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We show that when the f' and the diffractive elastic (and

quasi-elastic) contributions are included within the Chew-Rosenzweig

type solution for the Pomeron, one can explain reasonably well the

1 and (2K-m) total cross sections as well as the ratios of the real

over imaginary parts of the forward m and K amplitudes.
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A promising approach to hadronic physics is the method of
"dual unitarization and topological expansion."l‘4 Within this

approach, Chew and Rosenzweig (C-P‘3

have made an interesting
proposal that the Pomeron P is just the f-trajectory, renormalized
and mixed with the planir f'-trajectory via the cylinder correc-
tion to the planar approximation. Veneziano5 has pointed out that
the "strict" Harari-Freund Pomeron6 is incompatible with the
topological expansion (TE)1 and that the C-R Pomeron is the simplest
realization of the TE. Some phenomenological analyses7’8 have
already shown that the C-R Pomeron with ap slightly less than one
can pass certain experimental checks at moderate energies (10

GeV/c s PLab s 50 GeV/c). However, it has been stateds’9 that

the difference of total cross sections, (2K-7w), where

K = %(0K+p + OK'p * Opsn T cK_n) and 7w = %(Uﬂ+p + oﬂ_p)
should fall with energy in the C-R scheme with ap < 1, whereas
the data show a rise, although Chew—Rosenzweig--Stevens8 pointed
out that a proper consideration of the strange threshold may ac-
count for this rise. Futhermore, Freund and Roméo10 have recently
claimed that it is impossible for .the C-R scheme to simultaneou-ly
explain the experimental data on both (2K-w) and the ratio o, of
the real over imaginary part of the forward m amplitude. In par-
ticular, they argued that in the C-R scheme if (2K-m) rises (falls)
with energy, then P > 0 (<0), whereas the data show (2K-m) rises
and Py < 0. Since the C-R solution is the simplest realization
of the TE, Freund and Romdo questioned the whole TE approach.

In this paper we answer the criticism of Freund and Romdo.

We want to point out two things. The first is that the renormalized



f'-trajectory giv = an unambiguous negative contribution to {2ZK-m)
and will be shown to cause (2K-w) to rise slightly with energy
at mocerate energies even if ap $ 1. The second is that the TE
up to the cylinder level as presently formulated has not included
the whole elastic and quasi-elastic (called elastic for short)
contributions; the part of the elastic contribution which has been
included corresponds tc a Regge exchange, which of course is only a
small part of the whole elastic contribution in the energy range of
interest. The missing piece, the diffractive contribution, will
be shown to give a substantial negative contribution to Pr. In
this paper, we take into account both the f' and diffractive con-
tributions and show that the C-R Pomeron is consistent with the
m, (2K-7), and o data; we also make a prediction for Py» the
ratio of real over imaginary part of the forward K amplitude.
Qur starting point is the C-R matrix A up to the cylinder
level for the even charge conjugation isoscalar trajectories
f2 b\'l (J-aO-Zk vz |\
A = | = I R (1)
\b < , -VZk J-ag-k|
where a and a; are the planar (f—w-p—Az) and (f'-¢) intercepts

3

and k is the cylinder coupling. The output pole intercepts,

given by the zeros of the determinant D of A, are

1 2 2
ap g1 = plag + ag + 3K s/ (ag-a k)t + 8K (2)
. . . 3.7 b(J=a;)
T'he SU(3) mixing angles, given by tan ei = —ETj;a;T-, are
2v2 k

tan GP = «Ctn ef, =

2 7 - (3)
ay - ag + k + /(ao-a3+k) + 8k
The pole residues, given by7 Y; < (J'ai)[%%gg * ()] , gives

J=a.
i

Yp T Ygr TY . (4)



Using the additive quark model for coupling the quark states

qq to the external meson and nucleon, we can then write7

Oy - Aey-1
P f! 2
Ty = 6[(55—0-) + (;S(;) tan“e,] , (5)
ag-1 Op,-1
= s, P s f!
(2K-m)\ = V2B tan ep[(%) - (S—a) I (55)
where B = 3YG /i with G being the product of the Reggeon-qq

2(1 +tan“6,)
couplings, and the subscript M reminds us that what we have cal-

culated is the multiperipheral (or nondiffractive) contribution,
to which we must add the diffractive elastic and quasi-elastic con-

tributions. Note that in Eq. (5b), the f' gives a negative con-

tribution.Fl The diffractive elastic contributions T and KD are
given by ZaP-Z
Cﬂs '
Tp = -——§;~——-, with BTr = Z‘hlT + 2aplns, (6a)
c ZaP-Z
K> . ,
KD = ——B—-K—— ’ with BK = ZbK + Zaplns, (6b)

where in our calculation we use a nominal value of 0.5 for aé.

