

CONF-770935-2

Polarization produced by grazing-incidence monochromators *

E. T. Arakawa and M. W. Williams

Health and Safety Research Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830 U.S.A.

MASTER

(For publication in the proceedings of the Vth International Conference on
Vacuum Ultraviolet Radiation Physics, Montpellier, France, 5-9 Sept. 1977)

*Research sponsored by the Energy Research and Development Administration
under contract with Union Carbide Corporation.

By acceptance of this article, the publisher or
recipient acknowledges the U. S. Government's right
to retain a non-exclusive, royalty-free license in
and to any copyright covering the article.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Polarization Produced by Grazing-Incidence Monochromators*

E. T. Arakawa and M. W. Williams

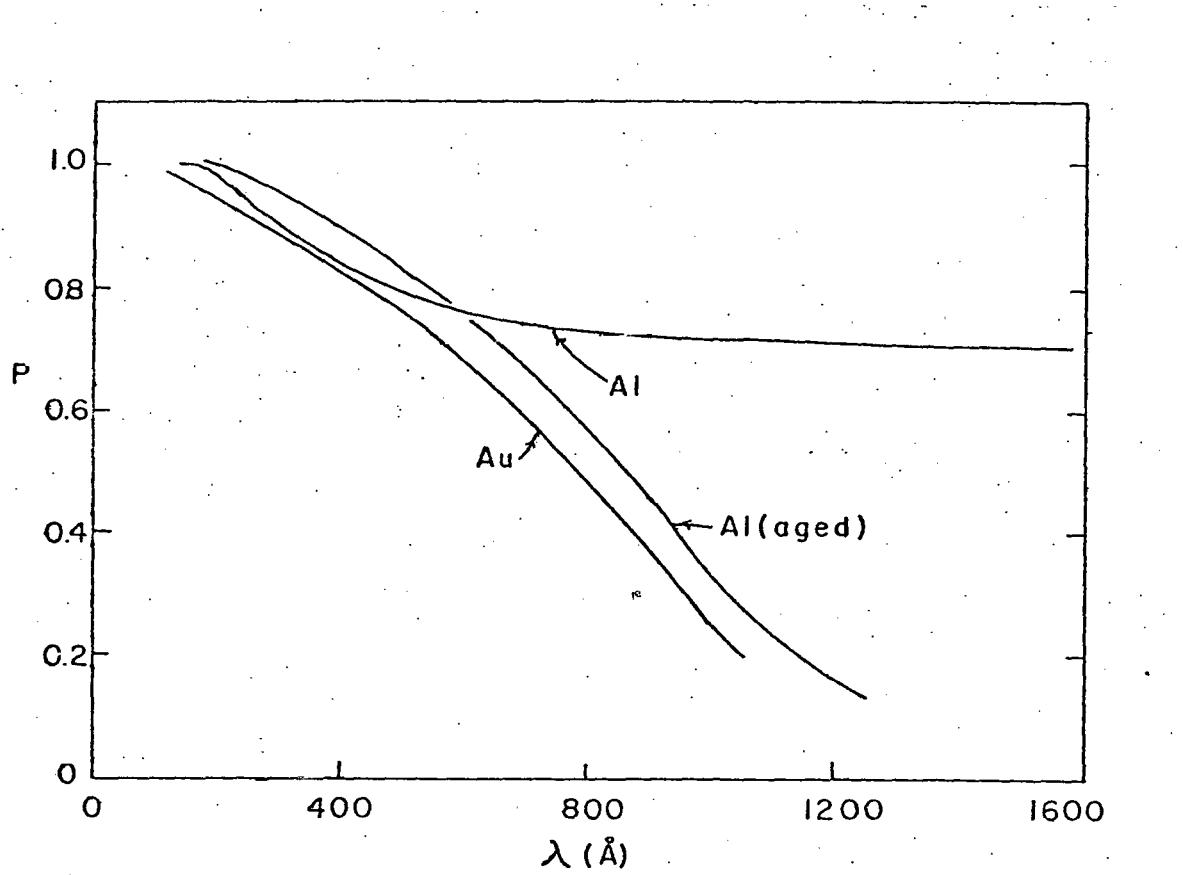
Health and Safety Research Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830 U.S.A.

