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PREFACE

One of the major tasks facing wind systems designers is the prediction of
yaw behavior--especially its impact on systems loads and fatigue 1ife--on
downwind, horizontal-axis, free yaw machines. Comprising a large portion
of the operating units in this country, these types of wind systems are
popular within the industry for their simplicity of design. However,
these turbines also possess the inherent disadvantage of potential yaw
instabilities or excessive yaw tracking error problems.

This report describes an investigation of this problem which was performed
by Oregon State University (0SU) under contract to Rockwell International
Corporation. What evolved from the work at OSU was a procedure for identi-
fying the relative impact various machine and operating parameters have on
yaw behavior. This was accomplished by examining coefficients of the
equations of motion rather than solving them explicitly, thus simplifying
the analysis. Results from a case study are encouraging and demonstrate
the applicability of this approach to the understanding of yaw behavior.

Future work on yaw behavior at Rocky Flats will build upon the approach
used by 0SU, resulting uitimately in a yaw behavior model. Research will
also be conducted to verify these analytical tools by way of controlled
velocity experiments and field testing of a horizontal-axis testbed.

The work described herein resulted from Contract No. ASC51298PB and was
monitored by M. P. Schroeder of the Rocky Flats Wind Energy Research Center.
Other Rocky Flats employees contributing to the completion of this project
were: T. E. Hausfeld, J. L. Tangler, P. K. C. Tu, and A. D. Wright.



ABSTRACT

The yaw problems of a three-bladed, downwind, horizontal axis wind
turbine are examined in this report. A four-degree-of-freedom system
was chosen to model the turbine. Linearized equations of rotor and
nacelle motion were developed using the energy method and Lagrange's
equations. Quasi-steady blade element and momentum theories were used
in developing the axial induction factor and aerodynamic loads. A com-
puter code was developed to obtain the numerical values of coefficients
of the equations of motion, thus allowing the cause of yaw instability
to be studied. The study indicated that yaw tracking error is primarily
caused by tower shadow. However, the wind turbine studied--besides
being unstable in yaw under normal operating conditions--has an addi-
tional problem in that the nacelle shape contributes to additional insta-
bility. Blade coning, in the present design, is inadequate to overcome
this instability. The sensitivity of the system stiffness coefficients
to the selected input parameters was studied, and results indicate that
the system stiffness coefficient is highly sensitive to the coning angle.
Increasing the coning angle would significantly increase the stiffness
coefficient and lead to improvement of system stability.
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NOMENCLATURE

a axial induction factor

A area

B number of blades

o blade chord

Ch drag coefficient

CL 1ift coefficient

CFn force coefficient in the direction normal to the
rotor

CFt force coefficient in the direction tangential to the
rotor

Ch normal force coefficient

Cp power coefficient

CQ torque coefficient

Ci tangential force coefficient

Cr thrust coefficient

D drag force

e distance from mass center to shear center of the
blade cross section

e distance from 1/4 blade chord to shear center of the
blade cross section

e distance from 3/4 blade chord to shear center of the
blade cross section

ey distance from mid-blade chord to shear center of the
blade cross section

E modulus of elasticity



mode shape of the blade twisting

mode shape of the blade deflection
mode shape of the lead-lag deflection
mode shape of the yaw displacement

tip loss factor

linearized aerodynamic force term
linearized aerodynamic force term
linearized aerodynamic force term
linearized aerodynamic force term
gravitational force

shear modulus of rigidity

linearized aerodynamic force term
linearized aerodynamic force term
linearized aerodynamic force term
Tinearized aerodynamic force term

a function defined in gravitational force
moment of inertia

mass moment of inertia in ny direction
mass moment of inertia in n, direction
mass moment of inertia in nj direction
Glauert coefficient

polar moment of inertia

moment of inertia in ny direction
moment of inertia in n, direction
moment of inertia in ng direction
Glauert coefficient

stiffness coefficient of the system

vi



a3
a2
a3

distance from nacelle yaw axis to rotor center
1ift force

mass coefficient of the system

moment

unit vector

linearized normal force

power

dynamic pressure %-pwVE

generalized coordinate of pitch angle
generalized coordinate of flap deflection
generalized coordinate of the variation of azimuth
angle

generalized coordinate of yaw angle

static tip deflection

local blade radius

local blade radius in the rotor plane

distance of the local blade radius to blade root
blade radius

hub radius

distance from blade tip to blade root
cross-sectional area of nacelle

time

linearized tangential force

axial velocity at the rotor

radial displacement

strain energy

normal displacement

vii



XsY»2Z

XsY,Z

wind velocity

wind velocity at reference point

flap deflection

relative velocity

relative velocity excluding the pitching velocity at
3/4 blade chord

normal relative velocity

tangential relative velocity

local tip speed ratio

tip speed ratio

coordinate system on the blade cross section after
blade pitching

coordinate system on the blade cross section after
blade flapping

coordinate system on the blade cross section after
accounting for the pretwist angle

coordinate system at rotor center accounting for the
coning angle

coordinate system fixed to the blade at azimuth angle
]

coordinate system with its origin is at the rotor
center and the system is fixed to the nacelle
coordinate system fixed to the nacelle and its origin
located at nacelle yaw axis

coordinate system located on top of the tower

viii



Greek Symbols

8

w1
w2
w3

it 3

pitch angle

variation of azimuth angle

azimuth angle (Qt + y)

yaw angle

coning angle

density

dummy variable

rotor angular velocity

pretwist angle

blade angular velocity in x; direction

blade angular velocity in x, direction

blade angular velocity in x3 direction

angle of attack

angle of attack plus the effect of pitching velocity
integral term for the variation of axial induction

factor

ix



1. INTRODUCTION

Wind powered machines can be classified into two types according to
the orientation of the axis of rotation: horizontal axis wind turbines
and vertical axis wind turbines. For a horizontal axis wind turbine,
the system can be further distinguished as either a downwind rotor or an
upwind rotor system. When the rotor is upwind of the tower, the system
usually has a yaw controller to control the wind turbine to track the
wind mechanically. There is generally no need for the yaw controller in
the downwind rotor case. When the rotor is downwind of the tower, the
wind turbine will usually track the wind. Most of the downwind turbines
are free yaw systems.

Unfortunately, a free yaw system quite often suffers from a yaw
problem: instead of tracking with the wind the turbine yaws away from
the wind.

One of the effects of yaw angle on turbine performance is that it
decreases the power output of the rotor.

Little work has been done on the wind turbine in yaw. Most of the
previous work is on the dynamics, structure, and control of wind turbine
systems. The cause of the yaw problem is still not fully understood.

The technology and methodology used to develop present day wind
turbines are adopted from the fixed and rotating wing aircraft technolo-
gy. Ribner [1] has done the analysis on propellers in yaw. He has
developed the analysis to express variation of induction velocity and
side force in terms of the shape of the blade when the propeller is
yawing. For wind turbines, Miller [2] looked into the static stability

characteristics of horizontal axis wind turbines with a free yawed



system. Hirschbaum [6] analyzed the dynamics and control of large
horizontal axis axisymmetric wind turbines in his Ph,D. thesis. He
modeled the blade motion by considering the blades to be composed of an
inboard series of massless, rigid links restrained by linear springs and
dampers with a much larger, massive blade attached to the outermost
Tink.,

In this analysis, yaw of wind turbines will be studied by using a
four-degree-qf-freedom system to represent the wind turbine system. The
study will be concentrated on the effect of the other variables on the
yaw angle, and the cause of yaw tracking errors. This will be done by
developing the equations of motion of the system, then studying the
coefficients of the equations.

This analysis is developed for a three-bladed, downwind, horizontal
axis turbine but it can also be applied to an upwind horizontal axis
wind turbine system. With the coefficients of the equations of motion,
the dynamic behavior and the stability of the system can be studied

further,
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2. ANALYSIS

Development of the Equations of Motion

The objective of this study is the aerodynamic and dynamic analyses
of horizontal axis wind turbines in yaw. A four-degree-of-freedom
system is chosen to model the turbine system. The degrees of freedom
are blade pitch deflection, blade flap, nacelle yaw, and rotor speed.
Blade pitch is defined as the rotation of the blade cross section around
the control axis. Blade flap is defined as the deflection of the blade
in the direction perpendicular to the blade chord. Rotor speed
variation is defined as the variation of the rotor speed from the nomi-
nal value. Nacelle yaw angle is defined as the angle of the nacelle
around the yaw axis with respect to the wind.

The equations of motion are developed using the Lagrange method.
Since each of the variables is a function of time and distance, the
partial derivatives of these variables will he encountered during the
development of the equations of motion.

To avoid dealing with partial differential equations, the assumed
modes method [4] is used in this study. . The purpose of this method is
to eliminate the spatial dependence from the dependent variable by
discretizing the spatial variable. So each of the system's degrees of
freedom is expressed as the product of the displacement function (as-
sumed mode shape), which is the function of the spatial coordinate, and
the time-dependent generalized coordinate. By this method, the equa-
tions of motion of the system will be developed in ordinary rather than

partial differential forms.



In order to attack the problem, the kinematics of the rotor are
first developed. Then, the kinetic energy is obtained from the expres-
sion of the kinematics. The potential energy expression is developed
from the strain enerqgy of the rotor system. With quasi-steady blade
element theory, the aerodynamic forces and moments are developed. Then,
the nonconservative forces in Lagrange's equation are derived from the
virtual work of the aeroforces and moments. Finally, with the
Lagrangian functions and nonconservative forces substituted back into
Lagrange's equation, we obtain a set of nonlinear equations of motion of
the rotor system.

For the wind turbine system, the rotor will extract the energy from
the wind converting it into mechanical energy. Since the energy is ex-
tracted from the airstream, the velocity of the wake will be de-
creased. To represent the reduction of the wind velocity at the rotor
and in the wake, the axial induction factor 'a' [9,10] is introduced.

In this study the nonrotating wake model is used. We can calculate the
local value of the axial induction factor by equating the windwise force
developed by using the momentum theory, and the same force developed by
using the blade element theory. The Glauert empirical relationship [14]
is used instead of the momentum theory when the axial induction factor
is greater than 0.38, The tip loss model is used to account for the
flow at the tip of the turbine blade. The development of the axial
induction factor and the tip l1oss model is presented in Appendix II.

The above steps lead to a set of nonlinear equations. If we re-
strict the ranges of values of the dependent variables, the system may
be well approximated as linear. In this study we will analyze the

system in the linear range.



In the process of equation linearization, we will deal with the
variation of the axial induction factor with yaw, pitch, flap, and
rotational speed. The linear functions of aeroforces and moments are
developed.

Let us define the variation of the induction factor with the de-
pendent variables as the summation of two terms: 1) the product of a
coefficient and the distance along the yaw axis of the rotor, and 2) the

product of a coefficient and the distance along the rotor pitch axis

d9a

= 3 L .E. i
ErY Jn g COSY + kn R STny

Here ¢ is the blade azimuth angle.

