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PREFACE

One of the major tasks facing wind systems designers is the prediction of 
yaw behavior—especially its impact on systems loads and fatigue life--on 
downwind, horizontal-axis, free yaw machines. Comprising a large portion 
of the operating units in this country, these types of wind systems are 
popular within the industry for their simplicity of design. However, 
these turbines also possess the inherent disadvantage of potential yaw 
instabilities or excessive yaw tracking error problems.

This report describes an investigation of this problem which was performed 
by Oregon State University (OSU) under contract to Rockwell International 
Corporation. What evolved from the work at OSU was a procedure for identi­
fying the relative impact various machine and operating parameters have on 
yaw behavior. This was accomplished by examining coefficients of the 
equations of motion rather than solving them explicitly, thus simplifying 
the analysis. Results from a case study are encouraging and demonstrate 
the applicability of this approach to the understanding of yaw behavior.

Future work on yaw behavior at Rocky Flats will build upon the approach 
used by OSU, resulting ultimately in a yaw behavior model. Research will 
also be conducted to verify these analytical tools by way of controlled 
velocity experiments and field testing of a horizontal-axis testbed.

The work described herein resulted from Contract No. ASC51298PB and was 
monitored by M. P. Schroeder of the Rocky Flats Wind Energy Research Center. 
Other Rocky Flats employees contributing to the completion of this project 
were: T. E. Hausfeld, J. L. Tangier, P. K. C. Tu, and A. D. Wright.



ABSTRACT

The yaw problems of a three-bladed, downwind, horizontal axis wind 
turbine are examined in this report. A four-degree-of-freedom system 
was chosen to model the turbine. Linearized equations of rotor and 
nacelle motion were developed using the energy method and Lagrange's 
equations. Quasi-steady blade element and momentum theories were used 
in developing the axial induction factor and aerodynamic loads. A com­
puter code was developed to obtain the numerical values of coefficients 
of the equations of motion, thus allowing the cause of yaw instability 
to be studied. The study indicated that yaw tracking error is primarily 
caused by tower shadow. However, the wind turbine studied--besides 
being unstable in yaw under normal operating conditions--has an addi­
tional problem in that the nacelle shape contributes to additional insta 
bility. Blade coning, in the present design, is inadequate to overcome 
this instability. The sensitivity of the system stiffness coefficients 
to the selected input parameters was studied, and results indicate that 
the system stiffness coefficient is highly sensitive to the coning angle 
Increasing the coning angle would significantly increase the stiffness 
coefficient and lead to improvement of system stability.
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1. INTRODUCTION

Wind powered machines can be classified into two types according to 

the orientation of the axis of rotation: horizontal axis wind turbines 

and vertical axis wind turbines. For a horizontal axis wind turbine, 

the system can be further distinguished as either a downwind rotor or an 

upwind rotor system. When the rotor is upwind of the tower, the system 

usually has a yaw controller to control the wind turbine to track the 

wind mechanically. There is generally no need for the yaw controller in 

the downwind rotor case. When the rotor is downwind of the tower, the 

wind turbine will usually track the wind. Most of the downwind turbines 

are free yaw systems.

Unfortunately, a free yaw system quite often suffers from a yaw 

problem: instead of tracking with the wind the turbine yaws away from 

the wind.

One of the effects of yaw angle on turbine performance is that it 

decreases the power output of the rotor.

Little work has been done on the wind turbine in yaw. Most of the 

previous work is on the dynamics, structure, and control of wind turbine 

systems. The cause of the yaw problem is still not fully understood.

The technology and methodology used to develop present day wind 

turbines are adopted from the fixed and rotating wing aircraft technolo­

gy. Ribner [1] has done the analysis on propellers in yaw. He has 

developed the analysis to express variation of induction velocity and 

side force in terms of the shape of the blade when the propeller is 

yawing. For wind turbines. Miller [2] looked into the static stability 

characteristics of horizontal axis wind turbines with a free yawed
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system. Hirschbaum [6] analyzed the dynamics and control of large 

horizontal axis axisymmetric wind turbines in his Ph.D. thesis. He 

modeled the blade motion by considering the blades to be composed of an 

inboard series of massless, rigid links restrained by linear springs and 

dampers with a much larger, massive blade attached to the outermost 

link.

In this analysis, yaw of wind turbines will be studied by using a 

four-degree-qf-freedom system to represent the wind turbine system. The 

study will be concentrated on the effect of the other variables on the 

yaw angle, and the cause of yaw tracking errors. This will be done by 

developing the equations of motion of the system, then studying the 

coefficients of the equations.

This analysis is developed for a three-bladed, downwind, horizontal 

axis turbine but it can also be applied to an upwind horizontal axis 

wind turbine system. With the coefficients of the equations of motion, 

the dynamic behavior and the stability of the system can be studied 

further.
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2. ANALYSIS

Development of the Equations of Motion

The objective of this study is the aerodynamic and dynamic analyses 

of horizontal axis wind turbines in yaw. A four-degree-of-freedom 

system is chosen to model the turbine system. The degrees of freedom 

are blade pitch deflection, blade flap, nacelle yaw, and rotor speed. 

Blade pitch is defined as the rotation of the blade cross section around 

the control axis. Blade flap is defined as the deflection of the blade 

in the direction perpendicular to the blade chord. Rotor speed 

variation is defined as the variation of the rotor speed from the nomi­

nal value. Nacelle yaw angle is defined as the angle of the nacelle 

around the yaw axis with respect to the wind.

The equations of motion are developed using the Lagrange method. 

Since each of the variables is a function of time and distance, the 

partial derivatives of these variables will be encountered during the 

development of the equations of motion.

To avoid dealing with partial differential equations, the assumed 

modes method [4] is used in this study. .The purpose of this method is 

to eliminate the spatial dependence from the dependent variable by 

discretizing the spatial variable. So each of the system's degrees of 

freedom is expressed as the product of the displacement function (as­

sumed mode shape), which is the function of the spatial coordinate, and 

the time-dependent generalized coordinate. By this method, the equa­

tions of motion of the system will be developed in ordinary rather than 

partial differential forms.
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In order to attack the problem, the kinematics of the rotor are 

first developed. Then, the kinetic energy is obtained from the expres­

sion of the kinematics. The potential energy expression is developed 

from the strain energy of the rotor system. With quasi-steady blade 

element theory, the aerodynamic forces and moments are developed. Then, 

the nonconservative forces in Lagrange's equation are derived from the 

virtual work of the aeroforces and moments. Finally, with the 

Lagrangian functions and nonconservative forces substituted back into 

Lagrange's equation, we obtain a set of nonlinear equations of motion of 

the rotor system.

For the wind turbine system, the rotor will extract the energy from 

the wind converting it into mechanical energy. Since the energy is ex­

tracted from the airstream, the velocity of the wake will be de­

creased. To represent the reduction of the wind velocity at the rotor 

and in the wake, the axial induction factor 'a' [9,10] is introduced.

In this study the nonrotating wake model is used. We can calculate the 

local value of the axial induction factor by equating the windwise force 

developed by using the momentum theory, and the same force developed by 

using the blade element theory. The Glauert empirical relationship [14] 

is used instead of the momentum theory when the axial induction factor 

is greater than 0.38. The tip loss model is used to account for the 

flow at the tip of the turbine blade. The development of the axial 

induction factor and the tip loss model is presented in Appendix II.

The above steps lead to a set of nonlinear equations. If we re­

strict the ranges of values of the dependent variables, the system may 

be well approximated as linear. In this study we will analyze the 

system in the linear range.
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In the process of equation linearization, we will deal with the 

variation of the axial induction factor with yaw, pitch, flap, and 

rotational speed. The linear functions of aeroforces and moments are 

developed.

Let us define the variation of the induction factor with the de­

pendent variables as the summation of two terms: 1) the product of a 

coefficient and the distance along the yaw axis of the rotor, and 2) the 

product of a coefficient and the distance along the rotor pitch axis

If" J„TrC0S*+ k„ fsin*
Here <j> is the blade azimuth angle.

The value of these two coefficients can be calculated by equating the 

derivative of yaw or pitch moment developed by the momentum theorem to 

the derivative of yaw or pitch moment developed by the blade element 

theory.

With the known values of the coefficients, j and kn, we can deter­

mine the variation of the axial induction factor. The result shows that 

the variation of the axial induction factor exists only for the yaw and 

yaw rate variables in the uniform flow case.

The linearization of the aerodynamic forces and the variation of 

the axial induction factor are presented in Appendix II.

The linearized rotor equations of motion are expressed in matrix

form

m{q.} + [C]{ q.} + [K]{q.} = {G}
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where {q^} is a four-dimensional generalized coordinate column vector 

representing the system's degrees of freedom; {G} is a four-dimensional 

forcing function column vector; [M], [C], and [K] are the four­

dimensional square mass, damping, and stiffness coefficient matrices, 

respectively.

For a large wind turbine system, the gravity effect is very impor­

tant in the dynamic and structural analyses. To make the analytical 

model for the turbine system applicable regardless of the size of the 

system, the gravity effect is included in this study. The gravitational 

force is added to the system by means of a potential function.

For a downwind system, the rotor is located behind the nacelle and 

tower. The effect of the nacelle and tower shadow on the system will be 

studied.

The nacelle is considered as a slender body. The shape of the 

nacelle is assumed to be a cylinder with hemispheres on both ends. The 

equation of motion of the nacelle will be developed by using the 

Lagrange method. We will consider the nacelle as a rigid body rotating 

around its yaw axis when we calculate the kinetic and potential 

energy. The nonconservative force on the nacelle is derived from the 

virtual work of the nacelle. The forces on the nacelle are calculated 

by using the slender body theory with forces generated only from the 

forebody part of the nacelle.

The tower shadow is modeled as the velocity deficit from the rotor 

axial velocity value over a selected region of the rotor disk. The 

system's equations of motion are developed with the tower shadow.

Throughout this analysis the wind turbine is modeled with a three- 

bladed rotor. The turbine blades are elastic. The hub, nacelle and
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tower are rigid. The nacelle is allowed to yaw freely. Hie center of 

mass of the nacelle and rotor is located over the central axis of the 

tower. We refer to this axis as the nacelle yaw axis.

The absolute motion of the turbine blade is determined by the 

motion of blade deflection relative to the hub, the motion due to rotor 

rotation, and the motion of the nacelle and tower. Since in this analy­

sis no movement of the tower is allowed, we consider the tower as the 

inertial reference frame. A series of coordinate systems is used to 

describe a point on the blade. A series of transformation matrices is 

used to transform the coordinate systems that describe motion of a point 

on the blade in its original reference frame into the inertial reference 

frame.

A computer code has been written to handle the numerical analyses 

which yield the coefficients for the equations of motion. The inputs of 

the computer code are the geometric as well as the wind and operating 

conditions. This computer program will calculate the axial induction 

factor along the blade at a particular tip speed ratio. At the same

time it also calculates the integral terms for variation of the axial

induction factor with yaw and yaw rate. F.inally, the program will 

calculate the constant coefficients in the equations of motion (mass, 

damping, stiffness and forcing functions). Besides the coefficients of 

the equations of motion, the code also calculates the thrust and power 

coefficients of the rotor.

The geometry and properties of the turbine system are needed as 

inputs to the computer code. The Enertech 1500 Wind Turbine is exam­

ined. Then, the analytical solutions from the system are verified with

the experimental data of the Enertech 1500 obtained from the Rocky Flats

Wind Energy Research Center.
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3. ENERTECH 1500

The Enertech 1500 is a downwind system with a three-bladed rotor. 

The geometry and material properties of a blade off an actual Enertech 

1500 wind turbine were measured. The blade has linear twist with slight 

linear taper over the outer 22% of the rotor blade and the blade's 

thickness is varied from root to tip. For the calculation of the aero­

dynamic forces and moments, the blade profile section was represented by 

the NACA 4415 airfoil section. The airfoil lift and drag coefficients 

are plotted as functions of Reynolds number and angle of attack in 

Figure 3.1. These data are obtained from Reference 7. This rotor is 

designed to operate at tip speed of 117 fps (170 rpm). The physical

characteristics of the rotor are presented in Table 3.1.

Table 3.1. Rotor physical and operating characteristics.

Rotor Diameter 13.12 ft.

B1 ade Chord 6.8 in. from root to r/R = 0.6545
linear taper to 6.1 in. at r/R =1.0

Ai rfoi 1 Type NACA 4415*
RPM 170

Tip Speed 117 fps

Number of B1 ades 3

Root Cut-out 0.84 ft.
Twi st 5° from root linear to 1° at blade

tip

Precone 0°

*Used as representative airfoil section.

The profile of the blade cross-sections are measured at six 

stations along the blade. The weight of the blade was measured. By 

knowing the weight and the profile of each cross section, properties of
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the blade were calculated. The expressions for the moment of inertia 

and mass distribution per unit length of the blade were written as a 

function of the distance along the blade. These expressions are given 

in Tables 3.2 and 3.3.

Table 3.2. The moment inertia of the blade cross-section.

r/R J2 (in 4) J3 (in 4)

1-0.6545 5.673 exp(-3.313 r/R) 67.3636 exp(-2.0236 r/R)

0.6545-0.3648 2.111 exp(-1.802 r/R) 29.44 exp(-0.76 r/R)

0.3648-0.244 2.111 exp(-1.802 r/R) 11.3726 (r/R)-0*6585

0.244 -0.1393 4.5679 exp(-4.8604 r/R) 11.3726 (r/R)-0.6585

0.1393-0.128 2.3210 41.924

Here J^'s are the moment of inertias of the blade cross section at the 

mass center in xn- direction and = J2 + J3.

Table 3.3. Mass distribution of the blade.

r/R u (slug/ft)

1-0.6545 0.090898 exp(-1.3266 r/R)

0.6595-0.3648 0.05847 exp(-0.6447 r/R)

0.3648-0.1393 0.081772 (r/R)-0,3698

0.1393-0.128 0.06593

Since the blade is made of wood (orthotropic material), its 

material properties depend on the orientation of wood grain. It is 

difficult to find the mechanical properties of a nonuniform orthotropic 

beam by experiment. Thus it was decided to treat the blade as an iso­

tropic material and use the values given by J.Y. Liu from the U.S.
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Forest Products Laboratory on Sitka Spruce with 10 percent moisture 

content. The values are:

= 1.84 x 10^ psi, = 1.089 x 10^ psi, = 0.25

For simplicity, the elastic axis was assumed to be a straight line 

which is parallel to the trailing edge of the blade. The location of 

the elastic axis on the blade cross section was chosen arbitrarily. The 

location of the axis is then varied to see the effect on the system.

The nacelle of the Enertech 1500 has a cylindrical shape with a 

hemisphere on each end. The properties and geometry of the nacelle are 

given in Table 3.4.

Table 3.4. Nacelle properties.

Distance of the nacelle yaw axis to the blade hub

Length of the nacelle

The radius of the nacelle cross-section

The mass moment inertia of the nacelle around the 
yaw axis

2.46 ft 

5.896 ft 

0.84 ft

14.41 slug-ft^

The generator for the Enertech 1500 is a single phase induction 

motor connected to a gearbox having a measured 11:28 to 1 ratio.

With the lift and drag data obtained from references 7 and 8, the 

lift and drag curves were modified to use in the computer code.

The lift coefficient curve is approximated and can be described in 

a simple yet fairly accurate form by six parameters. The curve consists 

of four straight line segments as follows:
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C

C

C

C

^ = 2irmsi n(a+a^0)

^max

Lflat

si n(^- - 

*"flat sin(Y - a

“)

stal 1 )

<X < otp
Lmax

“C < “ < “BR 
Lmax

aBR < a < “stall

a > “stall

The six parameters are:

lift curve slope divided by 2ir

zero lift angle of attack

maximum lift coefficient

angle at which Ci drops to CiL Lflat
an approximation to the average C|_ on the far side of CL 

curve, this can be adjusted up or down depending upon the 

characteristics of the airfoil 

angle at which begins to decrease 

For the Enertech 1500 blade, these six parameters are as follows:

m = 0.89

CL
“-max

= 1.35

clLflat
= 1.0

“LO = OC
M•

“BR = 15°

“stall = 45°

The drag curve of the Enertech 1500 blade can be approximated in a 

series of curve fits. These curve fits are shown as follows:

m -

“L _ Lo
CL

max 

“BR "

ciLflat

“stall



13

CD = CD [1 + 53.81a2] 
b

~ 3.36 + (tana - tanl2^)
o

CD = 2.439 C, (tana)2'15 
Lfl at

Cr» = C. tana 
Lfl at

Cn = Cn sin2,,
D 1 + sina

where

CD = 0.014 
o

Cn = 3.4142 
u2

a2 = arctan —) *^7]
Lflat

a < 120

12° < a < 15o

150 < a < a2

a2 < a < 450
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4. RESULTS AND DISCUSSION

The Enertech 1500 was used as a test case. With the numerical 

values of the characteristics and physical properties of the Enertech 

1500 as the inputs to the computer code, the code generates the numeri­

cal values of power coefficient, thrust coefficient, and static tip 

deflection, the coefficients accounting for the variations of the axial 

induction factor, coefficients in the rotor equations of motion and the 

forcing function at a particular value of tip speed ratio.

For the aerodynamic part, the code is verified by comparing the 

predicted power coefficients with the test results. The test results 

were obtained from the Rocky Flats Wind Energy Research Center. The test 

procedure is explained in reference 11. The comparision of the pre­

dicted values and data is given in Figure 4.1. Agreement is good at 

high tip speed ratios. At the low tip speed ratios, where the agreement 

was only fair, the blade angle of attack is large and stalled flow 

occurs over most of the blade. This introduces two sources of un­

certainty. First, there is some doubt as to the accuracy of the aero­

dynamic input (lift and drag curve) associated with stall since there is 

little data on the NACA 4415 at any Reynolds number. Secondly, the use 

of quasi-static analysis may be questioned when the turbine is operated 

under a large yaw angle.

To find the cause of the yaw problem, the numerical values of 

coefficients in the equations of motion are studied.

The static pitch angle is examined by first setting the dynamic 

terms in the linearized equation of motion in pitch equal to zero and 

then calculating the static pitch angle that deviated from the nominal
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value. The static tip pitch angles are given in Table 4.1. These 

angles are so small that they have negligible effect on the system.

Table 4.1. Static tip pitch angles under nominal operating condition.

X est (degree)

2 0.0430

3 0.0323

4 0.0312

5 0.0305

6 0.0218

7 0.0177

8 0.0147

The static condition of the equation of motion in flap is con­

sidered. Because the static flapwise displacement appears implicitly 

and explicitly in the force and moment expressions, the iteration method 

is used in order to calculate for a numerical value of static 

deflection.

The static tip deflection is first calculated by setting the value 

of the derivative of flapwise deflection, radial displacement, and its 

derivative, to zero. Then, by using the value obtained as the initial 

value, the static tip deflection is iterated until the final value is 

converged within the given criterion.

The results show that the difference between the initial value and 

final value is negligibly small. So for this study the code will use 

the first calculation method (without the iteration) to calculate for 

static tip deflection
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The static tip deflections for the nominal operating condition are 

given in Table 4.2.

Table 4.2. Static tip deflections under nominal operating condition.

X ds (ft)

2 0.01644

3 0.01279

4 0.01269

5 0.01057

6 0.00839

7 0.00676

8 0.00558

For the uniform flow condition, there is no coupling between the 

yaw angle and the other three variables explicitly on the equations of 

motion.

For the nacelle, the equation of motion appears in the form of an 

undamped second order system in yaw. The stiffness coefficient of the 

nacelle is not dependent on tip speed ratios.

Because of the linearity of the system, the nacelle equation of 

motion can be added directly to the rotor equation of motion in yaw. 

The nacelle is destabilized to the system in yaw. The coefficients in 

the equation of motion in yaw are shown in Tables 4.3 and 4.4.
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Table 4.3. Coefficients of equation of motion in yaw.

X m44R* C44R k44R m44n* k44n

2 0.01605 0.01486 -0.00226 0.01315 -0.036477
3 0.03605 0.02666 -0.01716 0.02958 -0.036477
4 0.06409 0.06306 -0.00909 0.05259 -0.036477
5 0.10007 0.11496 0.00803 0.08217 -0.036477
6 0.14398 0.13952 0.01457 0.11833 -0.036477
7 0.19585 0.17117 0.01554 0.16106 -0.036477
8 0.25569 0.20538 0.01592 0.21036 -0.036477

*R subscript for 
n subscript for

rotor
nacelle

Table 4.4. Coefficients 
(nacelle and

of equation of motion of the system in yaw 
rotor).

X m44 c44 k44

2 0.02920 0.01486 -0.03874
3 0.06563 0.02666 -0. 05364

4 0.11668 0.06306 -0.04557
5 0.18224 0.11496 -0.02845
6 0.26231 0.13952 -0.02191

7 0.35691 0.17117 -0.02094

8 0.46605 0.20538 -0.02056

The equation of motion in yaw is studied to find the cause of the 

yaw problem. The gravity effect on the system is also considered when 

the equations of motion are developed. The gravitational force is added 

to the system by means of a potential function. The analysis shows that 

the gravitational force appears in the harmonic terms (terms associated 

with sine and cosine of the azimuth angle). The gravitational force 

terms are dropped out of the system when we add the effect that accounts 

for the three-bladed rotor.
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The effect of the blade cyclic force on the cyclic pitch angle is 

also examined by considering the gravitational force on a single 

blade. With the equation of motion of a rotor blade in pitch, the 

harmonic terms appear in the stiffness coefficient and forcing function 

as the component of gravitational force. These harmonic terms are given 

in the following forms:

(C cosip + D sin\())q. = (E cosij> + F sinij;)
9 9 1 9 9

The coefficients Cg, Dg, Eg and Fg are given in Table 4.5. The stiff­

ness coefficient and forcing function are also given in Table 4.5.

Table 4.5. Coefficients of harmonic terms (Cg, Dg, Eg, Fg), stiffness 
coefficient and forcing function of a single blade equa­
tion of motion in pitch.

X kll G01 Cgxl05 DgXlO4 EgXlO5 FgXlO4

2 13.845 0.0101 -.1380 1.0649 -.2140 -.1423
3 31.152 0.0167 -.3105 2.3961 -.3745 -.3201

4 55.383 0.0289 -.5520 4.2598 -.6605 -.5692
5 86.367 0.0392 -.8626 6.6559 -.8604 -.8894
6 124.607 0.0457 -1.2806 9.5845 -.9829 -1.2421
7 169.602 0.0506 -1.6907 13.0456 -1.0786 -1.7431

8 221.043 0.0541 -2.2082 17.0392 -1.1629 -2.2767

For the static condition, the cyclic tip pitch angle is given in the 

following form

 Goi/3 +(Egcos'l'+Fgsin’P) 
qls " k^/3 +(CgCOSi|>+DgSi nip)
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We can see that the blade cyclic force has negligible effect on the 

static pitch angle by comparing the magnitude of the coefficients given 

in Table 4.5.

