

DE93 003066

principal investigator: W. C. Nierman

NOV 18 1992

page 1

TECHNICAL PROGRESS DURING THE CURRENT AND PREVIOUS BUDGET PERIODS

A. Summary

During this project year, we have tested and implemented several protocols to increase productivity for mapping EST sequences to human chromosomes. These protocols include (1) adopting PRIMER (8), which permits utilization of batch files, as the standard software for PCR primer design; (2) adding a human 21-only cell line (S. Antonarakis, personal communication) to the NIGMS panel #1 to improve discrimination in discordancy analyses involving chromosome 21, (3) adding a monochromosomal hybrid panel (NIGMS Panel 2) to facilitate chromosome assignment of sequences that are amplified from more than 1 chromosome; (4) combining the products of multiple PCR reactions for electrophoretic analysis (pseudoplexing); (5) routinely multiplexing PCR reactions; and (6) automating data entry and analysis as much as possible.

We have applied these protocols to assign an overall total of 132 human brain cDNA sequences to individual human chromosomes. PCR primers were designed from expressed sequence tags (ESTs) and tested for specific amplification from human genomic DNA. DNA was then amplified using DNA from somatic cell hybrid mapping panels as templates. The amplification products were identified using an automated fluorescence detection system. Chromosomal assignments were made by discordancy analysis. The localized cDNAs include 2 for known human genes, 2 that map to 2 different human chromosomes, and 25 for cDNAs matching existing database records.

B. Introduction

Genes expressed in human tissues are rapidly being identified by partially sequencing cDNA clones (1-4). While some of the genes identified in this way exhibit nucleic acid or protein sequence similarity to known genes in humans or other organisms, most are previously unreported.

Several laboratories are analyzing the cDNA sequence data and using PCR and somatic cell hybrid mapping panels to localize the sequences to individual human chromosomes (5-7). The mapping efforts continue to lag approximately an order of magnitude behind the sequencing projects. The focus of our approach is to maximize sensitivity and throughput by applying the ABI 373A sequencing machine configured with GeneScanner software to analyze fluorescently-tagged PCR products (6-7). The instrumentation permits the combination of high resolution of multiple products separated by denaturing polyacrylamide gel electrophoresis with the four color discrimination of the fluorescence detection system. Because primers can be labeled with different fluorescent dyes, products can be identified by both size and dye label. We have therefore combined multiple pairs of PCR primers in single PCR reactions (multiplexing) and

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

combined independently amplified products to a single electrophoretic lane (pseudoplexing) to increase throughput.

C. Methods

Figure 1 is a flow chart for our EST mapping strategy. Sequences known to have a low probability of containing coding sequences were provided electronically from the Venter laboratory. Another set showing relatedness to sequence records but not matching human sequences exactly was downloaded from dbEST. Primers were designed from these sequence records using PRIMER (8) with the parameters of 50% GC; primer size of 18-22 nucleotides; primer T_m between 55°-59°C; PCR product size between 80-150 bp, and sequence range within the first 300 bp of each EST sequence. To expedite processing, all source sequence files were analyzed without determining the correspondence between the predicted PCR product and any potential coding sequence. Thus, for the set of ESTs that were selected for mapping because of similarities to previously reported sequences, the amplified product was not restricted to lie either within or without coding regions.

One of each primer pair was synthesized with 5' Aminolink II and labeled with a fluorescent dye using procedures provided by ABI (9). Template DNA (50 ng) was amplified in the presence of 40 ng of each primer in a total volume of 15 μ l. Other components were as described in the Perkin Elmer Cetus GeneAmp Kit protocol (P/N N801-0043). The amplification conditions were: 95°C, 5 min; followed by 25 cycles of 94°C, 1.4 min., 55°C, 2 min., 72°C, 2 min., and a final incubation at 72°C, 10 min. One μ l of the PCR product was pooled with 1 μ l of fluorescently-labelled internal lane size standard [pGEM3Z sequencing ladder with only ddTTP chain termination products, or GS-2500 (ABI)] and 2 μ l deionized formamide. The sample was denatured at 95°C for 2 minutes before loading onto a 6% polyacrylamide denaturing gel (8 M urea). Data from the electrophoretic analyses were collected on an ABI 373A automated sequencer configured with ABI 672 GeneScanner software. Sizes of amplification products were determined relative to the internal lane standard (10) by the GeneScanner software.

If a primer pair failed to give an amplification product, or failed to give a product that could be used to make a chromosome assignment, another oligonucleotide was synthesized that could be used with the dye-labeled primer. In approximately 20% of the cases, no such oligonucleotide could be identified, and a complete new pair was identified from the EST sequence. If no assignment could be made after 2 sets of primers had been tested, analysis of that EST was terminated.

