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ABSTRACT

A Monte Carlo method is given for deter-
mination of the scattered photon energy in the
distribution required by the Klein-Nishina
differential cross section for Compton collision,
with a relative error not exceeding 2.2% over
the infinite range of incident energies above
1 keV. The present work is a self-contained
account of the method and the underlying theory,
and is intended to supersede earlier less
complete reports. A somewhat revised flow chart

is included which should help to reduce running
time.

I. INTRODUCTION

The Klein-Nishina differential cross section for the scattering of a
photon on a free electron at rest is given by

olasu)du = wrz(a‘/a)z {a‘/a+a/u‘+u2-1}du; A1<yu<1, (1)

where r=e2/mc2 = 2.82 x 10']3 cm is the "radius" of the electron, o and o” are
thg incident and scattered photon energies in units of the electron rest energy
mc”, o = o/{ T+a(1-u)l and u = cos 6, 6 being the angle of scattering of the

photon from its initial Tine of flight.
If, with o fixed throughout, we change variable from u to
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x = 1H1+a(1-u)}; 1/(1+20) = E€ x <

we see that

u = 1+ (1/)=-(1/0x); dufdx = 'I/axz

and therefore the corresponding cross section is

g(a;x)dx = o(asp)(du/dx)dx, or

S(asx)dx = (mro/e) (x+1/x+u2-1)dx ,

where u = u(x) is given by (3). Defining the functions

i 1
£(x) = x+1/xepl-1, F(x)=_[ fF(x)dx; €<

the prebability density for x is seen to be

p(x) = F(x)/F(E); E<x<1 ,

with the (upper]} distribution function

P(x) = F(x)/F(E)s e<x< T,

Our object is to give a method of sampling the density p{x) for x on

LI

]

x<T1 ,

[£€,1], and so obtaining the values of a” = ax, and u = 1+1/a-1/ax for the
scattered photon.

II.

ANALYSIS OF THE FUNCTION y = F(x)
(a) We first note that

£(x) = (x+1/x)4u2=1 > 240-1=1.

(b) We next write f(x) explicitly in terms of x.

From (3) we have

(2)

(3)

(4)

(5)

(6)

(7)



1 -1.-1

p=1 = a.]ﬂ—x°1), utl = 240" - o 'x @ = a'](€'1-x'1), whence

f(x) = x+x']+a'2(1-x'1)(5'1—x-1)

In descending powers of X, this may be expressad as

§(x) = xba 2

]+a-2A(a)x-1+a-2x-2 ,

where A(c) = 0.2-2m-2 .

From (8) we find the end-point values

F(E) = g4V > 2 = £ (1)

(c) Differentiating in (8) gives

F7(x) = 1-x

while from (9) we obtain

20221487 27

F7(x) = 1-01.-2A(0L)x-2-2a-2x’3

The slope end-point values from (12) are

£2(8) = 120 %201 =1 Yy (14 4 %) < 0

£7(1) = o 3(141420-2) = 2271 > 0 .

(d) Differentiation in (13) yields

F1x) = 207 A a)x 60727 = 20"2(Ala)x+3)x" Y > 0 .

For clearly A(a) = uz

-3x+3 > 0 since 0 < x< 1.

-20-2 2 -3, and A(o)x+3 2

In fact, f"(x)=0 iff o=1 and x=1.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)



(e) From (16) we have

£ (x) = -Ga'zA(a)x'4-24a'2x'5
= 60 2 5(A(e)x+4) < 0 (17)
since A(a)x+3 > 0 as noted above.
(f) Integration of (9) shows that
1
F(x) =f £ (x)dx
X

=(1/2)(1-x2)+0t_2é'](1-x)+of-2A(a) log x']+a'2(x']-1)

<1/2)1-x2) 4 H e (1-x)4A0) Tog x7TH(x7T-10 (18)
From this we obtain the end-point values

F(1) =0 , - (19)

and, since & = 1/(1+2a),

Fg) = 204 44y a(a) og (1+20) = 6 . (20)

(1+20)
These remarks show that y = F(x) decreases from
F(E) = G to F(1) = 0, with F*(x) = £(x) < 0 on [£,1],
and has end-point slopes
FE) = F(E) = -(E%71) < =2 = (1) = F/(1).
Moreover F(x) has a unique inflection point at the minimum of f (x), i.e., at
the zero ¢ of f “(x), being concave up to the left and concave down to the right

of the inflection point. The behavior of the several functions is indicated
schematically in Fig. 1.

This analysis was made in Ref. 1 but omitted from Ref. 2.



III. APPROXIMATION OF F_1(Y)’ 002 << a, = 202

A direct method of sampling the density p(x) of Eq. (6) for x on [£,1]
consists in solving the equation r=P(x)=F(x)/F(£) for x in terms of a random
number r uniformly distributed on [0,1]. We obtain in this section an
approximating function Q(y) to the inverse F'](y) of the function F(x) of Eq.
(18), thus enabling us to obtain

x = F1(rE(£)) = Q(rF(E)) ,

where F(£) is computed exactly from Eq. (20).

