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ABSTRACT

Neoclassical magnetohydrodynamic (MHD) effects can significantly alter the
nonlinear evolution of resistive tearing instabilities. This is studied numerically by
using a flux-surface-averaged set of evolution equations that includes the lowest-
order neoclassical MHD effects. The new terms in the equations are fluctuating
bootstrap current, neoclassical modification of the resistivity, and neoclassical
damping of the vorticity. Single-helicity tearing modes are studied in a cylindrical
model over a range of neoclassical viscosities (. /ve) and values of the A’ parameter
of tearing mode theory. Increasing the neoclassical viscosity leads to increased
growth rate and saturated island width as predicted analytically. The larger island
width is caused by the fluctuating bootstrap current contribution in Ohm’s law.
The A' parameter no longer solely determines the island width, and finite-width
saturated islands may be obtained even when A' is negative. The importance of
the bootstrap current (~8p/8¢y) in the nonlinear dynamics leads us to examine the

sensitivity of the results with respect to different models for the density evolution.



I. INTRODUCTION

The single-helicity nonlinear behavior of resistive tearing instabilities'? has been
an important ingredient in understanding the disruption physics and plasma con-
finement properties of tokamaks.?* It is therefore of significant interest to extend
the analysis of such instabilities from tlie low-temperature, resistive regime into
the high-temperature, long-mean-free-path regime characteristic of most present
experiments. This has recently become possible with the developmenti~"of a set
of neoclassical magnetohydrodynamic (MHD) equations, which extend the widely
used resistive MHD model from the Pfirsch-Schliiter collisionality regime to the
experimentally relevant banana-plateau regime. These equations include a num-
ber of new phenomena that are unique to the long-mean-frec-path regime, such
as the fluctuating bootstrap current contribution to Qhm’s law, the enhanced (by
B?/B}) polarization drift and perpendicular dielectric constant, and the rapid vis-
cous damping of the poloidal ion flow velocity. In this report, we discuss the first
numerical calculations of tearing instabilities using these equations.

Nonlinear tearing mode evolution for the small-island-width regime has recently
been calculated analytically by using simplified neoclassica]l MHD equations.®*®
These are generally based on cylindrical flux-surface-averaged tokamak models with
the primary neoclassical MHD effect being the fluctuating bootstrap current in
Ohm’s law. They are limited to island widths that are large relative to the sin-
gular layer width (so that inertial effects contained in the vorticity equation are
unimportant) but small relative to the resonant surface radius. An enhancement
in the island width is found along with a new nonlinear growth regime where the
island width increases at a t!/2 rate. This regime exists between the exponential
and Rutherford! linear growth stages.

The model used in this paper is also based on a flux-surface-averaged set of neo-
classical MHD equations,3® which are solved in a cylindrical tokamak geometry. In
addition to the fluctuating bootstrap current, the neoclassical modification to the
resistivity and viscous damping in the vorticity equation are included; however, we
find that the latter two terms are not generally as important as the bootstrap cur-
rent. These equations are evolved in time by using the mostly explicit version of the
KITE initial value code.!® Both the exponential, neoclassical (~¢'/?), Rutherford
and fully nonlinear regimes can be examined. In addition to the flux and vorticity

equations, the numerical calculation includes a density evolution equation. This



equation does not include any nenclassical MHD effects directly, but it has an im-
portant influence on the neoclassical tearing mode evolution through the bootstrap
current term in Ohm’s law. In this paper, we consider two models of the density
evolution: convection alone and and convection with parallel diffusion along field
lines. Also, in both models a small level of perpendicular density diffusion is present
for numerical stability purposes.

The basic parameter that determines the strength of the neoclassical MHD
terms in our equations will be the ratio of electron viscosity to collision frequency
(te/ve). In the low-frequency banana regime, p./ve > 2.3/ ~ 1; in the platean
regime, fe/Ve = v/€/Vae (Vue = V€~ 3/2Roq/vin,e). In the collisional Pfirsch-Schliiter
regime, p./ve — 0. Thus, we typically vary p./ve over the range from 0 to 1. At
mo lzrate values of the neoclassical electron viscosity parameter (0 < pe/ve < 0.4),
both density evolution models indicate an increase in the saturated island width
with increasing p./ve.. At higher values (0.5 < pe/ve < 1), the island width behavior
becomes more sensitive to the density model. For the case with convection only,
the width may fail to attain a saturated value or become practically independent
of pe/ve. When parallel diffusion is present, the island width continues to increase
at the higher values of p./v. but eventually levels off near p./v. ~ 1. Both models
tend to give saturated island widths that are smaller than the analytic calculations
at large values of p./v. but that are still significantly larger than the p./v. = 0
case. This difference was expected because of the assumptions of small island width
in the analysis.