With no forcing function on the system's (rotor + nacelle) equation 

of motion in yaw, the turbine will always stay at zero yaw angle for the 

static case at any tip speed ratio.

But according to the data obtained from Rocky Flats, the system was 

operating with the static yaw angle. The yaw tracking error is shown in 

Figure 4.2. The discrepancy between the analysis results and data in 

yaw angle indicates that our model fails to include the effect causing 

the static yaw angle.

The tower shadow effect is then added to the system. The tower 

shadow is modeled as a velocity deficit from the axial velocity value 

over a selected region of the rotor disk, centered about the tower 

center line. The development of the rotor equation of motion with tower 

shadow is given in Appendix III.

Because of the different values of the axial velocity on the rotor 

between the inside and outside of the tower shadow region (i.e., when 

the blade is in the 6 o'clock position and 12 o'clock position), there 

will be different values of relative velocity that lead to the differ­

ence in aerodynamic force values inside the shadow. And the difference 

of tangential force in the shadow produces the net yaw moment around the 

yaw axis creating the static yaw angle. This yaw moment turns out to be 

the forcing function we needed in the yaw equation.

Since our analysis used the linear approximation method, our re­

sults are valid only in a small region around the zero yaw angle. The 

data in Figure 4.2 shows a linear part and a sign change in yaw angle
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Figure 4.2 Yaw tracking error vs. tip speed ratio
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occurred between tip speed ratios 3 and 4. Our linearized model would 

represent the system operating in the region of this linear part and a 

sign change of static yaw angle in the analytical results would verify 

the analysis.

The explanation for a sign change in static yaw angle from the 

analysis can be obtained by studying the relationship between the tan­

gential forces and velocity ratios. The curves of the tangential forces 

versus tip speed ratios and velocity ratios are shown in Figures 4.3 and 

4.4. From Figure 4.4, with a given value of wind velocity and velocity 

deficit inside the shadow, we can find the values of the average tangen­

tial force on the shadow region and the other region on the rotor.

These values will change with the velocity ratios (wind velocity for 

constant rotor speed). The difference of the tangential forces between 

the one inside the shadow and the one outside the shadow will change 

sign at a particular value of velocity ratio. Since the static yaw 

angle is dependent on the difference of tangential forces on the rotor, 

the angle will also change sign when the forces do.

To illustrate this idea, the numerical values of the width and 

velocity deficit of tower shadow are chosen. Then, the coefficients of 

the equations of motion in yaw with the tower shadow are calculated.

The coupling between the yaw variable and the other variables 

appears in the equation due to the tower shadow effect. These coupling 

terms and the forcing function are dependent on the values of the width 

and velocity deficit of tower shadow. The developing of the coefficient 

and forcing function terms due to tower shadow is given in Appendix III.

Now considering the static condition and neglecting the coupling 

terms, we can calculate for the static yaw angle. The static terms on
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0.006

0.004

0.002

Rn

Figure 4.3 Tangential Force on the Rotor VS. Tip Speed Ratio
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0.006

=f 0.004

0.002

Rn

Figure 4.4 Tangential Force on the Rotor VS. Velocity Ratio
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the system's equation of motion in yaw for a 20° segment of shadow width 

and 50% velocity deficit are given in Table 4.6.

Table 4.6. Stiffness coefficient and forcing function in yaw equation 
with 20° shadow width and velocity deficit = 50%.

X (— Gn
°4

2 -0. 03874 0.00106

3 -0.05364 0.00025

4 -0.04557 -0.00330

5 -0.02845 -0.00455

6 -0.02191 -0.00449

7 -0.02094 -0.00391

8 -0. 02056 -0.00321

For a stable system, if a sign change occurs in the yaw forcing func­

tion, the same sign change also occurs in the static yaw angle. Unfor­

tunately, according to the linear analysis, the Enertech 1500 has very 

poor stability (negative stiffness coefficient). Instead of calculating 

the static yaw angle from the system, we consider a sign change in the 

yaw forcing function (a change in direction of yaw moment) as the veri­

fication of the analysis. From Table 4.6, there is a sign change in the 

yaw forcing function occurring between tip speed ratios 2 and 3. This 

result confirms that the static yaw moment created by tower shadow is 

the one that causes the machine to yaw in one direction at low wind 

speeds and to yaw in the opposite direction at high wind speeds.

The effect of the tower shadow model on the static yaw moment (yaw 

forcing function) is also considered. The yaw forcing function for 

velocity deficit values of 33.3%, 50% and 66.7% is shown in Figure



26

4.5. The yaw forcing function with 10°, 20°, 30°, 45°, 60°, and 90° 

shadow width is shown in Figure 4.6.

The effects of the magnitude of the velocity deficit on the yaw 

forcing function are the value of the zero forcing function cross-over 

point and its slope. The magnitude of the velocity deficit is varied 

reversely to the value of the tip speed ratio that the sign change takes 

place at. For the tower shadow width effect, we can see that increasing 

shadow width also increases the slope of the yaw forcing function. The 

cross-over point is not affected by shadow width.

Sensitivity Study

The stability of the system in yaw is investigated. For the nomi­

nal operating condition, the system is unstable because of the negative 

stiffness coefficient. This negative value is dominated by the na­

celle. The sensitivity study of the parameters on the system's equation 

in yaw indicates that the mass and damping coefficient always have 

positive values. So the indication of the stability of the system in 

yaw is the sign on the system (rotor + nacelle) stiffness coefficient.

Usually when we do the stability analysis (i.e., root locus) we 

will deal with the terms of stiffness and damping coefficients divided 

by mass coefficient rather than the stiffness and damping coefficients 

themselves. But in our study, we primarily emphasize the positive 

stiffness coefficient to insure the system stability. So the sensitivi­

ty of the system stiffness coefficient in yaw to the selected input 

parameters will be studied.
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Figure 4.5 Effects of Velocity Deficit on Yaw Forcing Function
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Figure 4.6 Effects of Shadow Width on Yaw Forcing Function
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Torsional Stiffness and Pitch Angle

The effect of torsional stiffness is considered by changing the 

values of the shear modulus G. The result shows that its only effect is 

on the pitch equation. Unless the static pitch angle is significantly 

differed from the zero value, there will not be any effect on the yaw 

equation.

The influence of the pitch angle on the rotor stiffness coeffi­

cients is shown in Figure 4.7. Increasing the pitch angle will shift 

the curve to the left side of the zero pitch angle curve. Decreasing 

the pitch angle will shift the curve to the right side of the zero pitch 

angle curve and also increase the stiffness coefficients values. But 

when the nacelle effect is added, the system is still unstable. This is 

shown in Figure 4.8.

Modulus of Elasticity and Flapwise Deflection

The static flapwise deflection is defined as the product of the 

static tip deflection and its mode shape. The static flapwise deflec­

tion is dependent on the blade stiffness and the aerodynamic load. The 

effect of the blade stiffness on the static tip deflection is shown in 

Figure 4.9 for the values of modulus of elasticity of 1.0x10^, 1.84x10®, 

and 2.3x10® psi. Figure 4.9 shows that the stiffer blade will 

experience smaller deflection. The flat part of the curves between the 

tip speed ratios 3 and 4 is due to the transition of the flat part and 

the maximum lift value on the modeled lift curve. In other words, the 

flat part is caused by the use of a simple model curve to represent the 

stall part of the real lift curve.



30

- 0.02-

Figure 4.7 Effect of pitch angle on the rotor yaw

stiffness coefficient
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Figure 4.8 Effect of pitch angle on the system stiffness

coefficient in yaw
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0.020 . 1.84 xio psi
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0.015

0.010
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Figure 4.9 Effect of blade stiffness on the static tip deflection
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Under the values of blade stiffness considered, the magnitudes of 

the static tip deflections are very small (in order of 0.1-1.0 % of the 

blade length). The effect of the flapwise deflection on the system in 

yaw is negligible. The rotor stiffness coefficients with different 

values of blade stiffness (flapwise deflection) are shown in Figure 

4.10. The rotor stiffness coefficient is increased when we decrease the 

blade stiffness but the relative magnitude is very small.

Speed

The effect of a change in rotor speed on the stiffness coefficient 

is studied. The expressions of nondimensionalized rotor mass, damping 

coefficient, and nacelle mass coefficient are dependent on the dynamic 

pressure head. By changing the rotor speed, these coefficients change 

quite dramatically due to the change in dynamic pressure head for the 

same value of tip speed ratio. The rotor stiffness coefficient is the 

least sensitive term to the change in the rotor speed. The curves for 

the rotor stiffness coefficients for the rotor speed of 120, 170, and 

220 rpm are shown in Figure 4.11. The effects of the speed change on 

the rotor stiffness coefficient is small. Increasing the rotor speed 

also increases the rotor stiffness coefficient. Figure 4.12 shows the 

system stiffness coefficient for varying rotor speed values. Since the 

total mass coefficient value changes dramatically with the rotor speed, 

the value of the system stiffness coefficient divided by the total mass 

coefficient is considered. These values are plotted against the tip 

speed ratios in Figure 4.13. From Figures 4.12 and 4.13, we can 

conclude that within the rotor speed considered the system is still 

unstable and increasing the rotor speed increases the stiffness
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Figure 4.10 Effect of blade stiffness on rotor yaw stiffness

coefficient
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Figure 4.11 Effect of rotor speed on the rotor yaw stiffness

coefficient
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Figure 4.12 Effect of rotor speed on the system yaw stiffness

coefficient
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Figure 4.13 Effect of rotor speed on k^j/ m44T
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coefficient. It does not necessarily mean, however, that the smaller 

value of the stiffness coefficient leads to improved stability, especially 

when the mass coefficient is changed significantly with the speed.

Shear Center Position

The shear center position of the blade cross-section is assumed to 

be a constant value of the blade chord. The elastic axis will be a 

straight line parallel to the trailing edge of the turbine blade. The 

shear center position is varied to see the effect on the stiffness 

coefficient in yaw. The rotor stiffness coefficients in yaw with shear 

center positions at 10%, 25%, 50%, and 75% of the blade chord, measured 

from the leading edge of the turbine blade, are shown in Figure 4.14.

The rotor stiffness coefficients are increased by moving the shear 

center closer to the trailing edge. But when we add the nacelle effect, 

the system is still unstable. This is shown in Figure 4.15.

The Distance From the Rotor to the Nacelle Yaw Axis

Figure 4.16 shows the rotor stiffness coefficient in the yaw equa­

tion for different values of &: the distance from the rotor to the 

nacelle yaw axis. For i/R = 0.1, the stiffness coefficient values are 

positive for all of the tip speed ratios considered. Unfortunately, the 

nacelle stiffness coefficient is also changed by the change of i. The 

curves of the total system (nacelle + rotor) stiffness coefficient are 

shown in Figure 4.17. For z/R = 0.1 we yield the lowest values in the 

system stiffness coefficients. Increasing the value of z/R also
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Distance from blade leading edge to shear center
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0.2 5 C

c = blade chord0.5C

0. 7 5C

Figure 4.14 Effect of blade cross section's shear center

position on rotor stiffness coefficient in yaw.
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Figure 4.15 Effect of Wade cross section's shear center position

on the system yaw stiffness coefficient
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Figure 4.16 Effect of the distance from the nacelle yaw axis

to rotor plane on rotor yaw stiffness coefficient
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Figure 4.17 Effect of the distance from the nacelle yaw axis 

to rotor plane on the system yaw stiffness 

coefficient
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increases the system stiffness coefficient. For t/R = 0.686 (a = 4.5 

ft) the system is stable at tip speed ratio from 4.5 up. Increasing the 

distance from the rotor to the nacelle yaw axis improves the system 

stability, but the value of Jt is limited by the nacelle geometry. The 

limitation of the value of l will be discussed in the following section.

Nacelle

The nacelle plays an important role in the system stability because 

the largest negative value in the system stiffness coefficient comes 

from the nacelle. So reducing the negative value of the nacelle stiff­

ness coefficient would mean improving the system stability.

Two parameters that affect the nacelle stiffness coefficient are 

distance from rotor to yaw axis and the configuration of the nacelle 

forebody part (radius of the forebody part).

By considering the expression of the nacelle stiffness coefficient 

(shown in Appendix III), we can calculate for the critical value of 

nacelle parameters.

The criteria of stability (positive value of nacelle stiffness 

coefficient) for this specific nacelle is obtained from the expression 

of stiffness coefficient by varying one parameter at a time. These 

values are given in Table 4.7. To insure the stability of the nacelle 

system, either parameter has to be greater than its critical value.

Table 4.7. The critical nacelle parameters for the Enertech 1500

4 critical 4.774 ft

D
n critical 7.788 ft
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We can see that neither of these two parameters can be greater than its 

critical value because of the configuration of the nacelle. For the 

radius of forebody part, the critical value of this radius is greater 

than the radius of the rotor itself. It is impractical and inefficient 

to have a large nacelle. As i approaches &critical* t*ie distance from 

the yaw axis to the rotor is limited by the space necessary to install 

the generator unit. Thus these two parameters can be varied only 

slightly to improve the stability.

Coning Angle

The Enertech 1500 has no built-in coning angle to relieve the blade 

root bending moment. However, the flexible wood blade will cone to an 

angle that puts the bending moment along the blade, due to the centri­

fugal force, in equilibrium with the moment created by aerodynamic 

forces. The effect of coning on the yaw system is investigated. Figure 

4.18 shows the curves for the rotor stiffness coefficient for 10°, 0°, 

and -10° of the coning angle versus tip speed ratios. For the positive 

coning angle, the stiffness coefficient has positive values for all of 

the tip speed ratios considered. The negative coning angle makes the 

stiffness coefficient decrease. Figure 4.19 shows the system stiffness 

coefficient in yaw obtained by adding the nacelle effect to the rotor 

system. We can see that for a positive coning angle, the system 

stability is improved significantly. The negative coning angle effect 

on the system is to destabilize the system.

So in conclusion, the parameter that the system stiffness coeffi­

cient is most sensitive to is the coning angle. Increasing positive 

coning angle improves the system stability.
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CONING ANGLE = 10

CONING ANGLE = O 

CONING ANGLE =-10

Figure 4.18 Effect of coning angle on rotor yaw stiffness

coefficient
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CONING ANGLE

CONING ANGLE

CONING ANGLE

Figure 4.19 Effect of coning angle on system yaw stiffness 

coefficient.
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5. CONCLUSIONS

Two areas of wind turbine research are studied in this report: 

cause of poor yaw tracking and system stability in yaw. The results are 

obtained for the Enertech 1500: a three-bladed horizontal axis wind 

turbine with free yaw.

The cause of the yaw problem is analyzed by studying the linearized 

equations of motion around the zero yaw angle. The study of the equa­

tion of motion in yaw shows that the yaw tracking error is primarily 

caused by tower shadow. Tower shadow is crudely modeled as a velocity 

deficit from the axial velocity value over a selected region of the 

rotor disk. The values of the width and velocity deficit of the tower 

shadow are arbitrarily chosen. Because of the poor yaw stability of the 

system (negative stiffness coefficient), due largely to the nacelle, the 

focus of the problem turns to the yaw forcing function. With the given 

values of velocity deficit and shadow width, the static yaw moment (yaw 

forcing function) is calculated and its sign change verifies the 

analysis.

The effect of the tower shadow model on the yaw forcing function is 

also studied. The results show that the tower shadow model with smaller 

value of velocity deficit yields the larger tip speed ratio that the 

forcing function's sign change takes place at. There is no effect on 

the cross-over point of the zero yaw forcing function due to the differ­

ent values of shadow width.

In this study, the system is unstable in yaw due to the negative 

value of the stiffness coefficient. The nacelle is the primary cause of 

the system instability because of the magnitude of its negative value of
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stiffness coefficient. So this study emphasizes the sign change in the 

system stiffness coefficient (yield positive value) as an indication of 

a stable system.

The sensitivity of the system stiffness coefficient to the selected 

input parameters is studied.

The stiffness coefficient is most sensitive to the coning angle 

parameter. Increasing the coning angle increases the rotor stiffness 

coefficient. Decreasing the coning angle (negative coning angle) de­

creases the rotor stiffness coefficient. With an appropriate coning 

angle value, the system is stable for a whole range of tip speed ratios.

The next parameter that the stiffness coefficient is sensitive to 

is the distance from the rotor to the yaw axis. Increasing the value of 

this distance will increase the value of the system stiffness coeffi­

cient. However, the value of this distance is limited by the nacelle 

configuration.

The system stiffness coefficient is not so sensitive to the 

following parameters: torsional stiffness, pitch angle, blade stiffness 

(modulus of elasticity), flapwise deflection, speed, and shear center 

position.

The stiffness coefficient is slightly increased by decreasing the 

pitch angle, decreasing the blade stiffness (increasing the flapwise 

deflection), increasing the speed, and moving the shear center position 

closer to the blade trailing edge. Because the changes in stiffness 

coefficient values due to these parameters are so small, they cannot 

stabilize the system in the presence of the nacelle.

Because of the linearized model, our results (for the Enertech 

1500) will be valid for only a small region around the zero yaw angle
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(tip speed ratios 2 to 5). The uncertainties introduced from the Tack 

of aerodynamic input (lift and drag curves) associated with stall should 

be accounted for when the comparison between the data and analysis is 

made.

The characterization of wind turbine rotors with variable thickness 

blades by use of single section data (NACA 4415) will cause errors in 

predicted yaw behavior as well as predicted power output.

In order to obtain more accurate predictions of yaw behavior, 

accurate power models must be constructed.

In conclusion, the analysis gives the results accurate within the 

degree of uncertainty given.
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APPENDIX I 

KINEMATICS

A four-degree-of-freedom wind turbine system is illustrated in 

Figure 1.1. The degrees of freedom of the system are blade pitch 

deflection, blade flap, speed variation, and yaw angle.

In developing the mathematical model for the turbine system, we use 

assumed mode shapes and generalized coordinates to represent the depend­

ent variables. By this method we can derive the governing equations in 

ordinary differential form rather than partial differential form. Each 

degree of freedom is expressed as the product of the displacement func­

tion (assumed mode shape) and the generalized coordinate.

These relations are given as:

e(r,t) = 1rl(^)ql(t) 

w(r,t) = Rsf2(^)(q2(t) + qs) 

x(r,t) = f3(£)q3(t)

YOr.t) =

(blade pitch) (1)

(blade flap) (2)

(speed variation) (3)

(yaw angle) (4)

where R5 is the distance from the tip of the blade to the hub of the 

rotor. The q^(t) terms are the generalized coordinates of the rotor 

system and the f^^-) terms are the assumed mode shapes. The mode shapes 

are expressed as:



WIND

Figure 1.1 Rotor system
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fl(*) = (5)

(6)

IIC
O

M
- (7)

f4(t) = 1 (8)

Here rs is the radial distance from the local point on the blade to the 

blade root.

The mode shape in Eq. (5) is for a uniform cantilever beam in 

static equilibrium with applied torque at the open end. The mode shape 

in Eq. (6) is for a uniform cantilever beam in static equilibrium with 

uniform forces applied on the beam. The mode shapes in Eqs. (7) and (8) 

are those of a rigid body.

Having defined the degrees of freedom in terms of generalized 

coordinates, we are now ready to develop the kinematics of the rotor 

system.

The absolute motion of the turbine blade is determined by the 

motion of blade deflection relative to the hub, the motion due to rotor 

rotation, plus the motion of the nacelle and tower. Since in this 

analysis no movement of the tower is allowed, we consider the reference 

frame fixed to the tower as the inertial reference frame. Consider the 

motion of a point on the blade whose absolute position is represented by 

a series of relative position vectors. A series of coordinate systems 

is used to describe these vectors. Let the coordinate system X,Y,Z be 

located on the top of the tower. The coordinate system x,y,z is fixed
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on the nacelle and its origin is at the same point as the coordinate
A A

system X,Y,Z. The coordinate system x,y,z is the same as the coordinate 

system x,y,z except its origin is moved to the center of the rotor. The 

coordinate system x^,^ is obtained by rotating the coordinate sys-
AAA

tern x,y,z by the magnitude of angle ip (where ip = at + x)» coordi­

nate system x ,y ,z is obtained by rotating the coordinate system x,y,z 
p p p —

around the ^ axis by the angle p. Then, at position r on the blade, the 

coordinate system xg»yg»zg represents the effect of the pretwist angle, 

0. The coordinate system x0,yQ,z0 is obtained by moving the origin of 

the coordinate system Xg,y0,z0 in the z0 direction over the distance "w" 

and rotating it around the y0 axis by the angle w' (3w/3r). Finally, 

the coordinate system x1,X2,X3 is located on the shear center of the 

blade cross section and differs from the coordinates x0,y0,z0 by the 

amount of the pitch angle 6.

These coordinate systems are shown in order from the inertial 

reference frame to the final reference frame that is fixed on a point on 

the blade in Figures 1.2, 1.3, and 1.4.

A series of transformation matrices is used to transform from one 

coordinate system to the others. These transformation matrices are 

shown in Figure 1.5.

Another variable that we will deal with is the radial displacement 

of the blade. This displacement occurs during the blade deflection when 

the assumption of an inextensible blade is made. This radial displace­

ment is defined as

i R dvr ?
^>=4 / CdT-) dr

kh
(9)
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x, X x

WIND

Figure 1.2 The coordinate system XYZ, xyz, and xyz

< N
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Figure 1.3 The coordinate systems xyz, xyz, and xpypzp

IM
>
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Figure 1.4 The coordinate systems x.y0z0, x.yQzQ, and x.y.z.ppp a y y ill



59

X|

[Tj-

(x) = [T] (*0
V

I 0 0

0 cos^ -siruy,
0 sin-rji costji

li\

(x) = [T] (xO

cos 1^2 0 sin-»72 

0 I 0 

-simj2 0 cosi7z
^ y

[T] =

(x) = [T] ( x')
/ v

cos^-sin^ 0

sin-J73 cos ijj 0

0 0 I
n /

Figure 1.5 Transformation matrices
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where vc is the deflection of the blade in the direction that is perpen­

dicular to the axial line (flapwise direction).

The velocity of a point on the blade is found by using the kine­

matic relation [5]

1
a C

x r (10)

where Jj is the velocity of point c in a reference frame R.
K C

1? is the velocity of point c in a reference frame a. a c
Da) is the angular velocity of the body that the reference 
k a

frame a is fixed to, observed from the reference frame R. 

r is the position vector of point c.

For the angular velocity, we have

R^a " R^B + BWa

where is the angular velocity of the body that a reference
x] E,

frame E is fixed to, observed from a reference frame n*

The absolute motion of a point on the blade can be found by using 

the transformation matrices and Eqs. (10) and (11).