For an arbitrary %o on (£,1), we define a composite approximating function
0(v), 0< y<G = F(g), which is cubicon 0 <y < F0 = F(Xo)’ and exponential
on FO < y < G. Moreover, Q(y) will coincide with F-1(y) at the end points of
the second interval, and Q(y), Q°(y) will coincide with F'](y), (F'1(y))’ at
the end points of the first. (See Fig. 2.)

For this we require the value of G from Eq. (20), and formulas for F(xo)
and f(xo) from (18) and (8), namely

Fo= Flx,) = 21-x,2) + @ He (1ox ) + (=D} - 07%Aa) Tog x,  (21)
Fo=Hlx)) = xo+xo'1 + a'2(1—x0'])(g'1-x0'1) : (22)

If we assume f (x) = cx~' on [E,xo], we shall have

X 1
F(x) EJ/” 5 (x)dx + /ﬂ F(x)dx = € log x /x + F, = L(x)
X X
)

for x on that interval. Moreover, F(xo) =F, = L(xo) necessarily and F(§) =
L{£) provided we define the constant

C = (6-F Mlog(x /E) . (23)
Hence we obtain the approximation

- y-F
aly) =Ly = Xy €Xp {- G—F—z- log (x /E)ys F <y <G . (24)
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In practice therefore, for a random number r such that

Jo = FO/G < r<1, we take
“(r) = Q(r6) = %, exp {-A (r-do)} (25)
where AO = 1og(xol£)l(1-do), JO = FOIG . (26)

On the interval 0 < y < F » We assume a cubic approximation
F'](y) Qly) = ajtajytayy +a3y , and demand that Q(y),Q"(y)
be exact at the end points of this interval. Since

F(1)=0 F(x0)=F0
F*(1)=+(1)=-2 F‘(xo)=ef(x°)=qf0

?

this requires that

Q(0)=1 Q(F )=x,
Q*(0)=-1/2 Q*(F,)=-1/f .

It follows that the cubic has the form
- 2 3.
Qy) = 1+A (y/F 148 (y/F ) +C(y/F )7y Oy <y (27)
A, = ~F /2, B, = F +(F /f )-3(1-x,), €, = -(F /2HF /f J+2(1-x)) . (28)

Hence, for a random number r on 0 < r < Jo = FO/G, we take
= F(v8) = Q(r6)

=14 (r/3, )48, (r/3 )5 (r73 ) (29)

Although the above argument 1is valid for an arbitrary o > o, we shall
apply it only on the range .002 < o < 202 (~103 MeV), with an a-dependent



point of subdivision of the corresponding interval (£,1), namely

Xg = Xola) = E+(1-E)¢(a) (30)

where the values of ¢(a) are given in Table I.

The absolute relative errors |e| listed were obtained by a method described
in Sec. VI.

IV.  APPROXIMATION OF F™'(x), a = 202< a< =

We first show that, for any fixed a, > 2 and arbitrary incident energy
o = g the relative error incurred in replacing the exact distribution P(x) of
Sec. I by that based on the simple function f (x) = x+x'1 does not exceed
4/(u -2), which is .02 for the @ =202 we have adopted.

From Eq. (8), it appears that the original function f (x) may be written
in the form

F(x) =5 (0 5(x), E<x<1 (31)
where f1(x) = xtx 1> 2 and
700 = 2 ) s a2 L @)

-1

Since 0 < x']-l <x ,and 0< 2-a'1(x'1-1) < 2, we have

TABLE 1
THE FUNCTION ¢=¢(a)

.002 € o< 962 ¢ = .25 le] = .021
962 < o < 1,642 ¢ = .20 lz] = .0218
1.642 < o < 2.002 ¢ =.17 le] = .0218
2.002<a< 10 ¢ = .15 le] = .0213
10<a< 52 ¢ =.25 lel = .0177
52 < a < 202 ¢ = .25 le| = .0194



V(@) < (2/a) £4(x)5 or

£ ox) < a
£1(x) > (a/2) £ ,(x)
Consequently,
F(x) > (a/2)¥ 2(x)-f 2(x) = (0-2)f 2(x)/2, and since a > o, > 2,

folx) « Z(x)/(a-2) .