In addition to the dependence on p./v,, a second feature of neoclassical tearing
modes, which is of interest, is the dependence on A'. For linear tearing mode
stability, the energy §W is directly proportional to A' [defined following Eq. (16)].
With neoclassical MHD, linear instability and finite saturated islands are possible
with A’ both positive and negative. We consider a range of A’ values here by varying
q(0) (central g value) and find that unstable tearing mode growth and saturation
can easily be obtained for A' < 0 cases that would otherwise be stable without
neoclassical MHD.

The outline of this paper is as follows. Section II presents the analysis and basic
equations used in the numerical calculations and describes the density evolution
models. In Sec. IlI, the numerical results for the various models are presented

and compared with the analytical results. A conclusion and summary are given in

Sec. IV,



II. TIME-EVOLUTION EQUATIONS

The basic equations underlying the calculations of this paper are the neoclassical
moment enuations®® for the electron density n., poloidal flux ¥, velocity stream
function ¢, and parallel ion velocity Vj;. These equations, given below in mks units,
result from using the electron continuity equation, Ohm’s law, and the perpendicular

and parallel ion momentum equations:

Be = (neine) - (B9 [2 (- L)) o
_%%ﬁtﬁ=_%?_(E.V7)(¢—%1nn,)+eie1§-(v7-ﬁn,) o (2)
v . [%';—'ﬁx (gt-+ﬁ'g : 6)17“] =—(B - ﬁ)(%‘l) -V (—Bliﬁxﬁp)
s (5 sz-ﬁ“,> | -
om (g5 + 729 ) (ViB) = (B - p = B (9 -1y . (4)
where

7
— E =, Ts
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B=FV¢ +Vy x V(¢ ,
Pm = n;m; is the ion mass density.

The viscous stress terms in Eqs. (1)-(4) may be related to the neoclassically
driven pressure anisotropy. This is given by (b = B/B)

Iy = (py — po)(6b— 1/3) (5)

where p; — p, for species s may be expressed in terms of the viscous damping
frequency p,, the magnetic field B, mass density n,m,, and flow velocity V, as

follows:
m,n,p,(Bz)

((b- VB)2)
3

<

(py —PL)s = — (Vs - Vin B) (6)



with 81n B
V,-YInB = Ug(b-VB) + V"an”

and

) = o = “?lnn,
Us T B B 5y ¢+q. nn

Equations (1)-(4) are inherently three-dimensional (3-D) and contain significant
toroidal couplings through the neoclassical MHD terms (i.c., from the b.VB and

V0 Via _F_-a_( T )

O1n B/8r coeflicients in the viscous stress terms). These couplings are of impor-
tance for unfavorable curvature-pressure-gradient-driven instabilities, as discussed
elsewhere.!! However, for current-gradient-driven tearing instabilities, it is reason-
able as a first step to reduce these equations to a cylindrical geometry to avoid the
complexity of fully toroidal, nonlinear calculations. This can be accomplished by
performing a flux surface average of each evolution equation. The averaged neoclas-

sical parallel and cross viscous stress terms then become in cylindrical geometry:

<E"7'ﬁn> = mynap, (B*) Uss (7)
and 1 18 10
<V . (——2-B x V. H||)>‘ x~ ;5:(7‘0,‘/0,) - ;56(05.‘/?‘!) ) (8)
where
m,napu,(B?)

a, = = = ’
2Bo((h - VB)?) B3

Ry and B, are the major radius and magnetic field at » = 0, and the angle brackets
(-..) indicate a flux surface average. Here, an (7,6, ¢) cylindrical coordinate system
is used, where r (0 < r < a) is the radial coordinate, a is the radius of the cylinder,
@ is the poloidal angle, and ( is an angle-like coordinate such that { = 2rz/L, where
z is the coordinate along the axis of the cylinder of length L = 27 R,.