The blade velocity and blade angular velocity measured at the 

center of mass of the blade cross section are:

1? = V n + V n c xp xp yP yP + V n zp zp (12)
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where

Vnp = V+V +V +V nA nr nw ne

and

n = x,y,z '

V

V

V

XA

xr

xw

Vxe

- fcycospsini|>
•

uc
- w^singcosp + wy(sinpsinBcosij) - cosgsinip)

- eesinw'cose - eipcosp(cospcose + cosw'sinesinp) 

+ ey(sinecos8 - cosgcosw'si ne )si

+ eysi np (cospcose + cosw'sinesinpjcos^

vyA

yr

yw

’ye

- Aycosip

(r + uc)^cosP - (r + uc)ycosi()Si np 

wsing - v4sinpcose - wycospcosecos^ 

eecosecosw'si ng - ew‘sinesinw'sine 

+ e^Lsinp(sinecose - cosecosw'sine) - cospsinw'sine]

+ eycosi|>[cosp (si necose - cosecosw'sine) + sinpsinw'sinej

V

V

V

zi

zr

zw

Vze

£ysinpsinijj 

(r + uc)ysin1j;

wcose + wijsinesinp + wycospsi necosij;

+ eecosecosw'sine - ew'si nesinw'cose 

+ e^sinp(cosecose + cosw'sinesine)

+ eycosp (cosecose + cosw'sinesi ne )cost|j 

- eycospsinw'sinesin\p
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where

l

w'
•w

w'

*

(i)

= distance from mass center to the shear center of the blade 

cross section.

= distance from the rotor plane to the nacelle's yaw axis.
_ 9W

3r
- 1^.
" 3t

3__ f3W\
3t ''Sr'*

- (a + x)
“ to jh ^ u 2 + w 3 (13)

where

U). = 0). . + 0) . + (»>.. + U) •1 91 Wl i|>1 yl 1,2,3

and

“el = 9

“wl - 0

V = ^sinpcosw'

v ■ Yl.(cospcosw1

“e2 = 0

“w2 = - w 'cose

“♦2 = - iji(sinpsinw

- sinw'singsin^J
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0)^2 = - y(cospsinw'sine - sinpsinecose + sinpcosw'sinecose)cosi|» 

- y[(cosbcos0 + cosw'sinesine)sirhp]

“83 * 0

“w3 = wsi n9

W|>3 = - 4»(sinpsinw'cose - cospsinesine - cospcosw'cosecose)

= ~ Y(cospsinw'cose + sinpsinesine + sinpcosw'cosecose)cos\|i

+ y(cosesine - cosw'cosesine)sim|;
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APPENDIX II 

ROTOR AERODYNAMICS

II.l Relative Velocity

The relative velocity that the blade element experiences at the 

rotor is defined as the vector sum of the blade element velocity at mid­

chord and the wind velocity at the rotor.

a = w
Here 1/ is the wind velocity at the rotor and is the blade element 

velocity at mid-chord, it does not include pitch velocity (e). The wind 

velocity at the rotor is given by

V n - aV n^ w z w ^ (2)

where "a" is the axial induction factor. The development of the axial 

induction factor will be explained in a later section.

In the strip theory method (2-D assumption), the relative velocity 

in the spanwise direction does not produce lift force or drag force.

The velocity to be considered in evaluation of the aerodynamic forces 

and moments is the relative velocity in the plane of the blade cross 

section. Thus the relative velocity is expressed as

ft =
e

i(*„ - V-Wv (3)
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By using the unit vectors en and et, we obtain

= W e - WA 
n n t t

(4)

where

“n ' - »«)•*
Z9

“t = - - V-*
ye

(5)

(6)

5t = Sy0

The expression for t/g can be obtained by following the same procedure 

used in Appendix I.

Substituting the value of t/g and t/ into Eqs. (5) and (6) we obtain 

the normal and tangential relative velocities as

W = V + VD n wn Bn

W. = V . + VD. t wt Bt
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Vwn

- V^cosy - a)(sinpsinw' - cospcosw'cosg)
- Voosiny[(cospsinw' + sinpcosw'cose)sini|) - cosw'sinecosip}

VBn

- ay[(sinpcospcosw' + sinw'cosp)sinij> - sinpcosw'cos^]

+ u^sinw' - (r + u^j^cosw'cospsinp

- (r + u^jy(cospcosw'sinij; - sinpsinpcosw'cos^)

- wcosw* - w^sinw'cospsinp

- wy(sinw'sinpsinpcos^ - sinw'cosBsin\(>)

+ Ogtcose(sinpcosw' + cospsinw'cosp)

+ e^ycoseCtcospcosw' - sinpsinw'cospjcos^ - sinw'sinpsini(»]

V t = {- Va)(cosy - a)cospsinp - Vaosiny(sinpsinpsinip + cospcos^)}

Bt

- ty(cospcosi|) + sinpsinpsini())

+ (r + ud)^cospcosp - (r + ud)y(sinpsin^ + sinpcospcosij))

- w^sinp - wycospcostj)

+ e^sine (sinpcosw1 + cospsinw'cosp)

+ e^ysineCCcospcosw' - sinpsinw'cos3)cosi|> - sinw'sinpsint|;] 

where 63 is the distance from the mid-chord to the shear center of the 

blade cross section.

The velocity diagram of the relative velocity at the blade cross section 

is shown in Figure 11.1.1.

11.2 Aerodynamic Forces and Moments

Figure 11.1.1 shows a blade profile section at radius r with the 

relevant velocities and forces. The air flow gives rise to a lift force 

L and a drag force D whose resultant can be resolved into components of 

normal force dFn and tangential force dFt.
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Figure II.1.1 Velocity diagram at blade cross section
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From the geometry we have

dFn = dL cos<|> + dD sin<|» (/)

dFt = dL sin«j» - dD cos<|> (8)

The expression for the normal force and tangential force can also be

expressed as

dF = i p wfcC dr (9)

dF. = i p wfcC.dr 
t Z » e t (10)

where

Cn = CL cos^ + CD sin'*>

Ct = CL sin<|) - Cp cos*

The aerodynamic moment at 1/4 chord can be expressed as

dMc/4 nl = 7 p»wec2cMc/4dr nl (ID

and according to Fung [3]

CM = - ■¥■ cosa 9
Hc/4 8 (12)

Substituting the expression of 0^ back into Eq. (11), we obtain
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3
dMc/4 = " 0coWeCOSot TS“ 5 dr (13)

11.3 Linearized Aerodynamic Forces

In this study the linearized aerodynamic forces will be devel­

oped. These functions will consist of the nominal terms plus the linear 

variations of the aerodynamic forces with the dependent variables.

Let us first consider the aerodynamic forces. Figure II.3.1 shows 

the blade profile section at radius r with the relevant velocities and 

forces. The components of the aerodynamic forces are expressed as

(14)

dF. = 4 p wf cC. dr 
t Z oo e t (15)

where

Cn = CL(aE)cos<() + C D(aE)sin<|>

Ct = CL^otE^ sin<^ ■ CD^aE^ cos<*>

W = W + VL e n t

a£ is the effective angle of attack measured at 3/4 chord when including 

the effect of the pitching velocity at that point.

1 2 2Normalizing Eqs. (14) and (15) by dividing through with yields

(16)
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Figure II.3.1 Velocity diagram at blade cross section
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c = rl!®i2 £ c — 
^F. W J R R 

t 00
(17)

The derivative of the normal force with respect to the dependent varia­

bles is defined as

dCp
n dr - n 

n "R-------- IrT

. Wn ^ w„ ^ ^ Wt . Wo 9 a
Nn - S cn(2 Trlir (-r)+ (/)] + V t-r) i cn (18>

00 00

The derivative of Cn with respect to n becomes

3C 9C 3a, 3C__ n ____n__ t __n 3^
3n dap 3n 3<}> 3n (19)

The velocity of the fluid that accounts for the pitching velocity at 3/4 

chord is expressed as

Vp = e20cos0en - e2esineet (20)

and

W2 = (Wn + e20cos0)2 + (Wt + e^sino)2

From the velocity diagram in Figure 11.3.1, the tangent and cosine of 

the effective angle are expressed as

W + e?0cos0 
tan<j)E = n

+ e^sine
(21)
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COS<j>E
Wt + e2®s^ n9

W (22)

where

♦ E = “e" 6

From trigonometric relations we obtain

- 2 F
^ (tan*E) - sec ^

3a | 

3n
cos 24,E 1^(18"^) +|i (23)

By substituting Eqs. (21) and (22) into Eq. (23), we obtain the expres- 
3ar

sion of -r— as 
3n

3a
So- = T? [(wn * e2 lii" (®cose* e2®$1 ne)

W n

where

- -P
n 3n n

3W
Jt = 3^ 

n

" (Wn + e29cos0)(Wt + e2 I^T ^sine^] + I!' ^

In the same way, the expression of can be expressed as
3r)



73

|t * ly wnwtn] (25)

Substituting Eqs. (19), (24), and (25) back into Eq. (18) we then evalu­

ate all the dependent variables at nominal values. The derivative of 

the normal force can be expressed as

W W.n t
f __1 + F __2-rl V r2 V 

00 00

for n * qj,^

w w.
nqi

Fi “V + F2 “V + F4 (26)

^1

w w+n* t*^1 ^1
Fi nr1 + f2 nr1 + f3

where

F, =
W W.

n2ircn tCn ri
V oo

F2 = l(2Trcn-Cn t4

c e2 Wt
f = — r — — f o R un V V T1 ^ 00 00

F, =
w „

— f—(■ f R '•V J Si 1oo a

Figure 11.3.2 shows the velocity diagram of the blade evaluated at the

nominal value. The relation of lift and drag at the nominal value can

be expressed as
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Figure II.3.2 Velocity diagram at blade cross section

evaluated at nominal value
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C = C, cosa + Cn si na n L u

C„ = C. cosa + Cn si no - C. n L u t
v aE aE

Ct = CL si no - CD cosa

si no - Cp cosa + Cn 
v aE aE

C„ = C. cosa + Cn si no n L uo aE aE

Ct + CL Sina “ CD C0Sa 
a oE a E

Hie variation of the tangential force with the dependent variables can 

be found in the same way. The derivative of the tangential force is 

defined as

n R 3n

and

Wn Wt
SlT^^ZT1

OO 00

for n *

^1

w w.n t

Gj —^— + ^2 ”V— + ^4 (27)

Gl“17 + G2 “V + G3
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where

2W W.

oo y oo

Go =
r 2W. Wn
s fy- ct ' ct "W

OO \> 00

r _ c r e2 Wt f
b3 R V F" T1 

^ 00 00

u
c /■ e^\ 2 p 
R W J Lt

CO a

11.4 Axial Induction Factor "a"

In this analysis, the nonrotating wake model is used. We can 

calculate the local value of the axial induction factor by equating the 

windwise force developed on the blade to the momentum flux in an annular 

ring of radius r.

Applying the momentum theorem to the flow in the annulus "dr" one 

obtains an expression for the windwise force as

dT = poo(21rrdr)u(Va> - V2)

= Poo Vf (1 - a)2a2Tirdr

Defining a local thrust coefficient by

(Ct)l 1
2 P

dT
V2dA

Equation (28) becomes

(28)

(CT)L - 4a(1 - a) (29)



The local thrust coefficient based on the blade force in the windwise

direction is developed using the blade element theory

dT = i P wfBc C dr 
<: <*> e n (30)

Using the definition of (Cy)L, we obtain

(31)
OO

With a given value of CL, the local axial induction factor can be found 

by equating Eqs. (29) and (31).

The simple momentum theory approach leads to the result that the 

induction factor "a" cannot be greater than 0.5 as this would yield zero 

downstream velocity. However, increasing thrust coefficient values are 

obtained for a > 0.5.

When the axial induction factor "a" is greater than acritical’ 

Glauert relationship [14] has been used instead of the simple momentum 

theorem. The Glauert relationship is shown in Figure II.4.1. This 

empirical relationship can be approximated by a straight line with good 

accuracy using wind tunnel test data. The straight line approximation 

used in this analysis for a > ac is

(ctK " - ac) + 4<1 - 2a>(a - ac) (32)

where ac = 0.38.
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THEORY

Axial Induction Factor

Figure II.4.1 Windmill Brake State Performance
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11.5' The Variation of Axial Induction Factor with Generalized

Coordinates

In the process of linearizing the aeroforces, the variation of the 

axial induction factor with the dependent variables is encountered. We 

can calculate the local variation of the axial induction factor by 

equating the derivative of the moments developed by the blade force to 

the derivative of the moments developed by the momentum flux.

Defining the variation of the axial induction factor as

3a
3n

(33)

Substituting the expression for the variation of the axial induction 

factor back into the linearized aerodynamic forces terms, we now have 

two new coefficients to solve for, k^ and jn.

The coefficient k^ can be calculated by equating the derivative of 

the yaw moment developed by the momentum theorem to the yaw moment 

derivative developed by the blade element theory. In the same way, the 

coefficient j can be calculated by equating the derivative of the 

pitching moment developed by the momentum, theorem to the pitching moment 

derivative obtained from the blade element theory.

Considering the segment "r^dr^chp" of the annulus "dr", we obtain 

the expression of the moment as the cross product of the r^ vector and 

the windwise force of th.at segment.

dft = f., x dt
N

(34)

where
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rN = 0 + ujcosp - wsi nP (35)

dT = pa, vf ^cos,»' " a)2a rNdrNd^ (36)

A local moment coefficient is defined as

dC M 1
? PC=

dM
V2ttR 3 (37)

Substituting Eqs. (35) and (36) into Eq. (37), we obtain the expression 

of the yaw moment as the component of the vector "dC^" in the nx direc­

tion and the pitching moment in the n^ direction.

The expression for the yaw moment is

1 rN drN
dC^ = — 4a(cosy - a) ^— sini|> d\p (38)

The expression for the pitching moment is

dr.1 M
dCM = — 4a(cosy - a) costp -p^ d^ (39)

By taking the derivative of the yaw moment and the pitching moment with 

respect to the dependent variables then integrating over the whole 

rotor, we obtain the expression

8C M..

8n

3C

= +
1 fR f2" drN
- J / "TiT aTT sir^d^ T~

R

M

3n

i R 2lf 9CT, dr..
1 r r L 3a N___ j, N" 7 O*^ 0 *** _R_

(40)

(41)



where

CT = 4a(1 - a) 
'l

a
Substituting the expression of from Eq. (33) into Eqs. (40) and (41),

dT)

we obtain

9C M

3n

3C M

3n

k n, n 1

' ^n11!

(42)

(43)

where

n 1

n 3Ct 3 .R Tl rN drN
J 93 R3 R (44)

Now we will look into the same yaw moment and the same pitching moment 

but they will be developed by blade force instead of momentum flux.

Considering the small element of blade "dr", the moment created by 

the aeroforces and aeromoments are expressed as

dfi = rM x df + dfi 
M £

4
(45)

where
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dft = dM n, c cl
J J

the expression for the yaw moment is obtained from the component 

of dtu in the nv direction

dC M J (TLl) +J1 (TL2) (46)

where

urVz r c 
^ Cn R

rWe>>2 r c 
Ct T?

TLl =

el cose[(cospcosw' - sinpsinw'cosejcosf - sinw'singsin^J

(r+u )
-[—ft m cosw1 — |j-sinw'] (sinpsinpcosij; - cosesin^)

(r+um)

TL2 =

- [—sinw' - cosw' - ip sine][(sinw'sinBsint|))

+ (cospcosw1 - sinpsinw'cose)cosi|>]

(r+u )
-[—--m~. cosw1 + ^ sinw'] [(cospsinw' + sinpcosw'cospjcosi);

+ cosw'sinesine]

Now we take the derivative of this moment with respect to the dependent 

variables. Then we add the effect which accounts for the "B" turbine
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blades in the system. The expression of the average yaw moment deriva­

tive is given as

where

Nn
3N
3n

H
TV

3H
3n

3 aBy substituting the expression of from Eq. (33) into and terms,

the derivative of the yaw moment is expressed in terms of and j^.

The expression of the pitching moment developed by the blade force

is expressed as the component of dtM in Eq. (45) in the n„ direction.

Then the derivative of the pitching moment is obtained in the same
3CMv

way as it is done in -y — .

Now we can equate the derivative of the yaw moment developed by 

momentum flux to the one developed by blade force and the derivative of 

pitching moment developed by momentum flux to the one developed by blade 

force. The analysis results in two equations and two unknowns (k^ and

V*
The result of this linearized analysis shows that the variation of 

the axial induction factor exists only for the yaw and yaw rate varia­

bles

33
3n 0 n * q4 and q4 (48)
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The coefficients kn and j for yaw and yaw rate are given by

("4 + * n6 + - "s) - "zO'tt * 1113 * "14 * "15)
k - -o o (4y)
q4 (nj - n3)^ + n3

{(n4 + n5 + n6 + n7^n2 + ^nl “ n3^n12 + n13 + n14 + n15^

(^1 ” ^3) + ^2
(50)

(n8 + ng + n10 + - n3) - n2(n16 + n17 + n18 + nig)
("1 -v-f + 4

(51)

-Kn8 + ^9 + ®io + ^n)^2+ ^l" ^3)^16 + nl7 + nl8 + ^19)}
j ^ =--------------------------------------------------- p------ K------------------------------------

q4 (n1 - n3) + n2
(52)

where ‘s are the integral terms.

These integral terms are given as follows:

R aC
n, = , Tl rrN>,3 drN 

J aa (r J R
rh r
3 K rv .
27 / (Nl) (cospcosw^ - sinpsinw^cosg) ^

O R (r+Um) r m
-hj {Nl)(——coswo+ R-sinw(;)sinpsinB/i-

3 H R (r+Um) Wo
+ Ttt -----R-Sinw0 - R2- COSWo)(COSPCOSWi

rh
1

sinpsinw^cose) y- 

5 (r+u„) w.o R (r+u ) w
•57 / (H1)(-^-----cosw' + ^ sinw')(cosPsinw^

RH
p

+ si npcosw^cosp)
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IU = n
■i R (r + Um) Wn

*J WH-lC^^o-T

KH

" ^5T / R SinWiSin3 R R
rh

It / <N1> (^r2^ ““i+ r- s1nw,;)cos|i irir 
rh

w0 rw dr
'o --rcosw^slnw^slne ^ ir

'H
T R (r+Um) W— rN .

/ (H1K—R----- coswi + IT s1"*;)«sw^s1ne /r-
rh

•j R en (r+um^
"I” / (N2)[-£-(cospcosWg - sinpsinw^cose)-(—^-----cosw^

11 RH

w dr
t-ipsinw^) sinpsing]f4 p-

~ R e, (r+u ) w
■S’ / (N3)(ir sinw^si np - ( ^-----cosw^ + ^-sinw^cos6)f4

RH
.(r+Um) W.

/ (H2)( R m sinw^ - cosw(;)(cospcosw-
RH

dr- si npsinw^cosp)f4-p-

ir / (H2)(—cosWp + ^-sinw^) (cospsinw^
RH

R (r+um) w

dr+ si npcosw^cosp)f4

T3|Q
£
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- R (r+u ) w (r+u )
/ (H3)[(-~r~" coswo + IT sinw^cosw^sine + ( --R-m- sinw^

RH

- cosw^)sinw^sin3]f4 dr

3 K e,
n8 = 2n ^ (cospcosw- - sinpsinw^cosg)

w.(r+u ) „ .
(—q-----cosw^ + sinw^)sinpsine]f4

3_
2ir

w.R e, (r+u ) » d
/ (N5)[-^ sinw^sing - (—^-----cosw^ +-^ sinw^cosg]^ p-

H

R (r+u 1A mJ

Lio

27 / (H4)(—r ^.. sinw^ - r2- cosw(;)(cospcosw(;-
RH

dr- si npsi nw^cosg) f4

^ R (r+um) w
27 I (H4)(—r-----cosw^ + A sinw^(Cospsinw^

RH

si npcosv/cosg) f4 dr

3 R (r+um) w
[H = 27/ (H5)[(—r----- cosw; +irsinw(;)cosw^sing

RH

(r+Um) W.
+ ( R m sinw^ - ^ cosw^sinw^sing]^ |dr

O R e, (r+um) Wn Hr
[12 = 27 / (N2)(A sinw^sinp - (—^----- cosw^ +-^ sinw^cosg)^

RH

3 R el (r+um)
[^3 = y / (N3)(-^—(sinpsinw^cos3-cospcosw^)+(—r-----cosw^

* RH

w .
+ r2- sinw^)sinpsing)f4



R (r+u ) w
n14 = 1^/ (H2)[(—^sinw; -^cosw^sinw^lns

rh

---• + (^TT^ cosw^ + ^ sinw^cosw-sine]^ ^

.(r+um)
w.

15

2^ / (H3K-----sinwg -COSW^COSpCOSW'

RH

dr- si npsinw^cosgjf^

? R (r+u ) w
+ j^ f (H3)(...r coswo + ~R^~ sinw(!))(cospsinw^

RH

+ si npcosw^cospjf^ dr

^ R e, (r+u ) w
‘16 = sr J (N4)[ir - (-IT1- coswi + TT s1nw;)

rh

2 R e,
[17 = " ZiT (N5)[-^—(cospcosw^ - sinpsinw^cosg)

w.(r+u ) "n H
- (—ft-- cosw^ +^.Sinw')sinpsin3]f4fr

3 R (r+um) w0
n18='sr / ----- R—sinw' - ^ cosw^sinw^sing

(r+u 1 w ^
+ (—^----- cosw^ + ^2. sinw^cosw^sing]^
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(r+u J w_

19

■jST / (H5)( R m sinw^ - ^ cosw^(cospcosw^
RH

- si npsinw^cospjf^

,(r+Um)

dr

w.
+ ^- / (H5)(—cosw^ +sinw(J)(cospsinw^ 

RH

sinpcosw^cospjf^ dr

where

N1 = (sinpsinw^ - cospcosw^cospjFj - cospsinpFg

N2 = cosw^sinpFj - cosgF^

N3 = (cospsinw^ + sinpcosw^cos3)F1 + sinpsinpF^

N4 =

(r+uH) w.
(-y- sinpcosw^ + ■ ^ -u' si npsi npcosw^ + sinw^si npsi np)Fj

3+ Y~ (cospcoswq - sinpsinw^cospjFj 
00

» (r+u.]
-[j- cose + —y-----sinpcosg + j- cospJFg

N5 =

(r+ud]
(sinpcosgcosw^ + sinw^cosp)+ —^----- cospcosw^

w.
+sinw^cosp +-y^ sinw^si nsjFj3

(r+Ud)
+(|—sinpsing +—y-----sin3)F2
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The expressions for HI, H2, H3, H4, and H5 are the same as Nl, N2, N3, 

N4, and N5, respectively, except and F2 in Ni terms are replaced by

and G2 in Hi terms.