Defining the integrals

1 1
Fi(x) =f f1(x)dx, F(x) =f f(x)dx; E€x<1
X X
we see that, for x # 1,

1 1
0< F1(x)-F(x) =f (f1(x)-f(x))dx =_{ fz(x)dx

X

1
<y [ om e Frw
X

and in particular

2
0< G]-G< 'a—_-z-G ’

where G, = F1(€) and G = F(£)

(33)

(34)

(35)

(36)

(37)

Hence the relative error e(x) involved in replacing F(x)/G by the simpler

distribution F](x)/G1 on the interval £ < x < 1 satisfies

/ ()

Fy(0
|e(x)|sl—(‘;—]-x—-féﬂ




< {6|Fy (x)-F(x) |+F (x) |6-G, | }/6,F (x)

< (g OF (0 gy FOBHGF0) = gy () < gy (38)

Similarly one may show the same bcund for the error in replacing the

density f (x)/G Ly f](x)/G], nanely
//Qfék)) <az - (39)

Note that |e(x)] < 4/(uo—2) for all o > ao(> 2), and in fact e(x)+0
uniformly in x as o > =,

Since inversion of the distribution function F.I(x)/G1 is difficult, we
resort to the following well-known device. We write £(x) = a; (x)+a,(x),
where a](x) = x'l, az(x) = x. Setting

R f
le(x}] =

_£(x)
G

]
Ai(x) =J/. ai(x)dx and Ai = Ai(g), the underlying density has
X

| 1(x) R\ a,(x)
o @EEE . w

Hence, choosing the auxiliary density ai(x)/Ai with probability Ai/G], and x in
the corresponding distribution Ai(x)/Ai yields x with the required density
f](x)/G]. Setting a random number r = Ai(x)/Ai in the usual way gives

the form

= exp(r Tog &) or x = (1-r(1-g2))1/2 (41)
in the two cases. For the probabilities Ai/G] one requires the values
A = Tog €71, Ry = (1-69)/2, G, = A#h, . (42)
Note. The square root in (41) may be obviated, if desired, by setting

10



where r,s are independent random numbers.™’

V.

F(x)/F(&) of Sec. I.

x = £+ max { (1-E)r, (14E)s-28) ,

3.4

A FLOW CHART

We include here a complete procedure for obtaining, from a given incident
photon energy o = E(MeV)/.511 = .002, the value of x in the distribution

cosine

and the final energy E” = ,511 o”(MeV), where o~

From x one obtains for the scattered photon the deflection

u = cos 8 = 1+(1/a)-(1/ax)

The value 9, = 202 is understood below.

1.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

0o ~N O W N
e = & & = =

n = 1+20
£E=1/n
N=Tog n
a

> o, ; (5) @< o > (11)

= 1-g

Gy = N(T/2)

Generate r,r”

G]r' < N =+ (9) G]r' 2 N> (10)
x = exp(-Nr) Exit

—

B =1/a
Set ¢ = ¢ (o) (see Table I, Sec. III)
X, = E+d(1-£)
M= Tlog Xy
K, = 1-xo
K2 = 1/x0
1-28(1+8)

o = K10/2)(1+x )+ (n+K,) 1-MK,

2

G = 2 a(1+a)E “+4R+NK
JO = FOIG
Generate r

M )
! {]

3

(1-rT)]/2 Exit (see Note, Sec. 1V)

= oX.

11



22. r< Jo +(23) r 2 Jo -+ (32)
23. R =1r/,

-

27, 1, = x,*Kyt8o (1K) (n-Ky)
28. A, = -F /2

29. B, = F#(F /f )-3K,

30, C = A -(F /f 42K,

31. x =1+R {A0+R(BO+RCO)} Exit
32. = (M+N)/(1-d,)
33. = X, exp {-Ao(r-Jo)} Exit
Note. This is essentially the method given earlier [2]. The few changes

may serve to decrease computing time. Steps (24-26) are purposely omitted, and
the previous numbering has been retained.

AO
X

VI. THE RELATIVE ERROR ON .002 < o < 202

This final section gives an account of the errors listed in Table I of
Sec. III. The method used in testing the accuracy of the approximation
x*=Q(y) 2 x= F'](y) for a particular o On [.002, 202] and Xpi ON [Eh,I]
consisted in computing the exact value of F(xhi) = Ypi from Eq. (18), the
corresponding app: oximation Q(y, ;) = X“p; ¥ X,z by the formulas of Sec. III, and the
relative error €hi = (x‘hi-xhi)/xhi.

The o interval [.002, 2.002] was tested in this way for the 101 energies
o = .002, .022,..., 2.002, using the a - dependznt division point
Xo = £h+¢(1-£h) for each of the values ¢ = .15, .17, .20, .25, the interval
[Eh. xo] being subdivided into 6 equal intervals, and [xo. 1] into 7, by a
sequence of test points Xpie In the same way, the o interval [2, 52] was tested
at o = 2. 2.5,..., 52 for ¢ = .15, .20, .25, and the interval [52, 202] at
ap = 52, 53.5,..., 202 for ¢ = .25. The results showed the maximal absolute
relative error to be minimal for the correlated o ranges and ¢ values tabulated
in Sec. III. The accuracy could be stiil further'improved by more refined
machine search, but the present bounds are sufficiently good for our purposes.
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