DNA from several human/rodent hybrid mapping panels was used (NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2, Coriell Institute for Medical Research, Camden, NJ; PCRable DNA from BIOS Corporation, New Haven, CT). The NIGMS panel 1 was

supplemented with a human 21-only cell line (S. Antonarakis, personal communication).

Sequences were assigned to a chromosome when the discordancy value was less than or equal to 9%. Cell lines reported as containing a particular chromosome in fewer than 12% of metaphases were not included in the discordancy analysis.

D. Results and discussion

1. *Chromosome assignments.* Chromosomal assignments, accession numbers of matching database records, and primer sequences for 132 ESTs are presented in Table 1. Except for 2 cases (EST00884 and EST00858) in which the primers direct amplification across an intron, the products from human genomic DNA were within 5 base pairs of the size predicted by the cDNA sequence.

Figure 2 compares the distribution of chromosome assignments of these ESTS to the percentage of the genome represented by each chromosome. While 132 sequences is too small a set on which to base significant conclusions, it does appear that there is a lack of correlation between chromosome size and localization of sequences expressed in the brain. This observation is consistent with that of McKusick for monochromosomal disease-causing genes (11).

2. *Current status.* Table 2 summarizes our current progress for the set of sequences being tested. Of 626 ESTs analyzed, 198 could not be used to design primers that met the criteria described in the Methods section. For the remaining 428 sequences, analysis of 154 is considered complete, with 132 assigned to chromosomes and 22 not assigned after testing of 2 sets of primer pairs. According to our criteria, no additional attempt will be made to map these sequences.

Testing of 217 primer pairs derived from 168 ESTs has been completed. One hundred six sequences were mapped from the first set of 107 primers designed (one EST was mapped from 2 sets of primers), and 62 required redesign. Of the 48 secondary pairs that have been tested, 26 were useful in making chromosome assignments. The 22 sequences that could not be assigned to chromosomes fell into the categories of inconclusive discordancy analyses (1/22), no amplification of expected human product (17/22), and indistinguishable human, mouse, and hamster products (4/22).

3. *Multiplexing.* Several approaches to multiplexing PCR reactions have been reported. Usually, conditions and primer combinations are empirically optimized to permit successful simultaneous amplification of the same set of multiple primer pairs for repeated use in single reactions (12-13). For our mapping application, taking the time to optimize PCR conditions for selected combinations of primer pairs would decrease, not

enhance, throughput. In our protocol, a primer pair designed from a cDNA sequence is typically used in only two sets of PCR reactions. The first set of proving reactions, used to determine success in amplifying a product from human DNA distinct from potential rodent background, has as template either total human, total mouse, or total hamster genomic DNA. The second set of mapping reactions, used to determine the pattern of amplification based on human chromosome content, has as template DNA samples of either human/mouse or human/hamster hybrid cell lines of known human karyotype. Optimizing multiplex PCR conditions for each primer pair for only two reactions would thus require more effort than mapping the cDNA sequences using only one pair per reaction. Instead, we design primers using narrowly defined ranges of primer and product parameters and determine success using standard reaction conditions (6) in primer proving reactions. We then combine primer pairs for multiplex mapping reactions considering only color of the fluorescent dye label and amplified product size. Of the 132 mapped sequences in this report, 69 were mapped as a result of multiplexed mapping PCR reactions and 85 were analyzed in pseudoplexed gels.

Seventy-one of the primer pairs used to map the sequences described in this report were tested against mapping panels in duplex PCR reactions (4 primers designed to detect 2 different genomic sequences in the same tube). The primers were selected for grouping only on the basis of the dye used for labeling, the lack of background amplification in with the rodent genome in the hybrid cell panel being tested, and the product size. Primer sequences were not tested for interpair sequence complementarity. Of these, only 2 did not permit an assignment to chromosomes based on the multiplexing results and were mapped as a result of single reactions. Of the sequences that could not be mapped, 5 were tested in multiplexed reactions and only one of those included a multiplexing failure. This level of success suggests that higher orders of multiplexing could continue to increase throughput. Experiments are underway to test this.

4. Sequence database matches. Several of the ESTs we mapped had previously been reported to match sequence database records (1,2). No new matches were revealed after checking dbEST (September, 1992). We are still in the process of examining these ESTs in more detail to determine whether the assignment of the EST to a human chromosome also permits a new assignment of a human gene product. For a discussion of this analysis, see the draft of (7) presented in the Appendix.

5. Data management. The complex data analysis demanded by this project has been simplified by the development of a PC-based database and application software that provide the following functions: automated entry to the database of EST sequences to be analyzed; automated generation of a batch file from the database to serve as input for the execution of PRIMER;

principal investigator: W. C. Nierman
page 5

automated ordering of primers to be tested; automated discordancy analysis; data-entry screens that can be easily used by laboratory personnel to record information on labeling reactions, PCR reactions, and electrophoretic analyses; and a suite of automated reports, including electronic files for transferring data to external databases.

