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A B S T R A C T 

Neoclassical magnetohydrodynamic (MHD) effects can significantly alter the 
nonlinear evolution of resistive tearing instabilities. This is studied numerically by 
using a flux-surface-averaged set of evolution equations that includes the lowest-
order neoclassical MHD effects. The new terms in the equations are fluctuating 
bootstrap current, neoclassical modification of the resistivity, and neoclassical 
damping of the vorticity. Single-helicity tearing modes are studied in a cylindrical 
model over a range of neoclassical viscosities {fjte/u>e) and values of the A' parameter 
of tearing mode theory. Increasing the neoclassical viscosity leads to increased 
growth rate and saturated island width as predicted analytically. The larger island 
width is caused by the fluctuating bootstrap current contribution in Ohm's law. 
The A' parameter no longer solely determines the island width, and finite-width 
saturated islands may be obtained even when A' is negative. The importance of 
the bootstrap current (~dp/dip) in the nonlinear dynamics leads us to examine the 
sensitivity of the results with respect to different models for the density evolution. 
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I. I N T R O D U C T I O N 

The single-helicity nonlinear behavior of resistive tearing instabilities1'2 has been 
an important ingredient in understanding the disruption physics and plasma con-
finement properties of tokamaks.3'4 It is therefore of significant interest to extend 
the analysis of such instabilities from the low-temperature, resistive regime into 
the high-temperature, long-mean-free-path regime characteristic of most present 
experiments. This has recently become possible with the developments-7of a set 
of neoclassical magnetohydrodynamic (MHD) equations, which extend the widely 
used resistive MHD model from the Pflrsch-Schliiter collisionality regime to the 
experimentally relevant banana-plateau regime. These equations include a num-
ber of new phenomena that are unique to the long-mean-free-path regime, such 
as the fluctuating bootstrap current contribution to Ohm's law, the enhanced (by 
B2/Bl) polarization drift and perpendicular dielectric constant, and the rapid vis-
cous damping of the poloidal ion flow velocity. In this report, we discuss the first 
numerical calculations of tearing instabilities using these equations. 

Nonlinear tearing mode evolution for the small-island-width regime has recently 
been calculated analytically by using simplified neoclassical MHD equations.8'9 

These are generally based on cylindrical flux-surface-averaged tokamak models with 
the primary neoclassical MHD effect being the fluctuating bootstrap current in 
Ohm's law. They are limited to island widths that are large relative to the sin-
gular layer width (so that inertial effects contained in the vorticity equation are 
unimportant) but small relative to the resonant surface radius. An enhancement 

* 

in the island width is found along with a new nonlinear growth regime where the 
island width increases at a t1/2 rate. This regime exists between the exponential 
and Rutherford1 linear growth stages. 

The model used in this paper is also based on a flux-surface-averaged set of neo-
classical MHD equations,5,8 which are solved in a cylindrical tokamak geometry. In 
addition to the fluctuating bootstrap current, the neoclassical modification to the 
resistivity and viscous damping in the vorticity equation are included; however, we 
find that the latter two terms are not generally as important as the bootstrap cur-
rent. These equations are evolved in time by using the mostly explicit version of the 
KITE initial value code.10 Both the exponential, neoclassical Rutherford 
and fully nonlinear regimes can be examined. In addition to the flux and vorticity 
equations, the numerical calculation includes a density evolution equation. This 
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equation does not include any neoclassical MHD effects directly, but it has an im-
portant influence on the neoclassical tearing mode evolution through the bootstrap 
current term in Ohm's law. In this paper, we consider two models of the density 
evolution: convection alone and and convection with parallel diffusion along field 
lines. Also, in both models a small level of perpendicular density diffusion is present 
for numerical stability purposes. 

The basic parameter that determines the strength of the neoclassical MHD 
terms in our equations will be the ratio of electron viscosity to collision frequency 
(fie/ise). In the low-frequency banana regime, /ie/^e — 2.3\/e ^ 1; in the plateau 
regime, ne/ve ~ \fkjvmt, (i/*e = i/ee~3/2#og/utfc,e)- In the collisional Pfirsch-Schliiter 
regime, /xe/Ve —> 0. Thus, we typically vary over the range from 0 to 1. At 
mo larate values of the neoclassical electron viscosity parameter (0 < /ie/^e ~ 0-4), 
both density evolution models indicate an increase in the saturated island width 
with i n c r e a s i n g A t higher values (0.5 £ / i e / ^ e < 1), the island width behavior 
becomes more sensitive to the density model. For the case with convection only, 
the width may fail to attain a saturated value or become practically independent 
of f i e /ue . When parallel diffusion is present, the island width continues to increase 
at the higher values of/xe / i / e but eventually levels off near f i e /v e ~ 1. Both models 
tend to give saturated island widths that are smaller than the analytic calculations 
at large values of n t / u e but that are still significantly larger than the / i c / f e = 0 
case. This difference was expected because of the assumptions of small island width 
in the analysis. 

