SDYM Fields

From the infinite non-local conservation law given in Section III, we can obtain the following linear differential equations

$$\partial_{\bar{z}} \chi = \lambda \mathcal{D}_y \chi \equiv \lambda (\partial_y + J^{-1} \partial_y J) \chi; \quad (4.1a)$$

$$-\partial_{\bar{y}} \chi = \lambda \mathcal{D}_z \chi \equiv \lambda (\partial_z + J^{-1} \partial_z J) \chi. \quad (4.1b)$$

The integrability of these equations gives the left SDYM equations of motion Eq. (1.2). Similarly, for the right SDYM equations Eq. (1.3) we have

$$\partial_x \hat{\chi} = -\frac{1}{\lambda} \mathcal{D}_{\bar{y}} \hat{\chi} = -\frac{1}{\lambda} (\partial_{\bar{y}} + J \partial_{\bar{y}} J^{-1}) \hat{\chi}, \quad (4.2a)$$

$$\partial_y \hat{\chi} = \frac{1}{\lambda} \mathcal{D}_{\bar{z}} \hat{\chi} = \frac{1}{\lambda} (\partial_{\bar{z}} + J \partial_{\bar{z}} J^{-1}) \hat{\chi}. \quad (4.2b)$$

V. The Kac-Moody Algebra for the Self-Dual Yang-Mills Fields

V.1) The Case of $SL(N, \mathbb{C})$ SDYM Fields

We introduce the following two infinitesimal parametric transformations for the J -field

$$\delta_\alpha(\lambda) J = \alpha_a \delta_a(\lambda) J = -J \chi(\lambda) T_\alpha \chi(\lambda)^{-1} = \sum_{m=0}^{\infty} \lambda^m \alpha_a \delta_a^{(m)} J, \quad (5.1)$$

$$\hat{\delta}_a(-\frac{1}{\lambda}) J = \alpha_a \hat{\delta}_a(-\frac{1}{\lambda}) J = \hat{\chi}(-\frac{1}{\lambda}) T_\alpha \hat{\chi}(-\frac{1}{\lambda})^{-1} J = \sum_{m=0}^{\infty} \lambda^m \alpha_a \hat{\delta}_a^{(m)} J, \quad (5.2)$$

where $T_\alpha \equiv \alpha^a T_a$, α^a 's are infinitesimal parameters and T_a 's are traceless anti-Hermitian matrices satisfying

$[T_a, T_b] = C^c_{ab} T_c$ with C^c_{ab} the structure constants of $su(N)$. For complex α , T_α span the Lie algebra $sl(N, \mathbb{C})$, and for real α , T_α span the Lie algebra $su(N)$. Using Eqs. (4.1, 4.2), it is

easy to show that $J + \delta_\alpha J$, $J + \widehat{\delta}_\alpha J$ satisfy the self duality equations, Eqs. (1.2, 1.3) respectively. Moreover, it follows from $T_r(T_a) = 0$ that $\det(J + \delta_\alpha J) = 1 = \det(J + \widehat{\delta}_\alpha J)$. Therefore, these transformations are infinitesimal Bäcklund transformations. We can actually show that they satisfy the same Bäcklund transformations constructed previously in Ref. [6], as given in Section II.

After lengthy calculations, we can derive the following infinite algebraic relations

$$[\Delta_a^{(k)}, \Delta_b^{(\ell)}]_J = -c_{ab}^c \Delta_c^{(k+\ell)}_J, \quad -\infty \leq k, \ell \geq \infty, \quad (5.3)$$

where

$$\Delta_a^{(k)} = \delta_a^{(k)}, \text{ for } k > 0; \quad \Delta_a^{(k)} = \delta_a^{(0)} + \widehat{\delta}_a^{(0)}, \text{ for } k = 0; \text{ and}$$

$\Delta_a^{(k)} = (-)^k \widehat{\delta}_a^{(-k)}$, for $k \leq 0$. This is the now well-known Kac-Moody algebra $sl(N, C) \otimes C(\lambda, \lambda^{-1})$. The important point to note is that it lacks the center of the algebra, which is of the form $c\delta_{ab}\delta_{k,-\ell}$, where c is a constant.

Since the indices m, n in Eq. (5.3) cover all integers, we can re-sum it into a single commutator in the complementary variables θ and θ' . Multiplying both sides of Eq. (5.3) by $e^{im\theta} e^{in\theta'}$, and summing, with the definition

$$Q(\theta) \equiv \sum_{m=-\infty}^{\infty} e^{im\theta} Q_a^{(m)}, \text{ we obtain}$$

$$[Q_a(\theta), Q_b(\theta')] = c_{ab}^c Q_c(\theta) \delta(\theta - \theta'), \quad (5.4)$$

where the variable θ can be identified as (for unimodular λ) $e^{i\theta} = \lambda$, the CP^3 parameter [5, 8].

