

DO NOT MICROFILM
COVER

**MATERIAL SELECTION REPORT FOR THE
IN-VESSEL TRANSFER MACHINE
OF THE CRBRP**

DOE Research and Development Report

APPLIED TECHNOLOGY

~~XXXXXX~~ Any further distribution by any holder of this document or of the data therein to third parties representing foreign interests, foreign governments, foreign companies, and foreign subsidiaries of foreign divisions of U.S. companies should be coordinated with the Deputy Assistant Secretary for Breeder Reactor Program, Department of Energy.

*Prepared for the United States
Department of Energy
under Westinghouse Subcontract 54-7A0-192906
under DOE Contract DE-AC15-76CL50003*

Rockwell International

Atomics International Division
Energy Systems Group

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DO NOT MICROFILM
THIS PAGE

**THIS REPORT MAY NOT BE PUBLISHED WITHOUT THE
APPROVAL OF THE DOE OFFICE OF PATENT COUNSEL**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ESG-DOE-13447
LIQUID METAL FAST
BREEDER REACTOR
UC-79T

ESG-DOE--13447

TI85 026752

MATERIAL SELECTION REPORT FOR THE IN-VESSEL TRANSFER MACHINE OF THE CRBRP

By

W. H. Friske

~~APPLIED TECHNOLOGY~~
Any Further Distribution by Any Holder of This Document or of the Data
Contained in Third Parties Represented by Foreign Interests, Foreign Companies
and Foreign Subsidiaries of Foreign Divisions
of U. S. Companies Should Be Coordinated with the Deputy Assistant
Secretary for Breeder Reactor Programs, Department of Energy.

~~NOTICE~~
This report contains information of a preliminary nature and
was prepared primarily for internal use at the operating
installation. It is subject to revision, correction and therefore
does not represent a final report. It is issued to the recipient
confidence and should not be attached to or further disclosed
without the approval of the operating installation. USDO
Technical Information Center, Oak Ridge, TN 37830

Prepared for the United States
Department of Energy
under Westinghouse Subcontract 54-7A0-192906
under DOE Contract DE-AC15-76CL50003

Rockwell International

Atomics International Division
Energy Systems Group
8900 De Soto Avenue
Canoga Park, California 91304

SUBCONTRACT: 54-7A0-192906
ISSUED:

MASTER

Released for amendment
on ATE distribution list
Participants: ORNL, ESR, ORNL/DOE
program. Others request from
ORNL/DOE

dsj

DISTRIBUTION

This report has been distributed according to the category "Liquid Metal Fast Breeder Reactor," as given in the Standard Distribution for Unclassified Scientific and Technical Reports, DOE/TIC-4500, Rev. 73.

ABSTRACT

Material selection recommendations for the parts of the in-vessel transfer machine of the Clinch River Breeder Reactor Plant are presented. Factors considered are intended service conditions, environments, and ASME Code requirements. Various material such as stainless steels, carbon steels, Inconel 718, aluminum bronze, and elastomers are recommended for appropriate parts of the machine.