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

The grating in a monochromator introduces some polarization into the optical beam, the amount depending on the geometry of the system and on the type of grating. A knowledge of this polarization is important, whether the monochromator is used for the spectral analysis of an experimental source of electromagnetic radiation or to produce monochromatic radiation for optical or photoelectric yield experiments. Since it cannot, at this time, be calculated theoretically it is necessary to measure directly the polarization introduced by the grating.

We have previously measured the polarization introduced by various gratings used in the Seya-Namioka geometry.⁽¹⁾ It is of interest to extend these observations to a grazing-incidence geometry which is employed in grazing-incidence monochromators to obtain spectra to smaller wavelengths than is possible with a Seya-Namioka monochromator.

In the measurements reported here the monochromator was a McPherson Model 247. This is a 2.2m grazing-incidence (82° from the grating normal) scanning monochromator equipped with a concave replica diffraction grating. A condensed spark discharge source was located at the moveable slit while a calibrated triple reflection polarizer, employed as the analyzer, was attached to the stationary slit. The construction, evaluation, and calibration of our triple reflection polarizers has been described previously.⁽²⁾ Light transmitted through the


analyzer was detected by a photomultiplier tube coated with sodium salicylate.

The polarization, P , introduced by the grating is given by $P = R_p/R_s$ where R_p and R_s are the reflectances from the grating of parallel and perpendicularly

polarized light. Values of P were obtained, as described previously,^(1,2) from

$P = (I_{\perp} - I_{11} \rho) / (I_{11} - I_{\perp} \rho)$ where I_{11} is the intensity measured with the analyzer and grating having a common plane of incidence, I_{\perp} is the intensity with the analyzer rotated through 90° , and ρ is the polarization ratio for the analyzer.

Since $\rho \ll 1$ for our triple reflection analyzer ($70^\circ - 50^\circ - 70^\circ$) over the wavelength range of the measurements reported here, $P \approx I_{\perp} / I_{11}$.

The values obtained for P over the spectral range from 200 to 1600 Å are shown in the figure. The data shown for gold represent values obtained on three separate gratings overcoated with gold. Each of these gratings had a blaze angle of $1^\circ 30'$ and 600 lines/mm. The data for the aluminized gratings were obtained on two

separate gratings each with a blaze angle of $2^\circ 4'$ and 300 lines/mm. The polarization for the gold covered gratings did not change appreciably during several years of use whereas that for one of the aluminized gratings was drastically altered, presumably due to contamination by pump oil.^(3,4) The change shown was found after about 2 years use in our monochromator.

A single observation⁽⁵⁾ is available for comparison with our results. An aluminized replica grating gave a polarization P of 0.61 ± 0.03 , according to our definition, for an angle of incidence of $84^\circ 35'$ and at a wavelength of 584 \AA . The polarization shown in the figure as a function of wavelength can be assumed to apply for an angle of incidence of 82° on the grating although in our measurements the fixed angle of 82° was actually between the diffracted beam and the normal to the grating. This can be seen by evoking Fermat's Principle and the reversibility of light rays for each wavelength individually.

References

*Research sponsored by the Energy Research and Development Administration under contract with Union Carbide Corporation.

1. See for example; R. N. Hamm, R. A. MacRae, and E. T. Arakawa, *J. Opt. Soc. Am.* 55, 1460-1463 (1965).
2. V. G. Horton, E. T. Arakawa, R. N. Hamm, and M. W. Williams, *Appl. Optics* 8, 667-670 (1969).
3. J. J. Cowan, E. T. Arakawa, and L. R. Painter, *Appl. Optics* 8, 1734-1735 (1969).
4. J. J. Cowan and E. T. Arakawa, *Phys. Status Solidi A* 1, 695-705 (1970); *Z. Phys.*, 97-109 (1970).
5. E. Uzan, H. Damany, and J. Romand, *C. R. Acad. Sc. Paris.* 260, 5735-5737 (1970).