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FRACTURE MECHANICS
MATERIALS DATA BASE FOR USE IN CRBR PIPING
INTEGRITY ANALYSES

o PURPOSE

TO ILLUSTRATE HOW FRACTURE MECHANICS DATA CONFIRM THE
BEHAVIOR/FAILURE CHARACTERISTICS EXHIBITED IN
CONVENTIONAL MATERIAL DESIGN DATA BASE.

e SCOPE

BASED UPON CRBRP PIPING INTEGRITY STUDIES,
INCLUDES EFFECTS SUCH AS WELDMENTS, AGING,
ENVIRONMENTAL CONSIDERATIONS, METALLURGICAL

VARIABLES.,

¢ CONCLUSION

AVAILABLE DATA IS ADEQUATE FOR SAFE RELIABLE
DESIGN OF CRBRP ELEVATED TEMPERATURE COMPONENTS

FOR 30 YEAR PLANT LIFE.
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¢ LARGE WELL-CHARACTERIZED DATA BASE IHCORPORATING
SEVERAL MATERIAL HEATS AND PRODUCT FORMS AHD WELD
TYPES.,

e ONLY “VALID DATA” EMPLOYED (VALID PER ASTH EBH47).
CORRELATIONS DEVELOPED ARE IN PROCESS OF CON-
SIDERATION FOR NSMH REVISION.

e QUALITY AND QUANTITY OF DATA ARE SUFFICIEATLY
HIGH THAT RELATIVELY NARROW CONFIDENCE INTERVALS
ARE PRODUCED -- 1.e., WE HAVE A HIGH LEVEL OF
CONFIDENCE THAT THE CRACK GROWTH EQUATIONS EMPLOYED
ARE CORRECT.

e METHODS ARE AVAILABLE TO ACCOUNT FOR FREGUENCY
EFFECTS AND STRESS RATIO EFFECTS.
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Log (das/dN)
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Log (da’dN)
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Includes Thermal RAging
to 68288 hours @ 1200 F
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Type 388 Weldments
SMA Process
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78 Data Pairs

: Regression Analysis: da/dN = 6.400 x 10718 (aK)2'787

10,330 < aK < 40,270 psi/in
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Log (da/dN)
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Includes Thermal Aging %o
3802 hours € 1008 F

Type 308 Weldments

Hiss % sp, SMA, GTA Processes

3 Material Heats
8 Specimens

{17 Data Pairs

4.5 5.0

Log (delta k)
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CRACK GROWTH IN 16-8-2 WELDMENTS AT 75 F
CREEC HEDE=TME ‘82=14)
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FATIGUE-CRACK GROWTH RATE, da/dN, Inch/cycle
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CRACK GROWTH IN 16-8-2 WELDMENTS AT 808 F
(REF. HEDL-TME 82-14)
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CRACK GROWTH IN 16-8-2 WELDMENTS AT 1888 F
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CRACK GROWTH IN 16-8-2 WELDMENTS AT 12808 F
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TIME-DEPENDENT EFFECTS OH CRACK PROPAGATION
IN AUSTENITIC STAINLESS STEELS

SEVERAL STUDIES HAVE ADDRESSED TIME-DEPENDENT EFFECTS ON THE
FATIGUE-CRACK PROPAGATION BEHAVIOR OF AUSTENITIC STAINLESS

STEELS.

THE FINDINGS MAY BE SUMMARIZED AS FOLLOWS:

IN ELEVATED TEMPERATURE AIR ENVIRONMENTS, CRACK GROWTH
RATES GENERALLY INCREASE WITH DECREASING CYCLIC FRE-
QUENCIES

TIME-DEPENDENT EFFECTS ARE GREATLY REDUCED (OR
ELIMINATED ALTOGETHER) IN INERT ENVIRONMENTS (E.G.
LIQUID SODIUM, VACUUM, ARGON)

LOADING WAVEFORM (E.G. HOLD-TIME) PLAYS NO SIGNIFICANT
ROLE IN INFLUENCING CRACK GROWTH BEHAVIOR BEYOND THAT
PRODUCED BY THE CYCLIC FREQUENCY EFFECT