V.2) The Case of Real $SU(N)$ SDYM Fields

For J Hermitian and α_a real, we see that δJ , $\widehat{\delta} J$ give new $J' \equiv J + \delta J$, $\widehat{J}' = J + \widehat{\delta} J$ respectively with $\det J' = 1 = \det \widehat{J}'$; but J' , \widehat{J}' are not Hermitian. From the condition $\widehat{\chi}^{-1}(\bar{\lambda}) = \chi^\dagger(-1/\lambda)$ we can easily show $[\delta(-1/\lambda)J]^\dagger = \delta(\bar{\lambda})J$, therefore we can form two Hermitian transformations

$$\delta_a^{(+)}(\lambda)J \equiv \delta_a(\lambda)J + \widehat{\delta}_a(-1/\lambda)J = \sum_{k=0}^{\infty} \lambda^k \delta_a^{(k)} J, \quad (5.5)$$

$$(-) \quad \delta_a^{(-)}(\lambda)J \equiv i[\delta_a^{(+)}(\lambda)J - \delta_a^{(-)}(-1/\lambda)J] = \sum_{k=0}^{\infty} \lambda^k \delta_a^{(-)(k)} J, \quad (5.6)$$

where J is restricted to be Hermitian. After lengthy derivation we find the algebra

$$\begin{aligned} (+)(m), (+)(n) &= c_{ab}^c d_c^{(m+n)}, \\ (+)(m), (-)(n) &\equiv c_{ab}^c d_c^{(-)(m+n)}, \quad 0 < m, n < \infty \quad (5.7) \\ (-)(m), (-)(n) &= c_{ab}^c \sum_{k=0}^{(m+n)} a_k d_c^{(+)(k)} \end{aligned}$$

where

$$(+)(0) \equiv (+)(0), \quad (+)(1) \equiv (+)(1), \quad \text{and} \quad [(+)(m), (+)(1)] \equiv c_{ab}^c d_c^{(\pm)(m+1)}$$

and the coefficients a_k are completely determined in the calculation.

So we see that $d_a^{(+)(m)}, d_b^{(-)(n)}$ form a symmetric space-like algebra over the $\text{su}(N) \otimes R(\lambda)$; or it can be viewed as the Z_2 graded Lie algebra $[\text{su}(N) \otimes R(\lambda)] \oplus [\text{su}(N) \otimes R(\lambda)]$, where in $R_0(\lambda)$ the constants are not included. We can give still another description of this algebra. Using the fact that $(\Delta_a^{(k)} J)^\dagger = (-1)^k \Delta_a^{(-k)} J$ for real gauge fields, or by using the commutation relations (5.7), it can be shown that this algebra is given by $\text{su}(N) \otimes C_R(\lambda, \lambda^{-1})$. $C_R(\lambda, \lambda^{-1})$ is a subalgebra of $C(\lambda, \lambda^{-1})$, consisting of the polynomials invariant under the anti-linear transformations σ , ($\sigma^2 = 1$), defined by $\sigma(\sum a_k \lambda^k) = \sum (-1)^k \bar{a}_k \lambda^{-k}$. $C_R(\lambda, \lambda^{-1})$ is the algebra over the real numbers generated by $(\lambda^k - (-\lambda)^{-k})$ and $i(\lambda^k - (-\lambda)^{-k})$, $k \geq 0$. Thus the algebra $\text{su}(N) \otimes C_R(\lambda, \lambda^{-1})$ for real SDYM fields can be viewed as a real form of the complex Kac-Moody algebra $\text{sl}(N, \mathbb{C}) \otimes C(\lambda, \lambda^{-1})$.

ACKNOWLEDGMENTS

I would like to thank my colleagues, Ge Mo-lin, A. Sinha and Wu Yong-Shi for their collaborative efforts in this pursuit.

The submitted manuscript has been authored under Contract No. DE-AC02-76CH00016 with the U.S. Dept. of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

REFERENCES

- 1] C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 191.
- 2] G. 't Hooft, Nucl. Phys. B33 (1971) 173, and private communication. H.D. Politzer, Phys. Rev. Lett. 30 (1973); D.J. Gross and F.A. Wilzcek, Phys. Rev. Lett. 30 (1973) 1343; H.D. Politzer, Nucl. Phys. B129 (1977) 301.
- 3] K. Wilson, Phys. Rev. D10 (1974) 2445; A.M. Polyakov, Phys. Lett. 59B (1975) 82; G. 't Hooft, Phys. Rev. D14 (1976) 3432. For recent work, see M. Creutz, Phys. Rev. Lett. 43 (1979); M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D20 (1979) 1915.
- 4] For reviews on the subject, see Ling-Lie Chau Wang, "Bäcklund Transformations, Conservation Laws and Linearization of Self-Dual Yang-Mills and Chiral Fields", Proc. of the Guanzhou (Canton) Conference on Theoretical Particle Physics, Guanzhou, China, 1980; Proc. Int'l. School of Subnuclear Physics, Erice, 1980; Proc. of Int'l. Workshop on High Energy Physics, Protvino, Serpukov, U.S.S.R., 1980.
- 5] For recent progress, see Ling-Lie Chau, "Comments on the Linear Systems for the Self-Dual Yang-Mills Fields", "Is Yang-Mills Equation a Totally Integrable System?", and "A Systematic Framework of Generating Multi-monopole Solutions", Lectures at the 18th Winter School of Theoretical Physics, Karpacz, Poland, 1981.
- 6] M.K. Prasad, A. Sinha and L.-L. Chau Wang, Phys. Rev. Lett. 43 (1979) 750.
- 7] M.K. Prasad, A. Sinha and L.-L. Chau Wang, Phys. Lett. 87B (1979) 237.
- 8] K. Pohlmeyer, Comm. Math. Phys. 72 (1980) 37; L.-L. Chau, M.K. Prasad and A. Sinha, Phys. Rev. D24 (1981) 1574.
- 9] L.-L. Chau, M.-L. Ge and Y.-S. Wu, Phys. Rev. D23 (1982) 1086.
- 10] L.-L. Chau, Y.-S. Wu, "More About Hidden-Symmetry Algebra for the Self-Dual Yang-Mills Systems", BNL-Princeton preprint, 1982.
- 11] L.-L. Chau, M.-L. Ge, A. Sinha, Y.-S. Wu, "Hidden Symmetry Algebra for the Self-Dual Yang-Mills Equations", BNL-Lanzhou-Ohio-Princeton preprint, 1982.