The value of these two coefficients can be calculated by equating the
derivative of yaw or pitch moment developed by the momentum theorem to
the derivative of yaw or pitch moment developed by the blade element
theory.

With the known values of the coefficients, j. and kn’ we can deter-

n
mine the variation of the axial induction factor. The result shows that
the variation of the axial induction factor exists only for the yaw and
yaw rate variables in the uniform flow case.

The linearization of the aerodynamic forces and the variation of
the axial induction factor are presented in Appendix II.

The linearized rotor equations of motion are expressed in matrix

form

M1a;} + [C1{3,

'I} + [K]{q-|} = {G}



where {qi} is a four-dimensional generalized coordinate column vector
representing the system's degrees of freedom; {G} is a four-dimensional
forcing function column vector; [M], [C], and [K] are the four-
dimensional square mass, damping, and stiffness coefficient matrices,
respectively.

For a large wind turbine system, the gravity effect is very impor-
tant in the dynamic and structural analyses. To make the analytical
model for the turbine system applicable regardless of the size of the
system, the gravity effect is included in this study. The gravitational
force is added to the system by means of a potential function.

For a downwind system, the rotor is located behind the nacelle and
tower. The effect of the nacelle and tower shadow on the system will be
studied.

The nacelle is considered as a slender body. The shape of the
nacelle is assumed to be a cylinder with hemispheres on both ends. The
equation of motion of the nacelle will be developed by using the
Lagrange method. We will consider the nacelle as a rigid body rotating
around its yaw axis when we calculate the kinetic and potential
energy. The nonconservative force on the nacelle is derived from the
virtual work of the nacelle. The forces on the nacelle are calculated
by using the slender body theory with forces generated only from the
forebody part of the nacelle.

The tower shadow is modeled as the velocity deficit from the rotor
axial velocity value over a selected region of the rotor disk. The
system's equations of motion are developed with the tower shadow.

Throughout this analysis the wind turbine is modeled with a three-

bladed rotor. The turbine blades are elastic. The hub, nacelle and



tower are rigid. The nacelle is allowed to yaw freely. The center of
mass of the nacelle and rotor is located over the central axis of the
tower. We refer to this axis as the nacelle yaw axis.

The absolute motion of the turbine blade is determined by the
motion of blade deflection relative to the hub, the motion due to rotor
rotation, and the motion of the nacelle and tower. Since in this analy-
sis no movement of the tower is allowed, we consider the tower as the
inertial reference frame. A series of coordinate systems is used to
describe a point on the blade. A series of transformation matrices is
used to transform the coordinate systems that describe motion of a point
on the blade in its original reference frame into the inertial reference
frame.

A computer code has been written to handle the numerical analyses
which yield the coefficients for the equations of motion. The inputs of
the computer code are the geometric as well as the wind and operating
conditions. This computer program will calculate the axial induction
factor along the blade at a particular tip speed ratio. At the same
time it also calculates the integral terms for variation of the axial
induction factor with yaw and yaw rate. Finally, the program will
calculate the constant coefficients in the equations of motion (mass,
damping, stiffness and forcing functions). Besides the coefficients of
the equations of motion, the code also calculates the thrust and power
coefficients of the rotor.

The geometry and properties of the turbine system are needed as
inputs to the computer code. The Enertech 1500 Wind Turbine is exam-
ined. Then, the analytical solutions from the system are verified with
the experimental data of the Enertech 1500 obtained from the Rocky Flats

Wind Energy Research Center.



3. ENERTECH 1500

The Enertech 1500 is a downwind system with a three-bladed rotor.
The geometry aﬁd material properties of a blade off an actual Enertech
1500 wind turbine were measured. The blade has linear twist with slight
linear taper over the outer 22% of the rotor blade and the blade's
thickness is varied from root to tip. For the calculation of the aero-
dynamic forces and moments, the blade profile section was represented by
the NACA 4415 airfoil section. The airfoil 1ift and drag coefficients
are plotted as functions of Reynolds number and angle of attack in
Figure 3.1. These data are obtained from Reference 7. This rotor is
designed to operate at tip speed of 117 fps (170 rpm). The physical

characteristics of the rotor are presented in Table 3.1.

Table 3.1. Rotor physical and operating characteristics.

Rotor Diameter 13.12 ft.

Blade Chord 6.8 in. from root to r/R = 0.6545
linear taper to 6.1 in. at r/R = 1.0

Airfoil Type NACA 4415*

RPM 170

Tip Speed 117 fps

Number of Blades 3

Root Cut-out 0.84 ft.

Twist 5° from root linear to 1° at blade
tip

Precone 0°

*Used as representative airfoil section.,

The profile of the blade cross-sections are measured at six
stations along the blade. The weight of the blade was measured. By

knowing the weight and the profile of each cross section, properties of
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the blade were calculated. The expressions for the moment of inertia
and mass distribution per unit length of the blade were written as a
function of the distance along the blade. These expressions are given

in Tables 3.2 and 3.3.

Table 3.2. The moment inertia of the blade cross-section.

r/R Jp (in 4) Jy (in 4)

1-0.6545 5.673 exp(-3.313 r/R) 67.3636 exp(-2.0236 r/R)
0.6545-0.3648  2.111 exp(-1.802 r/R) 29.44  exp(-0.76  r/R)
0.3648-0,244 2.111 exp(-1.802 r/R) 11.3726 (r/R)~0-6585
0.244 -0.1393 4.5679 exp(-4.8604 r/R) 11.3726 (r/R)~0-6585
0.1393-0.128 2.3210 41,924

Here Ji's are the moment of inertias of the blade cross section at the

mass center in X direction and Jl = J2 + J3.

Table 3.3. Mass distribution of the blade.

r/R u (slug/ft)
1-0.6545 0.090898 exp(-1.3266 r/R)
0.6595-0.3648 0.05847 exp(-0.6447 r/R)
0.3648-0.1393 0.081772 (r/R)~0-3695
0.1393-0.128 0.06593

Since the blade is made of wood (orthotropic material), its
material properties depend on the orientation of wood grain, It is
difficult to find the mechanical properties of a nonuniform orthotropic
beam by experiment. Thus it was decided to treat the blade as an iso-

tropic material and use the values given by J.Y. Liu from the U.S.
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Forest Products Laboratory on Sitka Spruce with 10 percent moisture

content. The values are:

E, = 1.84 x 10% psi, @

5 . )

LR ~
For simplicity, the elastic axis was assumed to be a straight line
which is paralliel to the trailing edge of the blade. The location of
the elastic axis on the blade cross section was chosen arbitrarily. The
location of the axis is then varied to see the effect on the system.
The nacelle of the Enertech 1500 has a cylindrical shape with a
hemisphere on each end. The properties and geometry of the nacelle are

given in Table 3.4.

Table 3.4. Nacelle properties.

Distance of the nacelle yaw axis to the blade hub 2.46 ft
Length of the nacelle 5.896 ft
The radius of the nacelle cross-section 0.84 ft

The mass moment inertia of the nacelle around the
yaw axis 14,41 s]ug-ft2

The generator for the Enertech 1500 is a single phase induction
motor connected to a gearbox having a measured 11:28 to 1 ratio.

With the T1ift and drag data obtained from references 7 and 8, the
1ift and drag curves were modified to use in the computer code.

The 1ift coefficient curve is approximated and can be described in
a simple yet fairly accurate form by six parameters. The curve consists

of four straight line segments as follows:



12

CL = ansin(a+aLo) a < aCL
ma X
C, =C a Ca €a
L L C BR
max Lmax
R agp <o Cagyay
sin(%-- a)
C, =¢C ada
L L .M stall
flat sin(z - ag,.qq)
The six parameters are:
m - 1ift curve slope divided by 2r
o - zero 1ift angle of attack
0
CL - maximum 1ift coefficient
ma X
- angle at which C; drops to C
*BR 9 L P Lf1at
Letat an approximation to the average C; on the far side of C
a
curve, this can be adjusted up or down depending upon the
characteristics of the airfoil
dstall - angle at which CL begins to decrease

For the Enertech 1500 blade, these six parameters are as follows:

m = 0.89
0, = L35
CLf]at i 1.0
aj o = 4,2°
agR = 15°
%stall = 45°

The drag curve of the Enertech 1500 blade can be approximated in a

series of curve fits, These curve fits are shown as follows:



where

D

@y = arctan [(&

2
Cp. [1 + 53.810°]

0

3.36 C

)]

0

2.439 CL

C
Lerat

t

+ (tana - tanl20)

(tana)2.15

flat
ang

2

c Sin o
D2 1+ sing

0.014

3.4142

41 ).87]

Levat
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a < 120

120 < o < 150

150 < o < ap

a, < a < 450
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4, RESULTS AND NDISCUSSION

The Enertech 1500 was used as a test case. With the numerical
values of the characteristics and physical properties of the Fnertech
1500 as the inputs to the computer code, the code generates the numeri-
cal values of power coefficient, thrust coefficient, and static tip
deflection, the coefficients accounting for the variations of the axial
induction factor, coefficients in the rotor equations of motion and the
forcing function at a particular value of tip speed ratio.

For the aerodynamic part, the code is verified by comparing the
predicted power coefficients with the test results. The test results
were obtained from the Rocky Flats Wind Energy Research Center. The test
procedure is explained in reference 11. The comparision of the pre-
dicted values and data is given in Figure 4.1, Agreement is good at
high tip speed ratios. At the low tip speed ratios, where the agreement
was only fair, the blade angle of attack is large and stalled flow
occurs over most of the blade. This introduces two sources of un-
certainty. First, there is some doubt as to the accuracy of the aero-
dynamic input (1ift and drag curve) associated with stall since there is
little data on the NACA 4415 at any Reynolds number. Secondly, the use
of quasi-static analysis may be questioned when the turbine is operated
under a large yaw angle.

To find the cause of the yaw problem, the numerical values of
coefficients in the equations of motion are studied.

The static pitch angle is examined by first setting the dynamic
terms in the linearized equation of motion in pitch equal to zero and

then calculating the static pitch angle that deviated from the nominal
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value. The static tip pitch angles are given in Table 4.1. These

angles are so small that they have negligible effect on the system.

Table 4.1. Static tip pitch angles under nominal operating cdndition.

X 05 (degree)
2 0.0430
3 0.0323
4 0.0312
5 0.0305
6 0.0218
7 0.0177
8 0.0147

The static condition of the equation of motion in flap is con-
sidered. Because the static flapwise displacement appears implicitly
and explicitly in the force and moment expressions, the iteration method
is used in order to calculate for a numerical value of static
deflection.