REFERENCES

1. Adams, M.D., Kelly, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, O., Moreno, R.F., Kerlavage, A.R., McCombie, W.R. and Venter, J.C. (1991) *Science* **252**: 1651-1656.
2. Adams, M.D., Dubnick, M., Kerlavage, A.R., Moreno, R., Kelly, J.M., Utterback, T.R., Nagle, J.W., Fields, C. and Venter, J.C. (1992) *Nature* **355**: 632-634.
3. Wilcox, A.S., Khan, A.S., Hopkins, J.A. and Sikela, J.M. (1991) *Nucleic Acids Res.* **19**: 1837-1843.
4. Gieser, L. and Swaroop, A. (1992) *Genomics* **13**: 873-876.
5. Polymeropoulos, M.H., Xiao, H., Glodek, A., Gorski, M., Adams, M.D., Moreno, R.F., Fitzgerald, M.G., Venter, J.C., Merril, C.R. (1992) *Genomics* **12**: 492-496.
6. Durkin, A.S., Maglott, D.R., Nierman, W.C. (1992) *Genomics*, In Press.
7. Durkin, A.S., Nierman, W.C., Maglott, D.R. (1992) in preparation.
8. Lincoln, S.E., Daly, M.J., Lander, E.S. (1991) PRIMER: A computer program for automatically selecting PCR primers. Vers 0.5. @1991, the Whitehead Institute for Biomedical Research.
9. Applied Biosystems User Bulletin, Synthesis of fluorescent dye-labeled oligonucleotides for use as primers in fluorescent-based DNA sequencing, Issue 11, (1989).
10. Carrano, A.V., Lamerdin, J., Ashworth, L.K., Watkins, B., Branscomb, E., Slezak, T., Raff, M., De Jong, P.J., Keith, D., McBride, L., Meister, S., Kronick, M. (1989) *Genomics* **4**:129-136.
11. McKusick, V.A. (1988). The Morbid Anatomy of the Human Genome, Howard Hughes Medical Institute.
12. Chamberlain, J. S., Gibbs, R. A., Rainer, J. E., Nguyen, P.-N., and Caskey, C. T. (1988). *Nucleic Acids Res.* **16**: 11141-11156.
13. Gibbs, R.A., Nguyen, P., Edwards, A., Civitello A.B., Caskey, C.T. (1990). *Genomics* **7**: 235-244.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

EST MAPPING STRATEGY

FIGURE 1.