CONTENTS

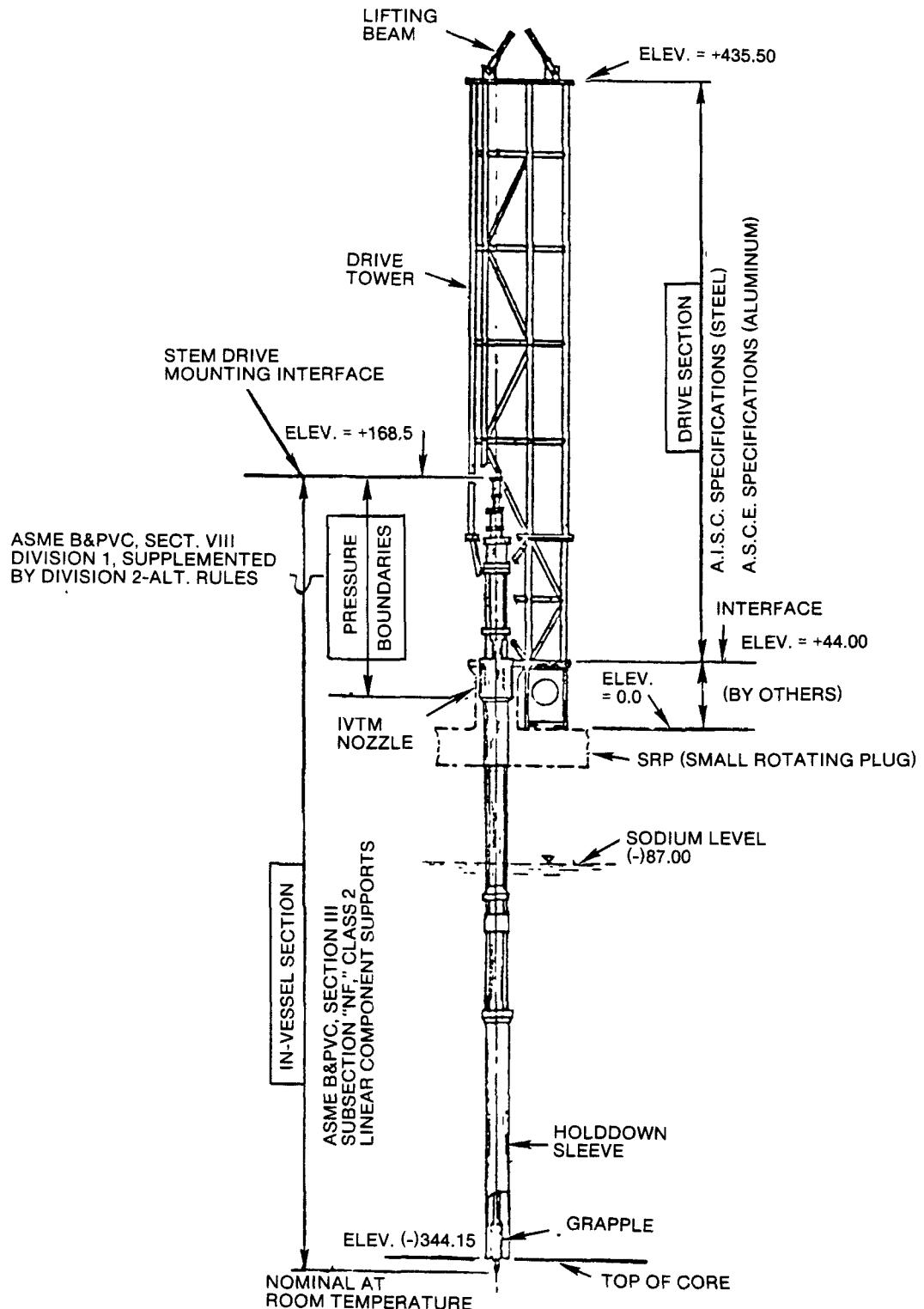
	Page
1.0 Component Description.....	1
2.0 Design Environments.....	3
3.0 Material Selection Considerations.....	4
3.1 Austenitic Stainless Steel.....	4
3.2 High-Strength Materials.....	4
3.3 Wear-Resistant Materials.....	4
3.4 Guide Materials.....	5
3.5 Drive Section Structure.....	5
3.6 Nonmetallic Material.....	5
3.7 Material Properties.....	6
4.0 IVTM Material Selection.....	7
References.....	9

FIGURES

1. IVTM Boundary Definition.....	2
----------------------------------	---

1.0 COMPONENT DESCRIPTION

The in-vessel transfer machine (IVTM) will operate in conjunction with the reactor head, triple rotating plug system in performing refueling operations. Its function is to lower, lift, or rotate core components within the reactor vessel. The IVTM will be installed and used during reactor core shutdown periods and removed from the reactor before reactor startup.


The IVTM consists of an in-vessel section and a drive section. The in-vessel section will be installed in the small rotating plug (SRP) and will form part of the boundary for the containment cover gas during refueling operations. Below the seals, the in-vessel section will be exposed to sodium or sodium vapor. The drive section, located above the reactor, will operate in air and be accessible to operating personnel.

The major components of the IVTM are shown in Figure 1.

This report is based on work completed in 1975 during the design phase of the IVTM for the Clinch River Breeder Reactor Plant (CRBRP) project.

5439D/sjv

ESG-DOE-13447

3383-224

Figure 1. IVTM Boundary Definition

ESG-DOE-13447

2.0 DESIGN ENVIRONMENTS

2.1 IN-VESSEL SECTION

2.1.1 Sodium

Temperature	600°F maximum
Oxygen	5.0 ppm maximum
Hydrogen	0.4 ppm maximum

2.1.2 Cover Gas (Argon Plus Sodium Vapor)

Temperature	475 \pm 25°F
Oxygen	10 vol ppm maximum
Hydrogen	8 vol ppm maximum
Carbon	25 vol ppm maximum
Nitrogen	(TBD)
Fission and activation products	

2.1.3 Storage Gas (Argon)

Temperature	50 to 120°F
Pressure	10-in. H ₂ O above RCB pressure
Oxygen	(TBD)

2.2 DRIVE SECTION

2.2.1 Air (Ambient)

Temperature	40 to 90°F
Pressure	28 to 32 in. Hg
Relative humidity	40 to 60%

5439D/sjv

ESG-DOE-13447

3.0 MATERIAL SELECTION CONSIDERATIONS

3.1 AUSTENITIC STAINLESS STEEL

Austenitic stainless steel shall be used for all components in the in-vessel section except for (1) those applications where higher allowable design stresses are required or (2) assemblies where loaded moving surfaces are allowed. The austenitic stainless steels (Types 304 and 316) are the reference materials of construction for CRBRP Primary Coolant System. Type 304 has been selected for IVTM components.