The static tip deflection is first calculated by setting the value
of the derivative of flapwise deflection, radial displacement, and its
derivative, to zero. Then, by using the value obtained as the initial
value, the static tip deflection is iterated until the final value is
converged within the given criterion.

The results show that the difference between the initial value and
final value is negligibly small. So for this study the code will use
the first calculation method (without the iteration) to calculate for

static tip deflection
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The static tip deflections for the nominal operating condition are

given in Table 4.2.

Table 4.2. Static tip deflections under nominal operating condition.

X ds (ft)
2 0.01644
3 0.01279
4 0.01269
5 0.01057
6 0.00839
7 0.00676
8 0.00558

For the uniform flow condition, there is no coupling between the
yaw angle and the other three variables explicitly on the equations of
motion.

For the nacelle, the equation of motion appears in the form of an
undamped second order system in yaw. The stiffness coefficient of the
nacelle is not dependent on tip speed ratios.

Because of the linearity of the system, the nacelle equation of
motion can be added directly to the rotor equation of motion in yaw.
The nacelle is destabilized to the system in yaw. The coefficients in

the equation of motion in yaw are shown in Tables 4.3 and 4.4.
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Table 4.3. Coefficients of equation of motion in yaw.

X Mg 4R Ca4R Kqar Mg 4n+ Kqan

2 0.01605 0.01486 -0.00226 0.01315 -0.036477
3 0.03605 0. 02666 -0.01716 0.02958 -0,036477
4 0.06409 0.06306 -0.00909 0.05259 -0.036477
5 0.10007 0.11496 0.00803 0.08217 -0.036477
6 0.14398 0.13952 0.01457 0.11833  -0.036477
7 0.19585 0.17117 0. 01554 0.16106 -0.036477
8 0.25569 0.20538 0.01592 0.21036 -0.036477

*R subscript for rotor
n subscript for nacelle

Table 4.4, Coefficients of equation of motion of the system in yaw
(nacelle and rotor).

X Maq €44 kga

2 0.02920 0.01486 -0.03874
3 0. 06563 0. 02666 -0. 05364
4 0.11668 0.06306 -0.04557
5 0.18224 0.11496 -0. 02845
6 0.26231 0.13952 -0.02191
7 0.35691 0.17117 -0.02094
8 0.46605 0.20538 -0.02056

The equation of motion in yaw is studied to find the cause of the

yaw problem. The gravity effect on the system is also considered when

the equations of motion are developed.

The gravitational force is added

to the system by means of a potential function. The analysis shows that

the gravitational force appears in the harmonic terms (terms associated

with sine and cosine of the azimuth angle).

The gravitational force

terms are dropped out of the system when we add the effect that accounts

for the three-bladed rotor.
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The effect of the blade cyclic force on the cyclic pitch angle is
also examined by considering the gravitational force on a single
blade. With the equation of motion of a rotor blade in pitch, the
harmonic terms appear in the stiffness coefficient and forcing function
as the component of gravitational force. These harmonic terms are given

in the following forms:
(Cgcos¢ + Dgsinxp)q1 = (Egcosw + ngin¢)

The coefficients C., D,, E, and F, are given in Table 4.5. The stiff-

g* "g> ¢ g
ness coefficient and forcing function are also given in Table 4.5.

Table 4.5, Coefficients of harmonic terms (C » stiffness

g’ Dg’ Eg’ Fg)
coefficient and forcing function of a single blade equa-

tion of motion in pitch.

X Ky Go1 ch1o5 Dgx104 ng105 ng1o4
2 13.845 0,010l -.1380  1.0649  -.2140  -.1423
3 31,152 0.0167 -.3105 2.3961  -.3745  -.3201
4 55.383  0.0289 -.5520  4.2598  -.6605  -.5692
5  86.367  0.0392 -.8626 6.6559  -.8604  -.8894
6  124.607  0.0457 -1.2806 9.5845  -,9829 -1,2421
7 169.602  0.0506 -1.6907  13.0456 -1.0786 -1.7431
8  221.043  0.0541 22,2082 17.0392 -1.1629 -2.2767

For the static condition, the cyclic tip pitch angle is given in the

following form

_ Gy /3 +(Egcosw+ngin¢)
Ys Tk}, /3 +[C oSy sTny)
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We can see that the blade cyclic force has negligible effect on the
static pitch angle by comparing the magnitude of the coefficients given
in Table 4.5,

With no forcing function on the system's (rotor + nacelle) equation
of motion in yaw, the turbine will always stay at zero yaw angle for the
static case at any tip speed ratio.

But according to the data obtained from Rocky Flats, the system was
operating with the static yaw angle. The yaw tracking error is shown in
Figure 4.2. The discrepancy between the analysis results and data in
yaw angle indicates that our model fails to include the effect causing
the static yaw angle.

The tower shadow effect is then added to the system. The tower
shadow is modeled as a velocity deficit from the axial velocity value
over a selected region of the rotor disk, centered about the tower
center line. The development of the rotor equation of motion with tower
shadow is given in Appendix III.

Because of the different values of the axial velocity on the rotor
between the inside and outside of the tower shadow region (i.e., when
the blade is in the 6 o'clock position and 12 o'clock position), there
will be different values of relative velocity that lead to the differ-
ence in aerodynamic force values inside the shadow. And the difference
of tangential force in the shadow produces the net yaw moment around the
yaw axis creating the static yaw angle. This yaw moment turns out to be
the forcing function we needed in the yaw equation.

Since our analysis used the linear approximation method, our re-
sults are valid only in a small region around the zero yaw angle. The

data in Figure 4.2 shows a linear part and a sign change in yaw angle
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occurred between tip speed ratios 3 and 4. QOur linearized model would
represent the system operating in the region of this linear part and a
sign change of static yaw angle in the analytical results would verify
the analysis.

The explanation for a sign change in static yaw angle from the
analysis can be obtained by studying the relationship between the tan-
gential forces and velocity ratios. The curves of the tangential forces
versus tip speed ratios and velocity ratios are shown in Figures 4.3 and
4,4, From Figure 4.4, with a given value of wind velocity and velocity
deficit inside the shadow, we can find the values of the average tangen-
tial force on the shadow region and the other region on the rotor.

These values will change with the velocity ratios (wind velocity for
constant rotor speed). The difference of the tangential forces between
the one inside the shadow and the one outside the shadow will change
sign at a particular value of velocity ratio. Since the static yaw
angle is dependent on the difference of tangential forces on the rotor,
the angle will also change sign when the forces do.

To i1lustrate this idea, the numerical values of the width and
velocity deficit of tower shadow are chosen. Then, the coefficients of
the equations of motion in yaw with the tower shadow are calculated.

The coupling between the yaw variable and the other variables
appears in the equation due to the tower shadow effect. These coupling
terms and the forcing function are dependent on the values of the width
and velocity deficit of tower shadow. The developing of the coefficient
and forcing function terms due to tower shadow is given in Appendix III.

Now considering the static condition and neglecting the coupling

terms, we can calculate for the static yaw angle. The static terms on
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the system's equation of motion in yaw for a 20° segment of shadow width

and 50% velocity deficit are given in Table 4.6.

Table 4.6, Stiffness coefficient and forcing function in yaw equation
with 20° shadow width and velocity deficit = 50%.

X k44T G04

2 -0.03874 0. 00106
3 -0.05364 0.00025
4 -0. 04557 -0,00330
5 -0,02845 -0.00455
6 -0.02191 -0, 00449
7 -0.02094 -0.00391
8 -0, 02056 -0, 00321

For a stable system, if a sign change occurs in the yaw forcing func-
tion, the same sign change also occurs in the static yaw angle. Unfor-
tunately, according to the linear analysis, the Enertech 1500 has very
poor stability (negative stiffness coefficient). Instead of calculating
the static yaw angle from the system, we consider a sign change in the
yaw forcing function (a change in direction of yaw moment) as the veri-
fication of the analysis. From Tabie 4.6, there is a sign change in the
yaw forcing function occurring between tip speed ratios 2 and 3. This
result confirms that the static yaw moment created by tower shadow is
the one that causes the machine to yaw in one direction at low wind
speeds and to yaw in the opposite direction at high wind speeds.

The effect of the tower shadow model on the static yaw moment (yaw
forcing function) is also considered. The yaw forcing function for

velocity deficit values of 33.3%, 50% and 66.7% is shown in Figure
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4.5, The yaw forcing function with 10°, 20°, 30°, 45°, 60°, and 90°
shadow width is shown in Figure 4.6.

The effects of the magnitude of the velocity deficit on the yaw
forcing function are the value of the zero forcing function cross-over
point and its slope. The magnitude of the velocity deficit is varied
reversely to the value of the tip speed ratio that the sign change takes
place at. For the tower shadow width effect, we can see that increasing
shadow width also increases the slope of the yaw forcing function. The

cross-over point is not affected by shadow width.

Sensitivity Study

The stability of the system in yaw is investigated. For the nomi-
nal operating condition, the system is unstable because of the negative
stiffness coefficient. This negative value is dominated by the na-
celle. The sensitivity study of the parameters on the system's equation
in yaw indicates that the mass and damping coefficient always have
positive values. So the indication of the stability of the system in
yaw is the sign on the system (rotor + nacelle) stiffness coefficient.

Usually when we do the stability analysis (i.e., root locus) we
will deal with the terms of stiffness and damping coefficients divided
by mass coefficient rather than the stiffness and damping coefficients
themselves. But in our study, we primarily emphasize the positive
stiffness coefficient to insure the system stability. So the sensitivi-
ty of the system stiffness coefficient in yaw to the selected input

parameters will be studied.



27

0.002 —T— 717 T T T 1 I
Velocity Deficit
For 20° Shadow Width
0.001 }— A 33.3% ]
e b50%
o 66.7%
0
-0.001 [~ —_
-0.002 |— _
L
(=
4]
-0.003 |— —
-0.004 — —
-0.005 [— —
.0.006 | I I I N N I N R e
1 2 3 4 5 6 7 8 9 10
RQ
Voo

Figure 4.5 Effects of Velocity Deficit on Yaw Forcing Function



Gyy

.005

-.005

-.01

-015

o

o 50% Velocity - 10
Deficit -0- 20° |
(<]
A Shadow Width { ¥ 30 i,
- 45
2 -0 60° —
» - 90°
. /.\ —
‘o
2\
> —
O o |
@ —
® )
. 07
0
A - ]
— N ] —
a £y v, —
\/
v, —
\ v ]
1 | l I I I
1 2 3 4 5 6 7 8
RQ
Voo

Figure 4.6 Effects of Shadow Width on Yaw Forcing Function

28



29

Torsional Stiffness and Pitch Angle

The effect of torsional stiffness is considered by changing the
values of the shear modulus G. The result shows that its only effect is
on the pitch equation. Unless the static pitch angle is significantly
differed from the zero value, there will not be any effect on the yaw
equation,

The influence of the pitch angle on the rotor stiffness coeffi-
cients is shown in Figure 4.7. Increasing the pitch angle will shift
the curve to the left side of the zero pitch angle curve. Decreasing
the pitch angle will shift the curve to the right side of the zero pitch
angle curve and also increase the stiffness coefficients values. But
when the nacelle effect is added, the system is still unstable. This is

shown in Figure 4.8.