In addition to the dependence on f i e j f e , a second feature of neoclassical tearing 
modes, which is of interest, is the dependence on A'. For linear tearing mode 
stability, the energy 6W is directly proportional to A' [defined following Eq. (16)]. 
With neoclassical MHD, linear instability and finite saturated islands are possible 
with A' both positive and negative. We consider a range of A' values here by varying 
g(0) (central q value) and find that unstable tearing mode growth and saturation 
can easily be obtained for A' < 0 cases that would otherwise be stable without 
neoclassical MHD. 

The outline of this paper is as follows. Section II presents the analysis and basic 
equations used in the numerical calculations and describes the density evolution 
models. In Sec. Ill , the numerical results for the various models are presented 
and compared with the analytical results. A conclusion and summary are given in 
Sec. IV. 

2 



I I . T IME-EVOLUTION EQUATIONS 

The basic equations underlying the calculations of this paper are the neoclassical 
moment equations8'8 for the electron density rae, poloidal flux V>, velocity stream 
function 4>, and parallel ion velocity V^. These equations, given below in mks units, 
result from using the electron continuity equation, Ohm's law, and the perpendicular 
and parallel ion momentum equations: 

dne 
dt 

= - V . ( n e v j . e ) - ( B . V) ( i ) 

R2 dt 
JjB 

-(B.V)(<f>-'*±\nne) + —B.(V-nl\e) , 
\ e J ene 

(2) 

= - (B • V) 

B x V . 
B 2 

Pm (jt + v E . v ) {VVB) = ~(B . V)p - B . (•V . 3Hi) , 

(3) 

(4) 

where 

VE = - p X V<£ , 

B 

B = FV( + vy> X V < , 

pm = n^m; is the ion mass density. 
The viscous stress terms in Eqs. ( l ) - (4) may be related to the neoclassically 

driven pressure anisotropy. This is given by (b = B/B) 

n|| = {p\\-px)(bb- 1/3) (5) 

where p|| — pj_ for species s may be expressed in terms of the viscous damping 
frequency fis , the magnetic field B , mass density n , m „ and flow velocity Vt as 
follows: 

3 



with 
Va • V l n £ = U 0 t {b -VB) + V r t ^ ^ -

and 

B -VO B B2 dip \ gs J 
Equations ( l ) - (4) are inherently three-dimensional (3-D) and contain significant 

toroidal couplings through the neoclassical MHD terms (i.e., from the b • V B and 
d\n B/dr coefficients in the viscous stress terms). These couplings are of impor-
tance for unfavorable curvature-pressure-gradient-driven instabilities, as discussed 
elsewhere.11 However, for current-gradient-driven tearing instabilities, it is reason-
able as a first step to reduce these equations to a cylindrical geometry to avoid the 
complexity of fully toroidal, nonlinear calculations. This can be accomplished by 
performing a flux surface average of each evolution equation. The averaged neoclas-
sical parallel and cross viscous stress terms then become in cylindrical geometry: 

= m.n . / i , (B2) U9, (7) 

and 

(8) 

where 
_ rnan8ns(B2) 

2B^{b-VBf)R\ ' 
R0 and Bo are the major radius and magnetic field at r = 0, and the angle brackets 
( . . . ) indicate a flux surface average. Here, an (r,0, £) cylindrical coordinate system 
is used, where r (0 < r < o) is the radial coordinate, a is the radius of the cylinder, 
6 is the poloidal angle, and £ is an angle-like coordinate such that C = 27rz/L, where 
z is the coordinate along the axis of the cylinder of length L = 2nR0. 