11.5 Tip Loss Model

In order to account for nonuniform flow in the wake of a wind 

turbine, flow models have been adapted from the propeller theory. 

Physically, the tip correction accounts for the fact that the maximum 

change in axial velocity, 2aV^, in the wake occurs only at the vortex 

sheets and the average velocity change in the wake is 2aVooF, where F is 

the tip loss factor.

"Tip losses" have been treated in a variety of different manners in 

the propeller and helicopter industries. The simplest method is to 

reduce the maximum rotor radius by some fraction of the actual radius, 

which in helicopter studies is of the order of 0.03R. A more detailed 

analysis was done by Prandtl [12] as a method for estimation of lightly 

loaded propeller tip losses. Later Goldstein [13] developed a more 

rigorous analysis.

For this analysis we will use the combination of the effective 

radius and Prandtl method for the calculation of tip loss factor.

The effective radius is given by

eff r
"R =

B2/3x j1/2 

x + 1.32

and

Reff
R
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which was obtained from an empirical relation which expresses the maxi­

mum power coefficient of wind turbines.

The tip loss factor is expressed as

p
F = — arc cos (ef)IT

where

ef = [cos(5$2L)] (1 - r/R)/(l - Reff/R)

11.6 Power and Thrust Coefficient

From the blade elementary theory, the windwise force and torque at 

the nominal value are given as

dT = 4 ejsw2ccN f (53)

dQ = | pXcCtr f <64>

Power is defined as the product of torque and angular speed

dP = ndQ (55)

1 2 2 1 3 2Normalizing Eqs. (53) and (55) withp^V^irR and ^ p^V^ttR , respective­

ly and making use of the relationship of the relative velocities and 

angles at the blade cross section, one obtains
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cp -£inrp /tiP f--' 1 + (^r-)2 - xCo]x2dx (56)
xhub

3 _______
CT:si?fB- / F->' 1 + t-1?-)2 [«Cl + (l-a)CD]xdx (57)

xhub
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APPENDIX III

DERIVATION OF GOVERNING EQUATIONS

In order to develop the equations of motion, the Lagrange method is 

used. The expression of kinetic and potential energy of the system will 

be developed. Then, by using the virtual work concept an expression for 

the nonconservative forces can be obtained.

Lagrange's equation is used to develop the equations of motion.

The Lagrange equation is given as

d fiLk_l _ Ak_
dt ^ 3q,- = CL

where

L = Lagrangian function = KE-PE 

Q.j = nonconservative force 

q.j = generalized coordinate

With the expression of KE, PE and substituted back into 

Lagrange's equations, we obtain the equations of motion.

III.l Kinetic and Potential Energy

In order to obtain the expression for kinetic energy of the rotor 

system, the velocity and angular velocity of the blade element are first 

developed. With known values of mass and mass moment of inertia of the 

blade element, the kinetic energy is expressed as

d (KE) = V^dm + w^d^ + co^d^ + u^d^ (1)
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Here Vc is the velocity of the blade element of length dr, <d^'s are 

angular velocities of the blade element in the direction normal and 

tangent to the blade, dm is the mass of the blade element, and dl^'s are 

the mass moment of inertias of the blade element at mass center in the 

same direction as the oj^ 's.

The total kinetic energy of the blade system is obtained by inte­

grating over the blade length and adding the contributions of each blade

BR? BR? B R « BR?
KE = Z / \Tdm + Z / a)f dl, + Z / <4dl9 + z / audl.,

1=1 Rh 1-1 Rh 1-1 \ 1=1 "h 3(2)

where B is the number of blades.

The additional kinetic energy due to the hub mass and generator are 

considered. The additional kinetic energy terms are expressed as

KE"7IH*2+7Is(Nti*)2 (3)

Here is the mass moment of inertia of the hub around the rotor shaft, 

Iq is the mass moment of inertia of generator around the rotor shaft, 

and Nq is the step-up gearing ratio between the turbine and the 

generator.

An expression for the potential energy of the rotor system can be 

derived from the strain energy due to the blade deflection and blade 

twisting. The expression for the strain energy of an element of a blade 

is first developed, then integrating along the blade span and adding the 

contribution of each blade to get the total potential energy. Thus, we

obtain
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U
B
Z

i=l

EI(r)(^2dr + 

8r

® 1 ^ Sfl 2
.z 1 / GJ(r)(|?) dr
1=1 rh

(4)

III.2 Virtual Work

The virtual work principle can be stated as, "If a system of forces 

is in equilibrium, the work done by the externally applied forces 

through virtual displacements compatible with the constraint of the 

system is zero," [4].

n
5W = z fir. = 0 

i =1 1 1

where

^ = external force

5?^ = virtual displacement

Virtual displacement is defined as infinitesimal arbitrary changes in 

the coordinates of a system. These are small variations from the true 

position of the system and must be compatible with the constraints of 

the system.

Hie total virtual work of the system can be expressed as the summa 

tion of the virtual work of conservative forces and the virtual work of 

nonconservative forces. The conservative forces are the forces that do 

depend on position and can be derived from a potential function. Con­

servative forces are the inertia forces, the contact forces, and body 

forces. The nonconservative forces are energy-dissipating forces, such 

as friction forces and forces imparting energy to the system, such as 

external forces. Nonconservative forces are forces that do not depend 

on position alone and cannot be derived from a potential function.
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In this analysis we will consider the virtual work of the noncon­

servative forces alone. The nonconservative forces in our case are the 

aerodynamic forces and moments.

III.3 Nonconservative Forces

First, let us redefine the virtual displacement and virtual angular 

displacement (virtual rotation) of the system. In this analysis, we 

assume that the aeroforces and moments act at 1/4 chord position of the 

blade cross section. The virtual displacement and virtual angular 

displacement are defined as [5]

.->■ _ 3a) oa = -----
3q.

(5)

(6)

where

3^d
----- = the partial rate of change of position with respect to
3q.

q.j at the 1/4 blade chord in the inertial reference frame.

= is the partial rate of change with respect to q^ of orienta- 

tion of the blade in the inertial reference frame.

The virtual work is defined as the summation of the inner product of the

aerodynamic force and the virtual displacement and the inner product of

the aerodynamic torque or couple and the virtual angular displacement
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6W = + ft*6a (7)

The aerodynamic force and couple at 1/4 chord are defined as

(8)

ft = Mn
1

Substituting Eqs. (7) and (8) into Eqs. (6) the expression for the 

virtual work becomes

5W = Qj5qj + 82^2 ^3^93 "*■

where represents the nonconservative force relevant for the right 

hand side of the Lagrange's equation

(9)

3^2 3q2
(10)

3q3 3q3
(11)

o4. f .(!!<<) + a . (4-)

3q4 3q4
(12)

Now we have the expression for the Lagrangian function and the non­

conservative forces. Substituting these expressions back into 

Lagrange's equation, we obtain four equations of motion. These equa-
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tions can be written in matrix form as

CM] {qi} + [C] {c^} = {G(q1,...q4, cjj . ,q4>t)} (13)

where

[M] = nonlinear mass coefficient matrix

[C] = nonlinear damping coefficient matrix from 4r- )
alA

{G} = a vector consisting of nonlinear terms from -— + 0-aq^ i

III.4 Nacelle, Gravity 

Nacelle

In this analysis we will consider the nacelle as a slender body.

The shape of the nacelle is assumed to be a cylinder with a hemisphere 

on the forebody and afterbody. Figure III.4.1 shows a picture of the 

nacelle.

Since we assume that the nacelle acts like a rigid body and the 

only movement it is allowed is rotation around the yaw axis, the kinetic 

energy and potential energy can be expressed as

PE = 0

where In is the nacelle's mass moment of inertia around the yaw axis

KE = T f2?,2Inf4q4 (14)
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ROTOR PLANE

WIND

Figure III.4.1 Nacelle geometry



99

For the nonconservative force, the forces on the nacelle are calculated 

by using the slender body theorem. The forces on the body can be ex­

pressed as

dF. 2«» §

dF {pl a
ly2 + zl (R.z) + ( mz)

dz
■)2i ds

dz dz

(15)

(16)

where

s = the cross section area of the body 

R(z) = the radius of the body cross section 

The virtual displacement of the nacelle is expressed as

& = zVq4 "y (17)

The virtual work of the nacelle system is given by

d (<SW) = dFy «P

■ (2<LZ S’ dz (18)

The nonconservative force for the nacelle is expressed as 

dl>N - ^ & dz f4 d4 (19)
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The force on the nacelle exists only at the hemispheres at both ends of 

the nacelle (^|- * 0).

The afterbody of the nacelle is in the hub area. In real flow, the 

flow would separate before it reaches the afterbody. Only the forebody 

part of the nacelle is considered.

The equation of motion of the nacelle is developed by substituting 

the expression for kinetic energy and the nonconservative force in 

Lagrange's equation. The nondimensionalized equation of motion is given 

by

m44 ^4 + ^44 ^4 = 0
n n

where

(20)

f 2
4

44 7
n ds

dz
fj dz

n = distance from the nacelle's yaw axis to the forebody 

end of the nacelle

Rm = radius of the hemisphere on forebody and afterbody of the 

nacel 1e.

Gravity Effect

For a larger wind turbine system, the effect of gravity is very 

important in dynamic and structural analysis. Although the Enertech
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1500 is a small wind turbine system, the gravity effect will be included 

in the analysis to make the analysis applicable to any size turbine 

system.

The gravity effect will be added to the system by means of a poten­

tial function. The gravitational force of the blade element dr is 

defined as

d$ = -gdm nx (21)

The potential function for the gravitational force is given by

dP = ghdm (22)

where h is a function of qj, ... q^, and t, whose absolute value is 

equal to the distance between the mass center of the blade element cross 

section and any fixed horizontal plane H.

We are dealing with the expression for the derivative of the poten-
3p

tial function instead of the potential function itself when we 

develop the equations of motion by using Lagrange's equation. Therefore 

we take the derivative of the potential function in Eq. (22) with 

respect to the generalized coordinate

3(dP)
3ch

gdm 3h
aqi

(23)

The velocity of the blade element "dr" measured at the mass center can 

be expressed as
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t =
c

QlZ 4.

dt nx

r r 3h *(i=.i 8<iiq1 + + (24)

The expression 3h
3^i

be found by dotting Eq. (24) with the unit vec- 
3htor nx and assuming that equals zero. 

3^3h
3q. •n. (25)

Substituting the expression |~ in Eq. (25) back into Eq. (23), we have
<3

the expression accounting for the gravity effect to be put into
3qi

Lagrange's equation

HdPl
3qi

gdm(- (26)

III.5 Tower Shadow

When a rotor is downwind of the tower, the blades pass through the 

wind shadow cast by the tower. The performance of the wind turbine will 

be affected by this tower shadow.

In this study, the tower shadow is modeled as the velocity deficit 

from the rotor axial velocity value over a selected region of the rotor 

disk, centered about the tower center line. For the simplicity of 

analysis, the width of the tower shadow is assumed as a segment of the 

rotor area. The width and the velocity deficit of the tower shadow are 

dependent on the geometry of the tower. This tower shadow model is 

shown in Figure III.5.1.
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A
X

y

Figure III.5.1 Tower shadow
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To account for the tower shadow effect on the equations of motion 

of the system, the width and the velocity deficit are arbitrarily cho­

sen. Then for this linear system, the superposition method is used.

The average forces on the rotor with the tower shadow will be the aver­

age forces on the rotor without the tower shadow, plus the difference of 

average forces in the shadow region between the one with and the one 

without the velocity deficit due to the tower shadow.

The coefficients of equations of motion will be recalculated for 

the shadow region. Many terms in the expression for forces and moments 

that depend on the azimuth angle, which are usually balanced out in the 

3-bladed rotor case, will remain in the tower shadow case.

The average forces and moments in the shadow region are given by

4. x
* + j R

Fshadow = It / J (dF^ <27>

ir - | RH

■n + j
Shadow'It f J ^ df)d* (28>

IT -i RH

where

dF = the force on the blade element

X = the shadow width.

The flow conditions in the tower shadow are developed from a uni­

form flow model. Thus flow conditions in the tower shadow vary only 

with velocity deficit and tip speed ratio.

Table III.5.1 gives the values of the integrations from the lower 

1 imit of ir - ^ to it + .
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Table II 1.5.1. Some Integration Values

4. x
* 7

c. 2
/ sin \|>cty

X
TT - 2

X - sinx
2

, XT + -y
^ 2

J COS <|>cty
X

TT - 7

(X - sinx)
2

4. X
IT + ■^

/ sini|)Cosi|<d\|>
X

TT - 7

= 0

4. X
IT + ■^

/ cosipd\p
X

TT - -J

= -2 sin £

4- X
TT + -7J-

/ sin^d^
X

TT - 7

= 0
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APPENDIX IV

LINEARIZED EQUATIONS OF MOTION

IV.l Linearization

Real systems contain some nonlinearity. If the ranges of values of 

the dependent variables are sufficiently restricted, the system may be 

well approximated as linear. In this study we will treat the system in 

the linear range.

The first thing we need in linearization is the equilibrium value 

of each dependent variable. Because of the complexity of this rotor 

system's mathematical model, the equilibrium values have been chosen as

e„ = °

wo = VztlX

(1)

(2)

= 0 (3)

(4)

where q$ is the static tip deflection and the subscript 0 indicates that 

the values are evaluated at nominal values.

We now define the dependent variable as the nominal (equilibrium) 

term plus a small variation term.

qi(t) = qiQ + 6qi(t) (5)
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Substituting the value of the generalized coordinate shown in Eq. (5) 

into the equations of motion and developing a Taylor's Series for the 

nonlinear function of the generalized coordinates and their derivatives 

yields the relation given below

.Si) - f(qi

+-------- 0—

)

^-Sq. +

8f(qi »qi )
OOP
aqi

6q.

3f(q.
+ (6)

Neglecting higher order terms, we obtain the linearized equation of 

motion as

sffq, .5, .i, )
nVVOi) -S -s- ) *--------"aq.°

ooo 1

af(qi .Si ) 3f(qi .Si .Si )
0 0 0

3qH
6q. + q o o

3qH
6q. = 0 (7)

Linearized Equation of Motion

With the known values of and the expression for — in the 

linearized aeroforce is defined. Then, the linearized equations of 

motion of the system are expressed in the matrix form as

CM*]{fiqi} + [C*]{5q^} + [K*]^} = {G}

where

M* = linearized mass coefficient matrix 

C* = linearized damping coefficient matrix
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K* = linearized stiffness coefficient matrix 

G = linearized forcing function vector 

The components of the matrices M*, C*, K* and the vector G are:

Mass matrix of the rotor

m 11

3_ fR A1!2 !£ + i_ rR rMf2 dr 6 rR “cl e e. „ f dr 
q ^ R J R q J fl R " q J 11 R R S1 nwofl R
“Km 00 K u *00 R |

3 fR h f2 dr
7flir

'12 21 q'oo R,
" u nrirsinwofi t 

00 rh

- R R 3 r e s+ — / u K- TT2- cosw!f,f
V R, R R

dr 
o'l^ R

m^^ m31

3 R U 1 W d
J v (r^ sinpcosp + ^ cosPcos0)f3

^<v **R H
R

+ q~ f u(|)2sinw(Jcospcospf1f3 ^
^00 Rkh

3 R (r+uc) ? d
+ q~ f —r------cosw^si npcosp + (J) cosw'si nP]f jf3-|p

M00 R H

3 R Wo d
+ T" J y t ^ si nwosi n3C0SPf if3 if

" rh

3 R ^ 1 d
+ J —2* (sinpcosw^ + cospcosgsi nw^) f1f3 i^-

qo» rh R

m14= ra41 = 0

m
_ 3 fR /Uc2-12 dr 3 ^5^2 fR f2 dr 3 fR !2 f2 dr

22' € J R-+ q: (r-) I ^2 ir+ q: J 7 f2 TT
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m23= m32

3 ,R uc2 /o dr- —— / y —(-p— si npcosp + cospcosg)f j -jj— 
* rh

3 ,R ,(r+uc) . e . , Rs t „ dr
+ a / r sinfjcosp + ^ sinp) ^ ^2^3 R

" RH

3 rR *2 dr+ —— J —7£ COSpCOSgfgf^ —
Rh R

m24= m42

m 33

R w'' 9 99 a ^ 9 99
/ y(-|- (sing + sin pcos^g) + ^ (cos£P + sin^psin^g)

q« rh R

(r+uc) 2 ^2 dr 
+ —5—cos p)f3ir

6 R (r+u ) (r+u_) w
+ ^- / y( jp-sinpcospsing-----j^--jp sinpcospcosg

W
+ | si ngcosgcoscp)f 3 ^2 •>^2 dr

R Ior\i« 9 9 j r
+ J —£■ (sinpcosw^ + cospcosgsi nw^) f3 i^-

rh R

R I,, 3 r 2 /.rte2 e. 2a f2 dr + -— J -x- cos psin g -it—
q» R,, R^ J K

H

3 fR ^ ,2 *2 dr+ f- I -j (sinpsinw^ - cospcosw^cosg) f3
Rh R‘

+ Tr7 + lG^f^

17134= m43 0
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fn44 = <

3 r /-W0\2/
2q / + cosCPcost3) + + si nScos^p)
. rh

t^(lts1112e)]fJdr

K

0 K ^ 0 * w f r+u 1
* q- / "[(f) + r cosocoss + stop

q_2.

H

2£ e___<-4 *2 dr- -j^— -j^ cospsi ngj t^

H3 - (r+u ) wq (r+u )
+ — / Y' si nPC0SPC0SP - |-----ff~ si Ppcospsi np

we ow
‘ t IT'sin0cos0^1 -sin2p)]t4F'

+ -r
3 ^ ^ 1 22 22 2 2 2 

/ ~2 (cos pcos + sin psin w^cos^p + sin^sin^p
2H00 KH K

2 dr- 2 sinpcospsinw'cosw'cosplftt
0 0 ^ K

+ 2q~ J --| (sin2psin2p +cos2p)f2^

+ T

rh R‘ 

3 ^3 0 0 OOO 00
2q— / —| (cos psi n + si n pcos w^cos p + cos w^si nS 

«® R R

2 dp+ 2si nw^cosw^si npcospcospjf^

where

p = blade's mass per unit length

cl
3uc

= evaluated at nominal value
3^
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3U
5 „ =—^-evaluated at nominal value 

C2 Jq2

I. = mass moment of inertia of the hub h

= mass moment of inertia of the generator unit and gear box

Damping coefficient matrix of the rotor

'11

j 3U
— I
3_ K 

K

K 3u , w .
J yfl si ngcosp + | cospcosp) -2-
lH 1

3 r n U<:1 e

^ Jua “H

1 e dr
IT "R C0SPC0SWQSi 1 fp

„R3u , ^ R w
- ~ / y£l f cosw(Jsmecospf1 r” - q” / ^ r

oo I oo K ■

+ 3 fR D e (r+uc)
+ / “aR —

^ ‘ W° -i f2 drir Slnpfi r
'H

'+u ] „ . o R o j
cJ  ..........^2 dr , 3tt r t,c^2 c ^ drR cosgcospfj ^ + 8 J V^rJ V» fl R

Kh

,R!i c 
J V R

‘H
fR Wt c r e2 rel , &ml • dr

J V R Cn V U fl' R S1 nwo^f 1 R 
R^l 00 a 00
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3uc2 ,wo
f“ D/ v* T?8qf ijrsi necosp + f cosPcose) if
• R ii ”1

3 ,R . uc2 e dr+ q-D/ ua -r jrCosccos»;stneflir

+ T~J ^ lir sinPsinwicospfif2-F
- rh

2 R (r+u )
+ q~ R" R~ sinw^si mcospf 2 f-

• K11

dr

“ kh

w. . dr~ a" J ufl f C0SWi(R2‘ singcosp + ^ cospcospJfjfJ ^ 
- rh

3 R
- / ----- j-----n(sinpsinw^-cospcosw(^cosB)f1f^

rh r*

R F
+ 3 P^ 7“ (Rscoswof2 * R(-r-)sinwi)(TT fl “ T sinwi) if
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^ I- / yfl(-|)2(si npcospsi ngsi nw^-si necosecosw^(l-si -jp
" RH

C13

R

6 R ^ w p 2 2
I yfi -]^{cosw^(si nS+si n pcos g)
H

+ sinpcospcosgsi nw^)f^ 

(r+u )

dr

dr+ ■§— f yfl ^—r---- (cos psi nw^+si npcosgcospcosw^f jfg-jp
* rh

6 ,R 3uc ,tr+uc) 2 
+ / 1,0 ^ R----- cos “

w
(-p cosg - si ng) sinpcosp)f3-p

6 ' R dr
" a“ / -------2—flcospsi ng(si npsi nw^-cospcosWgCosgjf jf3-jp

^<» R^ R

R (r+u.) w e. um1 .
+ 3 / (( v ■■ cosw■ + -^i nw'jcospsi ng)F^f2-------sinw^fg^

R H 
R e drl\ C 3 c ^ U ^

-3 / -p (sinpsinw^)+cospsinw^cosg)F1(-jp fp-p sinwyf3 

RH *
R w (r+u.) e, u , H

► + 3 I ['^~s^nP------ \/-----cospcosg)p2(p f j —R“s^nwo^3TT*
R|^ « <»

'14 0



114

3 R 3u i w .
'rJ ^ (TT 51 nBC0Sl> + ir C<>5P“SB) TT 

" rh 2

- R u , R 3 r „ cl s „• dr , 3+ sin3C0SPf2 + ^ nPsinw^f jfg ^L
00 kH kH

- R (r+u ) .
+ ^- / | F^-51 nBsi nwoflf 2 F"

i dr

- R R 3 r „ e s dr

C21 = ^

+ — / liftsi ngcosgsi npcosw^fjf2 i^—
' rtA D

3 R 3uc e dr
— J ^ Wq, R C0SWiSi necos‘,fl TT

RH 2

R w
- f yficoswsi npcosp +-^ cospcosp)f , dr

-3 R R 3 c s e dr- <T f r--r sinw^sinecospf1f2 fj-
Tan P

H
R I. drO A 1 -|

+ ^- / ft(si npsi nw^-cospcosw^cosg)f ^
4<» R R

R W e, R u 9 .
+ 3J T~RCn T~ ^R- f 2 coswo F si nwo^fl F“

R H a 00

'22

3 R 3u - w .
/ ^ Ral” f~ si n3COSp + COSpCOSB) -§!-

qm Ry R3q2 R
kH c

R

3 R uc2 Rs dr
+ — / pQ —-j^— s i n3cosp f g

R H
R F

+ 3 / TT (Rscoswof2“ R(-F)sinwi)(-F f2coswi _ “F sinwi) F*
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'23