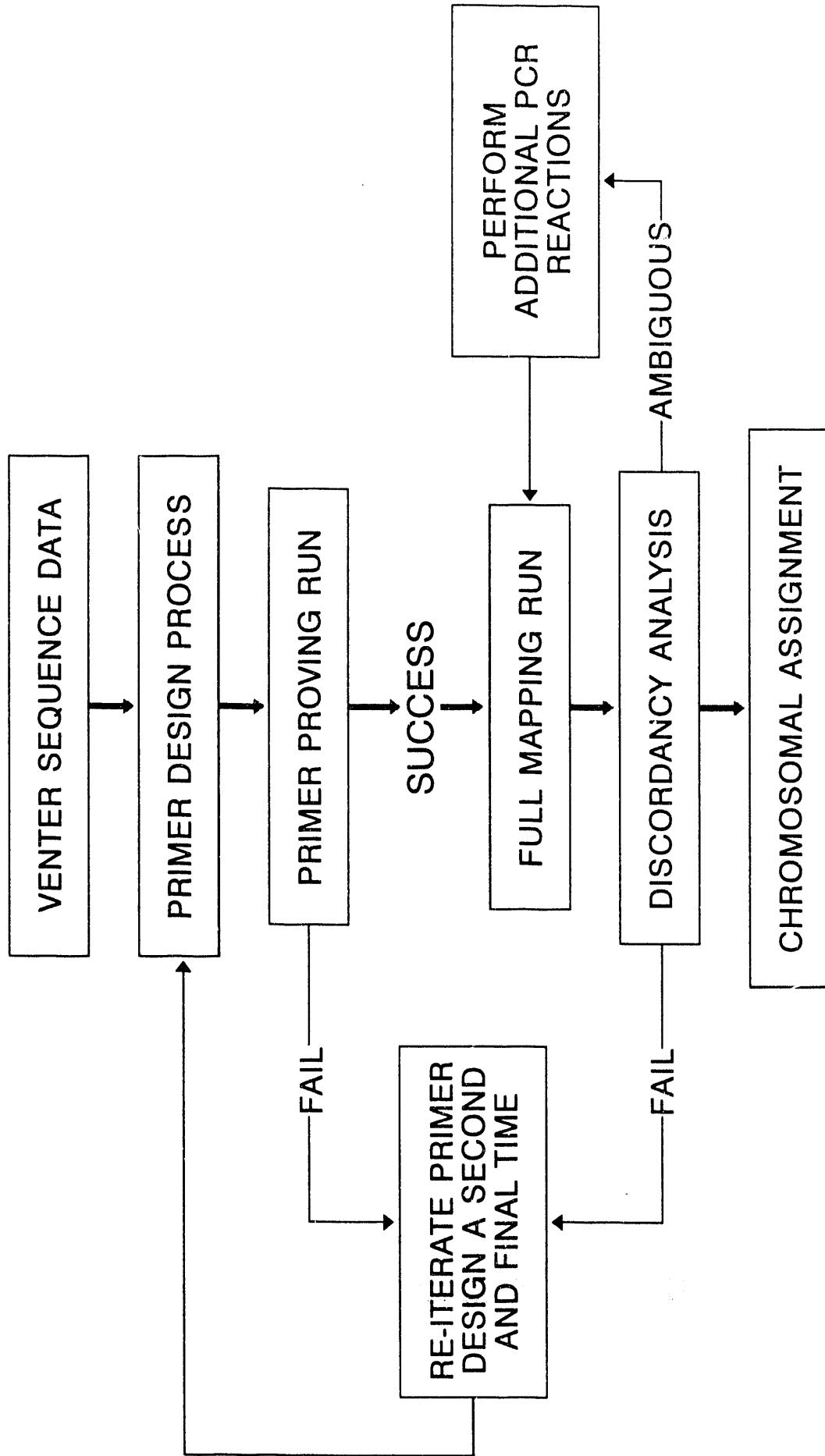
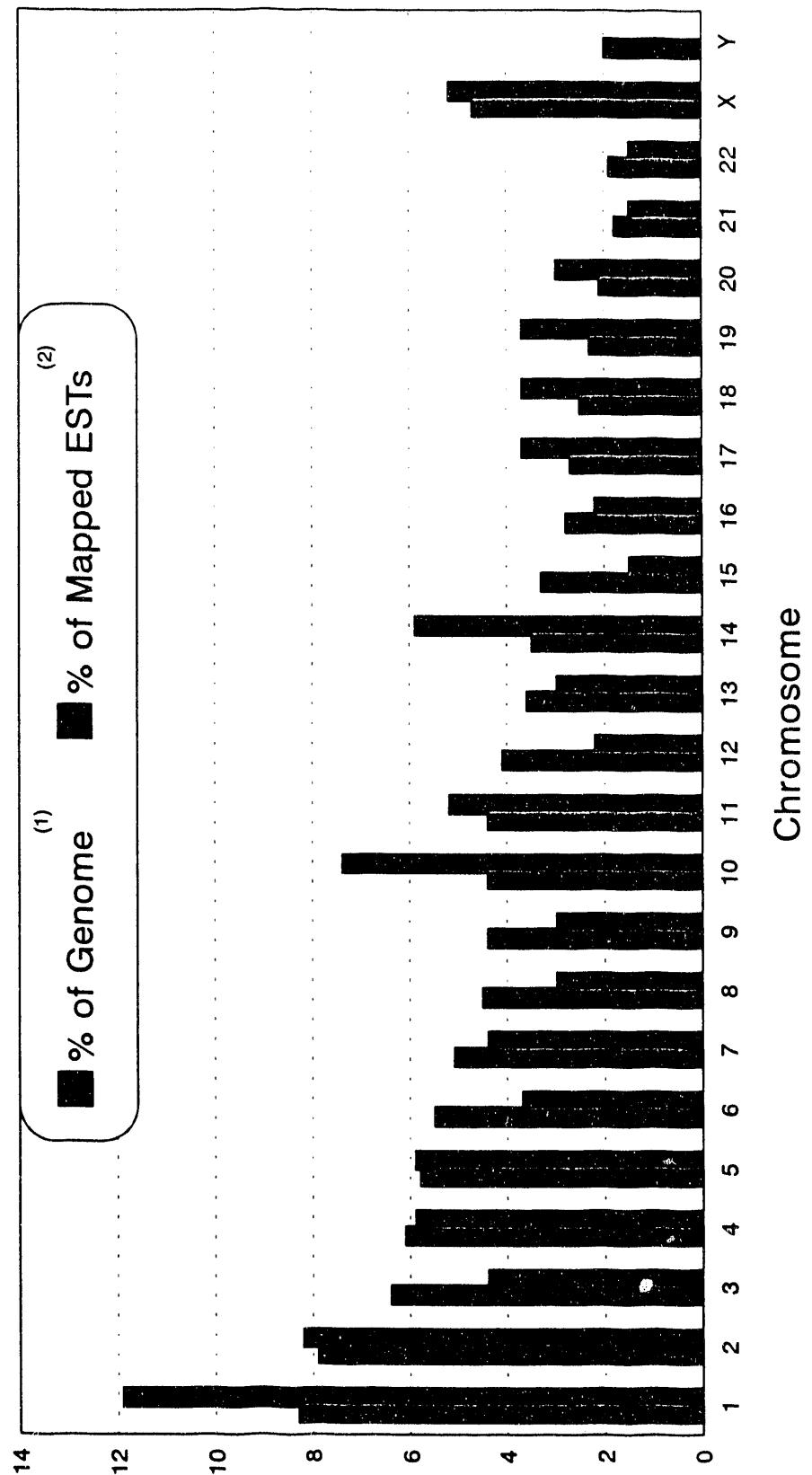
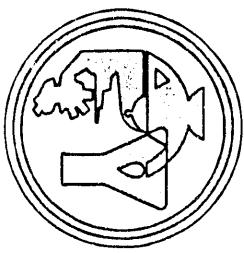