We further simplify Eqs. (1)—(4) by assuming rapid damping of the ion poloidal 
—» —* *—* 

flow relative to the tearing instability time scale (i.e., (-B'V-II||i) a 0). This results 
in the following equations for Vj|,- and V||e in terms of the potential (j) and parallel 
current Jy: 

% = - * g * , (9) 

"»« - " £ ' <«» 
The Vj|t- evolution equation (4) then does not need to be retained and can be replaced 
by Eq. (9). Also, we take T{ = 0 (except that Hi is kept finite), Te — constant, and 

4 



approximate F ~ ROBO, (B2) ~ R ~ /2oi and J\\ ~ </<;, as is appropriate to 
cylindrical geometry. The three equations for V>, U [= Vj. •(peq^> and pm (mass 
density) are then given in nondimensional form as 

§ = M - v,}< + + , (12) 

I f = + + + • ( 1 3 ) 

where a e is the Spitzer resistivity coefficient (taken as 0.506 here), 5 = T^/rf/p, /3q 
is the plasma beta at r = 0, tr = fi0a2/r)0, thp = Ro/va» 

r „ I d a 06 1 5 a d b _ - -- / d 1 9 \ -

and variables with subscript "eg" are equilibrium while those with a tilde " " " over 
them are perturbations from the equilibrium. If neither is present, then the variable 
is the sum of the equilibrium and perturbed components. 

Perpendicular diffusion terms are present in each of the three equations, as is 
appropriate to classical dissipative processes. In the density equation, the coefficient 
of the perpendicular diffusion term will generally be larger than its classical value for 
the purpose of numerical stability (i.e., if this equation becomes purely convective, 
then grid separation problems arise). However, the coefficient R~l is kept at a 
level of diffusion that is still much slower than the instability time scale and should 
not significantly modify the time-evolution characteristics. The parallel diffusion 
term (X||P) 'he density evolution equation is a phenomenological loss term used 
to simulate rapid losses along field lines within a magnetic island. The coefficients 
Ry1, Rp1, and X||p are normalized to a2/thp, where a is the minor plasma radius. 
All times are normalized to r^p, V|| is normalized by R0, Vj_ is normalized by a, r 
is normalized to a, the resistivity to ij0 (its value at r = 0), J( to B^/noRo, <f> to 
a2BO/THpi ip to a2B0, and the vorticity U to pm{r = 0)B0/tjjp. 

The neoclassical electron viscosity coefficient is normalized to the electron col-
lision frequency (f i e /ue) and typically ranges from 0 (Pfirsch-Schluter regime) to 
2.3Vc (banana regime). The neoclassical ion viscosity (normalized to r/ /p) may be 
expressed approximately in terms of i i e /v e as 
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HTh, ~ 0.287 
mi C2Vcyi 
me aeS 

where u>cyi = uJciTHp-

The initial condition for the code is based on an exact velocity-free equilibrium 
solution of Eqs. (11)—(13). For such a state, <j> = U = 0, and J(>eq and ij)eq are 
obtained from an assumed equilibrium q profile, which is modeled as 

r / \ 2 a I 1 / a 

g(r) = 90 , (14) 

with qo» A) and ro as variable parameters. The relations dipeq/dr = -r/q{r) and 
= V\i>eq are then used for J(,eq{r) and ipeq(r). The equilibrium density profile 

is 

Peq(T) = (1 — Po) (1 _ t2)2 + Po , 

with po as the edge density. \ 
The fluctuating bootstrap current [final t&rm in Eq. (11)] is expressed by using 

a Taylor expansion as follows: 

dpm 
drj} 

i V 1 \d'pm 
\ dr ) dr \ dr J 

-l 
dpeg 9tj) d^dpm 
dr dr dr dr (15) 

Here the equilibrium component has been subtracted out. The validity of this 
expansion has been checked, indicating that the last two terms cause only minor 
modifications to the island evolution. 

I I I . N U M E R I C A L R E S U L T S 

Equations (11)—(13) are solved in a cylindrical (T*, C) coordinate system by 
using Fourier expansions in 0 and £ with mode numbers m and n, respectively. The 
radial coordinate r is treated by using a finite difference grid. The equations are 
then evolved in time by using the mostly explicit algorithm in the KITE code.10 

Parameters that remain fixed for these calculations are the magnetic Reynolds num-
ber, S = 10s; the density and vorticity diffusion coefficients, R~l — 2 x 10~6 and 
R'1 = 10- 5 ; the ion cyclotron frequency parameter, u)cyi — <jJci^Hp = 30; the inverse 
aspect ratio, e = 0.25; the central plasma, f30 = 0.02; the edge density, p0 = 0.5; 
the q profile parameter, r0 = 0.56; and the helicity, m / n = 2. We typically use 
a set of 8 modes [(m/n) = (0/0), (2/1), (4/2), (6/3), (8/4) , (10/5), (12/6), and 
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(14/7)] in the numerical calculations with 200 radial grid points. A profile factor 
[1 — exp(—r2/r\)} is introduced into the neoclassical viscosities to give the expected 
r2 behavior near r = 0 and a constant value away from the central region. We have 
taken r\, = 0.25 here. 