A FREQUENCY CORRECTION FACTOR (IN POLYNOMINAL FORM)
CAN BE USED TO ESTIMATE TIME-DEPENDENT EFFECTS AT
ELEVATED TEMPERATURES. POLYNOMINAL 1S BASED ON
EXPERIMENTAL DATA OVER A FACTOR OF 120,000 oN FRe-
qQuency AT 10C0°F




TIME-DEPENDENT EFFECTS

ON THE FATIGUE-CRACK GROWTH
BEHAVIOR OF TYPE 384 S.s.
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TIME-DEPENDENT EFFECTS
ON THE FATIGUE-CRACK GROWTH
BEHRVIOR OF TYPE 384 S.S.
IN RIR AT 1888 F
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FREQUENCY CORRECTION FRCTORS
FOR RAUSTENITIC & FERRITIC STEELS
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$a104 12
TS A T
ot | PREDICTID CURVE FOR 830 om
: SAWTOOTH WAVIFORM
I RESULTS FOR 0.40 com
SAWTOOTH WAVEFORM
FROM FIG. 3 S
03 -
i
L
L
; TYPE 308 STAINLESS STERL
1000°F S3°C)
R o008

TIME=DEPENDENT EFFECTS

ON THE FATIGUE-CRRACK GROWTH
BEHAVIOR OF TYPE 3894 S.S.
IN RIR AT 1888 F

STRESS INTINSITY FACTOR RANGL. 8K, bgrimmr’?

w“ - ) m
s BAMAE (:g:fi ? I..?l:ln“u:i
‘ ANV [ T ) e s !
L
wt siet

STRESS INTENS ITY FACTOR RANGE. A%, b/ (in?

FATIGUE -CRACK GROWTH RATL, duidN, smicycle

FATICUE -CRACK GROWTH RATE, &l in Kycie

5

STRESS INTINSITY FACTOR RANGE. 8K, igiimms

™ S

p—

RESULTS FOR AOD s

. SAWTOOTH wAVEFCRM

FRCM FIG. 2

TYPE 308 STAINLESS STIEL
1000°F 534°C)
R:00

o SMC. §
VYN i[osm:v

o sMc. 19
VAN } & st
A 1

mon
]: Lilxto4 saci |

-

sugh
STRESS INTENSITY FACTOR RANGL, &, tb/(in.)32

No deleteriocus sffect of

tensile hold-=time upon the

fatigue-crack growth behavior
at 1888 F in air.

104

FATIGUE -CRACK CROUWTH RKATE ek, makycle



Q

Ve A ¢

}

TIME-DEPENDENT EFFECTS

ON THE FATIGUE-CRACK GROWTH
BEHAVIOIR OF TYPE 384 S.S.
IN AIR AT 1808 F
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Significant creep damage {introduced
prior to fatigues testing resulted
in no effect upon crack growth behavicr

under tensile hold-time conditions,
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Log (das/dN)
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ERACTURE TOUGHNESS OF AUSTEHITIC STAINIESS STEELS AND WELDS

o LARGE WELL-CHARACTERIZED DATA BASE INCORPORATING SEVERAL
MATERIAL HEATS AND WELD TYPES.

e ONLY "VALID DATA” EMPLOYED. TOUGHNESS VALUES AHD TEARING
MODULI DEVELOPED ARE IN PROCESS OF CONSIDERATION FOR NSMH
SECTION,

o HEAT-TO-HEAT VARIATIONS IN TOUGHNESS OBSERVED IH AUSTENI-
TIC STEELS. THESE VARIATIONS CAN BE RELATED TO MICRO-
STRUCTURE. VARIATIONS ARE ALSO NOTED IN AUSTENWITIC STAIN-
LESS STEEL WELDMENTS AND CAN BE RELATED TO WELDING
PROCESSES.

o FRACTURE TOUGHNESS OF AUSTERITIC STEELS AND WELDMENTS ARE
GENERALLY SO HIGH THAT SEMI-EMPIRICAL FAILURE CRITERIA
(e.c,, PARIS PLASTIC-INSTABILITY MODEL, HAHN MODEL, ETC.)
ARE USED INSTEAD OF FRACTURE MECHANICS-BASED CRITERIA.

o THERMAL AGING CAil DECREASE INITIATION TOUGHNESS SOMEWHAT,
BUT TEARING MODULI IN AGED MATERIALS REMAIN RELATIVELY
NCHANGED. TOUGHNESS IN AGED AUSTENITIC STEELS REMAINS
SUFFICIENTLY HIGH THAT SEMI-EMPIRICAL FAILURE CRITERIA
ARE THE MOST APPROPRIATE.