Modulus of Elasticity and Flapwise Deflection

The static flapwise deflection is defined as the product of the
static tip deflection and its mode shape. The static flapwise deflec-
tion is dependent on the blade stiffness and the aerodynamic load. The
effect of the blade stiffness on the static tip deflection is shown in
Figure 4.9 for the values of modulus of elasticity of 1.0x105, 1.84x106,
and 2.3x100 psi. Figure 4.9 shows that the stiffer blade will
experience smaller deflection. The flat part of the curves between the
tip speed ratios 3 and 4 is due to the transition of the flat part and
the maximum 1ift value on the modeled 1ift curve. In other words, the
flat part is caused by the use of a simple model curve to represent the

stall part of the real Tift curve.
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Under the values of blade stiffness considered, the magnitudes of
the static tip deflections are very small (in order of 0.1-1.0 % of the
biade length). The effect of the fiapwise deflection on the system in
yaw is negligible. The rotor stiffness coefficients with different
values of blade stiffness (flapwise deflection) are shown in Figure
4,10. The rotor stiffness coefficient is increased when we decrease the

blade stiffness but the relative magnitude is very small.

Speed

The effect of a change in rotor speed on the stiffness coefficient
is studied. The expressions of nondimensionalized rotor mass, damping
coefficient, and nacelle mass coefficient are dependent on the dynamic
pressure head. By changing the rotor speed, these coefficients change
quite dramatically due to the change in dynamic pressure head for the
same value of tip speed ratio. The rotor stiffness coefficient is the
least sensitive term to the change in the rotor speed. The curves for
the rotor stiffness coefficients for the rotor speed of 120, 170, and
220 rpm are shown in Figure 4.11., The effects of the speed change on
the rotor stiffness coefficient is small. Increasing the rotor speed
also increases the rotor stiffness coefficient. Figure 4.12 shows the
system stiffness coefficient for varying rotor speed values. Since the
total mass coefficient value changes dramatically with the rotor speed,
the value of the system stiffness coefficient divided by the total mass
coefficient is considered. These values are plotted against the tip
speed ratios in Figure 4,13, From Figures 4.12 and 4.13, we can
conclude that within the rotor speed considered the system is still

unstable and increasing the rotor speed increases the stiffness
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Figure 4.10 Effect of blade stiffness on rotor yaw stiffness

coefficient
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coefficient. It does not necessarily mean, however, that the smaller
value of the stiffness coefficient Teads to improved stability, especially

when the mass coefficient is changed significantly with the speed.

Shear Center Position

The shear center position of the blade cross-section is assumed to
be a constant value of the blade chord. The elastic axis will be a
straight Tine parallel to the trailing edge of the turbine blade. The
shear center position is varied to see the effect on the stiffness
coefficient in yaw. The rotor stiffness coefficients in yaw with shear
center positions at 10%, 25%, 50%, and 75% of the blade chord, measured
from the leading edge of the turbine blade, are shown in Figure 4.14,
The rotor stiffness coefficients are increased by moving the shear
center closer to the trailing edge. But when we add the nacelle effect,

the system is still unstable. This is shown in Fiqure 4.15.

The Distance From the Rotor to the Nacelle Yaw Axis

Figure 4,16 shows the rotor stiffness coefficient in the yaw equa-
tion for different values of g2: the distance from the rotor to the
nacelle yaw axis. For ¢/R = 0.1, the stiffness coefficient values are
positive for all of the tip speed ratios considered. Unfortunately, the
nacelle stiffness coefficient is also changed by the change of 2. The
curves of the total system (nacelle + rotor) stiffness coefficient are
shown in Figure 4.17. For 2/R = 0.1 we yield the lowest values in the

system stiffness coefficients. Increasing the value of ¢/R also
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increases the system stiffness coefficient. For ¢/R = 0.686 (g = 4.5
ft) the system is stable at tip speed ratio from 4.5 up. Increasing the
distance from the rotor to the nacelle yaw axis improves the system
stability, but the value of 2 is limited by the nacelle geometry. The

limitation of the value of % will be discussed in the following section.

Nacelle

The nacelle plays an important role in the system stability because
the largest negative value in the system stiffness coefficient comes
from the nacelle. So reducing the negative value of the nacelle stiff-
ness coefficient would mean improving the system stability.

Two parameters that affect the nacelle stiffness coefficient are
distance from rotor to yaw axis and the configuration of the nacelle
forebody part (radius of the forebody part).

By considering the expression of the nacelle stiffness coefficient
(shown in Appendix III), we can calculate for the critical value of
nacelle parameters.

The criteria of stability (positive value of nacelle stiffness
coefficient) for this specific nacelle is obtained from the expression
of stiffness coefficient by varying one parameter at a time. These
values are given in Table 4.7. To insure the stability of the nacelle

system, either parameter has to be greater than its critical value.

Table 4.7. The critical nacelle parameters for the Enertech 1500

L critical 4.774 ft

R 7.788 ft

n critical
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We can see that neither of these two parameters can be greater than its
critical value because of the configuration of the nacelle. For the
radius of forebody part, the critical value of this radius is greater
than the radius of the rotor itself. It is impractical and inefficient
to have a large nacelle. As g approaches L. jtica1> the distance from
the yaw axis to the rotor is limited by the space necessary to install
the generator unit. Thus these two parameters can be varied only

slightly to improve the stability.

Coning Angle

The Enertech 1500 has no built-in coning angle to relieve the blade
root bending moment. However, the flexible wood blade will cone to an
angle that puts the bending moment along the blade, due to the centri-
fugal force, in equilibrium with the moment created by aerodynamic
forces. The effect of coning on the yaw system is investigated. Figure
4,18 shows the curves for the rotor stiffness coefficient for 10°, 0°,
and -10° of the coning angle versus tip speed ratios. For the positive
coning angle, the stiffness coefficient has positive values for all of
the tip speed ratios considered. The negative coning angle makes the
stiffness coefficient decrease. Figure 4.19 shows the system stiffness
coefficient in yaw obtained by adding the nacelle effect to the rotor
system. We can see that for a positive coning angle, the system
stability is improved significantly. The negative coning angle effect
on the system is to destabilize the system.

So in conclusion, the parameter that the system stiffness coeffi-
cient is most sensitive to is the coning angle. Increasing positive

coning angle improves the system stability.
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5. CONCLUSIONS

Two areas of wind turbine research are studied in this report:
cause of poor yaw tracking and system stability in yaw. The results are
obtained for the Enertech 1500: a three-bladed horizontal axis wind
turbine with free yaw.

The cause of the yaw problem is analyzed by studying the linearized
equations of motion around the zero yaw angle. The study of the equa-
tion of motion in yaw shows that the yaw tracking error is primarily
caused by tower shadow. Tower shadow is crudely modeled as a velocity
deficit from the axial velocity value over a selected region of the
rotor disk. The values of the width and velocity deficit of the tower
shadow are arbitrarily chosen. Because of the poor yaw stability of the
system (negative stiffness coefficient), due largely to the nacelle, the
focus of the problem turns to the yaw forcing function. With the given
values of velocity deficit and shadow width, the static yaw moment (yaw
forcing function) is calculated and its sign change verifies the
analysis.

The effect of the tower shadow mode] on the yaw forcing function is
also studied. The results show that the tower shadow model with smaller
value of velocity deficit yields the larger tip speed ratio that the
forcing function's sign change takes place at. There is no effect on
the cross-over point of the zero yaw forcing function due to the differ-
ent values of shadow width,

In this study, the system is unstable in yaw due to the negative
value of the stiffness coefficient. The nacelle is the primary cause of

the system instability because of the magnitude of its negative value of
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stiffness coefficient. So this study emphasizes the sign change in the
system stiffness coefficient (yield positive value) as an indication of
a stable system.

The sensitivity of the system stiffness coefficient to the selected
input parameters is studied.

The stiffness coefficient is most sensitive to the coning angle
parameter. Increasing the coning angle increases the rotor stiffness
coefficient. Decreasing the coning angle (negative coning angle) de-
creases the rotor stiffness coefficient. With an appropriate coning
angle value, the system is stable for a whole range of tip speed ratios.

The next parameter that the stiffness coefficient is sensitive to
is the distance from the rotor to the yaw axis. Increasing the value of
this distance will increase the value of the system stiffness coeffi-
cient. However, the value of this distance is limited by the nacelle
confiquration.

The system stiffness coefficient is not so sensitive to the
following parameters: torsional stiffness, pitch angle, blade stiffness
(modulus of elasticity), flapwise deflection, speed, and shear center
position.

The stiffness coefficient is slightly increased by decreasing the
pitch angle, decreasing the blade stiffness (increasing the flapwise
deflection), increasing the speed, and moving the shear center position
closer to the blade trailing edge. Because the changes in stiffness
coefficient values due to these parameters are so small, they cannot
stabilize the system in the presence of the nacelle.

Because of the linearized model, our results (for the Enertech

1500) will be valid for only a small region around the zero yaw angle
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(tip speed ratios 2 to 5). The uncertainties introduced from the lack
of aerodynamic input (1ift and drag curves) associated with stall should
be accounted for when the comparison between the data and analysis is
made.

The characterization of wind turbine rotors with variable thickness
blades by use of single section data (NACA 4415) will cause errors in
predicted yaw behavior as well as predicted power output.

In order to obtain more accurate predictions of yaw behavior,
accurate power models must be constructed.

In conclusion, the analysis gives the results accurate within the

degree of uncertainty given.
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APPENDIX I
KINEMATICS

A four-degree-of-freedom wind turbine system is illustrated in
Figure I.1. The degrees of freedom of the system are blade pitch
deflection, blade flap, speed variation, and yaw angle.

In developing the mathematical model for the turbine system, we use
assumed mode shapes and generalized coordinates to represent the depend-
ent variables. By this method we can derive the governing equations in
ordinary differential form rather than partial differential form. Each
degree of freedom is expressed as the product of the displacement func-
tion (assumed mode shape) and the generalized coordinate.

These relations are given as:

o(rst) = (glay(t) (blade pitch) (1)
w(r,t) = Refo(g)(a,(t) + q) (blade flap) (2)
x(rst) = f5(g)as(t) (speed variation) (3)
¥(rst) = f4(F)a,(t) (yaw angle) (4)

where RS is the distance from the tip of the blade to the hub of the
rotor. The q;(t) terms are the generalized coordinates of the rotor
system and the fi(%J terms are the assumed mode shapes. The mode shapes

are expressed as:



Figure I.1 Rotor system
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(R - ;—;ﬁ - ({éf)2 (5)
R = oD - 4D+ (1 )
f3(g) = 1 (7)
falg) = 1 (8)

Here rg is the radial distance from the local point on the blade to the
blade root.