FIGURE 2. DISTRIBUTION OF MAPPED EXPRESSED SEQUENCE TAGS (ESTs) WITHIN THE HUMAN GENOME
(As of 29 October 92)

(1) *Science* 250:239-244, 1990.

(2) All ESTs were derived from human brain cDNA libraries. (N=133)

TABLE 1. SUMMARY OF MAPPED ESTS

CH	EST#	Locus/ DB match ¹	Sequence	Sequence
1	EST00100		23T ACCATACACAACACTCCAGAGC	23B CTTCCATCCCATTAGCC
1	EST00503		40S CAAAGACTCCTCTGCTAGAAC	40A AAAGAGCTACGAGGCAGATG
1	EST00552		51S CATGTTGTAGCTCATCGCAG	51A AGGATGGCAATACAACGG
1	EST00745		73S GAATAGACACTGGGTATCCTCC	73A CATGAATTCTCTCAGGGTC
1	EST00751		74S CTGCCAGAACCCAAAAC	74A AGAAATGCGTAGAGGGAG
1	EST00767		76S TGAAACCTTGTCCCTGGG	76A TCCATTGAGTCTGAGTGTGG
1	EST00883		30S GGATGCCTTAATCAAGCCTGG	30B TGACAAAAGCCTGGG
1	EST00885		180S CTGGAACCTGTGAGTACTGTC	180A TACTGGTGCTGCCATAGTCT
1	EST00903		117S AACCAACCATTGCTGCTGT	117A GTGGGTTAACGGCATGTAGA
1	EST00904		118S GTGCATTGTGGCCTGTTACT	118A CGCAAGCAGCAATCATAG
1	EST01041	P:B35308	139S AGAACCCCTTCCTGTTG	139A GTTCAAGGTCTTGGTGTCA
1	EST01676	G:M20866	187S GGGTCATCTCCACAACATTC	187A CATGCTGCCAACTTCTAAC
1	EST01764	P:A36427	159S TAGGCAAAGGAAAGGTGG	159A AAAGCAGAACAGATCGG
1	EST01919		98S GGCATCAGTTCTCATCTG	98A AAAGTCACAACCTGGG
1	EST02447	G:M37744	174S TCCAGGAAAGAGACCTCTA	174A GTTGTGATATGCCACGTCA
1	EST02679		10S CAGCAAACCTGGAATGAAAGGG	10A TAAGAAGGGATGAGTCG
2	EST00587		57S GACCAGCCTAGATTCCATTG	57A CCCTTGGTATAAAGCAGCAG
2	EST00707		70S CTTTCTGCTAGGTTGTGGG	70A ACAAAAGAGGTTGAGGGCTAG
2	EST00707		102S ATGAATGGAAAGGCTGGG	102A TAGTCATGGCCCGATTCA
2	EST00876		32S ATAACCTCCACCAGTCTCTCC	32A TACTCTCCCTTATCCCCATACC
2	EST00892		183S TCGTTACGTTGACAGGTAGG	183A GGCAGAACTTGAAGGGTTAC
2	EST00915		126S GGAAAGGGAAAAGGTGC	126A TAACACAGAGGGAAAGGGAG
2	EST01870		82S CTTTGTGCCAGGGATTG	82A AAGGCTCCATCTCTGGAAC
2	EST01880		88S GGTGGTCTCAGCTGTGTTG	88A CTTTGTGGGTGTGAGTATG
2	EST01911		96S ACCAGTTCTCAGTTGGGTTC	96A CACAATATCAACCTGAGGGG
2	EST01972		198S GAAAGCAGGATGAGTGTGATGG	198A TAGAGTCCATGGGTCTGTT
2,10	EST02530	G:M64279	175S GTGCTTCTTTCAGACTGG	175A GCTTGGTCGAACCTGGT
3	EST00094		7S GCAGGATGTCAGTCTTTGAGG	7A AGCACACATTATCTACCACGGC
3	EST00476		34S AAAATCAGTCTGGAGCC	34A AGAGAACTGTCCAAGGGTTG
3	EST00514		42S AAAAGTCTGCTGAGTCTGGG	42B GGAGCAATTCCACATTG
3	EST00605		62S GTTCCTCTCCTATCACTGGTG	61B ACTTTATGCCACCTCTTCC
3	EST00857		17S GCAGGATGTCAGTCTTTGAGG	17A CCAGCACACATTATCTACCACG
3	EST01894		91S TCACAATCTCCATGGGG	91A TCTGACCCTCACCTTATCC
4	EST00038	G:M63325	8S GGAAGTACAGGATTGGC	8A TTAGAGATGGATGATGCCG
4	EST00530		44S GTCATGTCGTGAAACGAGG	44B CCTACACCAGGAAATAGGGT
4	EST00754		75S TTCCATGTCAGCTCTCCAC	75A CAACCTGGTCTTGAGAAAC
4	EST00863		24S GGGATAGAGTCTGGTATTCTGC	24A GGATACTGTGCTTAGTCTGC
4	EST01650	G:M64930	150S GACGTGTACAGCACTTCCA	150A TGGGAGGCCATTGATCTT
4	EST01873		83S CCATCTGTAACACTAGCAGAGG	83A TCAGAAACTGCGAACTAGGG
4	EST02370	G:K03021	173S TGGTGGGAAGGTGGTATT	173A GTTAGAAAGGTAGTGGTCCCTG
4	EST02533	P:JU0319	176S CCTTTGTGTTGGTGAGACAG	176A CGGAACACCTGGTTCA
5	EST00104		3S CAGATCAATACATCCTCTGGGG	3A CTGTGCAGTGGTAGTAAAGG
5	EST00478		35S AACAGAAAAGCTCTGGGAGAC	35A CACTGCA3CTTGAGAACATAC
5	EST00835		13S TCTCCAACACAGTCATGC	13A CGGATGCCATCATATACC