6 / yfl ^ (si n2p+si n2pcos2e)f2f3-jp
K,

R R e sJ yfl | -p si npcosg( 1-si n2p)f 2f3 -- 

H
q«o R

dr

g R 3u (r+u ) o w dr
" q" / pftR3q^—C0S p " (TT COS0 " t si ng)si npco$p)f3 -p-

“ RH 1

6 R (r+u ) R .
+ — / yfl -pp^- / si npcosgf2f3 /

6 R(I2"I3)
------ r ——a[sinpcospcosecos2w'

q» R,, R^ c

2 2 2 dr+ si nw^cosw^cos pcos^g - sin^p)]f2f3 -p

R (r+ud) wo Rs
+ 3 / [—y----- cosw^cospsi ng +-p si nw^cospcosgjF^p f 2cosw^

rh

—si nw1 If £11 R slnw0',T3^

R e3 w
- 3^/ [p (si npsi nw^-tcospsi nw^cosgjFp^ si np 

kH « °°

(r+u.) R u o Hr
----- cospcosg)F2](p f2cos^ - -p- s1nw^)f3 p

'24 0
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'31

'32

'33

k Wt c , e2r(r+un,)
3 / 7~kCn \n'~F‘"C0SW0C0SpSlng

‘H “ 01
w0* I n r dp+ -jp si nw^cospsi ngjf jfg -p-

R W e? ei j
3 / T ¥ Cn yiT (sinPcoswi+cc,spsinwicose)fif3

R,, oo a 00H
.R “t c , e2 ,(rtura)

3 / r^ct ri- 
RH “ « •

drcospsing - sinpJfjf-j -jp

^ R Wj 2 d
F1 / T“ (S 7-(sinpcosw^)4cospsinw^cosg)f1f3-j^- 

RH * “

R F. (r+u )
3 / ^ (Kscosw^f2 - SjjSlnw^f—^-2!-cosu^cospsins

KH *

0 . ■ dr+ -jp si nw^cospST ng) f 3

R F1 1 c 1 H
3 / v^RsCOSw^fg-u^sinw^) (sinpcosw^+cospsiriw^cosg)*^ 7-

Rh ca

WR Gj (r+u ) " d
3 f \r (Rscoswo,2'“d2s1n"ok-----W~' cospsine - ^ s(np)f3

KH ”

R (r+u ) w
3 / N6(—^-----cosw^cospsing + sinw^cospsing

Rh

2 dr^ 1 2d7- (si npcosw^-K:ospSinw^cosg))f3

R (r+u ) w „ .
3 / H6(—cospsi ng -~ sinp)f3-^ + C,

RH
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C34 0

C41 = C42 = C43 = 0

where

N6 =

(r+ud) w0
{—y----- cosw^cospsine + —■ sinwQCOSpsine}F1

w_
- y^sinpsinwQ+cospSinw^cosejFj +(-^r-sinp------y

(r+uJ

H6 =

(r+ud) w0
(—y— cosw^cospsi ng + y*. sinw^cospsi nejGj

w.
- ■y£{sinpsinw(J+ cospsinwQCOsgjG^ (ysinp------ y

(r+uH)

Cr = Slip rate

cospcosgjFg

cospcosgjGg
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R (r+Um)
7 / singcosw^ + —^----- sinpsinBcosw^

RH

2 dr+ ■— sinw^si npsi np)f^ j
3 R el 2d
■jr / (N4) -jp (sinpsinw^cosp - cospcosw^)f^

3 R (r+u )
J / (N5)(|-(sinpcospcosw^+sinw^cosp) +—cosbcosw'

RH

W
+ /sinwdcosP)f4T1

R 0
/ (N5) sinw^sinBf^ ^

‘H
R (r+u ) w _ .

/ (84) (|-cosb + "-y-m sinpeosB +ipCosP)f^r
R

(r+u ) v m-’ -2 dr
R
/ (H5)(|-sinpsinB + —^-----sinB)f4-R~

R . (r+um)
J. J (Nl)(| sinBcosw^ +
q4 RH

• + — ----- sinpsinBcosw'OK C

w rN .
+ ^ sinw^sinpsinB)

k ei rN d
J. / (Nl) r1 (sinpsinw^cosB-cospcosw^)—-f4 r1

q4 Rh

R » (r+U ) W rN H
j. / (H1)(|cosb +--R- fn' sinpeosB + r5" cosp)r^ f4 IT 
q4 RH

R (r+um)

k. / (Nl)(|-(sinpcosBcosw^+sinw^cosp)+—cosbcosw^
q4 kh

+ / s1 -"tfoss)/ f4 ^
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+ !k. J <N1> Ris''nwosin6

q4 rh

o R 0 (r+uml rKI .^ + | k. / (HI) si npsi ng + —^-----sinB)^-f4|^

q4 Rh

Stiffness coefficient matrix of the rotor

cosw‘^(si n2p+si n^pcos^g)f?
’oo RH 0 1 K

+ |- J unZ(|)2(cos26+s1n2ps1n2B)f^ 
" rH

g ^ 2 e 2 2 o dr
— / yfl si npcos pcosgsi nw'cosw'fi

“ rh

f /Ru«2(|)2c--2

^00 R..
H

■cos2psin2w‘f2 ^

R w
+ |- / yfi2 sin3cosB(l-sin2P)f2 ^

“ RH

3 ,R 2e^r+Uc^ . . 2dr
+ J yfi sinpcospsingfj ^

“ rh

3 ,R 2 ^f^c^dr
- - r/ pa c°s p(i^-) ^

H
o

R 2 (r+uc) 2 wo e 9 uc dr
/ yflH—r—cos p- -w-si npcospcosB+ |si npcospsi ng)----- ^ r—

Rh R R R R3qJ R

3 R (l2_l2} 2 2 2 dr
— / -------2—ft (si npsi nWg-cospcosWgCOSB) f ^
M<» R R

3 rR (Vs) „2 2 , 2.f2 dr ^ 3 fR GO f,2 dr
‘vj, —cos,,s,"s,nrtq:R/ jTfi r-

R ne3 el u i .
3 / 1~~ F2^Si npCOSWo4COSpSi nWoCOSBHR^ fl---------^=-sinw')fi -j^

RH -

q» R.
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R or 3ud e,
3 / (rt—)(-cosw(Jcospsinp Fx+ cospcosg F2)(^=-fj

Rh «-

Uml >.! - .n dr -i fR c r6! * Uml dr
‘ T~ sinwo) " 3 «{, F4 ^TT f 1 fT* S1 nwo) T

R du
3 J No R3q! Slnwo RP + 3 Ho R1 fl r'1 *2 dr

p u R3q-i w i\ p
KH 1 KH

k = k + k *12 K 12a 12b

(•R’) (si nacos&si nw^( 1-si n^p)-si npcospsi npcosw^f. _2 , dr
1oo R

H

o R q _ R « o o
— / yfi -^-^(cosw^sin^+sinpcos^)

” rh

+ si npcospcosgsi nw^)f jf2 •rdr

1 R 9 «

3 r e o+ — / yfi'1 ^ (si nw^(si n2e+si n2pcos2e)

k12a =

‘H

d r- si npcospcospcosw^jf jf2 -j^-

3 ,R 2e (r+uJ , . • ■ 2 dr
- — / -j^—r—(si npcospcosgsi nw^-cos pcosw^)f

■ AM D

3 .2 3 “c ,(r+uc) 2 ,wo dr- q- J "O teq,aq,(-----T-105 P ' (1" coss ' 1? s1 n«)si
R^ ^1 ^2

, R 9 3U 3u 9 3 r „2 C C ___2 dr
TSqr^cospTr

3 R ( Ip"^) 9 <Jp
- — / -------2—n cospsi ng(si npcosw^+cospsi nw(^cose)f1f2 ip

Ru R
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12b

*31 (N7) (/fj ^

H

Rh w H3(^2 w " R,
+ 3 / No sinw; r+ 3 / % ¥ coswif2 ir

H

where

N7 =

(r+ud)
((sinpcosw^+cospsinw^cosg)(l-ajf^ - ft —y-2- sinw^cospsingf^

+ f- «s“ocos,,s,n6 R3?;)Fi
OO ^ d

R R AW
(y-r5- si nw^cospsi ngf 2 + y^- cosw^cospsi ngf^

3U,

ne3
+ y—‘(sinpsinw^-cospcoswJcosBjf^Fj

K du
+ (r* tr si»pf2 - F RiF cosPcose)F2

OO ^2

N =
W ,,& s f*

[(■y—) ^ CJ evaluated at nominal value

= [(f) ^ eva^uated at nominal value

k13 " k14 = 0

Ic = k 4- k
21 12a 21b
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R ae.

‘21b

‘22

- 3 / ^—(sinpcosw^ cospsinw^cosB)F2(|p cosw^f2
R ookh

R RO ,9ud
+ 3 / y^-(-j^—) (cosw^si n^F j-cospFgjcosp (-|p-coswQf2

Ru °° M1

--ir^TT

+ 3 / No ^7 sinwi f -3 / ^(r- coswo^2 - Y sinwc;) f

kh 1 rh

3 / yn2(-jp)2(sin2|5 + cos2Bsin2p)f2 ^

H
q« R

3 fR o2rnc2 l2 dr
— RJ un COS pt^) J-

Hn
2

3 R 2 3 u (r+u ) 2 wo p H
- — j \inc -----^ [—R----- cos p - (^2. cosp - | sinpjsinpcosp]^-

00 Rh Rscig

^ -1 -g3^ a2cos2w^(si n2p-cos2pcos2p)f 22 

00 R i_l R

• R^l"^3^2 2 dr
----- 2-----a si npcospsi nw^cosw^cosef 2 -jp

i R
l2 f
qco R H R 2

3 fR EI fll2 dr
ni ^ f2 ^

+ 3

q% R

1 (N7) (-^ f^osw; --Eisinw^

rh

R R- Hr R 3U o

+ 3J NolTsinwif2f2 R“+ 3 / NolT3q;sinwiTr 
KH KH d

R 3u 0 .
+ 3 f w __mi C0SW'f

J o R coswot2IT 
rh



R fle3 , ( r+Um)
3 / (sinpcosw^ cospsinw(JcosB)F2(—^----- cosw^cospsinp

RH "

w.
+ nw^cospsi ng +-^{si npcosw^ + cospsi nw^cosgjjfjf^-^-'lr_. dr

R (r+u )
3 / -y—(si npcosw^+cospsinw^cosg)G2(—^-cospsing

' F’Sinp)f1f3^

R nR 3ud w
3 ^ ^R3q ^'COSWoSineFl+ cose*:2)cosP+F4](R2sinwAcosPsin0 

Ru «

r+um+ (—^Jcosw^cospsing +-^={sinpcosw^+ cospsi nw^cosg))f3^-dr

R nR 3ud
3 J tv^Raq H-coswosinBGi+ cosgG2)cosP

'H

w(r+u ) „ .
+ G4K~R-----cospsi ng - sinP)f3 j-

R du R du
3 R/ No Ra^o^'cospsinefj r - 3 r; H0 R5^cospcosBf3 ^

R e•\ ^ -i .
3 / H0 j- (si npcosw^+cospsi nw^cosg)f jf 3
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k32 s -

R (r+u
(N7) cosw^c3 / 

rh

R e. .
+ 3 / (N7) ip (si npcosw^+cospsi nw^cose)f 3

RH

R (i,,+u ) w .
3 / (H7)(—cospsing - ■£— sinpjf^

rh

R 3 u .
- 3 J No l^r cosxjcospsl "6f 3 F

kh ‘

dr+ 3J No(-T
'H

Rj o Raqg ''UJ"0 M 3 R 
H
(r+um) R.

(■-y-- f2 - ]r- fgjsinw^cospsing^ 

R w .
f M __e*e t no-f * f

R w .
- 3 J No12. cosw^cospsi ngf 3

RH

R el dr
3 / Nq (si npsi nWg-cospcosWgC<>sg)f -jp

RH

R 3u . R R j _
" 3 Ho R3qT C0SPC0S3f3 F” + 3 p-^ Ho F" sinPf2f3 F" 

kH £ kH

k33 = k34 ~ 0

k41 = k42 = k43 = 0
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3 R (r+u )
r J j (N2)(|[ S1’ necosw^+ —si npsi npcosw^

RH

w_
+ sinw^sinpsinpjf^

3 R e 1 2d
y / (N2) Y-(si npsi nw^cose-cospcosw^)f ^

RH

3 R , (r+u )
j f (N3)(|(sinpcos3cosw^+sinwQCosp)+—cosgcosw^

RH

W R 6
+ IT sinwocos0)f4 F" ■ I / (N3) sinw^singf^ ^

RH

, R (r+u ) 0 .
”7 J (H3)(^ sinpsing+—Si ng)f J

RH

o R „ (r+um) K o a
+ 7 / (H2)(J-cos3 +—------sinpcosg + ^2. cosP)fJ ip

RH

3 R p (r+u )
+ 7 jq / (Nl)(|j- sinpcosw^+—sinpsinecosw^'

4 R

w. N - dr+ ^-sinw^sinpsing)^ f 4 T-

3 R 61 rN d
+ 7 jq / (Nl) ^ (sinpsinw^cosp-cospcosw^)-^ f4

4 RH

R (r+u ) w r., .
Jq / (Hl)(| cose+ ...R m sinPcose+ ^ cosP)^- f4 ^

4 Rh

R (r+u )
^q / (Nl)(^- (sinpcosgcosw^+sinw^cosp)+—cosgcosw^ 

4 R H

w e, rN .
+ ^ sinw^cosg- ^ sinw^sing)^ f4 -f

R o (r+um) rM .
kq4 / (Hl)(|- sinPsine+ —^-----sing)^- f4

H
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Forcing function vector

R

'01

G02

~ / yn^(|-)2(si ngcosgcosw^ 1-si n2p)-si npcospsi npsi nw^)fj 

" RH

O ^ O ^ O *) o
+ — / | (cosw^(si nS+si n pcos e)

^00 R H
dr+ si npcospcosgsi nw^jfj -j^--

3 «2 e (r+uc) r___2R dr
q« R

/ yfl (cos psi nw^+si npcospcosgcosw^f j -jp
H

R 2 9uc ,(r+ucJ 2 "o
+ — / y£J ^ (.... -K-—-- cos“P- — sinpcospcosg

q« R kH

drC . • n \j i+ ^ si npcospsi ngj -p—

o ^ ^ 9— ^ rJ Mr*
— / —-----npcospsi ng(si npsi nw'-cospcosw'cosplf, -n—
q. RH R2 0 o ' 1 R

R e, *
+ 3

Re, u , r |>j f—l f _ —Dlk sinw'l — 
J HoU 1 R 5,1 nV R

KH

3 fR 2 Rs fW(rtrC5'"2^"-2
kh

j „ R .
sin pcos^p)+ i^ingcosgcos2p)f2 fp-

3 ,R 2 (r+Uc) KS.
J ya ——

“I rv
H

q ‘ R00 K

Rs . £ dr• —si npcospf2 ^—

R „ 3u (r+u 1 „ w
r £ C r'' cJ 2 o. e.J y« ----- COS p- yS! npC0Spc0Sg+ -^Sl DpCOSpSI n|

2

/-------j—a
2

“5—-8 (sinpcospcosgcos2w'
R'h r

2 2 2 + si nw^cosw^cos pcos $ - si n p

/ f22 * 3 j" No(^ T IT
rh r Rh

si n2p))f2
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’03

R (r+u 1 w
3 / Nq [----p—cosw^cospsi np+^si nw^cospsi ng

el dr
+ p- (sinpcosw^+ cospsinw^cosg)] f3

r (r+u ) W j

+ 3 / Hq( —^ cospsing- ^.°sinp)f3^-
RH

ngtg.

where Tg = generator torque at nominal speed 
uo

Gn„ = 004

Summary of symbols used in this section

uc = blade's radial displacement at center of mass

ud = blade's radial displacement at mid-chord

um = blade's radial displacement at 1/4 blade chord

3u

3t

3U
u . =—evaluated at nominal value 
ni

where
3q

ti — c j d j n 

i = 1,2,3,4

e = distance from mass center to shear center of blade cross 
section

e^ = distance from 1/4 blade chord to shear center of blade cross 
section

62 = distance from 3/4 blade chord to shear center of blade
cross section

63 = distance from mid blade chord to shear center of blade 
cross section
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N4 =

N5 =

y = blade's mass per unit length

W 2
Nq = [-y-) ^n "R evaluated at nominal values

VI p
Hq = evaluated at nominal values

N1 = (sinpsinw^-cospcosw^cose)F^ - cospsingFg

N2 = cosw^singFj-coseF2

N3 = (cospsi nwHsi npcosw^cosgjFj+si npsi neF2

(r+ud) w.
(y- si ngcosw^ + —^-----si npsi ngcosw^ + -^si nw^si npsi ngjFj

A+ y~ (cospcosw^-sinpsinw^cosg)Fj

( w.
(■y— cosg +—y-----sinpcosg + cosp)F2

(rtuH) w_
(y— (sinpcosgcosw^+sinw^cosp) + y^# cosgcosw^+ y^- sinw^cosg

A
+ y- sinw^singjF^

(r+ud)
+ (y-sinpsing +—^-----sing)F2

(r+ud) w0
(—y-----cosw^cospsi ng + y^- sinw^cospsi ng)F^

e3 wo (r+ud)
- y^sinpsinw^+cospsinw^cosgjFj + (y^sinp------^-----cospcosg)F2

N6 =
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N7

(r+ud)
(sinpcosw^+ cospsinw^cosg) - n —y-2-sinw^cospsingfg

3 u
= Y~ cosw(JcosPsine)F1

OO h2

OR ''c ‘‘w0

+ sinw^cospsing f2 +cosw^cospsingf2

ne3
+ -y—^ (sinpsinw^-cospcosw^cosg)f2)Fj

The expressions for HI, H2, H3, H4, H5, H6, and H7 are the same as Nl, 

N2, N3, N4, N5, N6, and N7, respectively, except Fj and F2 in terms 

are replaced by Gj and G2 in Rj terms.
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APPENDIX V

COMPUTER CODE

A FORTRAN computer program is developed to handle the numerical 

values of the coefficients of the system's equations of motion. The 

code will calculate the axial induction factor along the blade at a 

particular tip speed ratio. At the same time it also calculates the 

integral terms for the variations of the axial induction factor with yaw 

and yaw rate. Then it calculates the power and thrust coefficient. 

Finally, the code calculates the constant coefficients in the equations 

of motion (mass, damping, stiffness coefficients, and forcing function).

The lift curve and drag curves are approximated to use in the 

computer code. The lift curve is approximated and can be described in a 

simple yet fairly accurate form by six parameters. The curve consists 

of four straight line segments as follows:

= 2nmsin(a+a0) a < ccc
Lmax

< “ < aBR
max max

fl at
“BR < “ < “stall

si n(^- - a)
a > “stall

flat sin(| - «stall)

The six parameters are

m -lift curve slope divided by 2ir
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aLc

aC,
"max

aBR

■fl at

- zero lift angle of attack

- maximum lift coefficient

- angle at which C. drops to C,L Lflat
- an approximate to the average Cl on the far side of the Cl

curve, this can be adjusted up and down depending upon 

the characteristics of the airfoil 

“stall " an9le at which Cl begins to decrease 

The drag coefficient curve is also in multiple sections. Below 

, the drag is given by the following:
“max

CD ' CD0 (‘ +

max

where C. n, and Cn are constants determined by the airfoil character- a l»0
isties. If a > oiq the drag coefficient can be represented by a

^ax
single curve fit or a series of curve fits.

The axial induction factor "a" is calculated by equating momentum

flux to blade force. There are six possible intersections of blade

force and momentum relations due to two regions on momentum relations

and three regions on blade force. Two regions on momentum relations are

the region of parabolic curve when "a" < "acritical" ancl t*ie strai9ht

line when "a" > "acritical"• Three regions on blade force are the

linear slope curve where the angle of attack is less than the angle at

the maximum lift force, the flat part of lift curve (Ci and C. ),
Lmax ‘-flat

and the lift curve in the stall region. Once the particular region is 

identified, the solution is a straightforward procedure of finding where 

the momentum and blade element curves intersect. These intersections of 

blade force and momentum relations are shown in Figure V.l.
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case 1 case 2

case 3 case 4

case 5 case 6

case 2

case 5

Figure V.l Regions of operation for momentum calculations
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A subroutine and two functions are developed to handle the inner 

integral term of the double integration. The inner integral terms are 

terms involving the derivative of flapwise deflection (radial displace­

ment and its derivative). The composite Simpson's rule method is used

for the numerical integration in the code.

Input Data

The input data for the program consists of the physical character­

istics of the wind turbine rotor itself. They consist of physical 

airfoil data and operation variables. The physical airfoil data and 

operation variables are:

BCRR chord to radius ratio at blade root (Bc/R)

B number of blades

EM slope of linear portion of lift curve/2ir

DRR dr/R

XMIN tip speed ratio to start program

XMAX last tip speed ratio - used to end the program

DBX the increment of tip speed ratio

CD ZERO minimum drag coefficient

CL MAX maximum lift coefficient

CL FLAJ lift coefficient on the horizontal portion of the

lift curve

ALPHA BREAK angle of attack where the lift curve changes values,

from the maximum value to CL FLAT, degrees

ALO angle of attack at zero lift, degrees

AST stall angle of attack, degrees

SI coning angle, degrees
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PITCH prepitch angle, degrees

BETA ROOT pretwist angle at blade root, degrees

DBETA (Broot - Btip); twist angle change, degrees

RT local radius at twist angle change from linear to

constant twist

DCND (c/R at chord change - c/R at tip), chord change

ratio

RC local radius at chord change from linear taper to

constant chord

RH hub radius

ESC blade shear center position given as the ratio of the

distance from the blade leading edge to the shear

center and blade chord (es/c)

XCG position of blade cross-section's center of mass

given as the ratio of distance from blade leading

E

edge to center of mass and blade chord (xCg/c)

modulus of elasticity, psi

G modulus of shear, psi

OMEGA rotor speed, rad/sec

RHO air density, slug/ft^

YL distance from the nacelle yaw axis to the center of

the rotor, ft

R blade tip radius, ft

M number of integration steps in subroutine
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Output

The output for the program is on a tape file entitled TAPE 1. On 

this file are written both the program operating conditions and program 

output. The following are the output quantities:

QS nondimensional static tip deflection

CP power coefficient

CT thrust coefficient

Mon rotor mass coefficient where on is the indication of

which variables it represents

Con rotor damping coefficient

Knn rotor stiffness coefficient

HP rotor forcing function of pitch equation

HF rotor forcing function of flap equation

SKDEL coefficient accounting for the variation of the axial

SJDEL

induction factor with yaw, k

coefficient accounting for the variation of the axial

SKRDEL

induction factor with yaw, j

coefficient accounting for the variation of the axial

SJROEL

induction factor with yaw rate, k»

coefficient accounting for the variation of the axial

For on parameters

induction factor with yaw rate, j*
Y

P generalized coordinate in pitch

F generalized coordinate in flap

0 generalized coordinate in speed

D generalized coordinate in yaw
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If the code is not suppressed, additional output quantities are printed 

on the output list. They are as follows:

PCR local distance on the blade, r/R

A axial induction factor

PHI summation of angle of attack and pretwist angle

BETA pretwist angle

ALPHA angle of attack

CL lift coefficient

CD drag coefficient

BCR local chord to radius ratio. Bc/R

CPB power coefficient

CTB thrust coefficient

For the tower shadow part in yaw equations, the additional quantities on 

the output list are:

SMnn mass coefficient in shadow region per unit shadow

wi dth/ (B/2ir)

GCnn damping coefficient in shadow region per unit shadow

wi dth/ (B/2ir)

SKnn stiffness coefficient in shadow region per unit

shadow width/(B/2Tr)

CQU forcing function per unit shadow width generated from

the shadow/(B/2tt )

The quantities from the tower shadow effect will be calculated when the 

magnitude of the velocity deficit is given. For example, if the veloci­

ty deficit value is 50%, the forcing function at tip speed ratio of 2 

due to tower shadow is given as
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L [CQ0U=2 - (SF)Z Wlx^]2 si"4

where j = width of the shadow segment (degree)

B = number of blades 

x = tip speed ratio

SF = correction factor due to nondimensionalized value at

different tip speed value [=!-(% velocity deficit)/100]

For the gravity effect, the gravity forces on the pitch equation for a 

single blade are listed as the components of sine and cosine of the 

azimuth angle.