We further simplify Eqs. (1)-(4) by assuming rapid damping of the ion poloidal
flow relative to the tearing instability time scale (i.e., (E -6-ﬁ"i) ~ 0). This results

in the following equations for V); and V|, in terms of the potential ¢ and parallel
current Jy:

9¢

‘/lli = —Row ) (9)
0 J
Vie=-Ragf - L. (10)

The Vj; evolution equation (4) then does not need to be retained and can be replaced
by Eq. (9). Also, we take T} = 0 (except that u; is kept finite), T. = constant, and
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approximate F ~ RyB,, (B?) ~ B3, R ~ Ry, and Jy =~ J¢, as is appropriate to
cylindrical geometry. The three equations for $,U {= V | - (pegV 1 $)], and p,, (mass

density) are then given in nondimensional form as

?}-ﬁ - y -1 l"e/Ve) 3 (te/ve)Bo 5;;)

ot ~Vig+S (neq + OePeg Je+ 2¢2Spegac \ OY ’ (11)
U _ - - o (BiTHP)Peg @ %G i
5= (U, 8] -V J¢ + E;’rz g 555 + R;'VAU (12)

8pm 1dp. 6(;5 - 3 ~1¢72 - 2~
8t T drq a0 + [Pm, 8] + R,V pm + X"PVIIP'" ’ (13)

where a. is the Spitzer resistivity coefficient (taken as 0.506 here), S = 7r/THp, Bo
is the plasma beta at r = 0, 7p = poa?/no, THp = Ro/va,

18286 18a0b 1 ar (8 18\3 44
— - — — = . = —_— e ———— — fl
-000r 7or000 M= VS (ac qae)f SRR

and variables with subscript “eq” are equilibrium while those with a tilde “ ~ ” over

la,b] =

them are perturbations from the equilibrium. If neither is present, then the variable
is the sum of the equilibrium and perturbed components.

Perpendicular diffusion terms are present in each of the three equations, as is
appropriate to classical dissipative processes. In the density equation, the coefficient
of the perpendicular diffusion term will generally be larger than its classical value for
the purpose of numerical stability (i.e., if this equation becomes purely convective,
then grid separation problems arise). However, the coefficient R;l is kept at a
level of diffusion that is still much slower than the instability time scale and should
not significantly modify the time-evolution characteristics. The parallel diffusion
term (x);,) in the density evolution equation is a phenomenological loss term used
to simulate rapid losses along field lines within a magnetic island. The coefficients
Ral, R;l, and x|, are normalized to a?/THp, where a is the minor plasma radius.
All times are normalized to T4y, V|| is normalized by Ry, V 1 is normalized by a, 7
is normalized to a, the resistivity to no (its value at » = 0), J; to B¢o/poRo, ¢ to
a?Bo/THp, ¥ to a®By, and the vorticity U to pu,(r = 0)By/Typ.

The neoclassical electron viscosity coefficient is normalized to the electron col-
lision frequency (u./ve) and typically ranges from 0 (Pfirsch-Schliiter regime) to
2.34/¢ (banana regime). The neoclassical ion viscosity (normalized to Tfr,) may be

expressed approximately in terms of p/v, as



2, .2

m; €W

~ 0.2 1/-——-‘——“"
#:THP 0 87(ue) me aeS b]

The initial condition for the code is based on an exact velocity-free equilibrium
solution of Egs. (11)-(13). For such a state, ¢ = U = 0, and J¢ ., and ., are
obtained from an assumed equilibrium g profile, which is modeled as

where weyi = WeiTHp.

q(r) = g0 [1 + (%)ZA]W , (14)

with go, A, and ry as variable parameters. The relations 8y.,/8r = -7/q(r) and
J¢eq = V2 14 are then used for J¢ eq(r) and eq(r). The equilibrium density profile
is .

Peg(r) = (1= po) (1 — )P +po
with pg as the edge density. \

The fluctuating bootstrap current [ﬁnal térm in Eq. (11)] is expressed by using
a Taylor expansion as follows:

5;’_1;. ~ (a¢eq - 0pm n (a"pcq apeq a¢ + ¥ a¢ aPm. (15)
&y ~ \ Or or or “6r O6r ' Br Or ' ‘

Here the equilibrium component has been subtracted out. The validity of this

expansion has been checked, indicating that the last two terms cause only minor

modifications to the island evolution.

III. NUMERICAL RESULTS

Equations (11)-(13) are solved in a cylindrical (r,8,() coordinate system by
using Fourier expansions in # and { with mode numbers m and n, respectively. The
radial coordinate 7 is treated by using a finite difference grid. The equations are
then evolved in time by using the mostly explicit algorithm in the KITE code.!®
Parameters that remain fixed for these calculations are the magnetic Reynolds num-
ber, § = 105; the density and vorticity diffusion coefficients, R;l =2x10"% and
Rfjl = 1075; the ion cyclotron frequency parameter, weyi = weiThp = 30; the inverse
aspect ratio, € = 0.25; the central plasma, §y = 0.02; the edge density, py = 0.5;
the q profile parameter, 7y = 0.56; and the helicity, m/n = 2. We typically use
a set of 8 modes [(m/n) = (0/0), (2/1), (4/2), (6/3), (8/4), (10/5), (12/6), and
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(14/7)] in the numerical calculations with 200 radial grid points. A profile factor
[1 - exp(—72/r2)] is introduced into the neoclassical viscosities to give the expected
r? behavior near » = 0 and a constant value away from the central region. We have
taken rp, = 0.25 here.