principal investigator: W. C. Nierman
page 10

CH	EST#	Locus/ DB match ¹	Sequence	Sequence
5	EST01471	MTAP5	143S GGAAAACCTACCAAGACCCCT	143A ATGAGTACCCACCCCTTCA
5	EST01744	P:DEBOXM	157S ACAGCACGTCTTGGCAAT	157A TGAGCTAGTAATTCTGGCC
5	EST01943		188S TCAGTTCATAGGAGATGGGG	188A CTGACAGTTTCCACAGCCT
5	EST01977		203S CCAAACACCCCTTCCACTAC	203A CTCATATTGCTCTGAACCC
5q	EST00488		37S AAGAACCGAGGCAACTTGG	37A CTGGTCTCAACCAATTCAACC
6	EST00770		77S CCCCTTAGAATGTCATGGTC	77A AACGCTAGCTGTAAAGGTGG
6	EST00833		12S ACCCAGTTCTCAAAGACC	12B TTTACCAATTCAAGAGGCAGCG
6	EST00874		27S GGTACACAGGGAAAGTACATGG	27A TGATTACAGCTACGTGTGC
6	EST01915		97S AATCTAAGGGTTGGGTCTCC	97A GAACTGGAAGAACTGTTGGC
6	EST01920		99S AGCCTAGTAGCTGTATTGGGTG	99A ATTGGTAAGTAGGGTCTGC
7	EST00548		50S ATTACACGTCTCGGGAGTTC	50A TGTCTATCTGTGAACGTGGC
7	EST00601		60S AAGCACTCCATAGATCCACC	60A ACAGAACACCAAGGAGAACCC
7	EST00654		66S ATAGACCGATTGAGGTACAGC	66A ATGAGACTGCACTGCCTTTC
7	EST00838		20S GTTCTTCCCAGGTATGC	20A TTGTTGGTACTGAGGAAGTGC
7	EST01888		89S CCTTTATCCTCAGCTGGTTG	89A ATCTATAGCATCCTCAGGGG
7	EST02113	G:M58318	169S CCTTCTGCAGGAACCTCAAAC	169A ACTCCCTACTATCATGTACCCC
8	EST00582		56S CTGAGTTGCTGTTGGTCTG	56B ACCTCTCTGCCTCTCTAGTG
8	EST00614		63S GTAATGCATGTCGAGTGCTC	63A TGCTTCTGTGGAAAAGG
8	EST00680		67S AGATTTCACAGAGGCAGTGG	67B ATTACCCCTCTGGGCATTAG
8	EST01905		94S GGCTTATTGTGGATGCC	94B AATGCAACAAACCCAGCTC
9	EST00510		41S TGGCCTTGTCTCAACTCAC	41A TAGAGAAACTGGGACTTGGG
9	EST00895		111S TTTCCACAAATGACTCCCC	111B TGGAGTTGGGTGGTTCT
9	EST01906		95S ACAACTATCTGGCAGGGATG	95A TAGTGCACACCCAAATGG
9	EST02055	P:S05054	167S AGAAGAGAACGAGCCAAATC	167A GTGGTGCCTCAAGTCCATCAT
10	EST00577		55S CCCTGGCACAAAAGATT	55B TCACCGAGATGAGTTGC
10	EST00684		68S TTGTCCCCACCAAAACTC	68A AAGAGTCTGACTAACCCAGTC
10	EST00695		69S GTCCATTGCTCAACCAGAC	69A GGTGGGATAAGTGAAGCAAC
10	EST00856		16S GCCATCCTTTTGAGAGG	16B CTGTAAGAGTTGCAGCATTCCG
10	EST01876		85S CTTCATCAGGGAACTTGAGC	85A TGGGTAGAACGTTAGGAGC
10	EST01945		190S GGCTTCTGTGAAAGACCACT	190A TTCTCATCTCCCTTGGG
10	EST01958		196S TCTAAGTGACCTTCTTGCCT	196A TCACGCTGCTAGAACAGAAC
10	EST01982	P:B33283	164S CTAGCGGAATTACTGGAGGA	164A TGCTGTGAGCAAATCCTG
10, 14	EST02146	G:M31178	170S TCCCTGGGTAGAACACTGCACT	170A GCTAATCCGTCCAGACTCAT
10, 2	EST02530	G:M64279	175S GTGCTTCTTTGCAGACTGG	175A GCTTGGTCGAACATTGGT
11	EST00109		4S CTAACCACACCCACACATTGG	4A CCTCAGCACAAGAGAACATGG
11	EST00501		39S TCCATAACCTCTTCTGGAG	39A GGTGCTTGGCTTCTCATTC
11	EST00532		45S TACTTCCCTCCCTCCCTCC	45A GTATTGCCGGATTACCAAGTC
11	EST00547		49S TCTGGTCGGAGTTAAAGGAG	49B CTTAACCGCAGTATGGGGAG
11	EST00776		79S GGTTTACTTGGTTGGGG	79A AACTGACTTGCACATCCC
11	EST00901		115S CTGAAACAGCTTCCCCTCTA	115A AGCTCTTCCCTCCTTCTTC
11	EST00926		136S AGAGTCACATGCAACACCT	136A GCCTGTGGGTGTCAGTATTA
12	EST00867		25S GAAGATTATTGTGGTGGCCCG	25B CTCATTTCTCTTTCTCCCCCC
12	EST00899		114S CCATAGGGAAATGTATGGGAG	114A CCCTGACTGTCCTTGTGTTTC
12	EST00908		120S TCAAGGAAAGGTGGACCTAG	120B CCTGAGGCCATGCTGATT
13	EST00527		43S CCAGGGATAGGTGGTTGAG	43A GTTCCATAGTAGAGGGAAAGGTG
13	EST00537		46S GGTATATCAGGCCAAAGGTG	46A TTAGCACAGAACCTGACCTG
13	EST01889		90S CACAGCAAGGAACGTAAACG	90A TAATGAAACCTGGCTGC
13	EST01896		92S CTGTTGTATCACATGCCAGG	92A CTCTGGGTTCAAGTTCTCTACC
14	EST00795		86S TAAGAGCCGCCAGATTTC	86A AGGTTGTTCTCAAGGTCTGC