3.2 HIGH-STRENGTH MATERIALS

Inconel 718 is recommended for those components of the in-vessel section that require higher strength than that of the austenitic stainless steels (Types 304 or 316). At the 600°F design temperature, Inconel 718 has a tensile strength of 169.6 ksi (minimum) compared to 58.1 ksi (minimum) for Type 304 SS or 65.7 ksi (minimum) for Type 316 SS.¹

3.3 WEAR-RESISTANT MATERIALS

Inconel 718 and a cobalt-base alloy (Stellite 3 or equivalent composition) are recommended for components subject to wear or self-welding. These selections are based on technology developed under the in-vessel handling machine (IVHM) program for the Fast Flux Test Facility (FFTF). Feature tests conducted at LMEC demonstrated that Inco 718-to-Inco 718 and Inco 718-to-Stellite 3 couples resisted wear in sodium at FFTF refueling temperatures. Before the tests, the test materials were soaked at 1100°F to simulate exposures at FFTF primary sodium temperatures. The resultant test data justified the selection of these materials for IVHM, and this in turn provides a technical basis for their selection in the IVTM.

Inconel 718 shall be used for those in-vessel section components that are subjected to low contact pressures with either austenitic stainless steel or other Inconel 718 components.

For high contact pressures, the material couple shall be Inconel 718 in contact with a cobalt-base alloy. The recommended alloy should be of the composition specified in MIL-C-24248, Composition IV, which is the equivalent composition of Stellite 3.

3.4 GUIDE MATERIALS

The recommended material for in-vessel guides or guide bushings is aluminum bronze. There is considerable experience with aluminum bronze in sodium systems. Acceptable alloys are AMPCO-18-13 or AMPCO-18-22. The mating bearing surface may be Type 304 (Cr plated) or Inconel 718.

3.5 DRIVE SECTION STRUCTURE

The recommended structural material is carbon steel. Acceptable specifications are ASTM A36, which covers all common mill shapes for steel structures, and ASTM A53 for welded or seamless pipe.

A structural grade of aluminum, such as 6061, is acceptable for application where the use of a lighter material would be advantageous. The -T6 temper is commonly used for structures; however, the strength is lowered to that of the annealed condition if welded.

3.6 NONMETALLIC MATERIAL

Nonmetallic material applications include seals and bushings. The selection of seal materials should be considered to be tentative and subject to change in view of current LMFBR seal and development programs. At this time, ethylene propylene rubber (EPR) is recommended for the IVTM seals. EPR is somewhat marginal with respect to the 300°F (maximum) service temperature; however, its superior resistance to permeation by gases makes it a better choice than silicone rubber.² For example, at 300°F, the permeation rate of hydrogen through silicone rubber is about 10^{-6} ($\text{cm}^3 \cdot \text{cm/s} \cdot \text{cm}^2 \cdot \text{cm Hg} \Delta P$)

compared to only 7×10^{-8} for EPR. Buna-N rubber is less permeable than either EPR or silicone rubber, but it is temperature limited to about 200°F.

For nonmetallic bushing applications, the recommended material is a low water absorption grade of nylon such as Type 6.³

3.7 MATERIAL PROPERTIES

Design allowables and other properties for structural materials should be as published in the applicable codes shown in Figure 1. Material properties not covered by the Code shall be taken from the Nuclear Systems Materials Handbook, TID 26666.¹ For elastomer seals, refer to the Design Guide for Reactor Cover Gas Elastomer Seals.²

5439D/sjv

4.0 IVTM MATERIAL SELECTION

INCONEL 718

Bar and forgings	ASTM A637, Gr 718 AMS 5662
Plate	AMS 5596
Tubes	AMS 5589

COBALT ALLOY (STELLITE 3 EQUIVALENT)

Casting	MIL-C-24248, Composition IV
---------	-----------------------------

STAINLESS STEEL

Pipe	ASME SA312, Type 304 ASME SA376, Type 304
Tubing, seamless Welded	ASME SA213, Type 304 ASME SA249, Type 304
Plate	ASME SA240, Type 304
Bars and shapes	ASME SA479, Type 304
Forgings	ASME SA182, F304
Forged and bored pipe	ASME SA430, FP304
Fittings	ASME SA403, WP304
Castings	ASME SA351, CF8

STEEL BALLS

QQS-773, Class 440C
Heat treat to 56 R_C minimum

GUIDE MATERIAL

Aluminum bronze	AMPCO-18-13 or AMPCO-18-22
-----------------	----------------------------

SPRING WIRE (SS)	ASTM A313 or AMS 5688 or QQ - W - 423 FS302, Condition B
------------------	---

SEALS

EPR or silicone, if above 300°F

NONMETALLIC (BUSHINGS, ETC.)

Nylon general purpose Type 6

STRUCTURAL STEEL

A286 SS

CARBON STEEL PIPE

ALLOY STEEL (4130)

ALUMINUM ALLOY

Pipe	ASTM B241, Alloy 6061-T6
Plate	ASTM B209, Alloy 6061-T6
Shapes	ASTM B308, Alloy 6061-T6

BOLTING (STEEL) ASTM A325, or ASTM A490, or ASTM A193

5439D/sjv

REFERENCES

1. TID 26666, "Nuclear Systems Materials Handbook"
2. W. J. Kurzeka and F. R. Welch, "Design Guide for Reactor Cover Gas Elastomer Seals," AI-AEC-13145 (March 7, 1975)
3. "Materials Selector, 76," Materials Engineering, p 144-145 (September 1975)

5439D/sjv

ESG-DOE-13447