At the highest energy of the present model (50 GeV/c), we make use
of the Pomeron dominance approximation for the elastic cross sec-
tion, and taking the extrapolated experimental valuesFZ at this
energy of Tp © 3.1 mb, KD x 2.3 mb,11 BTr 8.3 (GeV/c)"z, and

-2 12

B 7.8 (GeV/c) “, we can determine from Eq. (6) the quantities

&

K
bﬁ, by, Cﬂ, and Cy. Equation (6) then gives the energy dependence
of Th and KD. The total cross sections are then given by
T= Ty + AﬂD , (7a)
(2K-m) = (ZK-W)M + A(ZK—W)D R (7b)
where the factor A takes into account the diffractive quasi-

elastic contribution. In our calculation we set it at the



reasonable value of X = l.S.FJ Before presenting our quantitative

results, we first discuss 0 end Py

We preent the derivation for P The full amplitude has two
contributions corresponding to the multiperipheral and diffractive
components. The forward elastic amplitude A is related to w by

the Optical Theorem, Im A_ = sm, with ATr = Aﬁ + AE. Defining

M D
M- Re At .na pD = Re Ap , one can easily show that
i M T D
Im A Im Ay
" o= (1-n oo + n_p> (8a)
m T P o

"

™
D . . .- . .
where n. A(?r), i.e.,, the ratio of the diffractive cross section

over the total cross section. In our model, pg is given by

T o TO -y Gpey |
ctn(—2)cos?e (39) P 4 ctn(—i)sinZe (2 ©' |
2 P s 2 P's
M _ 0 0

O,n. - T o o P (93)

2 s\ P . 2 s f! l

cos 8,.(=) + sin 6, (=) ‘

P's P's
| 0 0 _

TQ
which of course reduces to the usual —ctn(—ig) when f' is neglected.

We can also write
0

2
D _ LA B(t) e(t)
Im Aﬂ = s(AﬂD) * Ten .f dt (""?E;TFTX s ,

\51n 2 —/

where €(t) = 20,(t) - 1. F4

. M . .
crossing even, and ATr is also crossing even as only vacuum tra-

Now since ATr is, by construction,

jectories contribute, this leads to a crossing even AS. From a
dispersion relation calculation similar to the one used in obtain-

ing the usual even signature factor, the full diffractive ampli-

tude is then given by 0 _ime(t)
AD - —)\_ s dt ( B(t) 2 SE(t) e 2
b1 l6nJ nap(tT . me(t)
. sin——-
- %1n—~7r——/ 2

Due to "non-sense zeros' in B(t), the quantity in parenthesis

does not have poles. Since the integrand is expected to peak



exponentially at t = 0, and since uP(O) ~ 1, we may ignore the

slowly varying t-dependence in sinlELEl»near t = 0 and tgke it

2
outside the integral.F5 As in deriving (6), the quantity in
b_t
parenthesis has the form e " . This gives
D (
AD . it e ﬂ se\t) { Te(t) . . we(t)
T 167 sin €(ﬂf COS_Z— 1S1n > ]
Upon doing the 1ntegrals we get
pD _ r(an + Zaﬁlns)sinnd + waﬁcosné
0 i , (10a)
(ZbTT + Zaﬁlns)cosnﬁ - naésinn&

_ o K
where 6 = 1 - uP(O). Similarly, for the kaon case, if Ny = x(jg),

we get
M D
Pg = (I-nlpy + NPk (8h)
o a o
y ctn—?gcoszep(1+/7tanep)(gL) Py ctn—s— ;'31n 6., (1-/Zctns )(__) Y
kT 2 O‘po 2 Og
cos“0,(1 + /ftanep)(gi) + sin ep(l - /7ttn6p)(5i)
0 50 (9b) —
(Zby + Zaélns)sinﬂé * ToLCOSTS
oy = - (10b)
1 - y -
(ZbK + ZaplnS)COSﬂ6 ﬂaP31nﬂ6
Equations (2)-(10) determine w, (2K-7), I and Py in terms of
Ay, Gz B, k, and Sg- Since ag is- the planar (f-w-p-Az) intercept