J, kJ/m

J=INTEGRAL TOUGHNESS
OF  SEVERAL HERTS Ok

BYPE 304 S.5. AT 880 I

1500

L r I L) T

1000

i l T T

] I ¥ l T i T
TYPE 304 STAINLESS STEEL
TESTED AT 427°C

|

/

AL HEAT A
\/ =
&

1

B HEATA J.o = 788 kJ/im? |
® HEATB J e = 628 kJ/m?
4 HEATC J .. = 751 kJ/m?
YHEATD Jic = 719 kJ/im?
* HEATE J o= Z8kJ/md

i

1 I L 1

=g VL] B RS I

1.0 2.0 3.0
CRACK EXTENSION, mm

4.0

5.0



J, wismt

NG TR DR O MRS ~ N /A e it + it 4

J—-INTEGRAL TOUGHNESS
OF SEVERHI HERTS (OF:
TYPE 389 S.S. A 12808 F
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- TYPE 304 STAINLESS STEEL
| TESTED AT 538°C
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J-INTEGRAL TOUGHNESS
OF RUSTENITIC S.S.
WELDMENTS AT 8@8 F

] ‘ ]
OTYPE302SS SMA Jic = 219 kJ/m2

" vTYPE30B8ES SA Jic = E3 kd/m2
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B TYPE 18-8-2 8§ GTA Jic

TESTED AT 427°C
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J—INTEGRAL TOUGHNESS
OF: ALISTENITIC S.S.
WELDMENTS AT 1888 F

' T ' |
v TYPE 308SS SMA Jic = 144 kJ/m2
800- @ TYPE 2308SS SA Jic= 93 kJ/ml
8 TYPE 16-82SS GTA Jic = 251 kJ/m?
600 =
400 -
200
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T-INTEGRAL FRACTURE TOUGHNESS
OF 2 1/4Cr-1Moc PLATE AT 888 F
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J-INTEGRAL FRACTURE TOUGHNESS

OF 2 1/4Cr—1Mo WELDMENTS
AT 7?5 F AND 888 F.

J. kJ/m?

500

ll{lll_l_I'!lllllE

2 1/4 Cr - 1 Mo STEEL WELDMENT

| A 24°C J;c =175 kd/m? 2
® 427°C J,c =116 ki/m? ,

: 5] -

J= 20’{ (Aa)

f 1 1 1 4L l 1 1 1 1 ; i | 1 1 J l

0.5 1.0 1.5
CRACK EXTENSION, mm




EFFECT OF THERMAL AGING ON
J-INTEGRAL TOUGHNESS € 1888 F
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USE OF THE PARIS MODEL
TO PREDICT CRITICAL CRACK
LENGTHS IN RUSTENITIC S.S. PIRES
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ANALYSES FOR AUSTENITIC S.S. PIPES
IN THE CRBR PHTS & IHTS PREDICT
CRITICAL CRACK LENGTHS ON THE ORDER
OF THE PIPE DIAMETER
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USE OF THE PRRIS MODEL
TO PREDICT CRITICAL CRARCK
LENGTHS IN FERRITIC STEEL PIPES
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ANALYSES FOR FERRITIC STEEL PIPES
IN THE CRBR IHTS PREDICT CRITICAL
CRACK LENGTHS ON THE ORDER OF
THE PIPE DIAMETER.
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REVIEW OF FRACTURE MECHANICS MATERIALS PROPERTIES
IN SUPPORT OF CRBR PIPING INTESRITY AMALYSES