Before presenting the numerical results, we briefly review the analytic theory®®
of neoclassical tearing modes. The predicted island evolution at times between the

exponential growth phase and saturated nonlinear regimes is described by

aw  1.66n(r,) [ ., W CyLypBp (p.,
dt S n(0) [Am"(w) m r? + WL, \v. ’ (16)
where Cy ~ 4.7, W is the island width,
. (dyY dyp -
' = mn _ mn 1
Amn = }T}) ( dr \r, dr r..) mn(ra)I™
Q("'a) = m/n,
-1 _ ldg
Lq . qdr r,,
1 _|ldp
LP - lp d”‘ r, ’
2uop
ﬂ = "npo )
P B Ir,

r, = radius of resonant ¢ = m/n surface, and r. =r, £ 6.
The island width and radial positions r and r, have been normalized to a, the minor
radius. The time is normalized to Ty, the Alfvén time. The first two terms in the
brackets are the conventional resistive tearing mode island growth terms.}? The
third term is the contribution of fluctuating bootstrap current to island growth.
Equation (16) is applicable for island widths in the range r,n"1/38-'/3 < W <« r,.
The function A}, (W) — m?W/rZ can typically be approximated as > Ag(l —
W/W,as) with W,,, being the saturated island width without neoclassical MHD
effects and Ay being the discontinuity in the radial derivative of the flux function
at the singular surface with infinitesimal island width. For example, if we choose
ro = 0.56, ¢(0) = 1.34, and m/n = 2, then for A =1 and A} ~ 10.7, W,,, ~ 0.116;
for A =2 and A ~ 13.8, W,q: ~ 0.264.

The neoclassical MHD saturated island width is obtained by setting dW/dt = 0
in Eq. (16) and solving for W:

_ W.ut 4 _gb—Lq &g. 1/2
W(t — o0) = — {1 + [1 WAl L,,ﬂ" (V)] : (17)




The preceding limit indicates that the island width should increase monotonically
with increasing pu./v.. The time evolution prior to reaching saturation is also of
interest. If pe/ve < 1, then

W(t) = Weat + exp[—1.66n(r,)A{,t/17(0)SWut] [_Wnat + W(O)] (18)
~ J W(0)+ lg-ﬁ-’;((:)'))A:,t, for W(t) « W,ai; (19)
Woat for t — oo,

where W(0) is the initial ({ = 0) island width.

For cases where the neoclassical term dominates, a different scaling with time

results®®:
~ 2 7(rs) CvLqfp He 1"
Wi(t) ~ [W (0) + 3.32——n(0) —_SLP (Ve) t] . (20)

Thus, the island growth at times between the exponential (linear) growth phase and
saturated states can be characterized [if W(0) is small] by a scaling that is propor-
tional to ¢ (neoclassical MHD absent) or to t!/2 (neoclassical MHD dominant).

Alternately, Eq. (16) can be integrated numerically in time, as shown in Fig. 1a
for A = 2, ¢(0) = 1.34 [W(0) = 0.04] and in Fig. 1b for A = 1, ¢(0) = 1.34
[W(0) = 0.025] over a range of u./v. values. As expected, the saturated island
width steadily increases with increasing u./ve. The slopes for the ¢t and 11/2 scalings
are indicated here as a guide. These are not followed for any sizable interval of time
because (a) at early times the effect of W(0) can be significant, (b) the drive for
island growth is usually a mixture of neoclassical and A' effects, and (c) at later
times W (t) is no longer <« W,q;. These figures are based on the same parameters
[i.e., W(0), Bp, ro, g(0), €] and are plotted on the same scales as the following 3-D
numerical results to provide a basis for comparison with the analysis.

