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Abstract:

We show that when the f' and the diffractive elastic (and 

quasi-elastic) contributions are included within the Chew-Rosenzweig 

type solution for the Pomeron, one can explain reasonably well the 

n  and C 2 K - tt ) total cross sections as well as the ratios of the real 

over imaginary ports of the forward tt and K amplitudes.
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A promising approach to hadronic physics is the method of 

"dual unitarization and topological expansion."1'^ Within this 

approach, Chev; and Rosenzweig (C -P have made an interesting 

proposal that the Pomeron P is just the f-trajectory, renormalized 

and mixed with the planir f ’-trajectory via the cylinder correc­

tion to the planar approximation. Veneziano^ has pointed out that 

the "strict" Flarari-Freund Pomeron^ is incompatible with the

topological expansion (TEj^ and that the C-R Pomeron is the simplest
7 8realization of the TE. Some phenomenological analyses ’ have 

already shown that the C-R Pomeron with exp slightly less than one

can pass certain experimental checks at moderate energies (10
8 9GeV/c £ PLab  ̂ GeV/c). However, it has been stated ’ that 

the difference of total cross sections, (2K-tt) , where

K = x(tfv+ + (_+ Qv+ + cT,_ ) and tt = 4(a + + a _ )4 k K+p K-p K+n K n 2 V ir+p ir p'

should fall with energy in the C-R scheme with oip < 1 , whereas
g

the data show a rise, although Chew-Rosenzweig-Stevens pointed 

out that a proper consideration of the strange threshold may ac­

count for this rise. Fu»thermore, Freund and Romao^® have recently 

claimed that it is impossible for .the C-R scheme to simultaneously 

explain the experimental data on both (2K-tt) and the ratio p of 

the real over imaginary part of the forward tt amplitude. In par­

ticular, they argued that in the C-R scheme if (2K-u) rises (falls) 

with energy, then > 0 (<0) , whereas the data show (2K-tt) rises 

and p < 0 .  Since the C-R solution is the simplest realization
TT

of the TE, Freund and Romao questioned the whole TE approach.

In this paper we answer the criticism of Freund and Romao.

We want to point out two things. The first is that the renormalized
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f '-trajectory giv '■ an unambiguous negative contribution to (2K-tt)

and will be shown to cause (2K-ir) to rise slightly with energy

at moderate energies even if a £ 1. The second is that the TEP
up to the cylinder level as presently formulated has not included 

the whole elastic and quasi-elastic (called elastic for short) 

contributions; the part of the elastic contribution which has been 

included corresponds tc a Regge exchange, which of course is only a 

small part of the whole elastic contribution in the energy range of 

interest. The missing piece, the diffractive contribution, will 

be shown to give a substantial negative contribution to p . In 

this paper, we take into account both the f ’ and diffractive con­

tributions and show that the C-R Pomeron is consistent with the 

ti, (2K--tt) , and p^ data; we also make a prediction for pj,, the 

ratio of real over imaginary part of the forward K amplitude.

Our starting point is the C-R matrix A up to the cylinder 

level for the even charge conjugation isoscalar trajectories

/a b V 1 I J-a0 -2k - / I k y 1 

A = ] I (i)
\b c j y - / 2 k  J - a 3 - k /

where ctg and are the planar (f-w-p^^) and (f'-<J>) intercepts
7.and k is the cylinder coupling. The output pole intercepts, 

given by the zeros of the determinant D of A, are

aP f' = I [a0 + a3 + 3k - ̂  (a0"a3+k^2 + J * (-2')
■^7 ^ (J-ot. )

The SU(3) mixing angles, given by' 5 tan 0^ = — c ^j_a ) > are

a +■ Ct 2 / 2 ktan 9̂ , = -ctn 0£ , = -----------------------------------
r X  / 7  7" •

a n - a ?  + k  + / ( a n - a , + k )  + 8k

tu t • a u ? (J~ai)[a(J) + c(J)] The pole residues, given by y^ = ----  D(J)-----s -- , gives
J=a. 