The mode shape in Eq. (5) is for a uniform cantilever beam in
static equilibrium with applied torque at the open end. The mode shape
in Eq. (6) is for a uniform cantilever beam in static equilibrium with
uniform forces applied on the beam. The mode shapes in Eqs. (7) and (8)
are those of a rigid body.

Having defined the degrees of freedom in terms of generalized
coordinates, we are now ready to develop the kinematics of the rotor
system.

The absolute motion of the turbine blade is determined by the
motion of blade deflection relative to the hub, the motion due to rotor
rotation, plus the motion of the nacelle and tower. Since in this
analysis no movement of the tower is allowed, we consider the reference
frame fixed to the tower as the inertial reference frame. Consider the
motion of a point on the blade whose absolute position is represented by
a series of relative position vectors. A series of coordinate systems
is used to describe these vectors. Let the coordinate system X,Y,Z be

located on the top of the tower. The coordinate system x,y,z is fixed
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on the nacelle and its origin is at the same point as the coordinate
system X,Y,Z. The coordinate system ;,§,§ is the same as the coordinate
system x,y,z except its origin is moved to the center of the rotor. The
coordinate system x,y,z is obtained by rotating the coordinate sys-

tem ;,§,; by the magnitude of angle ¢y (where y =qt + x). The coordi-
nate system xp,yp,zp is obtained by rotating the coordinate system x,y,z
around the y axis by the angle p. Then, at position r on the blade, the

coordinate system x represents the effect of the pretwist angle,

8*Ys°%
8. The coordinate system Xg »¥g 2 Zg is obtained by moving the origin of
the coordinate system XgsY¥gs2g in the zg direction over the distance "w"
and rotating it around the Yg axis by the angle w' (3w/ar). Finally,
the coordinate system x;,xo,x3 is located on the shear center of the
blade cross section and differs from the coordinates x4,yqy,zg by the
amount of the pitch angle o.

These coordinate systems are shown in order from the inertial
reference frame to the final reference frame that is fixed on a point on
the blade in Figures 1.2, 1.3, and 1.4,

A series of transformation matrices is used to transform from one
coordinate system to the others. These transformation matrices are
shown in Figure I.5.

Another variable that we will deal with is the radial displacement
of the blade. This displacement occurs during the blade deflection when
the assumption of an inextensible blade is made. This radial displace-

ment is defined as

R dv
uc(r) = - %-RI (HFEJZ dr (9)
H
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Figure 1.2 The coordinate system XYZ, xyz, and xyz
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Figure 1.3 The coordinate systems xyz, xyz, and xpypzp
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Figure 1.4 The coordinate systems XByBZB’ XgYoZgs and X121

58



59

Xy
'y
K
b (x) = [1] (x)
x4 I o0 ©
nL>x3 (1]- ] o cos 7, —sin 7,
O sinm, cosyy
x_ &7
2
)(’2 X
x{ 'y
2
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Figure 1.5 Transformation matrices
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where v. is the deflection of the blade in the direction that is perpen-

c
dicular to the axial line (flapwise direction).
The velocity of a point on the blade is found by using the kine-

matic relation [5]
Vs v+ xF (10)

where va is the velocity of point ¢ in a reference frame R,
aVC is the velocity of point ¢ in a reference frame a.
Raa is the angular velocity of the body that the reference
frame o is fixed to, observed from the reference frame R.
T is the position vector of point c¢.

For the angular velocity, we have

(11)

-)
where w
née

frame £ is fixed to, observed from a reference frame n.

is the angular velocity of the body that a reference

The absolute motion of a point on the blade can be found by using
the transformation matrices and Eqs. (10) and (11).
The blade velocity and blade angular velocity measured at the

center of mass of the blade cross section are:

> > >
=V

n +V n +V_n 12
c Xp Xp Yo Yo Zp Zp (12)



where

Vnp = VnJL + Vnr‘ + Vnw + Vne N = X,¥,Z °*
and
Vg = - 2YCO0SpSiny
Vep = U,
Vow = - wjsingcosp + wy(sinpsingcosy - cosgsiny)
- eBsinw'cosd - epcosp (cospcose + cosw'singsing)
Vie = + ey(singcose - cosgcosw'sing)siny
+ eysinp (COSBcose + cosw'singsing)cosy
Vg = - 2ycosy
Vyp = (r +uJbcosp - (r + u )ycosysing
Vyy = Wsing - wjsinpcosg - wycospCOSBCOSY
eBcosecosw'sing - ew'singsinw'sing
Vye = + ejlsinp(singcoss - cosgcosw'sing) - cospsinw'sing]
+ eycosy[cosp (singcoss - cospcosw'sing) + sinpsinw'sing]
Vyy = gysinpsiny
Vp = (r+ u)ysim
Vou = WCOS8 + Wpsingsing + wycospsingcosy
+ eBcosacosw'sing - ew'sinesinw'cosa
+ ePsinp (cospcoss + cosw'singsing)
Voo = + eycosp (COSBCOSH + cosw'singsing)cosy
- eycospsinw'singsiny




where

where

and
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= distance from mass center to the shear center of the blade
cross section.

= distance from the rotor plane to the nacelle's yaw axis.
| ow

B L
= (2 +x)

= mlﬁl + “232 + m3ﬁ3 (13)

Wy S Wee T, tw,. tw . i=1,2,3

wey = O
0,1 = 0
0,1 V(sinpcosw' + cospsinw'cosg)

w = yL(cospcosw' - sinpsinw'cosg)cosy - sinw'singsiny )

wez'-'o

- Wi
wwz W CO0SO

w., = - p(sinpsinw'sing + cospsingcosd - cospcosw'sinecoss)

%4
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- y(cospsinw'sing - sinpsingcose + sinpcosw'singcosp)cosy

- y[(cosgcose + cosw'singsing)simy]

..
w'sineg

- p(sinpsinw'cose - cospsingsing - cospcosw'cosecoss)

- %(COSpsinw'cose + sinpsingsing + sinpcosw'cosecosp )cosy

+ y(cosgsine - cosw'cosesing)siny
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APPENDIX II
ROTOR AERODYNAMICS

II.1 Relative Velocity

The relative velocity that the blade element experiences at the
rotor is defined as the vector sum of the blade element velocity at mid-

chord and the wind velocity at the rotor.
W=t - (1)

Here Vw is the wind velocity at the rotor and VB is .the blade element
velocity at mid-chord, it does not include pitch velocity (8). The wind

velocity at the rotor is given by
V =vn -avhn (2)
W

where "a" is the axial induction factor. The development of the axial
induction factor will be explained in a later section.

In the strip theory method (2-D assumption), the relative velocity
in the spanwise direction does not produce 1ift force or drag force.
The velocity to be considered in evaluation of the aerodynamic forces
and moments is the relative velocity in the plane of the blade cross

section. Thus the relative velocity is expressed as

n (3)
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By using the unit vectors En and é,, we obtain

t

> >
We =MWe -We (4)
where
>
W= (0, - Yg)et g (5)
>
W= - (T, - VB)-nye (6)
2 =%
n_ 29
& =1
t = "yo

The expression for VB can be obtained by following the same procedure
used in Appendix 1.
Substituting the value of VB and Vw into Eqs. (5) and (6) we obtain

the normal and tangential relative velocities as
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V_(cosy - a)(sinpsinw' - COSpcosw 'cosg )

wn - Vmsiny[(COSpSinw' + sinpcosw'cosg)sing - cosw'singcosy]

- 2y[(sinpcospcosw' + sinw'cosp)siny - singcosw'cosy]

+ Uysimw' - (r + u )ycosw'cospsing

- (r+ ud)Q(cosscosw'sinw - sinpsingcosw'cosy)
Vg, = - wcosw' - wpsinw'cospsing

- wy(sinw'sinpsingcosy - sinw'cosgsiny)

+ e3$cose(sinpcosw' + cospsinw'cosg)

+ e3§cose[(c05pcosw' - sinpsinw'cosg)cosy - sinw'singsiny]
Vot = {- v_(cosy - a)cospsing - V_siny(sinpsingsiny + cosgcosy)}

- sY(cosgcosy + sinpsingsiny)

+ (r + uy)jcospcosg - (r + uy)y(singsing + sinpcosgcosy)
Vg = - WySinp - WyCospcosy

+ e3$sine(sinpcosw' + cospsinw'cosg)

+ e3§sine[(c05pcosw' - sinpsinw'cosg)cosy - sinw'singsiny]
where e is the distance from the mid-chord to the shear center of the
blade cross section.

The velocity diagram of the relative velocity at the blade cross section

is shown in Figure II.1.1.

I1.2 Aerodynamic Forces and Moments

Figure II.1.1 shows a blade profile section at radius r with the
relevant velocities and forces. The air flow gives rise to a 1ift force
L and a drag force D whose resultant can be resolved into components of

normal force dfF_ and tangential force dF.



Figure

I1.1.1 Velocity diagram at blade cross section
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From the geometry we have

dF

dL cos¢ + dD sing (/)

drF

dL sin$ - dD cos¢ (8)

The expression for the normal force and tangential force can also be

expressed as

dF = 5 p wocC dr (9)

dF, = % p wocC,dr (10)
where

C =

CL cos¢p + CD sing

Rzl
"

t CL sing - CD COS¢

The aerodynamic moment at 1/4 chord can be expressed as

M s Ty = ’12 pwwgcsz /4dr B (11)
c
and according to Fung [3]
C = - IC g (12)
MC/4 = - g— CO0Sa 0

Substituting the expression of cMc/4 back into Eq. (11), we obtain
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3
dM_ g = - b M coSa %%—-e dr (13)

I1.3 Linearized Aerodynamic Forces

In this study the linearized aerodynamic forces will be devel-
oped. These functions will consist of the nominal terms plus the linear
variations of the aerodynamic forces with the dependent variables.

Let us first consider the aerodynamic forces. Figure I1.3.1 shows
the blade profile section at radius r with the relevant velocities and

forces. The components of the aerodynamic forces are expressed as

2

|1
oF = 7 o, WS

. cC, dr (14)

12
dF, =5 p WS cC.dr (15)

where

(gp]
[

n = Cllag)cosy + C p(ap)sing

()
I

t = C(ap) sing - Cylap) cos

ap is the effective angle of attack measured at 3/4 chord when including

the effect of the pitching velocity at that point.