and the cylinder does not renormalize the p-A2 trajectories, we ex-
pect a4 =¥ 0.5. As discussed in Ref. 7, planar bootstrap leads to

an equal spacing rule and implies (ao-as) is twice the separation

of the p and K* intercepts, which we take as 0.2,14 i.e., az = 0.3.
The quantity 8 is a normalization constant which we determine by
using the experimental 7 cross section at 30 GeV/c (mid-point of
energy range of interest). Therefore, our model has essentially two

free parameters, k and So-

The results of our calculation for oy = 0.5 and ag = 0.3 are



shown in Figs. 1 and 2 with k = 0.18 and s, = 1.5 GeVZ. These

0
correzpond to a, = 0.97, « = 0.35 and ctnb_, = 2.0. We see the

p { p
calculated o 1S large and negative and in excellent agreement with
the data. Notice the (2K-w) curve does not fall but actually
rises slightly over this energy region. Both the w and (2K-w)
curves are in approximate agreement with the data. We want to
emphasize the point raised in Ref. 8, i.e., the energy dependence
of the strange thireshold has not been taken into account in
the model. This threshold effect has the consequence of causing
the m cross section to fall faster (slower} and the (2K-w) cross
section to be smaller (larger) at the lower (higher) end of our
energy range and therefore should further improve the agreement
with the data. So we conclude that our model is consistent with
the data. 1In Fig. 2a we also plotted separately the multiperipheral
contribution (l—nﬂ)pf and the diffractive contribution nﬂp?. Note
that the aiffractive componert gives a sizeable negative contribu-
tion. In the K case, the negative px value comes essentially from
the diffractive contribution. The theoretical curve is expected

to be between P+ and pK‘p' Although there is not sufficient

Fé6

p
data, our result is consistent with the existing pKip data.

We also found a similar quality of fits for oy = 0.55, Gy =
0.35 with k = §.16 and Sg T 1.0 GeVZ. These correspond to ap =
0.98, Opy = 0.40, ctnep = 2.1. Note that these and the previously
mentioned values are quite close to those of solution 2 in Ref. 7.

Our results tell us that the inclusion of the f'-contribution
and the diffractive elastic (and quasi-elastic) contributions are

of crucial importance in explaining the (2K-m) and o data. Their



inclusion allows us to conclude that the C-R Pomeron is a viable

scheme.

F1.

F3.

F4.

FS.

Footnotes -
This negative sign is not due to a particular sign convention
in the coupliags or due to the convention in defining the
mixing angle ef,. Both Eqs. (5a) and (5b) follow directly

from the additive quark model expressions given in Ref. 7,

_ 3 2 3. . 2

Ty = G[jypspcos ep * FYg15£1COS ef,]
= a3 el

KM = G[Zypspgoc Qp(l + V2 tanep)

2

+ %yf,sf,cos 0, (1 + V2 tanbg,)]
together with Eqs. (3) and (4).

Our results are insensitive to small changes in those values
givén. Also there is no elastic cross section data for K'n.
We assume the sum of K'n elastic cruss sections to be the

same as that of Kip.

Of course A for m may be slightly different from A for K. To
make the discussion simpler and to reduce the number of param-

eters, we set Aﬂ = A¢ = A. Our conclusions do not depend

sensitively on this choice or on the specific X value chosen.

Technically speaking, the quantity xl/2<;;;%ééiiz> should be
replaced by some pertinent triple Regge verteg g(0,t,t).

The ‘actor sinlgézl has zeros at e(t) = 0, -2, ... or at

t =~ -1, -3, ... (GeV/c)Z. In general these zeros might be

cancelled by corresponding zeros in g(0,t,t) of Footnote 4
although such cancéllation does not occur in the usual dual
resonance model. Even for no cancellation, these zeros only
give rise to some finite contribution of the order of 50, s—z,

(up to 1lns factors).



Fo6.

10.

11.

12.

13.

To make more quantitative check of our prediction for Pk
one needs K*n data.
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Figure Captions

1. Theoretical curves compared with: (a) the m data, and
(b) the (2K-m) data. The data are from Refs. 11 and 15.
Note the different scales for (a) and (b).

2. (a) Theoretical curve (solid) compared with the P data
of Ref. 16. Also shown are the curves of diffractive
and multiperipheral contributions. (b) Theoretical Pk
curve, and the pK*p data (x) and pK'p data (e) of Ref.

17. Note that (b) uses the right vertical scale.
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