i

Yp = Yf, = y • (4)
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Using the additive quark model for coupling the quark states
_ 7qq to the external meson and nucleon, we can then write

d p - 1  d r ,  - 1  9
= 3 [ i~) + (~) tan 0p] , (5a)ii s Q s q r

(2K-7T) = /2 B tan 0 [(J-)“P - t^-)^' ] , (5b)11 r sQ
3yG — where 3 = ------ -— n---  with G being the product of the Reggeon-qq

2 (1 + tan 0p)
couplings, and the subscript M reminds us that what we have cal­

culated is the multiperipheral (or nondiffractive) contribution, 

to which we must add the diffractive elastic and quasi-elastic con­

tributions. Note that in Eq. (5b), the f' gives a negative con- 
FItribution. The diffractive elastic contributions -p-̂ and are

given by 2aD -2
C s F

TTD = g----  , with = 2b (T + 2aplns, (6a)
TT

2 a p  - 2
C s

Kp = - ----  , with Bk = 2bK + 2aplns , (6b)
K

where in our calculation we use a nominal value of 0.5 for otp.

At the highest energy of the present model (50 GeV/c), we make use

of the Pomeron dominance approximation for the elastic cross sec-
F2tion, and taking the extrapolated experimental values " at this

energy of tt̂  ~ 3.1 mb, ~ 2.3 m b , ^  ~ 8.3 (GeV/c) and
- 2 127.8 (GeV/c) , we can determine from Eq. (6) the quantities 

b ^ , b^, C^, and C^. Equation (6) then gives the energy dependence 

of TTp and Kp. The total cross sections are then given by

it = ttm  + Attd , (7a)

(2K-7T) = (2K-tt)m  + X(2K-tt)d , (7b)

where the factor A takes into account the diffractive quasi­

elastic contribution. In our calculation we set it at the
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reasonable value of A = l.S.^-5 Before presenting our quantitative 

results, we first discuss p and pK.’ MTT

We preent the derivation for p . The full amplitude has two 

contributions corresponding to the multiperipheral and diffractive 

components. The forward elastic amplitude is related to tt by 

the Optical Theorem, Im A = stt , with A = A 1̂ + A®. Defining
M  n 77 TT TT TT 6

M _ Re At? , D _ Re A^ „p = ---- rr and p - ---- =r , one can easily show thatTf Tm aM  TT t ’ '
n " AJ M D ,

p n = + rin p n ' (8a)
11Dwhere n = A(— ), i.e., the ratio of the diffractive cross sectionTT TT ’ ’

Mover the total cross section. In our model, p is given by

M

TTCCp o Otp TTCtr-j o Q Ctrt
ctn ) cos 0p (— ) + ctn (— j— )sin ep (— )

______________ v  S Q_______________________ “_______________ - S Q

2 f s “p . 2 f s .af • cos 0p(— ) + sin QpC— )
1 0 0

(9a)

TT(Xp
which of course reduces to the usual -ctn(— ) when f  is neglected. 

We can also write

T a d  o   ̂ * f  j *  I B(t) \2 e  (t)Im A = s (A tt n) ~ ■=r~p—  dt ---- ■■. T s v ,
tt ^ D '  1 6 tt I I T T a p ( t )  j ’

sin— 2--/

F4where e(t) = 2ap(t) - 1. Now since A^ is, by construction,
Mcrossing even, and A^ is also crossing even as only vacuum tra­

jectories contribute, this leads to a crossing even A^. From a 

dispersion relation calculation similar to the one used in obtain­

ing the usual even signature factor, the full diffractive ampli­

tude is then given by n ifre (t)

a d = - - A _  f  d t ! g ( t )  , \ 2 s £ ( t )  e ,2-IT 1 6 t t  I I 1Tap (t) - TT£ Ct j
\s in 2 ) 2

Due to "non-sense zeros" in B(t), the quantity in parenthesis

does not have poles. Since the integrand is expected to peak
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exponentially at t = 0 , and since ap (0) 1 , we may ignore the
slowly varying t -dependence in sin— ^  near t = 0 and take it 
outside the integral. F5 As m  deriving (6), the quantity in 

b t
parenthesis has the form e n 

,2 . 0

This gives

a d = -
IT

A60

16tt sin TT£ ( 0 )