CH	EST#	Locus/ DB match ¹	Sequence	Sequence
14	EST00845		15S AGGAGGAAGCTGAAATCC	15A GGAAGTCCATAAGAGACTCACC
14	EST00902		116S GGCAGCACTGTTGAGTTA	116A TATTCCTGGCTTGCCTC
14	EST01583	P:R5RT18	145S GGAACCTGATCTTGGAGTCG	145A AGATCATGAAGGTGGAGGAG
14	EST01627	P:A24577	148S AGAAGATCCATCGCAGAGTC	148A CTGGCGAAGAATGGTGT
14	EST01868		81S TATCCCCATGCCCTAAAG	81A TGGCAAGATCAGAAACCC
14	EST01875		84S TTCACACTGCAGCAAAGC	84A ATATTTAGGCCCGTGG
14,10	EST02146	G:M31178	170S TCCTTGGGTAGAACTGCACT	170A GCTAATCCGTCAGACTCAT
15	EST00780		80S TTGAGAAGTGGAAAGCAGAG	80A AAGGGCAGTGGTGTAAAG
15	EST01678	P:36479	153S AACGGTGGTTATGCGAG	153A TGTACGAGGGAAAGACATCT
16	EST00566		53S TTATGAAAGCCAGCAGC	53B CCCATAAGGGGTTGACTAGA
16	EST00831		11T GCACTTCATTTCTTCCC	11B TTCATCTGCCAGGAGATGC
16	EST00889		181S AAAAGCCAGAACACCCCTACC	181A AGTAATGACGTGTGGCTG
17	EST00483		36S GGTGTAGAATGCCAGATTCC	36A TCTCCTCATCCTGCTTCTC
17	EST00675	T:RICGOS2G_1	138S GGGTCCGCTTTAACCTT	138A GCCTATTGCTTGACCTCTGT
17	EST00854		19S TTGCTGTGGAATCCATGAGAGC	19A GGCAAGTGTATCTGTTCTGG
17	EST00869		28S AGTGAGGAGGAAAGAGGAAAGG	28A ATAGCCCAAGCCCTTATTGCG
17	EST01667	P:JQ0771	186S TTGGCACACCAAGAAGCT	186A GTTGATCTCAGTGCAGGTGAT
18	EST00542		48S CATCAAAACCCGAAGCTC	48A GGGCCTTGCAATAGTTCTAC
18	EST00775		78S TAAAGCCATGCAGGAAGG	78A AGCAGTTAGGGACTGGTTTG
18	EST00893		109S CCACGTATCTGTTCCATGTG	109A CCCCCAGAAGGCTTATAGTT
18	EST00906		119S TAGAGAGGAGCTGGATTTCG	119A CGTGGTAGATTCTGGGTGAT
18	EST01784	P:A28209	160S AACTAATTGGGTTGGCCC	160A TGGACATCAACGTCAGACTC
19	EST00708		71S AAACCTGGTCTGCATGG	71A AAGGGCAAGGAGAGGTTATC
19	EST00875		29S CCTTTTCCCTCTGAGTCG	29A AATGAGAAGCAGCTCTGG
19	EST00884	ATP1A3	31S GTAGTAGGTTCCCTCTCCACC	31A TGTGCCTTCCCTAAAGTTCC
19	EST00894		110S CAGGTTGGCACGTGTATAAG	110A GTCTCCATTTCAGTCCAG
19	EST01791	P:JN0129	161S GTGGCACATGACACAATCTC	161A CAGGTTAATTGGATGGCG
20	EST00113		5S TCGGAGAAGTTGCAGTTCTGG	5A GTTAAAAGCTGTTAGACGGGGC
20	EST00890		182S TTAGATGGTCCCTTTGG	182A TCTGATTTCCCTGCCCTG
20	EST00909		121S TCTTCCCTTGGCTCTT	121A GAACCCAATACGAACCTGCAC
20	EST00925		135S CAAACCACAGGGGAAATG	135A GATGGCTACGTTTGGAGAG
21	EST00541		47S CCGTCGGAACAGAAAACTC	47A ACACAGTCCTGTAATACCCCTCC
21	EST00591		58S TCAAAGACTGGGCGAAAG	58A CCAAGATGGTCTGGATTCTC
22	EST00101		2S TATATGGTCCCTGTGC	2B CTCCGATCTATACACACC
22	EST01601	P:ROBO	146S GTCATCTCCTTCACCTAACAGAGG	146A GAAAGTCTGAGAACGGCTGA
X	EST00574		54S CATCCTCCAGATGAGGAAAG	54A TTTGTATCCCCAGCAGC
X	EST00737		72S GACCTTATAACCACAGGGCG	72B CCCAAATTCTGGTTCCCT
X	EST00858		18S AAGGCAGGATTATGTGC	18A TTCTACTGGGTACACTTCGACC
X	EST00887		104S AATGAGAGAGGGTGAGATGG	104A AGATACAAGCAGGAGATCGG
X	EST00896		112S AATGCTGGCATGACTCC	112A TCCCCAAACTCCTACACCTA
X	EST01879		87S GAGGCATCAGAGAGAAAACC	87A GAACCTGAGAACCCCTACTG
X	EST02087	G:M55284	168S TGCTTCTCTGTCTGTACCCA	168A GATTGCTCCGGTAATAGG

¹Locus = human gene mapping workshop locus symbol; DB match = accession number of matched database file, with P = PIR, G = GenBank, and T = GenPept.

TABLE 2. PROCESSING SUMMARY

Total EST files processed:	626
Total files meeting primer design criteria:	428
Total files tested with at least 1 primer pair:	168
Subtotal mapped:	106
Total files tested with 2 primer pairs:	48
Subtotal mapped:	26
	Total mapped: 132

*preprint & reprint
removed.
dls*

DATE
FILMED

12 / 4 / 92