GNCOS

GNSIN

GPCUS

GPSIN

GFCOS

GFSIN

GOCOS

GOSIN

Cosine component of the forcing function due to 

gravity

Sine component of the forcing function due to gravity 

Cosine component of the of a single blade due to 

gravity

Sine componet of the of the single blade due to 

gravity

Cosine component of the k12 of a single blade due to 

gravity

Sine component of the k12 a single blade due to 

gravity

Cosine component of the k^ of single blade due to 

gravity

Sine component of the k^g of a single blade due to 

gravity
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The properties of the blade and shear center position are also listed in 

the output

ER

El

E2

E3

AE

AG

R

h
R

^2
R

R

Modulus of elasticity, psi 

Shear modulus of rigidity, psi

The integration step sizes are shown as

N Number of integration step sizes used in the main

program

M Number of integration step sizes used in subroutine

(double integral)

Note

The code does not calculate some of the terms in the expression of 

the coefficient of rotor equations of motion. These terms have to be 

calculated by hand then added to the results of the computer code.

These terms are

CG in C33 NgTg in GQ3
0

Tj- (1 H + Vg) f3 in M33
'oo
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C

C

c
c
c
c
u
c
c
c
c
c
u
c
c
c
c
c
c
*w
c
c
c
c

TT
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PROGRAM AERO (INPUT,OUTPUT .TARfc1>

COMMON L,r,r^i

COMMON /STIFF/ Al I,EIO,AGJ,GJG,RHR.QS 

EXTERNAL TO^TIM
' *« ** ^4^it******¥*¥- * ♦ * » * * ***♦*♦ + ***♦ * * * *** * * * ** ** ***

THIS PROGRAM CALCl'LATfS THE POWER COEFFICIENT AND WINDWISE 

FORCE COEFFICIENT FOR A HORIZONTAL AXIS WIND TURBINE 

AND GENERATES THt COEFFICIENTS OF EQUATION OF MOTION 

OF THc_ TURBINE SYSTEM ___________________ ________________________________ _____ ___________ _____________

DEVELOPED 3Y

R E WILSON

S. CHAIYAPINUNT

OREGON STATE UNIVERSITY

“ TORCT TWZ ... ........................................... ............. ...................

FILE ASSIGNMENTS

INPUT FOR INPUT OF INDEPENDENT VARIABLES

~ OUTPUT" ....... .....TUP '"P R CTG R Aff' M t‘S S3UT S^TO" TPrUSEF-'" 
TAPE 1 FOR A LISTING CP THE PROGRAM OUTPUT

VARIABLES INPUT FROM TELETYPE

i —'^TireETrTjr"iDnyr5 ................... ........... ........ ....*   
9CRR DIMENSIONLESS CHORD TO RADIUS RATIO AT BLADE ROOT 

EM SLOPE OF LIFT COEFFICIENT CURVE

ORR INCREMENTAL INTEGRATION STEP ALONG THE BLADE

COO MINIMUM CRAG COEFFICIENT

CLM MAXIMUM LIFT COEFFICIENT

PICK ....."DBr7TCfl~s|iiGLT-TN'''Dl.0RErCS'' " ' .... ..... ... ......... ..............
BP.T TWIST ANGLE AT BLADE ROOT-IN DEGREES

DBTA IKCREMENAL TWIST ANGLE CHANGE -IN DEGREES 

ALO ANGLE OF ATTACK FOR ZERO LIFT

AST STALL ANGLE OF ATTACK

SI CONING ANGLE

RT -RSUm PCSITION AT WHICH TWIST ANGLE CHANGES

DCNO INCRtMtNTAL CHDRO CHANGE RATIO

RC RADIAL POSITION AT WHICH BLADE CHORD CHANGES

RH HUB RADIAL POSITION

ABR LIFT BREAK ANGLt OF ATTACK

OTHER VARIABLE ASSIGNMENTS

A AXIAL INDUCTION FACTOR

CP POWER COEFFICIENT

CT WINOWISE FORCE COEFFICIENT

XL.........................LOCAL TIP SPEED RATIO

BETA LOCAL TWIST ANGLE

CL LOCAL LIFT COEFFICIENT

CD LOCAL DRAG COEFFICIENT

BCR LOCAL DIMENSIONLESS CHORD TO RADIUS RATIO

PHI LOCAL ANGlc OF RELATIVE VELOCITY WITH ROTOR PLANE

"ALPHA LOCAL ANGLE OF ATTACK

»»*******»******+***********¥****+¥**#****»*****+*#*****«****«***
PI*3•141592€356



c
c
c
c
c

INOE Pt. NOE M VARIATE INPUT StLCTION

TININ = SEC CNO()

PRINT1 

PRINTZ

READ* f B» BCRR»l Ht CF.R, XMIN, X HAX *3 3X 
PRINT 3

READ*,CDC«CLM,CLFL,ABR 

PRINT 65

READ*.ALO.ASTfSI.PTCH,3RT,03TA 
PRINT 66

RE AD* ,RT,DCND,P.C,RN 

PRINT 67

67 FORRAT (* INPUT St-EAR CENTER POSITION E S/C * XCG I CE NTL R OF NASS') 
READ*.ESC,XCG 

PRINT 50

50 FORMAT (' INPUT l AND G ')
RF A D * , A F.. A G

PRINT 51

51 FORMAT «' INPUT CGA,RHC♦TL »r,)

READ*,OM,RHO,YL,K,NN

PRINT 68 

READ5, SUPP

68 FORMAT rSlPPRt SS INTFRMED. OUTPUT? (Y)')

C
c

HEADINGS AND CALCULATION OF CONSTANTS
C
c

WRITE (1.60

WRITE(i.lS) 9,3CRR,3CN0»RT,RC,RH.9RT.DBTA 

WRITE(1.8)CLM.CLFL,IM,AST,A9R ,AlO ,CD0 

WRITE (1,9) XMIN.XMAX.DRR.SI 

CONVT=PI/180.

AC=.38 

FAT=1.

YL=YL/R 
SI=SI*CCNVT 

CSI = COS (S 2)

SSI = SIN (SI)

OBTA=DBTA*CONVT 

ABR=AaR*CONVT 

ALO = ALO *CCNVT 

AST=AST*CCNVT 

AMAX = PI/2 .

ZLOT =1 •

CD1=CLFL/2LDT

CD2=(CLFL/ZLDT)*(i.+SIN(AST))/( ,5*SI N(2 . *AST)) 

ROSt = ATAN( (.41/CLFl )**.87)

EM1 = CLFL / (SIN{AMAX-AST))

200 WRITS(1.21)PTCH 

X = X MIN

ANG=BRT*CONVT 

RT R=RT/F 

RCR=RC/R 

RHR=RH/R

27 CONTINUE 

KK=0
V=OM*R/X
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141KL = 1 
IM=i 

0S*.C23 

OX = DC: R*X 
DP = 0f;F»R ......
TNUM= <R-RH)/DR 

NUM=TNUM 

N=NU f'

IF<NUM.NE.TNU1) 

XL = X

♦♦♦♦♦•INITIALI 7ED

N=.SUM+1

711 = 712 = 713-714 = 715=716 = 717 = 713 = 71 q=?HC = 7111 = ZI:£ = ZI 13 = 7114=C . 

2I15=ZIl6=Zll7=ZI13=7Ii9=C.

ZhPP=ZMPF = Z'1P0 = 7HFF = ZMF0=7100 = 7MD0 = ZCPP=ZCPF=ZCP0 = ZCFP=ZCFF=G . 
ZCF0*7COP‘£7CUrs7C^ffS7Ciy7iTC'3r*7Ciy2*r«PFr*7!k'PF* Z<&0 = Z<f p=ZKFF *l . 
ZKF0=7K0P = Z<CF = Ztc00 = Z<DZs7<Dl=Z<D2 = 7HP=7HF=ZH0 = C.
COO = SMDP=$MDF=3'1LO= 5MOD=SCOP=SCOF = SCOC=SCOl = SCOJ = SCOK:=0 .

SF0P=SKDF=3KD0*3K01=S<DJ=SK0K=a.
SCPD1=SCPD2=SCF01 = 3CF02 = SC001=SC002 = £). 

SKP01=SXPC2=SKF01=S<FD2=S<0Dl=3<0n2=C.

si S s *SSZ *55'3*0 ■;  ........ . ..... .................
GNCOS = GNSlN=GPCOS=GPSlN=GFCOS=GFSIN=GOCOS=3OSI,M=0 .

G=32.2

Gk=G/p
70L l=Z0L2 = Z0L3sZt,Rl‘=Z[JR2 = 7DR3 = Z3 Wl = ZOW2 = ZOM3 = o •

CT=0 .

CP=C . ■ ■........—................... .................... ....... ............ ....................... ............ ..............................................................

AT=AP=ATB=0.

APB=-X**?.*CDC*(ECRR-3*0CN0)
7C = 0.7

79=C0S (P1/2.*7F)

Rt=S0RT ((X*B**.666S)/(X*B*4«€666 + l»32))
IF or .LT.3 .1 RI = sCRT IB**. 6F667(3*» . 6666 . 44))
GLUARr*4.*(l.-2.*A:i 

<L = 1 

NN=N♦!

JU = 1 
1 = 1

*♦*•** CHECK 70 SCL IF NUHltR OF INTERVAL IS f Vi N
****** EVEN —-1/3 RULE COD----- 3/8 RULE ON THt FIRST
****** THREE INTERVALS

KHAL F = N/2
IF((N-2*KHALF).EC.2) IH*r 
IF(KL.EQ.l) GO TO 555 

553 IFtSUPP.EO.lHY) GC TC 555 
WRITE (1 ,i5)

555 IF(KL.EO.l) THEN 
NHAL F = JU/2 
NTE3T=JU-2*NHALF 
ELSE
NHALF=I/2
NTEST=I-2*NHALF
ENOIF
RLR=XL/X
RLR2=RLR*RLR
RLR3 = RLR2 *RlR
RLR4=RLR3*RLR
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o
IF(A.GT.AC) GC TG 35 
DC 3i K =1 * 5
93 = 3CRF*XL*<*CL*C3I*Sn^T(l.+ (Cl.-A)/XL»**2)/(2.,FPI) 
A=(i.-SOFT(1.-33))/2.
PHI = AT AN ( (l.-A)/XL)
ALPHA=PH1-9CTA
IF(APS(ALPHA).GT.A3R) CL=(ALPHA/A0S(ALPHA))*CLPL 
IF (APS(ALPHA) .Lf..A3R) CL= ( AL PHA/A BS ( ALPHA )) ♦ CLM 

31! CG NT I NUf 
35 CONTI NUf.

IF(ALPHA.LT.A?T) GO TO 5 G 0 
ETA=EtTA+AMAX 
CtTA=CCS(ETA)
SLTA=SlN(c TA)
EMA=9CRF*>/(Z.*PI*3IN(AMAX-AST))
A=(LMA*(XL*SETA-CtTA)-H)/(G-fcHA*CETA)
PHI=ATAN ( (l.-A)/XL)
ALPHA=PHI-3LTA 
CL=EHi*SIN(AMAX-ALPHA)
IF(A.GT.AC.AND.CL.LT.CLFL) GC TO 50C
Bhs-.-EHZ’COS(L T AT
C4 = EM2*(>:L‘SIN(£TA) -COS(t TA) )
A=(B4-S0F'.T (34^*2-16.4C4)) /9.
PHI = AT AN((l.-A)/XL)
ALPHA = PHI-8L'TA
CL = EH1*SIN(AVAX-AL:,HA)

500 ALPHA=PH 1-35TA 
ENOIF

CALC ULAT ICN OF DP AG COLFFICIENT

**** + * j • •♦****»♦*****
ABSA L = ABS (ALPHA)
SA = SIN(A BSAL)
CCA = CGS (A ESAL)
SA 2=SA# SA 
9CB=.Z0944 
BO 92 = A PR.
IF(ABSAL.LT.3CB) CD = CO0 *(1.+53.31 *(ABSAL**2.))
IF(A8SAL.LT.BOB) CD A=107. 62*CD0* A9SAL
IF (A BSAL. GE. BOB) CO =3. 36*C OC-TA N ( BOB ) +T Af; (A BS A L)
IF(ABSAL.GE.BOB) CDA=1.+(TAN(A3SAL))**2.
IF(ABSAL.GT.BCBl) 0D = 2.439 + CLFL*(TAN (ABSAL)+*2.15) 
IF(ABSAL.GT.EOB2) THEN
C0A=5.Z43B5*CLFL+(TAN(ABSAL))**l.l5+(l.+(TAN(ABSAL))+*2)
ELSE
ENDIF
IF(ABSAL.GE.RCSE)COA = C01 *(1.+(TAN(ABSAL))*»2)
IF(A BSAL.GE.FCSt) 0D=COl + TAN(A3SAL)
IF{A9SAL.GE.AST) C0=CD2+?A2/(1.+SA)
IF(ABSAL.Gt.AST) CO4=C02*(2* SA*C04+SA + SA*C0A)/ (1. +SA)+*2 
CSP=COS(PHI)
SNP=SIN(PHI)
CA S=COS(A LPHA)
SAS = S IN(ALPHA)
CN=CL*CAS+CO*SAS
CO=CL*SAS-CO*CAS
CLA=2.*PI*ZH
IF(A BSAL.GT.AM) CL4=0.
IF(AeSAL.GT.AST) CLA=-EMl*C3S(AHAX-ABSAL)
CQP=CLA*SAS-CDA*CAS+CN
CNP=CLA*CAS+C0A*SA5-C0



144CKA=CL»«*CAS*CDA*SAS

CTA=CLA*SA3-CDA*CAS

ophi=phi/convt
OAL=ALPHA/CONVT 

D8ET = 8ET A/CONVT 

IP^KL.EO.l) GQ TG

IFtRLP.ilG.l. ) THEN 
AP = G .
AT = 0 .
ELSE
AP= ( (1 .-A) *CL-XL*CD> .*SQRT (I.+ U1.-A»/XU**2.)*8CR
AT = ( (i. -A)*CC+XL*CL ) *>f L*SORT (1. ♦• ((1. -A) /XL) * *2 .) * PCR 
END IF
CP9»CSI**3.*<AP«-AP3»*TX/ (2.*PI*X)
CTB = CSI**3.*(AT+AT8)*nX/(2.*Pi*X »
CT =CT♦CT 3 
CP=C P*C P8 
AT 8=A T 
APB=AP 

C
c«'«»«»»PROPEfi?I£S OF TH* BLAOt 
C
20 AFACTOsC.e^rSE/l^n.

IFtRLR.LE.l..AN3.XLR.GT.C.&5A5) TH£N
BI2=5.673*EXP(-3.3i3*RLRI
813=67.3636*LXP(-2.023fe*FLR)
AMASS=15.*AFACT0*t< P(-i.?2 66 *PLR)
ELSE IF(fiLP.LE.0.6i?45.AMD.RL'i.GT.C.3648t THEN 
8I2=2.111*LXP(-l.A32*RLR>
8I3=29.44*EXP(-0.76*RLR»
AMASSs9.65*AFACTC*£XP(-C.644 7*.RLR»
FLSE IFfRLR.LE.2.3646.ANG.RLP.GT.G.1393) THEN 
812=4.567XP(-h.8o04*KLF)
IE(RL F.GT.0.244) 312 = 2.ill*2XP(-1.8C2*FLk)
313 = 11.3726*RLR4*(*0.6535)
AMASS=5.243*AFACTD*RLR**(-0.3695)
ELSE
312=2.321C 
813=41.924 
AMASS=1C.A3*mFACTC 
ENDIF
311=812+813 
FI=BI2*At 
£10=2.321*AE 
GJ=9Ii*AG 
GJ0=44.245*AG

C**+**+**CHANG£ UNIT TC F-£T 
C

AIl=AFACTC*3Il/(*44.*R*R)
A:2=AFACTC*9I2/(1<.4.*R+R)
AI3=AFACTC*9I3/(144.*R*R)
LI=EI/(l44.*R++4.)
EI0 = FIC/(144. + R++1. )
GJ=GJ/<144.+R*+4.)
GJ0 = GjC/(144. + R+ + 4. )
Ari = AE+l./(144 + R + *4.)
AGJ=AG*(21.)/(144.*R**4.)

C

£¥♦*¥♦*¥******
C
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145QVEL = i3.5*"H0*V*V 

FU = 1.

FD = 1.

P.3= (1. -PH*?)

7P* ( RlR-R'PRT/R'S 
ZP2=7P*ZP 

7P3=ZP£*ZP 

ZP4=7P3*7P

FF = 6. *ZP2”4.*ZP3+-7Ph 

FFP = 12.*ZP-l2.»ZPtfi*.*7P3 
FFPP=I2.-24.»7o*i2.*7P2 

FP=2.*ZP-ZP*ZP 

FPP=2.*(1.-ZP)

FPH=0 .

FPHP=G.

STATIC '1GDE SHAPl £TUAL DYNAMIC MODE SHAPE 

C ' '

FF3=FF 

FFSP= FFP 

FFSPP=FFPP 

FFHS= FpH 

ffhsp=ffhf

FFHSPPsFFHPP 

WFn=FFS*QS*R3 

WP=PFSP*0S 

WPP= F FSPP*QS 

CW=CCS(WP)

SW=SIN(WP)

C2W=C W»CW-SW*SW 

CP = CO S(BETA)

S8=SIN ( BE TA)

♦•♦♦•♦♦♦CORRECTION OF SHAPE THAT BASED CN LENGTH OF THE BLADE

♦♦♦♦♦♦♦♦(R-PH) NOT ON THE RADIUS CF THE ROTOR ( CORRECTION FOR 

♦♦♦♦♦♦♦♦masS.DAMPING,STIFFNESS MATRICES )

ff=ff»rs

FF PP= FFPP/R3 

FPP=F PP/R3 

C

CALL SUKRCW(TCM,TIM,RLR,ER,Ei,E3,UC, AUC.BLC, A4UC, ABUC ,3-'UC,AUMtMAU 

lM,A3UM,AUCtMM)

UO=UM=UC

UCPD=AUC

UCF D=BUC

UCFD = l)MFD=3UC

UMPD=AUM

BUD=3UM=8UC

AUCPD=AAUC

AUMPO = AAUM

BUCPD=AUCFO=ABUC

BUMPO=AUMFO=ABUM

3UCFD=BUWFD=B^UC
BBUM= 3 BUC

SB=SIN(BtT A)

C3=CCS(BE TA)

OIS=(RLR+UC)»CSI-WR*SSI 

0YNA=6./(RHO»V*V)

G*»»****S0LVE FOR QS (STATIC TIP DEFLECTION)

C

IF(KL.EQ.i) THt N

3N0RMA = -CSI*C3Mi.-A) ♦X*RLR*C3I*S3-X*£3*SSI



0TANG=CS:*Sci* (* .-A) 4-^*^lk*C3I*C3 

WNCRM= (^ N C R M A * 3N C Ri A + 3T A N G* nT AN G)

051 = C’YNA* AMASS*GM*DN* (£x*S B*CS* <i .-SSI*35 I) -RL R*S3 I*C 8) + FF*ORR

052 = C YNA* (All-Ale ) *0(i* ON* S 5 I *031 *C ;J* FFP* i RR 

OS3=3.»WNCRM*FF*CN*CR*DRR

C******* SINCE 3UC = 83UC¥'1S 

PAUI_=-B8UC

DSS1=uYNA*AMAS3'>0M* OM* ( RL R ♦ C SI ‘ C S I R* SS I * CS I* 33 ) * P A U L* 3 RR 

DSS2=-DYNA*AMAS3*QN*0^*(5B*33*(SSI*C3»**<;.)*FF*FF*0RF 

DSS3 = D YNA *cI*FFPP*FFPP*3RR 

IF(IM.EQ.i) THEN

FE3=9./8.

IF ( JU.EO.i.OR. Jll.j,1!.-*) Ff Bsj./S.

IF(JU.Gl.h) IR =Q 

tLS£

Ft 9 = 2 t/3•

IF(NTLST.cO.C> FL3=4./3.

IF(JU.EQ.1.0R.JU.tT.NN) Ft 9=1./?.