Before presenting the numerical results, we briefly review the analytic theory8'9 

of neoclassical tearing modes. The predicted island evolution at times between the 
exponential growth phase and saturated nonlinear regimes is described by 

dW 
dt 

1.66 ri(ra) 
S 7/(0) A L n W 

w , CbLq/3p m'— + r; WLt (Si (16) 

where C& ~ 4.7, W is the island width, 

q{r,) = m/n, 

L-i = 1 dq 
q qdr v, 

p I pdr 
2/ioP 

dr dr J -1 

Bl 

rt = radius of resonant q = m/n surface, and r± = r, ± 6. 
The island width and radial positions r and r„ have been normalized to a, the minor 
radius. The time is normalized to thp, the Alfven time. The first two terms in the 
brackets are the conventional resistive tearing mode island growth terms.1'2 The 
third term is the contribution of fluctuating bootstrap current to island growth. 
Equation (16) is applicable for island widths in the range r a n - 1 / 3 5 ~ 1 / ' 3 < W <C ra. 
The function A'm<Tl(W) — m2Wfr\ can typically be approximated as ~ A(,(l — 
W/W§at) with Wtai being the saturated island width without neoclassical MHD 
effects and Aq being the discontinuity in the radial derivative of the flux function 
at the singular surface with infinitesimal island width. For example, if we choose 
r0 = 0.56, g(0) = 1.34, and m / n = 2, then for \ = 1 and A'0 ~ 10.7, W„at ~ 0.116; 
for A = 2 and A'0 ~ 13.8, Wlat ~ 0.264. 

The neoclassical MHD saturated island width is obtained by setting dW/dt = 0 
in Eq. (16) and solving for W: 

,1/2' 
W(t — oo) = 

wt tat 1 + 1 + 
4 CbLq 

W.at A' Lp' 
(17) 



The preceding limit indicates that the island width should increase monotonically 
with increasing The time evolution prior to reaching saturation is also of 
interest. If /xe/^e < 1» then 

W(t) = W.at + exp(-1.66r?(r,)A;</T7(0)5W.ot] [~W,at + W(0)] (18) 

+ f ° r W { t ) ^ W , a t ] (19) 

W„at, for / oo , 

where VF(0) is the initial (t = 0) island width. 
For cases where the neoclassical term dominates, a different scaling with time 

results8'9: 
W(t) ~ f w 2 ( 0 ) + 3 . 3 2 ^ , ^ G b c f P t]1/2 • (20) 

Thus, the island growth at times between the exponential (linear) growth phase and 
saturated states can be characterized [if W(0) is small] by a scaling that is propor-
tional to t (neoclassical MHD absent) or to t1^2 (neoclassical MHD dominant). 

Alternately, Eq. (16) can be integrated numerically in time, as shown in Fig. l a 
for A = 2, g(0) = 1.34 [W(0) = 0.04] and in Fig. lb for A = 1, ?(0) = 1.34 
[W(0) = 0.025] over a range of p.elue values. As expected, the saturated island 
width steadily increases with increasing /Xe/t'e- The slopes for the t and t1/2 scalings 
are indicated here as a guide. These are not followed for any sizable interval of time 
because (a) at early times the effect of W(0) can be significant, (b) the drive for 
island growth is usually a mixture of neoclassical and A' effects, and (c) at later 
times W{t) is no longer Wsat. These figures are based on the same parameters 
[i.e., W(0), (3P, ro, g(0), e] and are plotted on the same scales as the following 3-D 
numerical results to provide a basis for comparison with the analysis. 

Figure 2 shows results from the numerical solution of Eqs. (11)—(13). Here we 
have removed a section of the early time evolution because it tends to be noisy 
and have shifted the various runs in time so that they all start at the same island 
width at a fixed time. Figure 2(a) is for an equilibrium with a q profile of A = 2, 
q(0) = 1.34, and Fig. 2(b) is for A = 1, g(0) = 1.34; these are based on the first 
density evolution model, which includes only convection (i.e., X\\p — 0)- The time 
evolution characteristics for times intermediate between the early and saturated 
regimes suggest a weaker growth for the neoclassical cases, closer to the i1!2 scaling. 
The saturated island width increases with pe/vc up to a certain point and then 
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tends to become independent of /xe/fe« Following the evolution further in time for 
the higher values of ,ue/ve (> 0.5) indicates that a steady state is not generally 
achieved and that the island width begins decreasing in time. Such behavior is 
caused by quasilinear modifications of the q profile, resulting in an inward movement 
of the resonant surface; this leads to a decreasing island width due to variations in 
the f i e /ue profile factor and A' near the center. However, such longer time scale 
behaviors are beyond the realm of the present model and are not considered further 
here. 