Figure 2 shows results from the numerical solution of Eqs. (11)~(13). Here we
have removed a section of the early time evolution because it tends to be noisy
and have shifted the various runs in time so that they all start at the same island
width at a fixed time. Figure 2(a) is for an equilibrium with a g profile of A = 2,
g(0) = 1.34, and Fig. 2(b) is for A = 1, g(0) = 1.34; these are based on the first
density evolution model, which includes only convection (i.e., x), = 0). The time
evolution characteristics for times intermediate between the early and saturated
regimes suggest a weaker growth for the neoclassical cases, closer to the ¢!/2 scaling.

The saturated island width increases with p./ve up to a certain point and then



tends to become independent of u./v.. Following the evolution further in time for
the higher values of u./v, (> 0.5) indicates that a steady state is not generally
achieved and that the island width begins decreasing in time. Such behavior is
caused by quasilinear modifications of the g profile, resulting in an inward movement
of the resonant surface; this leads to a decreasing island width due to variations in
the pe/ve profile factor and A' near the center. However, such longer time scale
behaviors are beyond the realm of the present model and are not considered further
here.

In some cases in Fig. 2, the island width evolution with neoclassical MHD is
somewhat uneven and nonmonotonic. This feature is caused by the strong coupling
to the convective density evolution through the fluctuating bootstrap current term.
The convective transport moves density into and out of the resonant surface on
a time scale that ie separate from that of the island evolution. The interaction
between these processes can interfere with smooth island evolution.

The A = 1 neoclassical MHD results presented in Fig. 2(b) show a proportion-
ately larger departure from the p./v. = 0 limit than the A = 2 cases of Fig. 2(a).
The cause for this can be seen from Eq. (17), in which A} and W,,; appear in
the denominator of the neoclassical term; as they bécome smaller (as is the case in
going from A = 2 to A = 1), neoclassical MHD has a relatively greater impact.

The second density evolution model considered here has both convection and
parallel diffusion and is expected to yield results closer to those of the analytical
model,®? in which a perfectly flat density profile was assumed in the island region.
For the values of xj, used in these calculations (x, = 0.57y,), the density in the
island region is relatively flat and the 2/1 helical projection of constant density
contours tends to follow that of the flux contours. Helical flux and density contours
(with x), = 0 and with xj, = 0.57y;) are illustrated in Figs. 3(a) through 3(c).
As can be seen, the density contours with x|, = 0.57y, [Fig. 3(c)] have an island
structure closer to that of the helical flux contours [Fig. 3(a)] than to those with
Xllp = 0 [Fig. 3(b)], which exhibit convective cell regions, as would be expected.

The convective and parallel diffusion density model gives an island time evolu-
tion as shown in Fig. 4 for A = 2 and ¢(0) = 1.34." The time evolution is generally
smoother than for the convection-only cases of Figs. 2(a) and 2(b) because the den-
sity equilibrates on a more rapid time scale than the island evolution. These results
again show a trend toward the slower t!/? scaling for the larger values of u./v. at
intermediate times (70 < ¢/7y, < 500) between the exponential growth phase and

the saturated nonlinear regime. The saturated island widih continues to increase
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with e /v, up to ue/ve = 1, in contrast to the results of Figs. 2(a) and 2(b). Appar-
ently, the bootstrap current is not causing any significant quasilinear modifications
to the q profile, as was the case in the convection-only results of Figs. 2(a) and 2(b);
also, the density profile in the island region is relatively stationary because of the
high level of parallel diffusion.

Figure 5 compares the prediction of Eq. (17) for the dependence of saturated
island width on u./v. with the results of Figs. 2(a) and 4 for A = 2. To avoid
ambiguity, we have simply used the maximum isiand width achieved in the numerical
calculations. As mentioned earlier, a true steady state is not always present for the
higher values of p./v, in Fig. 2(a). The results of the density evolution model
with parallel diffusion and convection are closer to the analytical prediction than
those obtained with density convection alone. This would be expected because the
resulting evolved density profile is closer to that assumed in the analysis underlying
Eq. (17). Both models indicate a leveling off in island width at the higher values
of pe/ve. Such deviations at large island widths are due to nonlocal effects and
the presence of a conducting wall in the numerical calculations. These effects are
not taken into account in the analysis (which is valid for island widths that are
small relative to the radius of th:’: resonant ¢ = m/n surface, which ~ 0.6 for the
parameters of Fig. 5), so it is npt surprising that the analytical and numerical
calculations begin to diverge here.