Normalizing Eqs. (14) and (15) by dividing through with %‘pwszZ yields

Y Cn-ﬁ— (16)



Figure

I1.3.1 Velocity diagram at blade cross section
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¢ = (DI RC T (17)

The derivative of the normal force with respect to the dependent varia-

bles is defined as

e

N, =%cn(z%%(%) +%t-%;(%1 +-&(:f)2%,-;cn (18)
The derivative of C, with respect to n becomes

BCn ) 8Cn BaE 3Cn s (19)

an 'aaE o 3 9

The velocity of the fluid that accounts for the pitching velocity at 3/4

chord is expressed as

<<
[

® »> [ R >
p = e,0cosee - e.fsinoe, (20)

and

=
n

o 2 . . 2
(W, + ejbcose)” + (W, + e8sine)
From the velocity diagram in Figure I11.3.1, the tangent and cosine of
the effective angle are expressed as

W+ e, Bcose
n__2 (21)

tan¢E = —
wt + e2651n9
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W, + e,8sineg

2
cos¢p = t 0 (22)

where

¢ = ag 8
From trigonometric relations we obtain

¢
) _ 2 E
5;—(tan¢E] = sec ¢ Fr

da
E 2 2 a6
P = cosp o (tanpg) + 3 (23)

By substituting Eqs. (21) and (22) into Eq. (23), we obtain the expres-
da

sion of — as
an

ESE =1, [(W +e 2—-(écose))(w + e 8sine)

an Wl n 2 3n t 2

- (W +eybcose)(W, +e, - (Bsing))] +2 (29)
n 2 tn 2 3n an
where

W o= iﬂﬂ

" on

0, -t

tn an

In the same way, the expression of %%—can be expressed as
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i‘t = 1_ [wnnw

an = 12 - WnWtn ] (25)
e

t
Substituting Eqs. (19), (24), and (25) back into Eq. (18) we then evalu-
ate all the dependent variables at nominal values. The derivative of

the normal force can be expressed as

wnn wtn .
Nn = Fl'V:_ + FZ-V:— for n # q,,q,
wn wt
9 94
wn- wt-
A R S
PO S A B A
1
where
W W
_C n “t,
Fl—ﬁ{ZT;Cn+Cnv Vw}
W W
- C t n
Fo=gleyCi-C v
] vV o
e, W
_C 2 't
Fa=gl w7 01
a oo -]
W
=S (& .
P4 = R (vm) Lnafl

Figure 11.3.2 shows the velocity diagram of the blade evaluated at the
nominal value. The relation of 1ift and drag at the nominal value can

be expressed as



Figure 1II.3.2 Velocity diagram at blade cross section

evaluated at nominal value

74



C
n

Cn
v

Ct =

Ct
a

= CL CO0Sa + CD sina

= CL cosSa + CD sina - C
3 bl 3

CL sina - CD cOSa

CL sina - CD cosa + C
3 CE

= CL cOSa + CD sina
3 g

+ CL sina - CD cosa
%E *E
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The variation of the tangential force with the dependent variables can

n the same way. The derivative of the tangential force is

be found i
defined as
aC
H g-t.: Ft
n R an
and
wnn Ntn
W R
Nn Nt
_ 9 91
Hq1 o B A B
W W
Ne to
q q

for n # ql’al

(27)
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where
Gy =%{?—’lct+ct :/’_t}
w v Ve
GZ=%{%Ct'Ct\’%
G4=%(\%)2 cta

11.4 Axial Ilnduction Factor "a"

In this analysis, the nonrotating wake model is used. We can
calculate the local value of the axial induction factor by equating the
windwise force developed on the blade to the momentum flux in an annular
ring of radius r.

Applying the momentum theorem to the flow in the annulus "dr" one

obtains an expression for the windwise force as

dT

pw(andr)u(\{no - V2)

o, V2 (1 - a)2azerdr (28)

Defining a local thrust coefficient by

dT
(C) =T
L 2o vian

Equation (28) becomes

(C,), = 4a(l - a) (29)

L
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The local thrust coefficient based on the blade force in the windwise
direction is developed using the blade element theory

12
dT = 5 p_ WiBc C dr (30)

Using the definition of (C ) , we obtain
Bcy,ey2 ’n
(), = PEF) = (31)

With a given value of C , the local axial induction factor can be found
by equating Egs. (29) and (31).

The simple momentum theory approach leads to the result that the
induction factor "a" cannot be greater than 0.5 as this would yield zero
downstream velocity. However, increasing thrust coefficient values are
obtained for a > 0.5.

When the axial induction factor "a" is greater than a..;iijca1> the
Glauert relationship [14] has been used instead of the simple momentum
theorem. The Glauert relationship is shown in Figure Il.4.1. This
empirical relationship can be approximated by a straight line with good
accuracy using wind tunnel test data. The straight line approximation

used in this analysis for a > a. is
(Cpy = 4a(1-a) + 41 - 2a)(a - a) (32)

where ac = 0.38.
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11.5 The Variation of Axial Induction Factor with Generalized

Coordinates

In the process of linearizing the aeroforces, the variation of the
axial induction factor with the dependent variables is encountered. We
can calculate the local variation of the axial induction factor by
equating the derivative of the moments developed by the blade force to
the derivative of the moments developed by the momentum flux.

Defining the variation of the axial induction factor as

9a

= LI ;I
n kn g sim + Iy R cosy (33)

Substituting the expression for the variation of the axial induction
factor back into the linearized aerodynamic forces terms, we now have
two new coefficients to solve for, kn and jn.

The coefficient kn can be calculated by equating the derivative of
the yaw moment developed by the momentum theorem to the yaw moment
derivative developed by the blade element theory. In the same way, the
coefficient jn can be calculated by equating the derivative of the
pitching moment developed by the momentum. theorem to the pitching moment
derivative obtained from the blade element theory.

Considering the segment "rydrydy" of the annulus "dr", we obtain

the expression of the moment as the cross product of the ry vector and

the windwise force of that segment.
i = ¥y x dT (34)

where
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(r+ um)COSp - wsinp (35)

dT = p_ Vi (cosy - a)2a rNdrNd¢ (36)

A local moment coefficient is defined as

_ dM
Cy =g—>—3 (37)
-2- pwanR

Substituting Eqs. (35) and (36) into Eq. (37), we obtain the expression
of the yaw moment as the component of the vector "dCM" in the Ny direc-
tion and the pitching moment in the ny direction.

The expression for the yaw moment is

The expression for the pitching moment is

1 "y dry
dC,, = = 4a(cosy - a) g— cosy —— dy (39)
My m R R
By taking the derivative of the yaw moment and the pitching moment with

respect to the dependent variables then integrating over the whole

rotor, we obtain the expression

0 0 R
aC aC 2
M R Zn T r dr
_y._._1 L sa N _N
an " of of da on R cosydy R (41)
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where

C. = 4a(l - a)
T

Substituting the expression of %%—from Eq. (33) into Eqs. (40) and (41),

we obtain
aCMx
e knn1 (42)
3CM
— Y - _;
where
R 3CTL rﬁ dry
mo=J = (44)
1 o da R R ‘

Now we will 1ook into the same yaw moment and the same pitching moment
but they will be developed by blade force instead of momentum flux.
Considering the small element of blade "dr", the moment created by

the aeroforces and aeromoments are expressed as

_
df = Fy x dF + dms_ (45)
4
where
= (r+ + +e,n
Py = ( um)n 0 W * 1N
dF =dF A+ dF A
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=124

dﬁc = dM,
T L3

1

the expression for the yaw moment is obtained from the component

of dCM in the Ny direction

dCy = (TL1) §Cdp + 2 (TL2) ST oy (46)
X
where
W
_ (. €2 Cc
N o= (v:) Ch R
W
_ o €52 c
Ho = (v:ﬂ Cy ®
1
ﬁ—'COSSE(COSpCOSW' - sinpsinw'cosg)cosy - sinw'singsiny ]
TL1 =
(r+um) W
-[—g—— cosw' — x sinw'](sinpsingcosy - cospsiny)
(r+u ) e
- [——R—m—-sinw' - %-cosw' - ﬁl-sine][(sinw'sinesin¢)
+ (cospcosw' - sinpsinw'cosg)cosy]
TL2 =
(r+um) W
-[—g—— cosw' + ¢ sinw'][(cospsinw' + sinpcosw'cosp])cosy

+ cosw'singsiny]

Now we take the derivative of this moment with respect to the dependent

variables. Then we add the effect which accounts for the "B" turbine
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blades in the system. The expression of the average yaw moment deriva-

tive is given as

aC
M R on R 2z
X B dr B dr
5 == [ Nn(TLl)R—dq, t— [ Hn(TLZ)-R—-dw
2n RH 0 2n RH 0
(47)
where
= oN
Nn an
- 3H
Hn’- on

By substituting the expression of %%—from Eq. (33) into Nn and Hn terms,
the derivative of the yaw moment is expressed in terms of kn and jn.

The expression of the pitching moment developed by the blade force
is expressed as the component of dtM in Eq.aé45) in the n, direction.

y
M
Then the derivative of the pitching moment —gﬁx-is obtained in the same

aCy
way as it is done in-jﬁfi.

Now we can equate the derivative of the yaw moment developed by
momentum flux to the one developed by biade force and the derivative of
pitching moment developed by momentum flux to the one developed by blade
force. The analysis results in two equations and two unknowns (kn and
i)

The result of this linearized analysis shows that the variation of

the axial induction factor exists only for the yaw and yaw rate varia-

bles

[-S 2L
3|
[}
o

n # q, and &4 (48)
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The coefficients kn and jn for yaw and yaw rate are given by

. - (g + 5 + g + M7)(Wy - My) - Mp(Myp +My3 + My + Tpg) (49)

94 (nl-n3)2+n§

{(mg +mg + Mg + My, + (Mg - My)(myp + Myg + My + Myg)}

j = -
q 2 2
4 (my - mg)" + 1,

(50)

(Mg + Mg + Wy + My )(Wy) - Mg) - My(Myg + M5 + Mg + Mg)

~
.
1]
st
N}
N

(51)

i (Mg + Mg + Myg + My )Mo+ (My- Mg)(Myg + Mg + Mpg + Mpg)}
.= 77
4 (my - my)" + 15

(52)
where I;'s are the integral terms.

