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A NEW METHOD OF SAMPLING THE KLEIN-NISHINA PROBABILITY

DISTRIBUTION FOR ALL INCIDENT PHOTON ENERGIES ABOVE 1 keV

(A REVISLD COMPLETE ACCOUNT)

C. J. Everett and E. D. Cashwell

-NOTICE-
Tbis report wu prepir«r is Ma ICCOWM of work
iponsored by the Uiniri S u m Government, flcilher the
Uniied Statei not Ihe United Sine! Department of
Energy, nor any of their employed, nor nny of their
contractor!, lubconlractori, ot their employee!, nukei
iny warranty! expreu or implied, or luumel any legal
liibillty or tetponiibillly fur the accuracy, cornpleleneii
or uxfulneu pf any infotmation, appwatui, product or
proceu discload, or repreunu that iti uie ^vould not
Infringe privately owned righn.

ABSTRACT

A Monte Carlo method is given for deter-
mination of the scattered photon energy in the
dis t r ibu t ion required by the Klein-Nishina
d i f fe ren t ia l cross section for Compton c o l l i s i o n ,
with a re la t i ve error not exceeding 2.2% over
the i n f i n i t e range of incident energies above
1 keV. The present work i s a self-contained
account of the method and the underlying theory,
and is intended to supersede ear l ie r less
complete reports. A somewhat revised flow chart
is included which should help to reduce running
time.

I . INTRODUCTION

The Klein-Nishina differential cross section for the scattering of a
photon on a free electron at rest is given by

a(ct;y)dy = irr2(a'/a)2 {a7a+a/a'+y2-l}dy; -1 < y < 1 , (1)

where r=e /me a 2.82 x 10"13 cm is the "radius" of the electron, a and a ' are

the incident and scattered photon energies in units of the electron rest energy
2

me , a ' = a/{l+a(l-y)}, and y = cos e, 9 being the angle of scattering of the
photon from i ts in i t ia l line of f l ight .

I f , with a fixed throughout, we change variable from y to
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X = 1 / { l - K x ( l - y ) } ; 1 / ( l + 2 a ) = ? < x < 1 , ( 2 )

w«± see t h a t

y = l+(l/a)-(l/ax); dy/dx = 1/ax2 , (3)

and therefore the corresponding cross section is

a(a;x)dx = a(a;y)(dy/dx)dx,or

a(a;x)dx = (irr2/a)(x+l/x+y2-l)dx , (4)

/(x) = x+l/x+y2-1, F 0 0 = /

where y = y(x) is given by (3). Defining the functions

)dx; € < x < T , (5)

the probability density for x is seen to be

P(x) =/(x)/F(C); C < x < 1 , (6)

with the (upper) distribution function

P(x) = F(x)/F(C); K < x < 1 . (7)

Our object is to give a method of sampling the density p(x) for x on
[?,1], and so obtaining the values of a" = ax, and y = 1+1/a-l/ax for the
scattered photon.

II. ANALYSIS OF THE FUNCTION y = F(x)

(a) We first note that

S (x) = (x+l/x)+y2-l > 2+0-1=1.

(b) We next write /(x) explicitly in terms of x. From (3) we have



v-1 = a^O-x"1). Vi+1 = 2+cf1 - c f V 1 = c f ^ ^ - x " 1 ) . whence

/(x) =x+x~1+cf2(l-x~1)U"1-x"1) . (8)

In descending powers of x, this may be expressed as

/ (x) = x-hx'V1+a"2A(a)x"1+a"2x"2 , (9)

where A(a) = a2-2a-2 . (10)

From (8) we find the end-point values

/(?) = 5+?"1 > 2 =/(l) (11)

(c) Differentiating in (8) gives

/*(x) = l-x"24a"2x"Z(l+r1-2x"1) (12)

while from (9) we obtain

/*(x) = l-a"2A(a)x~2-2cf2x"3 (13)

The slope end-point values from (12) are

/-co = i-rW2(i-rl)=(i-r1)(i+r1+a"V2) < o 04)

/'(I) = a"2(l+l+2a-2) = 2a'1 > 0 . (15)

(d) Differentiation in (13) yields

/ " (x) = 2of 2A(a)x~3+6cf2x"4 = 2cf 2(A(a)x+3)x"4 > 0 . (16)

For clearly A(a) = a2-2a-2 I -3, and A(a)x+3 §

-3x+3 > 0 since 0 < x < 1. In fact, /"(x)=0 i f f ot=l and x=l.



(e) From (16) we have

/'" (x) = -6a"2A(c0x"4-24of2x"5

= -6cf2x"5(A(a)x+4) < 0 , (17)

since A(a)x+3 > 0 as noted above.