In some cases in Fig. 2, the island width evolution with neoclassical MHD is 
somewhat uneven and nonmonotonic. This feature is caused by the strong coupling 
to the convective density evolution through the fluctuating bootstrap current term. 
The convective transport moves density into and out of the resonant surface on 
a time scale that ie separate from that of the island evolution. The interaction 
between these processes can interfere with smooth island evolution. 

The A = 1 neoclassical MHD results presented in Fig. 2(b) show a proportion-
ately larger departure from the i i e /ve = 0 limit than the A = 2 cases of Fig. 2(a). 
The cause for this can be seen from Eq. (17), in which A{, and Wsat appear in 
the denominator of the neoclassical term; as they become smaller (as is the case in 
going from A = 2 to A = 1), neoclassical MHD has a relatively greater impact. 

The second density evolution model considered here has both convection and 
parallel diffusion and is expected to yield results closer to those of the analytical 
model,8'9 in which a perfectly flat density profile was assumed in the island region. 
For the values of x\\p used in these calculations (x||/> = 0»5r/fp), the density in the 
island region is relatively flat and the 2/1 helical projection of constant density 
contours tends to follow that of the flux contours. Helical flux and density contours 
(with x\\P = 0 with x\\P = 0.5thp) are illustrated in Figs. 3(a) through 3(c). 
As can be seen, the density contours with \\\p — 0-5thp [Fig. 3(c)] have an island 
structure closer to that of the helical flux contours [Fig. 3(a)] than to those with 
X\\p = 0 [Fig. 3(b)], which exhibit convective cell regions, as would be expected. 

The convective and parallel diffusion density model gives an island time evolu-
tion as shown in Fig. 4 for A = 2 and g(0) = 1.34. The time evolution is generally 
smoother than for the convection-only cases of Figs. 2(a) and 2(b) because the den-
sity equilibrates on a more rapid time scale than the island evolution. These results 
again show a trend toward the slower t1?2 scaling for the larger values of fJ.e/ve at 
intermediate times (70 < </thp < 500) between the exponential growth phase and 
the saturated nonlinear regime. The saturated island width continues to increase 
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with up to fig/ue = 1, in contrast to the results of Figs. 2(a) and 2(b). Appar-
ently, the bootstrap current is not causing any significant quasilinear modifications 
to the q profile, as was the case in the convection-only results of FigB. 2(a) and 2(b); 
also, the density profile in the island region is relatively stationary because of the 
high level of parallel diffusion. 

Figure 5 compares the prediction of Eq. (17) for the dependence of saturated 
island width on with the results of Figs. 2(a) and 4 for A — 2. To avoid 
ambiguity, we have simply used the maximum island width achieved in the numerical 
calculations. As mentioned earlier, a true steady state is not always present for the 
higher values of f i t /u e in Fig. 2(a). The results of the density evolution model 
with parallel diffusion and convection are closer to the analytical prediction than 
those obtained with density convection alone. This would be expected because the 
resulting evolved density profile is closer to that assumed in the analysis underlying 
Eq. (17). Both models indicate a leveling off in island width at the higher values 
of /te/^e- Such deviations at large island widths are due to nonlocal effects and 
the presence of a conducting wall in the numerical calculations. These effects are 

not taken into account in the analysis (which is valid for island widths that are t 
small relative to the radius of the resonant q = m / n surface, which ~ 0.6 for the 
parameters of Fig. 5), so it is npt surprising that the analytical and numerical 
calculations begin to diverge here. 