These integral terms are given as follows:

aC
n, = IR L (Eﬁ_d_r_ﬂ
1 R 3a 'R R
H
R e P
3 1 1 3 : ' Ndr
?;-RI (N1) ﬁ-—-(cos;)cosw0 - s1nps1nwocose) R
H
R (r+u W r
3 m ' 0 . 4y . N dr
- “;'Rf (N1) (—g—— cosw) + g~ sinw )sinesing p— =~
3 Hp (r+um] Wo
o=y *—7 £ (H1)(—x— sinw; - g cosw ) (cospcosw
H
sinpsinw'cosg) :E_QL
- S1MeSTNW,COSB) 7~ R
R (ru) ’
3 m \ o . ., _—
- 5 RI (Hl)p—ji——~ cosw, + ﬁ"51nwo)(COSpS1nwo
X "N dr
+ s1npcosw6coss) TR
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R e r
3 | Nd
- f (N1) g= sinw sing R_TQL
H
R

(r+u ) W
f (N1) ( cosw; + Rg sinw})cosg —R-N- ‘é—
H
: R (reu) W r
3 m_ s _ 0 NYed g ted N dr
T 7n RI (H1)( R Sinw, - ¢ coswo)smwosms TR
H
R (r+u_) W r
3 m ' 0 _: .1 ‘e s N dr
- RI (H1)(—— cosw) + g— sinw Jcosw sing = p—
H
3 R ey ' L (r+um) .
> Rf (N2)[r (c05pcoswo - s1nps1nwocoss)-(—r— COSW_
H
W

0

_— . . dr
+ - sinw;) sinpsing]f, &

e (r+u ) w
| m ' 0 o5t dr
RJ’ (N3)(g— sinw sing - (—g—— cosw_ + 7 sinw )cosg)f, -
H
R (r+u W
3 m - Y ' 1
v Rf (H2)(—x—— sinw, - z— cosw ](cospcosw
H

. N dr
- smpsmwocosrs)f4 'l

r+u

w
-;;— f (H2)( Rm cosw6+ﬁ9-sinw(')](c05ps1’nw(')
Ry

. ' dr
+ sinpcosw cosg)f, o
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R (r+u ) W (r+u,)

_ 3 m 1 0 . ' les m i

I, --Z—“—Rf (H3)[(—g— cosw, + g sinw Jcosw sing + (—p—— sinw

H

W
0 e g ted dr
- g cosw/)sinwising]f, o
3 R !

Mg =5 R[ (N4)[R— (cospcosw' - sinpsinw'cosg)

! _

(r+um) . wo C N s . dr
- (—g—— coswy + g sinw Jsinpsing]f,

R e (r+u ) w
3 1 : [P 1 : 1 d
My =3 RI (N5)[g= sinw sim - (—¢ m cosw; + ﬁg_ sinw})cosg]f, 'RTE
H
R (r+u_) w
3 m P— 0 1 1
> Rf (H8)(—g—— sinw, - = cosw;)(cospcosw -
H
. _— dr
- sinpsinw cosg)f, o=
I =
10 3 R r+Uo o . )
- —Z;Rf (H8)(—g—— cosw, + z= sinw ](cospsinw
H
+ sinpcosw'cosg)f ar
PE"3 %0 4 R
R r+u J w
My = %‘- [ (1) [(— m cosw; + R—Osinw('))cosw(')sine
H
(r+u ) W
+ (g m sinw, - R—O cosw )sinw sing]f, %L
R e (r+u ) w
3 | S m . 0 it dr
T, = 5= Rf (N2)(-R— sinw sing - ( R cosw; + ﬁ—smwo)coss)f4 T
H

3 R ey .. (reup)
I3 = 7 RI (N3) (g (sinpsinw cosg-cospcosw)+(—p—— cosw,
H

w
0 .0 Vs . dr
‘v s1nw0)s1nps1ns]f4R—
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3 R [r+um) v,
My = 5 i (H2)[(——R—— sinw(‘) -7 cosw(‘))sinw(')si ng
H

(r+uy) "

m . i
""""" + (—g— cosw; + =2 sinw')cosw'sing]f

dr
R o’ 0] R

4

R (r+u ) W
3 m ., 0 , ,
- o Rf (H3)(—g—— sinw] - g cosw!)(cospcosw'
H

. ., dr
- sinpsinw cosg)f,

3 R Mip Yo . .
* o RI (H3)(—g— cosw; + o= sinw})(cospsinw
H

0 0

. ' dr
+ si npcoswocoss) fa v

3 R 1 s (r+um) R T dr
Mg = 7 R[ (N8) [ sinw sing - (— CoSWy + o s1nw0)cose]f4-R—
H

R e
3 : L
Ty = -5 Rf (N5)[R—l (cos;;coswo - s1nps1nw0cose)
H
(r+um) W
' [ N - dr
- (— cosw, + z— sinw!)sinpsing]f, o
3 R r+um ) w0 ) ]
Mg =_2?Rf (H)[(—x— sinwy - ¢~ cosw )sinw sing
H
(r+u ) W

+ (= m cosw, + Wo_ sinw;)cosw sing]f, %—C




where

N1

N2

N3

N4

N5
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3 R r+u. W,
4 ' ' 1)
T, [ (H8)(—g— sinw} - o= cosw/](cospcosw,
H

i dr
- sinpsinw cosg)f, ==

3 R (r+um) . wo ) l )
t Rf (H5)(—g—— cosw) + p= sinw!)(cospsinw}
H

: ' dr
+ sinpcosw cosg)f, =

. __ . .
(s1nps1nwo c05pcoswocoss)F1 c05ps1nsF2

cosw'singF. - cosgF

(0] 1 2

Lt 4 e , + < .
(c05ps1nwo s1npcosw0cose)F1 s1nps1nBF2

. (r+u)) W,
. - .. , e e .
(Tr-s1nscoswo 7 sinpsingcoswy + TI:-smwosmpsms)F1

- - -3

+ LI s s 1
v~ (cospcosw, - sinpsinw cosg)F,

(r+u ) w
-(%:-coss + —y— sinpcosg + VQ-COSp)F2

(r+uy)

2 3 ] 3 ! ]
+ +
(v (STanOSBCOSWO S]nwocosp) v COSBCOSWO

"o °3
+ V;-s1nw°cose + -v;-smwosms)F1
(rtugy)
v

oo

+(— sinpsing + sing )F

2
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The expressions for Hl, H2, H3, H4, and H5 are the same as N1, N2, N3,
N4, and N5, respectively, except Fy and F, in Ni terms are replaced by

Gl and 62 in H terms.

II.5 Tip Loss Model

In order to account for nonuniform flow in the wake of a wind
turbine, flow models have been adapted from the propeller theory.
Physically, the tip correction accounts for the fact that the maximum
change in axial velocity, 2aV,, in the wake occurs only at the vortex
sheets and the average velocity change in the wake is 2aV_F, where F is
the tip loss factor.

"Tip Tosses" have been treated in a variety of different manners in
the propeller and helicopter industries. The simplest method is to
reduce the maximum rotor radius by some fraction of the actual radius,
which in helicopter studies is of the order of 0.03R. A more detailed
analysis was done by Prandtl [12] as a method for estimation of lightly
loaded propeller tip losses. Later Goldstein [13] developed a more
rigorous analysis.

For this analysis we will use the combination of the effective
radius and Prandtl method for the calculation of tip loss factor.

The effective radius is given by

Reff _ [ B%/3x 1172
R 823y + 1.32
and
Raer . w23 172 ]
=1 573 or x <3
82/3« + 0.44
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which was obtained from an empirical relation which expresses the maxi-
mum power coefficient of wind turbines.

The tip loss factor is expressed as

F

%-arc cos (ef)

where
(1 - r/R)/(l - Reff/R)

ef = [cos(E%ZEJ]

I1.6 Power and Thrust Coefficient

From the blade elementary theory, the windwise force and torque at

the nominal value are given as

dT = 5 o, BWCcCy A= (53)
dQ =-% prwgcCtr %ﬁ- (54)

Power is defined as the product of torque and angular speed

dP = adQ (55)

Normalizing Eqs. (53) and (55) with %-pmVZnR2 and-%

pwvanz, respective-
ly and making use of the relationship of the relative velocities and

angles at the blade cross section, one obtains
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)
t-|p ——
. Bc 1-a,2 2
Cp = 2P ) [ g/ 1+ (58 [(1-a)e, - xCplx“dx (56)
hub
cos3 xtip Bc 1-a,2
CT = —:I’X_E f ﬁ_/ 1+ (—)-(—) [XCL + (1-a)CD]xdx (57)

Xhub
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APPENDIX TII1I

DERIVATION OF GOVERNING EQUATIONS

In order to develop the equations of motion, the Lagrange method is
used. The expression of kinetic and potential energy of the system will
be developed. Then, by using the virtual work concept an expression for
the nonconservative forces can be obtained.

Lagrange's equation is used to develop the equations of motion.

The Lagrange equation is given as

F A -2,
34, 24,
where
L = Lagrangian function = KE-PE
Q; = nonconservative force
q; = generalized coordinate

With the expression of KE, PE and Qi substituted back into

Lagrange's equations, we obtain the equations of motion.

II1.1 Kinetic and Potential Energy

In order to obtain the expression for kinetic energy of the rotor
system, the velocity and anqular velocity of the blade element are first
developed. With known values of mass and mass moment of inertia of the
blade element, the kinetic energy is expressed as

2 2 2 2
d(KE) = Vcdm + wldI + d12 + m3d13 (1)

1792
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Here V. is the velocity of the blade element of length dr, “ils are
angular velocities of the blade element in the direction normal and
tangent to the blade, dm is the mass of the blade element, and dIi's are
the mass moment of inertias of the blade element at mass center in the
same direction as the w;'s.

The total kinetic energy of the blade system is obtained by inte-
grating over the blade length and adding the contributions of each blade
R B R B R

2 2 2
Vedm + I [ wydly + R [ wpdl, +
i=1l R, i=1 R, i

R
2

f w3dI3

h (2)

KE

"
" ™Mo
n o™

i=1 RH 1R

where B is the number of blades.
The additional kinetic energy due to the hub mass and generator are

considered. The additional kinetic energy terms are expressed as
1 . 1 e\ 2
KE = ?'IH Voot z'lg(Ngw) (3)

Here Iy is the mass moment of inertia of the hub around the rotor shaft,
Ig is the mass moment of inertia of generator around the rotor shaft,
and Ng is the step-up gearing ratio between the turbine and the
generator.

An expression for the potential energy of the rotor system can be
derived from the strain enerqy due to the blade deflection and blade
twisting. The expression for the strain energy of an element of a blade
is first developed, then integrating along the blade span and adding the
contribution of each blade to get the total potential energy. Thus, we

obtain
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R 2 B R
7 [ E(r@—plr + 1

2
6I(r)(3g) “ar (4)
1 RH ar i=1

(i
n
LI e e )

1
. 7 J
i Ry

I11.2 Virtual Work

The virtual work principle can be stated as, "If a system of forces
is in equilibrium, the work done by the externally applied forces
through virtual displacements compatible with the constraint of the

system is zero," [4].

n
oW = 3 Fi-sF1=0
i=1
where
F. = external force

j
6?1 = virtual displacement

Virtual displacement is defined as infinitesimal arbitrary changes in
the coordinates of a system. These are small variations from the true
position of the system and must be compatible with the constraints of
the system.