1
dt e

Upon doing the integrals,13 we get

2b t * se(t)
c o s  2 ------------

IT £ (t)

D p ^ 2 b ir + 2 a p l n s ) s inTrS  + na^cosirS ~

^TT I "L (2b^ + 2a^lns) costt<5 - fra^sinirS (10a)

where 6 5 1 - ap (0). Similarly, for the kaon case, if nK = X (~)
we get

p k (l-nK)p ̂  + nKPK

K

(8b)
T T O p  j  Ctp i j Ct

c t n - c o s  0p (l + /2tan0p) (— ) + ctn— ~— sin 0p (l-/2ctn0p) (— )
50 ’0

.cos^0p(l + /TtanOp) (— ) P + s in20n (l - /2ctn 0D) (— ) ^

J 0
(2b^ + 2a£lns) sin^6 + TTapCosTTS 

L (2b^ + 2a^lns)cosir6 - na^siniTS

’0 (9b)

(10b)

a,

Equations ( 2 )  - (10) determine tt , (2K-tt)  , , and p^ in terms of 

, a^, B, k, and Sq. Since is-the planar (f-o)-p-A2) intercept 

and the cylinder does not renormalize the P-A2 trajectories, we ex­

pect ctg = 0 . 5 .  As discussed in Ref. 7,  planar bootstrap leads to

an equal spacing rule and implies (a^-a^) is twice the separation
1 4of the p and K* intercepts, which we take as 0 . 2 ,  i.e., ~ 0 . 3 .  

The quantity 0 is a normalization constant which we determine by 

using the experimental tt cross section at 3 0  GeV/c (mid-point of 

energy range of interest). Therefore, our model has essentially two 

free parameters, k and s^.

The results of our calculation for = 0 . 5  and = 0 . 3  are
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shown in Figs. 1 and 2 with k = 0.18 and = 1.5 GeV^. These 

correspond to ap = 0.97, a^, = 0.35 and ctn0p = 2.0. We see the 

calculated p^ is large and negative and in excellent agreement with 

the data. Notice the (2K-tt) curve does not fall but actually 

rises slightly over this energy region. Both the it and (2K-ir) 

curves are in approximate agreement with the data. We want to 

emphasize the point raised in Ref. 8, i.e., the energy dependence 

of the strange threshold has not been taken into account in 

the model. This threshold effect has the consequence of causing 

the it cross section to fall faster (slower] and the (2K-ir) cross 

section to be smaller (larger) at the lower (higher) end of our 

energy range and therefore should further improve the agreement 

with the data. So we conclude that our model is consistent with 

the data. In Fig. 2a we also plotted separately the multiperipheral 

contribution (1-n )pM and the diffractive contribution n pD . Noteir TT TT IT
that th.2 diffractive component gives a sizeable negative contribu­

tion. In the K case, the negative value comes essentially from 

the diffractive contribution. The theoretical curve is expected

to be between p^+ and . Although there is not sufficient
F6data, our result is consistent with the existing p„+„ data.K p

We also found a similar quality of fits for = 0.55, =
20.35 with k = 0.16 and sQ - 1.0 GeV . These correspond to otp =

0.98, oî , = 0.40, c.tn0p = 2.1. Note that these and the previously 

mentioned values are quite close to those of solution 2 in Ref. 7.

Our results tell us that the inclusion of the f '-contribution 

and the diffractive elastic (and quasi-elastic) contributions are 

of crucial importance in explaining the (2K-tt) and p^ data. Their
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inclusion allows us to conclude that the C-R Pomeron is a viable 

scheme.

Footnotes

FI. This negative sign is not due to a particular sign convention 

in the couplings or due to the convention in defining the 

mixing angle 0£,. Both Eqs. (5a) and (5b) follow directly

from the additive quark model expressions given in Ref. 7,
3 2 3 2'ffjyj - G [ jYpSpC0S 0p + -jYf' sf • cos 0£|]

KM = G t|YpSpcos20p (l + /2 tan0p)

+ |y£ ,sf ,cos20f ,(1 + /2 tan0£I)] 

together with Eqs. (3) and (4).