One further parameter dependence of interest for neoclassical tearing instabili-
ties is that with respect to A}, the discontinuity in 8y /8r at the resonant surface in
the limit of zero island width [defined in association with Eq. (16)). The perturbed
energy W of conventional linear tearing modes is proportional to A}, resulting in
stability for Aj < 0 and instability for A} > 0. When neoclassical MHD effects
are present, the delineation between stability and instability is not directly depen-
dent on the sign of Aj because of the availability of additional instability drive
from the fluctuating bootstrap current. We demonstrate this aspect of neoclassical
MHD tearing modes by keeping the same g(r) profile as indicated in Eq. (14) and
varying go. The dependence of Aj on gq is displayed in Fig. 6 for the g(r) profile
used here with A = 1.5. The point where Aj changes sign occurs at ¢(0) ~ 0.9.
This is further verified in Fig. 7, where the island width evolution is followed for
Me/ve = 0 and A = 1.5, starting with an initial 2/1 island width of 0.01. Here the
cases for ¢(0) = 1.1 and 1 clearly indicate increasing island size with time. When
g(0) = 0.95, the island width appears to be decreasing with time, but this is because

the saturated island width here is still nonzero but somewhat less than the initial
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value of 0.01. The ¢(0) = 0.8 and 0.9 cases are stable and eventually drop to zero
island width.

In contrast, Fig. 8 shows the influence of a moderate level of neoclassical MHD
(e/ve = 0.6) for A = 1.5 and some of the same values of ¢(0) as in Fig. 7. For all
g(0) values here, the tearing instability is linearly unstable and displays monotonic
island width growth with time toward a saturated state. This includes values of
q(0) for which A} < 0 [i.e., g(0) = 0.8 and 0.9}, which led to decaying island widths
in Fig. 7 when neoclassical MHD effects were absent.

IV. CONCLUSIONS

The nonlinear dynamics of single-helicity neoclassical M HD tearing instabilities
have been examined by using a 3-D time evolution code in cylindrical geometry.
Significant alterations of the usual tearing mode growth are observed, especially
at the higher values of neoclassical electron viscosity (pe/ve). Neoclassical tearing
instabilities have increased saturated island widths, which are not solely determined
by A', and modified growth regimes prior to the nonlinear saturated phase. The
threshold for tearing instability is no longer related to the sign of A'; unstable cases
with finite saturated island widths have been presented here for negative A'. In the
range of p./v, values where island widths are not a sizable fraction of the resonant
g = m/n radius, the numerical results compare well with analytic calculations.®?
The agreement is particularly good when parallel diffusive losses are included in
the density evolution equation, resulting in a flattening of the density profile in the
island region similar to that assumed in the analytic model. As p./v, is increased
to a point where the island width becomes a sizable fraction of the resonant radius,
the numerical results begin to depart from the analytic calculation, as might be
expected. The numerical island widths are smaller than would be obtained by
applying the analysis in this regime. They are, however, still substantially larger
than those for the p./v. = 0 case.

The numerical calculations described here provide a number of new features,
which extend previous analytic models: (a) the capability to examine various mod-
els for density evolution, (b) proper inclusion of the nonlinear coupling to other
poloidal modes, and (c) the capability to examine parameter regimes where neo-
classical MHD dominates tearing mode growth and island widths can become a

sizable fraction of the minor radius. Such calculations will be an important factor

11



in understanding disruption physics and plasma confinement properties of high-

temperature tokamaks operating in long-mean-{ree-path regimes.
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FIGURE CAPTIONS

Fig. 1. Time evolution of island width for a range of values of u./v. for (a)
A =2, ¢(0) = 1.34, and (b) A = 1, ¢(0) = 1.34.

Fig. 2. Time evolution of island width from the 3-D numerical calculations in
cylindrical geometry for a range of values of y./v. with only density convection for
(a) A =2, q(0) =1.34 and (b) A =1, ¢(0) = 1.34.

Fig. 3. 2/1 helical projections: (a) typical flux contours, (b) density contours
with convection only (xy, = 0), and (c) density contours with convection and
parallel diffusion (x|, = 0.5 THp).

Fig. 4. Time evolution of island width from the 3-D numerical calculations in
cylindrical geometry for A = 2, ¢(0) = 1.34 for a range of values of u./v, with
density convection and parallel diffusion.

Fig. 5. Comparison of island width dependence on pu./ve between analytical
theory (solid line) and the two density evolution models.

Fig. 6. Dependence of Aj on central g value, ¢(0).

Fig. 7. Dependence of tearing mode island width evolution on central ¢ value
for A = 1.5, pte/ve = 0 (neoclassical MHD absent).

Fig. 8. Dependence of tearing mode island width evolution on central ¢ value
for A = 1.5 with neoclassical MHD (u./ve = 0.6).
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