One further parameter dependence of interest for neoclassical tearing instabili-
ties is that with respect to AQ, the discontinuity in dip/Or at the resonant surface in 
the limit of zero island width [defined in association with Eq. (16)]. The perturbed 
energy SW of conventional linear tearing modes is proportional to A{,, resulting in 
stability for A(, < 0 and instability for A{, > 0. When neoclassical MHD effects 
are present, the delineation between stability and instability is not directly depen-
dent on the sign of A{, because of the availability of additional instability drive 
from the fluctuating bootstrap current. We demonstrate this aspect of neoclassical 
MHD tearing modes by keeping the same g(r) profile as indicated in Eq. (14) and 
varying go- The dependence of A{, on q0 is displayed in Fig. 6 for the q(r) profile 
used here with X — 1.5. The point where A(, changes sign occurs at q(0) ~ 0.9. 
This is further verified in Fig. 7, where the island width evolution is followed for 
f i e /ue = 0 and A = 1.5, starting with an initial 2/1 island width of 0.01. Here the 
cases for g(0) = 1.1 and 1 clearly indicate increasing island size with time. When 
g(0) = 0.95, the island width appears to be decreasing with time, but this is because 
the saturated island width here is still nonzero but somewhat less than the initial 
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value of 0.01. The g(0) = 0.8 and 0.9 caBes are stable and eventually drop to zero 
island width. 

In contrast, Fig. 8 shows the influence of a moderate level of neoclassical MHD 
(fie /ue = 0.6) for A = 1.5 and some of the same values of g(0) as in Fig. 7. For all 
g(0) values here, the tearing instability is linearly unstable and displays monotonic 
island width growth with time toward a saturated state. This includes values of 
g(0) for which AJ, < 0 [i.e., q(0) = 0.8 and 0.9], which led to decaying island widths 
in Fig. 7 when neoclassical MHD effects were absent. 

I V . C O N C L U S I O N S 

The nonlinear dynamics of single-helicity neoclassical MHD tearing instabilities 
have been examined by using a 3-D time evolution code in cylindrical geometry. 
Significant alterations of the usual tearing mode growth are observed, especially 
at the higher values of neoclassical electron viscosity (/Lie/t/e)- Neoclassical tearing 
instabilities have increased saturated island widths, which are not solely determined 
by A', and modified growth regimes prior to the nonlinear saturated phase. The 
threshold for tearing instability is no longer related to the sign of A'; unstable cases 
with finite saturated island widths have been presented here for negative A'. In the 
range of values where island widths are not a sizable fraction of the resonant 
q = m / n radius, the numerical results compare well with analytic calculations.8,0 

The agreement is particularly good when parallel diffusive losses are included in 
the density evolution equation, resulting in a flattening of the density profile in the 
island region similar to that assumed in the analytic model. As /xe/i/e is increased 
to a point where the island width becomes a sizable fraction of the resonant radius, 
the numerical results begin to depart from the analytic calculation, as might be 
expected. The numerical island widths are smaller than would be obtained by 
applying the analysis in this regime. They are, however, still substantially larger 
than those for the ^e/^e = 0 case. 

The numerical calculations described here provide a number of new features, 
which extend previous analytic models: (a) the capability to examine various mod-
els for density evolution, (b) proper inclusion of the nonlinear coupling to other 
poloidal modes, and (c) the capability to examine parameter regimes where neo-
classical MHD dominates tearing mode growth and island widths can become a 
sizable fraction of the minor radius. Such calculations will be an important factor 
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in understanding disruption physics and plasma confinement properties of high-
temperature tokamaks operating in long-mean-free-path regimes. 
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F I G U R E C A P T I O N S 

Fig. 1. Time evolution of island width for a range of values of i i e /v e for (a) 
A = 2, q(0) = 1.34, and (b) A = 1, g(0) = 1.34. 

Fig. 2. Time evolution of island width from the 3-D numerical calculations in 
cylindrical geometry for a range of values of / i e / f e with only density convection for 
(a) A = 2, g(0) = 1.34 and (b) A = 1, q(0) = 1.34. 

Fig. 3. 2 /1 helical projections: (a) typical flux contours, (b) density contours 
with convection only = 0), and (c) density contours with convection and 
parallel diffusion (\\\p — 0-5 r//p). 

Fig. 4. Time evolution of island width from the 3-D numerical calculations in 
cylindrical geometry for A = 2, g(0) = 1.34 for a range of values of n e /u e with 
density convection and parallel diffusion. 

Fig. 5. Comparison of island width dependence on \LejvK between analytical 
theory (solid line) and the two density evolution models. 

Fig. 6. Dependence of A{, on central q value, g(0). 
Fig. 7. Dependence of tearing mode island width evolution on central q value 

for A = 1.5, vc = 0 (neoclassical MHD absent). 
Fig. 8. Dependence of tearing mode island width evolution on central q value 

for A = 1.5 with neoclassical MHD = 0.6). 
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