FNOIF

C**** START THE INTEGRATION 

Si=Si*F-3*DSi 

S2=S2+FLB»0S2

53 = S3 +FE 0*033 

SS1=SS1+FE9*05S1 

SS2=SS2+FF9*OSS2 

SS3=SS3+F£B*0SS3 

XL = XL-0X 

RLR=Xl/X

IF(RLR.LT.RHR) THEN

RLR=RHR

XL=RHR*X
ORR=(TNUH-NUH)*ORR

ELSE
ENDIF

JU=JU*1

IF(JU.Lt.NN) GO TG 555

ELSE
ENDIF
IF(KL.EO.I) THEN

DS=(Sl+S2«-S3)/(3Si«-SS2 + SS3)

WRIT E(1*510) QS

<L=KL+1

XL=X

QRR=DX /'/,

IF((N-2*KFALF).EQ.3) THEN

IM = C

ELSE
IM = 1

ENDIF

GO TO 553

ELSE
ENDIF

C*****SOME CCFACTORS

PART1=SSI*SH-CS:*GW*C9

PA RT 2 =CSI*S3

PART3 = CSI*C!N-3SI¥SW*C9

PART 4= (RLP+UM)♦CW*HR*SW

PA RT 5 = (kLF-HJM)*SW-WR*CW

PART6=C3I*SWfSSI*C,N*C8

PART7 = R/V* ( Yl*3B*CR*(RLR«-UD> *331*S 9* CW*HR*S W* SSI*S3 + E 3» PART3)

146



147PART8 = R/V MVL*C3mLMU:)) *SSI*CB + WR*C$I1

PART 9 = R/V MYt^OAkTS ♦ (RLR + UD ) *C3*C W*WR*S W* CP»-t 3*SW*S9I

DAPTiC=K/V*(YL*SSI^BB+(RLR*-UD)*S8)

PART11=WP*S3*CSI♦FR*CSI*CR 

PARTi'2 =SS I*CW+CSI*3 W*C 3 

PARTI 3=WF*SS:*33 + f.R*CB*S5I

TLFl= ( YL*SB*Sm- (KLRHJ'I) *£:SI*SB*3W-WR*CW*SS:»SB-t:i*PART6) ♦FFP 

TLFl=TLFl-SW*SSl*Sa*FF- 1UM* SS:*Sf’*CW 

PALI = (RLR UIC)*CSI-4R*SSI*C9U ~-*SSl*SB 
PALt = YL* ( .-<LR + UC) *S3 IR» C? I*C 3-LR»SB*C SI

TAIL1= (RL Ri-UM) ♦CW»0SI»53 + WR»SW*CSI*S 9+El*PA RTl2 

TAIL2=(RL R*UM)♦CSI*S6-WR*SSI

TAIL 3= YL*S8#CW+ (RLR+UM ) * SS I* SR* CW 4-HR * SW* S SI *S 9-L1 *PAkT3 

TAILL = YL*RAxT6* (f- > *S R*C W* WR*SW* CB-Ll *SW*SB

TAIl5=YL*CB-MRLR+LH) *SSI*CB+wk*CSI 

TAILS = YL*SSI*SB+(kL R+U’i) *SB 

C

VT=CSI*SR*(1.-A)+X*((RLR+UO)*C3I*CB-Wk*SSI)

WN = -PART1* (i. -A) -X * ((RLR *UO) *CW*C3I* S B+WR*SW * CSI* S 3-[. 3*PARTi2 » 

WE2=WN*WN»WT*WT

MTC = Wt2*W*CR 
WN0 = Wt.2*CN*CR 

Fi = CR* (2.*CN*WN*CKP*WT)

F2=CR*(2.*CN*WT-CNR*UN)

Gl = CR* (2.*CO*WNfCRR*WT)

G2 = CR* (c.*CQ*WT-CQP*WN)

FL = CR*Mt2*CRA*FP 

GL=CP*WF 2*CTA*FP

HtLP2=AUD*(-CW*CSI*S8*Gi*CSI*C3*GtI 

MP2 = X*E 3*PARTI2*FP 

WF11=-PART12*(1.-A) *FFP

WF12=X*(RLR*UD)*SW*C5I*3B*FF?-x*SM*CSI*SB*FF-X*Mk*CW*CSI*SB*FFP

WFI3 = -X*F. 3* PARTI* FFP-X* 31)0*0 W*CS I*SB

WFi=WFil+WFi2+WFl3

WF2=-X*(SSI*FF-aUD*CSI*Ca>

WG1= ( (RLR+UD)*CW*CSI*SB*WC.*SW*CSI*SB-F 3* <SS I*SW+CS I*S W*C3) >*R*FO/V 

W02=(WR*SSI“(RLR+UO)*CSI*C3» *R*FO/V

WD1=(YL*S3*CW+(RLR+UO)*3SI*SB*CW*WR*SW*SS1*3B + c3*PART 3)*R/V 

WD2 = R/V*(YL*CR + (RlR4.UB) *SSI*CB+MR*CS.I)

WD3 = R/V* (YL*(S3I*CB*CW + 3W*C3I)+(RLR+UD)*CB*CW + WR* SW*CB + £3*SW*S8) 

WD4 = R/V* (YL*SSI*SB+(FLR + UO)*SB>

WN01=PARTi*Fi-PART2*F2 

WTOi=PARTi*Gi-PART2*G2 

WNDL=PART6*Fi+SSI*3B*F2 

HND3=CW*SB*Fi-C3*F?

WTD2=PART6*G1+SSI*3B*G2

WT03=CW*SB*Gi-CB*G2

MND02=WD3*F1+W34*F2

WND03=W0i*Fl-WD2*F2

WT0D2=W03*Gi+WD4*G2

WTOD3=WDi*Gl-WD2*G2

C*****FINO THL INTEGRAL COEFFICIENTS OF YAW AND YAW RATE 

C

SAMs(1.5/PI)

0CTDA=4.*(i.-2.*A)

ozii=octca*ois*cis*dis*orr*fbig*csi 

IFCA.LT.AC) GC TC 901 

DZI1=(GLL'ART/0CT0A)*37I1

901 ADZIZ = (PART1*F1-PART2*F2)♦(£1*?ART 3-PART4*SSI*SB)

BDZI2=4(PARTl*Gl-PART2*G2)*(PART5*PART3-PART4*PART6)

DZI2 = SAH* (AOZI2 + POZI2) *OIS*DRR



148
A07I3= <P4 PTl*Pi-PART2*F2) * (W* SB+ PA Kl C P)

3DZI3 = -(PART1*G1-PART2»G2) *( PARTS*SW*SB4-PART4*CW* SS>

DZI3=SAM*(ADZ13♦BOZ13)*0IS♦DPR

DZIAsSAf'* (CW*SB*Fl-Cii*F2) * (f.l*PART3-PART 4*S S I*SB) ♦ FD* D RR 

DZ15 = S A M* (PA RT F * Fl 4- SSI * 5 B* F 2 ) * (£1 *SM*SB-PART4*CB ) *FD*rRR 

0ZI6 = 4-SAV*(CH*3a*Gl-Ca»G£) * ( PA RT 5*PA FT 3-PART 4*PART 6 > * FD*GRR 
DZI7 = 4-SAH* (?ARTfe*Gl>SSI*St»*G2) * (PiRT4*CW* SB4-PA RTS *S W* S 9) *FD*DRR 

DZI8 =SA M* (PART7*F1-PART9*F2) * (E1 *PART3-=>A RT4* S SI*5B ) * FO*DRR 

0ZI9=-SAM*(PAF.T9*Ft4-PARTlC*r£)*(PART4*CB-f-i*SW*S3 ) * FD *D RR 

DZIlo=*SA F*(PART7*G1I-PART8*G2)* ( PA RT 5*PA RT3 - P A RT * PART6 ) *FD*Dkk 

D71 il = 4-SA K* ( PART B’*G 14-PARTI 0*G2)*(PART4*CW*3a4-PAF.T5*SW*S3)*FD*DRpt 

0ZI12=SAM*(CW*Sa*FA-CB*F2)*(21*SW*SB-PART4*GB)♦FC*ORR 

DZI13 -SAM»(RART6*Fi+SSI*SB*F2) ♦ (-Fi*PART3 4-PART4*SSI»SB) *FD^ORR 

07I14 = + SAF*(CW*SB*Gl-C9»G2) ♦ (PA RT5»SW*SB4-PA RT4*CW *S3) *FJ*DRR 

D7I15=-SA ►♦(PARTb*Gl + SSI*SB»G2)♦{PART5*PART3-PART4*PART6)♦FO*DRR 

D7I16=SAR*(?AFT7*F1-PART 8*F2)♦(ti♦SW*SB-PART4*CB)*FD* DRR 

D7117=-S A F ♦ {PA kT 9*r i 4-P A RTi 0 *F21 ♦ (>■;. IMPART 3-PA RT 4*S SI *S B) *FO*DRR 

D7I18 = «-SAR*(PART7*Gi-PART8»G2>MPART5*SW*S3 4.PAR74*CW*Sa) *F0♦ DRR 

07I19=-SAV*(PART9*Gl4-PARTlO*G2) * (PART5*PAftT3-PART6 * PA RT4) * FG¥0 RR 

C*»»*»MASS t4AT R IX

QVFL =t .5 *RHO* V* V 

DYNA = (3 . /D ViiL )

OZ'HPPistUCPD^UCPC-Z. *UCPD»tP*SW*FP4-t R»ER*FP*FP ) *A MASS+A I i*FP*FP' 

D7MPP=0YNA»0ZMPPl*DRR

OZMFF = OYNA*( APASS*(UCFD*UCF34-FF*FF) ♦ AI2*FFP*FFP) *ORR 

01= {WR»WR* (S3*SB4-(SS:*CB)»»2.) ♦IR»Ek*(C3*CB4 (SSI*SB> **A . >) 

02=(RLR+UC) ♦*2.*CSI*CSI*2.*(RLR4-UC»*SSI*CSI*(;: R*SB-Hk*C9) 

03=2.#WR*tR*SB*CB*CSI*0SI

04=AIi*(S3I*CW4.CSt*C9»$W>»»2.4-AIc»CSl*CS:*S3* J34-A I3*PARTi*»2.

07^GG = DYNA*( AMASS* (014-02+03) +04) *F0* FC*DPk

DD1 = 2.*YL*YL+4.*YL*Wk*CS:*C9+4.*YL*(RLR+UC)*SSI-4.*YL *tR*CSI*SB 
DC2=WR*WP*(l.+(CSI*CB)+*2.)+tk*FP*(l.♦(S3*GS1)**2.)

003=(RLR + UC)**2.*(ll.+SSI*SSI)-2.*SR*WR*SB*DB*(i.-SSI*SSI) 

0D4=2.*(RLR+UC)*RK*3SI*CSI*CB-2.*(RLR+UC)*LR*SSI*CSI*S8 

D05= CCTSI^CW) **2 • ♦ (3ST*S'W*'CS)' . + (Sw+SB) **2 . - A .*S SI *C SI*SW*CW*CB

DD6=( (SSI*SB)**2.+GB*CB)*AI2

007= (CSI*SW)**2. + (SSI*CWC3) **2 .♦ (CW *S B ) * *2 . +2 . *S W* CW *S iI*CSI*09

D7M0D = DYNA*(AMASS*(001 + 002 +303+004)+All*005 + DO6 + A13*DC7)*FD*F0*0RR

DZMPF=DYNA*AMA3S*(UCPD*UCF0-UCc0*£R*SW*FP42R*CW*FF*FP)*ORR

P01 = PART 11*(-UCPD + SR*SW*FP)+bR*CW*((RLP+UC)*CSI*S 9+tR*SSI)*FP

P02=AI1*(3SI*CW4-C?I*C3*5P) *FP

DZMPO=DYNA*(AMASS*P01+P02)*FO*ORR

7F0i = -UCFD*PAPTli+( (RLR+UO* SB*CSI+LR*SSI)*FF

ZF02=AI2*CSI*CB*FFP

0ZMF0=DYNA*(AMASS*ZF0i+ZF02)*F0*DPR 

C

C*****DAMPING CC£FFICIf NTS MATRIX 

C

CPPi=AUCPO*PARTll+JCP0*EP*CSI*CW*S3*FP-AUC*ER*CW*S3*CSI*FP

CPP2=-FR*WR*SSI*FP*FP+ER*(RLR+UC)*CB*CSI*FO*FP

CPP3=3.*WT*CR*FP*(CNA*£2*(cl*FP-UMPD*SW)+PI/6.*CR *CR*R)/V

0ZCPP= (DYNA*(AMASS+OM*(CPP1 + CPP2))+C PP3 * *DRR

CFFl = AUCFC*PARTll+UCF0*tR*CSI*SB*CW*FP+LR*S3* 5W*CSI*FF*FP

CPF2=E R*(RLR+UC)*SW*SB*CSI*FFP*FP+£R*LP*SSI *SW*FFP*FP

CPF3 = -rR*CW*PAkTJ.i*FFP*FP

CPF4=(AI2-A13)*0M*PARTI*FFP*FP

CPF5 = 3.*F1/V*(-R*U0F0*SW + CW*Fr*P)*(£1*Fp-UMOC*SW)

DZCPF=(OYNA*(AMASS*OH*(CPFi+CPF2+CPF3)-CPF4)+CPF5)*ORR 
CP01=ER*rP*(SSI*CSI*SB*3W-SB*C3*CW*(l.-SSI*SSI) )* FP 
CF02=-ER*WR*(CW*(S3*SB+(SSI*C3)**2»)+SSI*CSI*C9*SW)*FP 
CP03=tR*(RLR+UC)*(0 5I*CSI*SW + SSI*CSr*C3*CW) *FP 
CP04=AUC*((RLR+UC)*CSI*CSI-WR*5SI*CSI*C9+FR+SSI*CSI*SP)
CP05=- (AI2-AI3)*CM*CSI*SB*PART1*FP



CPO 6=3 . + ( WOi*Fi I-WC2 *fc ) * (f 1* FP-'JMPQ*SW) 14y

D?CP0={c.*0YNA*(AM4SS*0'1* (CP0i«-CP02*CP03 4>CP04) +CPC5 ) *F0«-CP06) ♦ORR 

CFPi = 3UCP3*PARTil+UCPO*SB*C3I^Ffr+E R* (FLk*UC ) *S 3*3W*PFP*PP 

CFPSsc R*[ R*S5I*SW*FFP* FP*-F R* S 9*CP ^SS I*CW* FF* FP-E R* 3UC *C W* S9*CS I*PP 

CFP3 = L F*CW*P/ikTil*FPP*FP-FR*SW*SB*CSIJ>FP*FF 

CFP4 = A Ii*CM*PARTi*FPP*FP

CFP5 =3.*WT*CR*CNA*E2*{FF*CW-UMFD*SW»*FR*R/V 

CZCFP= (CYNA*(AMASS*OH*(CFPi+CFP2+CFP3)+CFP4> ♦CFP5)*ORk 

07CFF = 0 YNA* (AM ASS*3R*( 9UCF0* PARTi;. ♦UCFO*SB*CSI*FF» )

07CFF= (DZCFP*-3 .*Fi/7* (-R*UDFO*SW + CM* FF*R) ♦ (FF*CW-UMF3*S W) I *DRR 

CF0i = WR*(S3*SB*(S5I*CB)**£.»♦£R*S9*C3*(i.-SSI * SSI)-(RLR+UC)*S3I*C9 

CFOC = ( (RLFHIC) *CS I*CSI-WF.*S5 I*CSI*C 3♦£F*SSI*C31*S B ) *A UC 
CF03 = (AI2-AI3)*OM*(SSI*CSI*C3*C2W*SW*CW^(CSI*C3J **2.-S3I*SSI) ) 

CF04=3.*(WOi*Fi+WC2*F2)*(FF*CW-UHFQ*SW)

DZCFO = (-£.*0YNA*(AMASS*3M*(CF01*FF*CFC2)*FO♦CF03*FFP*FO)+CF04)*CRR 

DZC0P = 3.*WT*CR* (t 2 * R* (C N A * T A IL1 *CT A* TA Il2 ) «• PI/6 .* C R*C R*R*PART 12) /V

OZC0P = 0 7CCP*FP*FC*0- R .............. ........................ .................. ................................... ....~~
0ZG0F = 3./V*(-R*UC-F3*SWfCW*FF*R) * (Fi*TA ILl *S i *T A IL 2 ) *F 0*0 RR 

D7CCO = 3.*((W01*Fi+W02*F2)*TAILl*(WOi♦GifWC2*G2)*TA IL2)*FO*DRR 

CDDl=((WCl*Fi-WDc*F2)*TAIL3+(W03*Fi*WC4*F2)*TAIL4)*F0*F0 

CD02= (•KWCi*Gi-WD2*G2) *TAIL5 - (W03*Gi ♦W04*G2 ) *TAIL6) *FO*FD 

0700 7 = 1.5* (C00it-C032) * ORR

07001= (PART! *Fi-FARTZ* F2) *T AIL3V( PARTi*Gl -PART 2*G2)*TA1L5....................

07001=1.5*07CDi*DI3*FD*3FR

07CD2=(PART1*F1-PARTZ*F2)*TAlL*-(PARTi*Gl-PAFJ2*G2)*TAlL6 

DZCD2=1.5*07CD2*0I3*F0*0RR 

C

C*****STIFFNESS coefficients matrix

HELP = AU C*(-CW*CSI*S3*F1*CSI*C3*F2»

PPl--ER*ER*(CW*CW*(53*S3*(S3I*Cn)**2 .)-(0B*CB*(SSI*SB)**2.))
PP2 = -L R*EF*CSI*CSI*(Z . *SSI*0B*5W*CW^SW’SW)

PP3 = ER *WR.*S3*C3* (1. -SS I*S3 I) ♦£R* ( RLR^-UC) *SS !*CSI*S3 

PP4=-AUC*AUC*CSi*CSI-AAUC* ( ( RLR + UC) *CSI*CSI-S3 I*C SI *( WR*CB-c.R*SB))

........ .... PP5=GJ*FPP*FPP ....................... ........ ... ............. .............. .................... ...... ............... .....
PP6= 3 . * (-X*Hc.LP-WP2*FZ-Wfc. Z*Cr*CNA*FP ) ♦ (E1*FP-UMP0*SW)

PP7=3.*(WNG*SW*AOMPQ+WTJ*Pi*FP*FP)

DZKPP=(nYNA*(AMASS*OM*OM*((PPi+PP2+PP3)*FP*FP+PPh)+PP5))

PP3=(AIZ-AI3)*0M*tH*{SSI*SW-CSI*CW+C3>**2*FP*FP 

PP9=(AI2-AI3)*0M*0M*CSI*CSI*S3*S9*FP*FP

07KPP = C7KPP + 0YNA* (PP6+PPa) ' ................................. .............. ........................ .........................

OZKPP= (0 7<PP + PP5 + PP7)*3RF.

PF1 = ER*5R*S3* (CB*SW*(i.-S3I*SSI) -SSI*CSI*CW) *PP'P*FP

PF2 = -F. R* ( CW* ( S 3*SB + (SS I*C B ) **2. ) +SSI*CSI*CB*S W ) *F F*FP

PF3=EP*W? * (SW*(SB*S3+(S3I*CB)**2.►-CW*SSI*CSI*C3)*FFP*FP

PF4=-f.R* (RLR+UC) * (SSI*CSI*CB*SW-CSI*CSI*CW) *FFP*FP

PF5 = -mUC* BUC*CSI*C3I-A3UC*((RLR+UC)rCSI* CSX-S SI* 0 SI*(W R * C 8-HR* S¥>)
PF6=-(AIZ-AI3)+0H*0M*CSI*SB*PARTl2*FFP+FP

PF7 =-3.*(WFi*Fi + WF2*F2)*(El *Fo-UMPQ*SW)

PF8 = 3«*WNG*(BUMP0*SW+L!MP3*CW*FPP)

OZ<PF=(DYNA*(AHASS*0M*3M*(PP1+PF2+PF3+RF4+PP5)+PF6)+PF7+PF8)*0RR 

ZFPi=3.*(-X*HtLP-WP2*F2)*(FF+CW-UMF3*SW)+3.*AUMFO*WNO*SW 

7FPl = ZFPi-3.*WcZ*CP*CNA*FP*(FF+CW-UHFO+S WI

07<FP= (DYNA* (AMASS* OH*OM* ( PFl*PF2 + PF3 + PF4 + PF5) +PF6) +7FPD*ORR 

7FF1 = - (SB*S3 + (C3*3SI)**2.)*FF*FF-CSI*CSI*9UC*BUC 

ZFF2 = - ( (F.LR + UC) *CSI*CSI-SSI*CSI*(WR*CB-Ef *53) ) *B3UC 

ZFF3=(AIl-AI3)*0H*0M*C2W*(SSI*3SI-(CSI*C3)* * 2.)*FFP*FFP 

ZFF4 = 4.♦ (Ali-A13)*0M*0M*SSI*CSI*SW*CW*CB*FFP*FFP

7FF5=LI*FF??*FF?P ..............

ZFF6 =-3 . * ( (WFi*Fl + WF2*F2)*(ff*CW-UMFD*SW))

ZFF7=3.*WNC*(SW*FF*FFP+SW*3UMF0+UmF0*CW*FFp)

07<FF=CYNA*(AMASS*CM*OM*(7FF1+7FF2)+ZFF3+7FF4+3FF5) 

D7KFF=(CZKFF*7FF6fZFF7)+DRR
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0?1=-WP2*F0*(F£*TAILJ.*02*T AIL2) -WNO * 4UM*C W*CSI *SB*FC

0Pls0Pi-{F4*TAILl*54*TAIL2»*F0

QP2 =- WTO * { AUM*CSI*Cl*frO-PARTia*FP»FC*fc 1)

0P3 = (-X*HELP*T AILi-X*4U0M-CW*CSI*SB*G; fCSI*C9*G2 ) ♦TA 1L2) *F0 

D7K0P = 3.J> (OPi + OP£*OP3) *0RR

OF! =- <WFl*Fl+WF2*F2) *TAILl*FC-(WFi*Gl4-WFt£*r,2) ♦TAI L2»F0

OF 2 = W N C *CSI*S3*(SWMkLR*UM)*FFP-3U*i*CH-WR*CW*FFP-FF »S W) *FC 

0F? = WNC*tl*PARTl*FFP*FO-WT0* ( 3UR*CSI ♦(: ^-SSI *FF > ♦FC 

OZKOF = 3.♦ (OFl+OFZ*OF3) ♦QRR

ZDD1 = ( tCH*S‘3*Fi-C3*pt> ♦TAIL3 + (3ARTb*Fl*SSI^3B*F2) *T AI L 4 > ♦F D*FO 

7002=(♦(C W*3 9¥ Gi-C T4G2)* T AIL F-(PA PTC *014S?!*21*G2)* TAIl6)*FD*F0 

0ZKDZ=1.5*(7D01+Z002)*ORR

0ZK01= (PARTl*Fi-PAR.T2*F2) *TA IL3* (P4AT1*G1-PAPT2*G2 ) *TAIL5 

D7KDl=l. 5*07K01*DIS*F3*ORR.