F2. Our results are insensitive to small changes in those values 

given. Also there is no elastic cross section data for K±n.

We assume the sum of K±n elastic cross sections to be the
r +same as that of K p.

F3. Of course A for tt may be slightly different from A for K. To 

make the discussion simpler and to reduce the number of param­

eters, we set = AK = A. Our conclusions do not depend

sensitively on this choice or on the specific A value chosen.
•1/2 f 3(t) \

F4. Technically speaking, the quantity A (^^o-ptt) J should be
V 2 '

replaced by some pertinent triple Regge vertex g(0,t,t).

F5. The factor sin-— has zeros at e(t) = 0, -2, ... or at
2t ~ -1, -3, ... (GeV/c) . In general these zeros might be

cancelled by corresponding zeros in g(0,t,t) of Footnote 4

although such cancellation does not occur in the usual dual

resonance model. Even for no cancellation, these zeros only
0 -2give rise to some finite contribution of the order of s , s , ... 

(up to Ins factors).
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F6 . To make more quantitative check of our prediction for pj,,
+one needs K n data.

References

1. G. Veneziano, Ph>s. Lett. 52B (1974) 220; Nucl. Phys. B74 

(1974) 365.

2. H. M. Chan et al., Nucl. Phys. B86 (1975) 479; B92_ (1975) 13.

3. G. F. Chew and C. Rosenzweig, Phys. Lett. 58B (1975) 93;

Phys. Rev. Dl_2 (1975) 3907.

4. N. Papadopoulos et al., Nucl. Phys. B101 (1975) 189.

5. G. Veneziano, Nucl. Phys. B108 (1976) 285.

6 . H. Harari, Phys. Rev. Lett. 20̂  (1970), 1395.

P. Freund, Phys. Rev. Lett. 2£ (1970) 235.

7. C. B. Chiu, M. Hossain, and D. M. Tow, Phys. Rev. D14 (1976)

3141. Note a typographical error in Eq. (3.7a); cos0p and
2 2 cosG^, should appear as cos 0p and cosi0£,.

8 . P. R. Stevens, G. F. Chew, and C. Rosenzweig, Nucl. Phys.

B110 (1976) 355.

9. C. Quigg and E. Rabinovici, Phys. Rev. D13 (1976) 2525.

10. J. Romao and P. Freund, University of Chicago preprint EFI 

76/53 (1976).

11. E. Bracci et al., CERN Report No. CERN/HERA 72-1, 2, 1972 

(unpublished). A. N. Diddens, in Proc, of the XVII Intern. 

Conf. on High Energy Physics, London (1974), ed. by J. R. 

Smith.

12. See, e.g., Yu. M. Antipov et al., Nucl. Phys. B57 (1973) 333, 

and A. A. Derevchekov et al., Phys. Lett. 48B (1974) 367.

13. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series 

and Products, 4th ed., Academic Press, New York and London, 

1965, p . 196.



10

14. See Footnote 13 of Ref. 7.

15. S. P. Denisov et al., Nucl. Phys. B65 (1973) 1; Phys. Lett.

36B (1971) 415.

16. K. J. Foley et al., Phys. Rev. 181 (1969), 1775; Phys. Rev.

Lett. 3^ (1967) 193.

17. J. R. Campbell et al., Nucl. Phys. B64 (1973) 1. R. K. Carnegie 

et al., Phys. Lett. 59B (1975) 308. A. B. Kaidalov, in Proc.

T the XVIII Intern. Conf. on High Energy Physics, Tbilisi 

(1976).

Figure Captions

Fig. 1. Theoretical curves compared with: (a) the tt data, and

(b) the (2K-tt) data. The data are from Refs. 11 and 15.

Note the different scales for (a) and (b).

Fig. 2. (a) Theoretical curve (solid) compared with the data 

of Ref. 16. Also shown are the curves of diffractive 

and multipeiipheral contributions. (b) Theoretical 

curve, and the P^+p data (x) and P^-p data (•) of Ref.

17. Note that (b) uses the right vertical scale.
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