(f) Integration of (9) shows that

F(x) = / /(x)dx

ss(l/2Xl-x2)+a"V1{l-3t)-ta"2A(o) log x ' W V 1 - ! )
a(l/2Ki-x2)4«"2{C'1(l-x)-»ft(a) log x'Mx'1-1!)} . (18)

From this we obtain the end-point values

F(l) = 0 , (19)

and, since Z = l/(l+2a),

HZ) = ̂ 1 + a I +4a'1+a'2A(a) log (l+2a) = G . (20)
(1+2(0*

These remarks show that y = F(x) decreases from

HZ) = G to F(l) = 0, with F-(x) = -/(x) < 0 on

and has end-point slopes

1) < -2 = -/(I) = F'(

Moreover F(x) has a unique inflection point at the minimum of/(x), i.e., at
the zero t, of / '(x), being concave up to the left and concave down to the right
of the inflection point. The behavior of the several functions is indicated
schematically in Fig. 1.

This analysis was made in Ref. 1 but omitted from Ref. 2.



III. APPROXIMATION OF F'^y), .002 < a < aQ = 202
A direct method of sampling the density p(x) of Eq. (6) for x on [5,1]

consists in solving the equation r=P(x)=F(x)/F(£) for x in terms of a random
number r uniformly distributed on [0,1]. We obtain in this section an
approximating function Q(y) to the inverse F"](y) of the function F(x) of Eq.
(18), thus enabling us to obtain

x = F"1(rF(O) = Q(rF(O) ,

where F(£) is computed exactly from Eq. (20).
For an arbitrary x on (£,1), we define a composite approximating function

Q(y). 0 < y < 6 = F(£), which is cubic on 0 < y < F = F(xQ), and exponential
on F < y < G. Moreover, Q(y) will coincide with F-l(y) at the end points of
the second interval, and Q(y), Q'(y) will coincide with F'^y), (F'^y))' at
the end points of the first. (See Fig. 2.)

For this we require the value of G from Eq. (20), and formulas for F(x )
andf(xQ) from (18) and (8), namely

Fo = F(xQ) - l(l-x0
2) + c f ^ O - x ^ + (x^-1)} - a"2A(a) log xQ (21)

V ^ V V ^ ' (22)

If we assume / (x) = Cx~ on [£,x ], we shall have

/

x r)
°/(x)dx + / /(x)dx = C log x /x + Fn E L(X)

xo

for x on that interval. Moreover, F(x ) = F = L(x ) necessarily and F(£) =

L(C) provided we define the constant

C = (G-Fo)/log(x0/U . (23)

Hence we obtain the approximation

Q(y) = L"](y) = xn exp (- ̂  log (xn/?)j; K < y < G . (24)xQ exp |- ̂  log (xQ/?)l; FQ
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Fig. 1. The behavior of y = F(x).
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Fig. 2. The functions y = F(x) and
x = F-'(y).



In practice therefore, for a random number r such that
J Q 5 FQ/G < r < 1, we take

x = F'](rG) = Q(rG) = xQ exp {-AQ(r-J0)} , (25)

where A = log(x / O / O - J J , J s F /G . (26)
0 O u u u

On the interval 0 < y < FQ, we assume a cubic approximation
F ' V ) = Q(y) = a ^ y + a ^ + a ^ 3 , and demand that Q(y),(T(y)
be exact at the end points of this interval. Since

FO)=0 F(xo)=FQ

this requires that

Q(0)=l

Q'(0)=-l/2 Q

It follows that the cubic has the form

o V o W o o o o o o x o J • (28)

Hence, for a random number r on 0 < r < J = F /G, we take

x = F"](rG) = Q(rG)

=1+A0(r/Jo)+B0(r/Jo)2+Co(r/Jo)3 . (29)

Although the above argument is valid for an arbitrary a > o, we shall

apply i t only on the range .002 < a < 202 (~103 MeV), with an a-dependent



point of subdivision of the corresponding interval (£,1), namely

xQ = xQ(o) = ?+(l-e)*(o) , (30)

where the values of <j)(a) are given in Table I.

The absolute relative errors |e| listed were obtained by a method described

in Sec. VI.

IV. APPROXIMATION OF F'^x), a Q = 202 < a < »

We first show that, for any fixed aQ > 2 and arbitrary incident energy

a > a , the relative error incurred in replacing the exact distribution P(x) of
1

Sec. I by that based on the simple function /-.(x) = x+x does not exceed

4/(aQ-2), which is .02 for the aQ
=202 we have adopted.

From Eq. (8 ) , i t appears that the original function / (x) may be written

in the form

/ ( x ) = / 1 ( x ) - / 2 ( x ) , ? < x < 1 , (31)

where / , ( x ) = x+x > 2 and

/2(x) = cfV-inrV1) = cfV-n^-ofV-i)) > o . 02)

Since 0 < x"1-! < x ' 1 , and 0< Z-a '^x"1 - ! ) < 2, we have

*
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52
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TABLE I

FUNCTION

• -

• =

* =

A =

.25

.20

.17

.15

' .25

•• . 2 5

|e | = .0211

|e| = .0218

|e | = .0218

|e| = .0213

|e| = .0177

|e | = .0194



/ 2 ( x )< a"1 (x"1)(2)< (2/a) / . , (x) , or

} > (a /2) /2 (x) . (33)

Consequently,

f{x) > (a/2)/2(x)-/2(x) = (a-2)/2(x)/2, and since a > aQ > 2,

/ 2 ( x ) < 2f(x)/(a-2) . (34)

Defining the integrals

F^x) = / /1(x)dx, F(x) =y1/(x)dx; ?< x< 1 , (35)
x x

we see that, for x ^ 1,

0< ^MM J
Z*1 Z*1

=J (f }M-f M)d* =J
A A

^ 2 / /(x)dx-^F(x) f (36)

and in particular

0< G1-G< ^ G , (37)

where G, = F, (£) and G = F(£) .