07<D2 =(PAPTl*Fi-FART2*F2)*TAIL4-(OARTl*Gi-PART2*G2)*TAIL6 

07K0 2 = 1.5*07KD2*DI3*FD*0F.k

C

C***** FORCING FUNCTIONS 

C

HP1=ER*£FMSB*CB*CW*<1 .-SSI*SSI> - SSI*CSI*SB*SW>*FP
HP2 = S;R*WF * (CW*(SB*S34(S3I*CB ) **2. ) 4SSI*CS:*CB*SW) *fp

HP3=-FR*(RLR+UC)♦(3SI*C3I*SW+S3I*CSI*CB*CW)*FP

HP4= AUC*((RLR + UC)*CSI*CSI“WR*SSI*CSI*CB+tR*SSI*CSI*SB)

HP5= ( AI2-AIJ)*0M*GH*CS I+SB*° ARTi.*FP 
HP6=3«*WNO*(t.l*FP-UBPO*3W)

OZHP= CDYNA*(AMASS*OM*OH*IHP1+HP2+HP3+HP4)+HP5)+HP6)*CkR

HFt = WR* (SB+S9+(SSI*C3)**2.I+fcR*SB*C3*(1.-SSI*£SI)-(RL R + UC)*SSI*CB

HF2 = SUC,* ( ( RLR+UC) +C3I*C3l-WR*S3l*CSI*Cr’ + f. R*SSI*CSI*SB)

HF3=(Ali-AI3)*0M*0M*(SSI*CSI*CB*C2W + SW*CW*((CSl*CB)**2.-SSI*SSI))

HF4 = -tI*FFPP*FFPP*C3S

HF5=3.*WN0*(FF*CW-UMFO*SW)

OZHF= (OYNA*( AMA3S*0M+0H* <HFl*FF+HF2> +HF3*FFP+HF4) +HF5 ) *OF,R

DZHO=3.*IWNO*TAIL1-WTO*TAIL2)*FO*DRR 

vwwv-wv** EFFECT OF TONER SHADOW

**********
OCOC= - (MNC*TAIL3+WT0*TA:L5 )*Ft) + ORP

D7SMPl=-UCP0*FARTl3+tR*CW*SB*(YL+(RLR+UC)*351)*FP-ER*tR*CW+CSI*FP 

0ZSMOP=(AWASS*0ZSMPl-AIi*PART3*FP)*FO*CRR/OVLL 

OZSHFl=-UCPD*PAkTli+SR*(YL + (FLR + UC)♦SSI)*FF-£ R*CSI*FF 

D7SHDF=(AWASS*0?SHFl + AI2*SSI*Sr)*FPP) *FD*D RR/Q VTL 

0ZSM01=(AMASS*PAL1*PAL2-AII* PARTI2*PART3-AI2*CSI*SSI*SB*SB) 

07SND0= (C73N0I+AI3*PARTi*?ART6)*FO*FC*CRR/0VCL  

7SM01= (YL*CSI-MR*CB + tR*SP)♦*2♦(YL*SS1+(RLR+UC))**2 

7SM02=- (PART13*+2 + OaL2**2 +PAS.Til**2) 

ZSM03=AIl*(SN*33)**2+AI2*CB*C3+AI3*(CW*SB)**2 

7SH0A=-(AI1*PART3**2 + A12*(S3 1*33)♦*2+A13*PART 6**2)

07SH00= (AHASS*(7SHD1+ 7SHD2)+ZSH03 + ZS HD4)*F0*FD*ORR/OVLL 

C

7SCPl=-CR*c2*R*WT*FP*(CNt*TAIL3+CTA*TAIL5)*FD/V
ZSCP2=-PI/9.*Wt*CR*CF*CV*FP*PART3*FC

OSCQP= (ZSCP4. + 7SCP2) *ORk

7SCP3=((AUC*CSI-rR*PARTS*FP)*PAL2 + PAL1* <AUC*SSI-£ R*PARTl*FP))

ZSCPR=(AI3-AI2)*(53*SW*(CSI*CS:-SSI*SSI)+2.* SSI*CSI*CW*SB*C3)*FP

ZSCP5 = -WNCO3*(Fi*F?-UMP0*SN) *PD

DSCPD2=-WN01*DI3*(£l*'rP-UHPD*5W) *ORR

0SCPDl = (7SCP5 + 0H*(AMA33*7SCP3+ZSCP4)*FO/QVEu ) *3Rk

DSCDF= (K*UDFD*SW-CW*FF*k) /V* (Fl *T A IL 3+Gl*TA IL5 ) *F D*0(*K

7S0F2 = AMA3S*0P*((3UC*CSI-SSI*C3*FF)*PAL2 + PAL1*(BUC*SSI+CSI*C3*FF) )

ZS.0F3=-(AI1-AI3) *0M*C9*FFP

ZS0F4 = -WND03*(FF*CW-UMFD*5W)*FD*D RR

DSCFD2=-NN0l*0I3*(FP*CW*UWFD*SW) *DRR

DSCF01=7SDF4+(-ZSDF2+7SUF3)*FO*DRR/OVLL



DSCDO = -< <WOi*Fi*WG2*F2)*TAIL3*(WCl*Gi*W02*S2)*TAIL50*0kK 151

DSC02=- ( ( WR*S3 + Lf;< + :B) * Yl + ( MR*C3-rk*S3» *PAkTli + ( kLK + UC ) ♦=>ART13) *F0 

DSCO 3 = ( (A I1-AI3) *(5M*CW*SP»5SI-CH*CM*CSI*S3»C3)-AI2*CSI*S.3*C8) *FO 

DSC0 4 = - (WNOa3*TAlLi'+WTDL)3*Ta IL2) *FO*FC*DPR 

DSCOC£=-(WNOi#TAlLl+WT Ox *TAIL2)*OI3*FO*ORR 

OSCCOl =3SC044 ( AMASS*DSCOZ «-DSCC3 > *GM*FQ*0 RP/Q V£L

DSODi = (-WM002*! A 11.4 4-WMD03* TAILS ♦WT0D2*T AltS fWTDOS^TAlLS) *FD*FO*DRR 

OSODJ= (WNCi‘TAIL3*^T0i*TAIL5)*FD*DIS*DRR 

OSDOK= (WNDi*TAlt4-WTDi*TAIL6) *3IS*FD*CRF.

DS<Pi= (WT0*(Ll*=sART3*fr:, + MUM*SSI*CB> 4WNO*AUM*SSI*SB*CW)*FD*ORR 

OSKPL= ( (WP2*F£*X*H£LP*F<+)*TAIL3'»'{WP2*G2*X*H£LP2«-G4)*TAIL5)*FO*ORP. 

DS<P2 = CSKP2*Wf. 2*Ck* FP* (CNA*TA:L34CTA*T AIL5) *FO*DRR 

0S<DP=CSKP1+DS<P2

DS'<F1= {-WMG*TLF14WT0*3UM*SSI*C3) *FO*ORR

DS<F2 = ( < wri*Fl>HF2*F2 > ♦ T A It3 4 (MF1* G1 ♦ WF2 *G2 ) *T A It5 ) *FC*OhR 
0SKCF = CSK.F14DSKF2

OS<00 = (-WNQ*TAIL44WTO*TAIL6» *F0*0RR

DS<D1 = (-WND2*TA:L-*4WN03*TA IL34MTD2*TAIL6 + WT0 3*TAIL5)*FD*FD*uRR 

DS<OJ=(WN01*TAILS4KT0i*TAILS)♦OIS‘FO*ORR 

DSKDK=(WN01*TA1L4-WT01*TAIL6)*3IS*FQ*0RR 

DS<PCl = ‘“WN03*(ci*pP“URPD*SVM *FO*ORR 

DSKPD2=-WH0l*DIS*(£i*FP-UMPD*SW>*ORR 

0SKPDi=-WN03*(FF*CW-UMFD*SM)*FO*ORR 

0SKFD2=-WN01*CIS*(FF*CW-UMFD*SR)*ORR 

DSK0Di=-(WN31*TAILl4WTDl*TAIL2)*FD*FO*ORR 

OSK0O2=-(WN0i*TAILL4WT0l*TAIL£)*OIS*FG*OKF

•• ...........
C******* GRAVITY Tt RMS

DGNCOS = AMASS*GR* ( (JCPD-£R*SM*FP) *CSI-ER*SSI*Cr)*CW*FP) *DRR/Q VtiL 

0&NSIN=-AMASS*GR*FR*CW*S3*0RR/0V£.L

DGPCCS = AMASS*GR*(AOCPO*CSI-£P*SST*SB*FP*FP) *ORR/Q VtL 

DGPSIN = ARA3S*GR*£R*C3*FP*FP*DRR/0VEL................... .....................

OGFCOS = AMASS*GR* ( (3UCP0“LR*CW*FP*FFP ) *CSH-r R* SSI*C3*S W*FP* FFP) *DRR 

OGFCOS=OGFCOS/QV£L

DGFSIN=AMASS*GR*fcR*SW*S3*FP*FFD*0RR/0VFL 

OGOCOS=-AMASS*GR*ER*CW*SB*FP*PO*ORR/OVEL  

0G0SIN=AMA5S*GR*(cR*SSI*C3*CW*FP-UCPD*CSI)*F0*0RR/QVEL 

IFflM.EQ.i) THFN 

FEB=9./8.

IFa.tQ.i .OR.I.cO.4) FtB = 7./8.

IF(I.GE.4) IM=0

ELSE

FEB=2•/3•
IF(NTEST.EQ.C) FE0=4./3.

IF(I.EQ.l.OF.I.EO.NN) F£B=i./3.

ENOIF

C*****START THE SIMPSON INTEGRATION 

ZIi=7Ii+FEB*CZIi 

ZI2=ZI2+F€3*(DZI2)

ZI3=7I34FEfl*<D7I3)

ZI4=7I44F£a*(07l4)
7I5=ZI54FE3*(0ZI5)

7I5=7I64FEB*(DZIfc)

ZI7=7I7+F£3*(DZI7)

7I8=7I84FEB*CD7I8)

719=719*F£3*(D7I9)

ZIiC=7IiC*FE3*(07110)

ZIli = Z:il*FF B*(DZIIi)

7112=7112 *FE B* ( C 711)2)



152z:i3=7iic+Fi:e* (uzn?) 

ZIi4 = ZIi4+F!:B* (DZIiM 

7Il5 = 7Ii5*Fi8*<07I:l5» 

7I16=ZIi64F£B#(DZlift) 

7Ii7 = ZII7+F£3*lDill 7) 

Z113 = ZIl 6 + Fc 3* ( DZlijS) 
Z:i9=ZI19*F£B*(DZ119) 

ZhPP = ZKPP*F£B* (OZMPPJ 

7hPF=ZMPF+F;.!B* (DZ^op) 

ZHP0=ZMP0+F£B*(DZ^sQ) 

Z1FF=ZMFF ♦FtB*(DZ-ff) 

ZH00 = ZHOC ♦Ft 3* ( 0 Z^i30) 

ZM00=ZMCC+F£3»(DZ^DO) 

ZMFO=ZKFC«F£B*(DZMFO) 

ZC PD= ZCFP♦££3*(37CPP) 

ZCPF=ZCPF+F£B*(DZCPF) 

ZCP0=ZCPC+F£8*(D?CaC) 

ZCFP=ZCFPfF-B*(OZCFP) 

ZCFF=ZCFF+F£3*(DZCFF) 

ZCFC=ZCFC*FZB*(OZC^O) 

ZCOP = ZC 0P + Fi£ 3* (DZC3P) 

ZCOF=;ZCOF+FLB* (OZCOF) 

ZCC0=7CC'C*F”B^(D7C00) 

ZCOZsZCDZ + FIB* (DZCBZ) 

ZCDl=ZCGi+FEB*(OZC31I 

ZCD2=7CD£*F£S*(DZC32» 

ZKPP=ZKPP*F£B* <DZKPP) 

7KPF=ZKPF+F£l3* (CZ<aF) 

Z<FP=ZKFP♦F£ B*(OZ^FP) 

ZKFF = 7KFF + F£BMDZ*'FF) 

Z<OZ = ZKOZ-»Ft3*(OZ^3Z> 

ZK0P=ZKCP«-FE8*07K0P 

ZK0F = 7KCF*F£P*3 7F0F 

ZK01=ZKD1+F£B*(DZ^Bl) 

ZKD2 = ZKDc ♦FEB*(DZkD2) 

zhp=7hp+f';b*(CZhp) 

ZHF=ZHF*FcBMCZHF) 

CQO=CBO*FFB*OCQG 

SWDD = SMCP + Fr. B^BZSHDP 

SH0F=SFDF+F£3*0ZS^3F 

SH0G=SHDC*F£9*OZS^3O 

5^00=3HOD♦F£B*07SM3D 

SC0P=SCDP+F£B*D5CDP 

SCOF=SCDF*F£B*DSCOF 

SC DO=SCOC♦F£ 3* DSCD3 

SCDl=SC01+Fc.B*0SDDl 

SCDJ=SCDJ*F£B*3SDDJ 

SCD< = SCCKfFc;9*DSDD< 

SKDP=SKDP«-F£B*OSKD:> 

SKOF = SKDF*Ft:B*OSKOF 

SF0CsS<0C*F£9*0SF33 

SKDl=SKDi♦FtB*OSKOi 

SKDJ = SKDJ♦Ft B^DSKOJ 

SKO:<=SKDKfFdB*OSKO< 

SCPD1 = SCP01 ♦F£3* CSB!5D1 
SCP02=SCPD2^FF.3*CSCPD2 

SCF0i = SCF3i+FP B^CSCFDi 

SCFD2 = SCFC2 + Ft B^DSC^DZ 

SCODi = SCCDi♦F£ 3¥ DSCODi 

SC002=SC002+F£3*CSC0C2 

SKPOi=SKPCi+F£ 3*DS<P01 

SKP02=S<PC2+FP3+DS<PD2 

SKF0i = SKFCi*F£3*CS<FDi
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WRITt (l,402)NfHM

WRIT £ (1,50 9> 

WRITt(1,505) 

WRITE(1,405) 

WRITE (1,506) 

WRIT c. (1,406) 

WRITE(1,507) 

WRITE(1 ,405) 

WRITE(1,508) 

WRITE(1 ,40 8) 

WRITE(1,407) 

WRITE (1,513) 

WRITE(1,514) 

WRITE(1,515) 

WRITE(1,516) 

WRITE(1,517) 

WRITE (1,111) 

WRITE(1,312) 

WRITE(1,518)

CP,CT

ZM?P,7MPF,7MPO,7MFP,7MF0,7M0C,7H30

7CPP,?CPF,7CPO,ZCFP,7CFF,7CFO,ZCGP,7COF,7COC,ZCDO 

7<PP,7<PF,7KFP,ZKFF,7KOP,7K0F,ZK00 

7HP,74 F

SKDEL,3J3?L,SKRDCL,SJROEL

GNCOS,GNSIN,RPC OS,GPS IN,GFCOS,GFSIN,GCCCS,GOSIN

SHOP,SHDF,3400,S^OO

SCCPoCDF, 3C0O, SCOD

SKDP,3KDF,3KOO,SKOO

SCPO,3 CFO,3C OO

SKPC,3KFD,SKOO

CQ0

40

C

0
c
c
c

DRR=0*/X

x=x+oax
IF (X .GT .XPA3f) GO T3 40 

GO TO 27

CONTINUE 

PRINT 4 

RE AD 5 , CANSR

IF(OANSR.NE.IHY) GO TO 300

PRINT 6 ....................................................................

RE AD*,PTCH 

GO TO 2C0

FORMAT STATEMENTS

>*♦*♦****. »*********•,*■,**«
1 FORMAT C FORCES INPUT 5t DUE NC£*)

2 FORMAT C WRITt 3,30RR,E M,ORR,X4IN,XMAa,09>*)

65 FORMAT (• WRITE ALC,AST,SI,PITCH,BETA ROOT,D 3£ TA *)

66 FORMAT C WRITE RT,OCNO,RC,RH*)

1 FORMAT C WRITE CC ZERO, CL MAX, CL FLAT, ALPHA BREAK*>

4 FORMAT COC YOU WANT ANOTHER PITCH ANGLE? (Y)*)

5 FORMAT (Al)

6 FORMAT (’INPUT PITCH ANGLFM

8 FORMAT (15 X,* AERODYNAMIC D4 T A *//, 6X , * CL M* , EX , * CLFL * , 8* , * M * , 3X , * AST * 

1,7X,*ABR* ,7X,*ALC*,7X,*CD0*/7Flu,3/)

D FORMAT (15X,•OPERATIONAL VARIA RLE $ *//5X,* X MlN*,6X,'XMAX* ,7X , *DRR*,

18X,'SI*/4F10»3/)

19 FORMAT (15X,‘PHYSICAL AIRFOIL 0ATA *//, 7X,‘3‘,7X,*3CRR’, 6X, ‘ OCNO* 

i,7X,*RT’,3X,*RC,,9<,‘RH‘,8X,,3RT*,6X,*DBTA*/8f:'10,3/)

60 FORMAT (////25X,‘PrOGRAM 0D£RATING COND ITICNS‘/)

21 FORMAT (///25X,‘PROGRAM FORCES OUTPUT AT PITCH =‘,F7.3,‘ DEGREES')

15 FORMAT (////,6X,*PCR*,8Xf*A*,8X,*PHI*,8X,‘BETA*,

15X,‘ALPHA*,7X,‘CL,,7X,‘CD*,7X,*9CR‘,7X,‘CP3*,7X,*CT3‘)

16 FORMAT (2Fl 0.4,6F10,7 ,4X , 2tr9, 5)

100 FORMAT (//,5X,‘THIS RUN USED* »F9»3,3X ,*SECONDS*)

40 7 FORMAT (/,3X, * SKDEL* ,l2X, *S J3t L* ,12X, *SKRO«-L* , 12X, * SJPDtL V ,

14(3X,G12 • E))
405 FORMAT (7 (3X ,Gi2. 6) )

406 FORMAT UC (1X.G12,6) )

408 FORMAT(3(4X,G12,6))

402 FORMAT (4>,* N = *,I3,* MM = ‘,13)

505 FORMAT (//,6X,‘MPP*,12X,*NPF‘,12X,‘MPO*,12X,*M?F‘,12X, ‘MFC*,12X



1»*H00* »12X» •MOD*) 155

50 6 FORMAT (// ,6< t'CPF*»11X , * CPF' ,11X, 'CPC ,11>, ' CFP'»11X, 'OFF' ,ilX, 

i'CFO* tllXf'CO = '*iiXt'COF' ,i:X,'COC ,11X.'C03')

507 FORMAT (//,6»(,1 KPP * , it/., * < PF * *12 X «*KFP* titX« * KFF* , 'KOP* * 1ZK * 

i•KOF *,12X,* <00 *)

50 8 FORMAT (//tSXt'HP* *i2X» *HF* *ltX»*HO*I

509 FORMAT(/♦3X,*CP= '.Fi0.5*8Xf' CT= •fFiG.S)

51C FORMAT(/,IX,' QS = *,012.6)

513 FORMAT(// ,2X♦'GNCOS*,9X,'CNSIN',9X,'GPCOS9X,'GPSIN*,9X,'GFCOS*,

514

515

516

517

51^8
311

312 

70 C

19X,'GFSIN',9X,'GOCOS', 9X,'GOSIN') 

FORMAT(8(iX.Gi2.6))

iSMDO = iG12•c)

1SCDO = ',012.6) 
FORMAT(/,4X,'SKDF = 

iSKDD = ',Gx2.6) 
FORMAT (/,‘*X,'CQC = 1 
FORMAT(/,4X,*SCPO =

♦G12.6,* S MO F

,G12.6, ’ SC 0 F

,G12.6, * SKQF

G12.6)

,Gl2.6,* S CFO

,Gi2.6, ' SKFO

•El*,9Xt * E2 ' ,

*,G12.6,'

iG12.5,' SCOO = ' .Gl2 .6)

l/,2X,e(Gl2.6,2X))

3 0 0 TIMO UT = SE CO NCIT-TIMIR 

WRITE (1,10 0) TIMCUT 

STOP 

END

SUBRCUTINt SUMROW(TOM,TIM,RLR,£R,cl,63,UC,AUC,9UC,AAUC,A6UC,99UC,A

1UM,AAUM,A EUM,AUD,MM)

COMMON L, F,RS...~ ""
COMMON /STIFF/ £1,£IC,GJ,GJO ,RHR,QS

UC=AUC=AAUC=APUC=R1UC=AUM=AAUM=A9UM=AUC=0.

ALOW=RHR

AHIGH= (RL S-RHR)/RS 

N=MM ' ' ' ''

OPS=(AHIGH-ALOW)/N 

DRS3 =ORS/3. 

RLS=ALCW 

K=N + 1
DC iG I=i,K 

THAIF=I/2 

ITEST=I-2*IHALF

7P=RLS 

ZPZ~7P*2 P 

7P3 = TP2*7P 
ZP4=ZP3*Zo
FF=6.♦ZP2-4.*7P3*ZP4 

FFP=i2.*ZP-i2.*ZPZ«-4.*7P‘i 

FFPP=12.-24.'7P+i2.¥ZP2 

FP=2.'ZP-7P2 

FPP=2.*(i.-7P)

WR=F F* QS * RS 

WPrFFP*OS 

WPP=FFPP*OS 

CW = COS <WP)

SW=SIN(WP)

DUC=-0.5»WP*WP»RS 

TOMC-=TOM(LR,CW,3W,FP,FPP, WPP) 

TOMl=TOM(£l,CW,SW,FP,FPP,WPD> 

t; E 3 = - L 3
TOM3=TOM(E£3,CW,SW,FP,Fpp,WPP)



156DAUC=-fcP*TCMC 

DAUM = -ViP*TOMl 

CAUD=-KP*T0M3 

OAAUC=-TC^O♦TCvu:/xS 

OAAUH = -TC^i*tOMi./P5

TIMO=TIM(?R,CW,SKtFPfFPP, WPP,FFP, FFPP) 

TIMl=TIM(tl,CW,3WtFP,FPP,WPP,FFP,FFPP) 

DA3UC=WP*TIMC-FFP*rOKO 

0A3UM=WP*TIM1-FFP*:OMl 

OBBUC=-FFF*FFP*kS

.... . ~' FE Q-2 . ........ .... .......... .. ..................—
IFCTEST.tO.C) FtB*4, 

'IFCI.tO.l.OF.I.EO.O FtB=l.

UC=UC*FtB¥DUC*DRS3 

AUC=AUC>Ft3*0AUC»0RS3 

AUM= AUM + Ft. 3* CA UM* 0R33

AUD= AUD + FFB^TJAa&^C'RS'S .............--------------------------------- ----------

AAUC*AAUC*F£8*DAAUC*DRS3 

AAUH = AAUH*FE3*3AAt'1*0RS3 

ABUC = A BUC♦Fj B* DA BUC*DRS3 

ABUM = a8UH + F£3*DA9U'1*DkS3 

BBUC = 9BUC +Fc 9*D3BUC*ORS3

BUC = BBUC¥CS .............................................................. ... ................... .................... ........

RLS=PLS*DHS 

10 CONTINUE 

RETURN 

ENO

FUNCTION TOM(A»B.C.3*e.F»

COHFCN L,T,RS... ............................ ...................
TO^= A»B*i.-A*C*F*C

RETURN

END

FUNCTION TlM(A,3fC,3,F,F,6,H)

COMMON l,F,RS

T IM* .............

RETURN

END
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