SUMMARY

LARGE WELL-CHARACTERIZED DATA BASE AVAILABLE TO SUPPORT
BOTH FATIGUE-CRACK GROWTH AND FRACTURE TOUCHNESS ANALYSES

THE QUALITY AND QUANTITY OF THE DATA PROVIDE CONSIDERABLE
CONFIDENCE WHEN INPUT INTO THE INTEGRITY ANALYSES

FRACTURE MECHANICS PROPERTIES COMPLEMENT THE MORE CON-
VENTIONAL MECHANICAL PROPERTIES AND CONFIRM THAT THE
MATERIALS UTILIZED IN THE CREBR PIPING SYSTEMS ARE WELL-

BEHAVED

THE CONCLUSION IS THAT THE AVAILABLE DATA 1S ADEQUATE
FOR A SAFE RELIABLE DESIGN OF THE ELEVATED TEMPERATURE
PIPING COMPONENTS FOR THE Jf) YEAR PLANT LIFE
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QBJECTIVE:

~ DEVELOP THE BASIS FOR SPECIFYING A CONSERVATIVELY
LARGE REFERENCE FATIGUE CRACK THAT CAN BE USED IN
THE SELECTION OF DESIGN BASIS LEAKS FOR VARIOUS

PLANT ITEMS,
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APPROACH:

POSTULATE A MUCH DEEPER AND LONGER INITIAL
CRACK THAN THAT USED IN THE CRACK GROWTH
ANALYSES.,

ANTICIPATED PLANT LOADINGS WOULD CAUSE A
CRACK TO PENETRATE (AND HENCE LEAK) BEFORE
IT GOT VERY LONG, IN THE REFERENCE FATIGUE
CRACK CALCULATIONS WE ARBITRARILY HOLD THE
CRACK DEPTH CONSTANT AND ONLY ALLOW GROWTH
TO TAKE PLACE IN THE LENGTH DIRECTION,

THIS CONSERVATIVELY MAXIMIZES THE CRACK
LENGTH.

ONCE THE ENTIRE PLANT DUTY CYCLE OF LOADINGS

HAS BEEN APPLIED, AN EQUIVALENT THROUGH-WALL
CRACK IS CALCULATED BY ASSUMING THAT PENETRATION
OVER THAT PORTIOM OF THE LIGAMENT WHERE THE
NOMINAL NET SECTION STRESS EXCEEDS THE YIELD
STRENGTH.

THE RESULTING EQUIVALENT THROUGH-WALL CRACK IS
CALLED THE “REFERENCE FATIGUE CRACK,” AND IS
USED IN THE SELECTION OF DESIGN BASIS LEAKS
FOR VARIOUS PLANT ITEMS,



REFERENCE FATIGUE CRACK

DETAILS Or THE CALCULATION FOR THE PHTS:

- INITIAL CRACK WAS POSTULATED TO BE 0.45 INCH
DEeP (90Z oF wALL) AND 3.0 INCH LONG

i l- b 3.

) 5.4 :
‘\.\

2 -  PLANT DUTY CYCLES EXTEND THE CRACK TO A SURFACE

| LENGTH OF 5.4 INCH. CRACK DEPTH WAS ABRITRARILY

o FIXED AT 0.45 INCH.

=y

=  EQUIVALENT THROUGH-WALL CRACK CALCULATED BY
ASSUMING THAT WALL PENETRATION OCCURS OVER
THAT PORTION OF THE UNCRACKED LIGAMENT WHERE

THE NOMINAL NET SECTION STRESS EXCEEDS THE
YIELD STRENGTH.

-=

-  THE CALCULATED LENGTH OF THE EQUIVALENT
THROUGH-WALL CRACK IS 3.5 INCH AND THIS,
WHEN ROUNDED OFF TO 4 INCHES, BECOMES THE
"REFERENCE FATIGUE CRACK”,



CONSERVATISMS EMPLOYED:

-  VERY LARGE POSTULATED INITIAL CRACK SIZE

-  WALL PENETRATION (AND HENCE LEAKAGE)
ARBITRARILY PREVENTED

=  THROUGH-WALL FAILURE DEFINED AS REACHING
THE MATERIAL YIELD STRENGTH

-  LENGTH "ROUNDED OFF"” TO 4 INCHES FROM
A CALCULATED 3.6 INCHES

=  LOCATION CHOSEN HAD HIGHEST STRESSES.
HENCE, RESULTS ARE CONSERVATIVE FOR ALL
OTHER PHTS LOCATIONS.