Hence the relative error e(x) involved in replacing F(x)/G by the simpler
distribution F, (x)/G, on the interval £ < x< 1 satisfies



{6|F1 (x)-F(x) |

•h GF<X)+ -hr

Similarly one may show the same b&und for the error in replacing the
density/(x)/G by/JxJ/G,, namely

(38)

(39)

Note that |e(x)| < 4/(aQ-2) for all a> aQ{> 2), and in fact e(x)-K)

uniformly in x as a •> »,
Since inversion of the distribution function is d i f f i cu l t , we

resort to the following well-known device. We wr i te /^(x) = a.|(x)+a2(x),
where a^(x) = x" , a2(x) s x. Setting

/•I
A-(x) = / a.(x)dx and A. = A.(£), the underlying density has

the form

m

Hence, choosing the auxiliary density a..(x)/A.. with probability A^/G^ and x in
the corresponding distribution A.(x)/A. yields x with the required density
^ J ^ Setting a random number r = Ai(x)/Ai in the usual way gives

x = exp(r log ?) or x = (l-r(l-£2))1/2

in the two cases. For the probabilities A./G, one requires the values

(41)

= log (42)

Note. The square root in (41) may be obviated, if desired, by setting

10



x = £ + max f(l-£)r,

3 4where r,s are independent random numbers. '

V. A FLOW CHART
We include here a complete procedure for obtaining, from a given incident

photon energy a = E(MeV)/.511 > .002, the value of x in the distribution
F(x)/F(5) of Sec. I. From x one obtains for the scattered photon the deflection
cosine

V = cos 9 = l+(l/a)-(l/ax)

and the final energy E' = .511 a"(MeV), where a1* = ax.
The value aQ = 202 is understood below.

1. r> = l+2a
2. £ = 1/n
3. N = log n
4. a > a •*• (5) a < aQ •*• (11)

5. T = l-£2

6. 61 = N+(T/2)

7. Generate ryr'

8. G-,r' < N -»• (9) G.,r* > N •*• (10)

9. x = exp(-Nr) Exit
1 /?

10. x = (1-rT) IC Exit (see Note, Sec. IV) .
11. B = I/a
12. Set <\> = (f) (a) (see Table I, Sec. Ill)
13. xQ = £+*(l-£)
14. M = log xQ

16. K2 = l/xQ
17. K3 = 1-20(1+6)
18. FQ = K1{0/2)(l+xo)+B

2(n+K2)}-MK3

19. G = 2 a(l+a)£2+4B+NK3

20. J = F /G

21. Generate r

11



22. r < JQ •* (23) r > JQ *• (32)

23. R = r/J0

27. / 0 = xo+K2

28. AQ = -FQ /2

29' 8o = W
o V 0 0 l

3 1 . x = 1+R {A0+R(B0+RCQ)} Ex i t

32. AQ = o

33. x = xQ exp {-A0(r-J0)> Exit

Note. This is essentially the method given earlier [2]. The few changes

may serve to decrease computing time. Steps (24-26) are purposely omitted, and

the previous numbering has been retained.

VI. THE RELATIVE ERROR ON .002 < a < 202

This final section gives an account of the errors listed in Table I of

Sec. III. The method used in testing the accuracy of the approximation

F~x' = Q(y) = x = F~ (y) for a particular a. on [.002, 202] and x
. . on

consisted in computing the exact value of F(XI.J} = yu* from Eq. (18), the

corresponding appvoximation Q(yu.j) = x'.. = x... by the formulas of Sec. Ill, and the

relative error ehi = (x- h r
xh1 ) / xM'

The a interval [.002, 2.002] was tested in this way for the 101 energies

a h = .002, .022,..., 2.002, using the a - dependent division point
xo = ^ h * ^ 1 " ^ for each of tne values * = -15» *17> '20, .25, the interval
[Ch> x ] being subdivided into 6 equal intervals, and [x , 1] into 7, by a
sequence of test points xhl-. In the same way, the a interval [2, 52] was tested

at a h = 2. 2.5 52 for <j> = .15, .20, .25, and the interval [52, 202] at

a h = 52, 53.5,..., 202 for $ = .25. The results showed the maximal absolute

relative error to be minimal for the correlated a ranges and 4> values tabulated

in Sec. III. The accuracy could be still further improved by more refined

machine search, but the present bounds are sufficiently good for our purposes.
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