The total virtual work of the system can be expressed as the summa-
tion of the virtual work of conservative forces and the virtual work of
nonconservative forces. The conservative forces are the forces that do
depend on position and can be derived from a potential function. Con-
servative forces are the inertia forces, the contact forces, and body
forces. The nonconservative forces are energy-dissipating forces, such
as friction forces and forces imparting energy to the system, such as
external forces. Nonconservative forces are forces that do not depend

on position alone and cannot be derived from a potential function.
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In this analysis we will consider the virtual work of the noncon-
servative forces alone. The nonconservative forces in our case are the

aerodynamic forces and moments.

I1I1.3 Nonconservative Forces

First, let us redefine the virtual displacement and virtual angular
displacement (virtual rotation) of the system. In this analysis, we
assume that the aeroforces and moments act at 1/4 chord position of the
blade cross section. The virtual displacement and virtual angular

displacement are defined as [5]

an
8qi
> 3+
Sa = ? 84, (6)
aqi
where
an
— = the partial rate of change of position with respect to
3q;
1 q; at the 1/4 blade chord in the inertial reference frame.
N i
a? = is the partial rate of change with respect to q; of orienta-
3q;
i

tion of the blade in the inertial reference frame.

The virtual work is defined as the summation of the inner product of the
aerodynamic force and the virtual displacement and the inner product of

the aerodynamic torque or couple and the virtual angular displacement
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oW = FesP + Pesa (7)

The aerodynamic force and couple at 1/4 chord are defined as

F=F2 +F28 (8)

Substituting Eqs. (7) and (8) into Eqs. (6) the expression for the

virtual work becomes

W = 016q1 + 026q2 + Q35q3 + 046q4

where Qi represents the nonconservative force relevant for the right

hand side of the Lagrange's equation

a¥

0 =t (=) + . (2 (9)
3q1 aql
Bvd a+
v >

0=t . (=Y +h. (2 (11)
3q, 3q5
an a+

Q=F. () +h. (51 (12)

Now we have the expression for the Lagrangian function and the non-
conservative forces. Substituting these expressions back into

Lagrange's equation, we obtain four equations of motion. These equa-



97

tions can be written in matrix form as

M3 {a;} + [CT {3} = {G(qq,...0y, GyseeeGpst)) (13)
where
[M] = nonlinear mass coefficient matrix
[C] = nonlinear damping coefficient matrix from-gf-(gé;ﬂ
3q,
{G} = a vector consisting of nonlinear terms from %%— ] 01
i

ITI.4 Nacelle, Gravity

Nacelle

In this analysis we will consider the nacelle as a slender body.
The shape of the nacelle is assumed to be a cylinder with a hemisphere
on the forebody and afterbody. Figure 111.4.1 shows a picture of the
nacelle,

Since we assume that the nacelle acts like a rigid body and the
only movement it is allowed is rotation around the yaw axis, the kinetic

energy and potential energy can be expressed as

KE

PE

1
o

where In is the nacelle's mass moment of inertia around the yaw axis

1 2.2
KE = 5 1,4, (14)
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Figure III.4.1 Nacelle geometry
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For the nonconservative force, the forces on the nacelle are calculated

by using the slender body theorem. The forces on the body can be ex-

pressed as
dF = 2q 95 4z (15)
y Tedz
2 Yz dR(z),2, ds
aF, = P - (" g (Re2) # (-H§_lg | £ dz (16)
where
S = the cross section area of the body
R(z) = the radius of the body cross section

The virtual displacement of the nacelle is expressed as
&P = 2f,8q, ?\y (17)

The virtual work of the nacelle system is given by

d(sW) = dF. &P

y

ds 2
(29,2 4> dz f,q,)8q, (18)

The nonconservative force for the nacelle is expressed as

dQy, = 29,2 %;—dz fz dy (19)
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The force on the nacelle exists only at the hemispheres at both ends of
the nacelle (%%—# 0).

The afterbody of the nacelle is in the hub area. In real flow, the
flow would separate before it reaches the afterbody. Only the forebody
part of the nacelle is considered.

The equation of motion of the nacelle is developed by substituting
the expression for kinetic energy and the nonconservative force in

Lagrange's equation. The nondimensionalized equation of motion is given

by
Mag g *kgq 9y = 0 (20)
n n
where
I
n 2
m = f
44n q°°R3 4
2 N ds 2
k = - [ z 3 f,dz
44 3 dz "4
n R -[n—RM)
n = distance from the nacelle's yaw axis to the forebody
end of the nacelle
Ry = radius of the hemisphere on forebody and afterbody of the

nacelle.

Gravity Effect

For a larger wind turbine system, the effect of gravity is very

important in dynamic and structural analysis. Although the Enertech
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1500 is a small wind turbine system, the gravity effect will be included
in the analysis to make the analysis applicable to any size turbine
system,

The gravity effect will be added to the system by means of a poten-

tial function. The gravitational force of the blade element dr is

defined as

d& = -gdm ﬁx (21)
The potential function for the gravitational force is given by

dP = ghdm (22)

where h is a function of qy, ... g, and t, whose absolute value is
equal to the distance between the mass center of the blade element cross
section and any fixed horizontal plane H,

We are dealing with the expression for the derivative of the poten-

tial function 8P instead of the potential function itself when we

aq;
i
develop the equations of motion by using Lagrange's equation. Therefore
we take the derivative of the potential function in Eq. (22) with

respect to the generalized coordinate

agdPg _ ah
= gdm — (23)
94 34,

The velocity of the blade element "dr" measured at the mass center can

be expressed as
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_  dh »
vc - —'a?nx + Goe0ssc00s0s e
=-( g -ah—ai +'g_2)-ﬁx+¢.oo.ol' (24)
i=1 %%
The expression %%— be found by dotting Eq. (24) with the unit vec-
i
tor ﬁx and assuming that %%—equa]s zero.
aV
oL (25)
9 3q.
i
Substituting the expression %%—-in Eq. (25) back into Eq. (23), we have
i
the expression 3%%21 accounting for the gravity effect to be put into
i
Lagrange's equation
3(dP) oV,
T gdm( - — -nx) (26)
i 3,

II1.5 Tower Shadow

When a rotor is downwind of the tower, the blades pass through the
wind shadow cast by the tower. The performance of the wind turbine will
be affected by this tower shadow.

In this study, the tower shadow is modeled as the velocity deficit
from the rotor axial velocity value over a selected region of the rotor
disk, centered about the tower center line. For the simplicity of
analysis, the width of the tower shadow is assumed as a segment of the
rotor area. The width and the velocity deficit of the tower shadow are
dependent on the geometry of the tower. This tower shadow model is

shown in Figure III.5.1.
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Figure III.5.1 Tower shadow
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To account for the tower shadow effect on the equations of motion
of the system, the width and the velocity deficit are arbitrarily cho-
sen. Then for this linear system, the superposition method is used.
The average forces on the rotor with the tower shadow will be the aver-
age forces on the rotor without the tower shadow, plus the difference of
average forces in the shadow region between the one with and the one
without the velocity deficit due to the tower shadow.

The coefficients of equations of motion will be recalculated for
the shadow region. Many terms in the expression for forces and moments
that depend on the azimuth angle, which are usually balanced out in the
3-bladed rotor case, will remain in the tower shadow case.

The average forces and moments in the shadow region are given by

1r+2\—
B b4 R
Fshadow = 7r fx Rf (dF)dy (27)
n-? H
A
n B "t Z R >
shadow = 7o fl Rf (+ x dF )dy (28)
ﬂ-? H
where
dF = the force on the blade element

A = the shadow width.

The flow conditions in the tower shadow are developed from a uni-
form flow model. Thus flow conditions in the tower shadow vary only
with velocity deficit and tip speed ratio.

Table III.5.1 gives the values of the integrations from the lower

limit of =« -%t0w+-)é-.



Table III.5.1,

Some Integration Values
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APPENDIX IV

LINEARIZED EQUATIONS OF MOTION

IV.1 Linearization

Real systems contain some nonlinearity. If the ranges of values of
the dependent variables are sufficiently restricted, the system may be
well approximated as linear. In this study we will treat the system in
the linear range.

The first thing we need in linearization is the equilibrium value
of each dependent variable. Because of the complexity of this rotor

system's mathematical model, the equilibrium values have been chosen as

8, = 0 (1)
Wo 7 Rsfz(%)qs (2)
Xo = O (3)
Yo = 0 (4)

where q¢ is the static tip deflection and the subscript O indicates that
the values are evaluated at nominal values.
We now define the dependent variable as the nominal (equilibrium)

term plus a small variation term.

q'i (t) = q'iO + Sq-i(t) (5)
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Substituting the value of the generalized coordinate shown in Eq. (5)
into the equations of motion and developing a Taylor's Series for the

nonlinear function of the generalized coordinates and their derivatives

yields the relation given below

3f(q1 ,ai sqi )
. L i PR IS
f(a;,9;,9;) f(qio,qio,qiol + 3, 8q;
af(qio,qio,qio) af(q,-o,q,-o,qio) )
+ ° Sa.i + o qu +...... (6)
23, 3,

Neglecting higher order terms, we obtain the linearized equation of

motion as
3f(q; -4y »a; )
. oy .. o 1,771,
f(qi’qi’qi) = f(qio,qio’qio) + aqi 5qi
af(a; »3; 95 ) af(a; -4 »a; )
+ 0 : 0 o Gai N 0 _0_ 0 sa, = 0 (7)
3q1 aq1

Linearized Eguation of Motion

With the known values of kn and jn, the expression for %%-in the
linearized aeroforce is defined. Then, the Tinearized equations of

motion of the system are expressed in the matrix form as
[M*1{sq;} + [C*1(8d,} + [K*1{6q;} = (&)

where

M* = linearized mass coefficient matrix

C* = linearized damping coefficient matrix
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K*

linearized stiffness coefficient matrix

G

linearized forcing function vector

The components of the matrices M*, C*, K* and the vector G are:

Mass matrix of the rotor

R Y R R
3 cly2dr _ 3 e2.2dr 6 cle dr
T J ) SR e R Rsi™ef R
o« RH 00 RH oo RH
m =
11
L3 IR 1 24r
9 R 'R"Z' 1R
® TH
M= M = _3__ j‘R .Cl .C2 dr - -3__ IR .C2 e S'lnwlf Ell'_‘.
127" T JYPTRTRR T PR RTI™oI R
R R
+a3— / u%ﬁicosw(')flfz%f-
00 RH
R U w
3 cl o dr
- a:Rf w —f= (g sinscosp + & cospcosp)fy p-
H
$ 3 2. dr
q f u(g) “sim cospcospf fy
H
(r+u.)
My3® M3y = +%:Rf [% R < cosw singcosp + (%)Zcosw(‘)sinp]flf3%[
H
R W
+%‘ [ u %-Rg sinw(',sinscos;;flf3§-';
o R
H
v 3 fR g (sinpcosw! + cospcospsinw']) f.f dr
g RZVP peosBsTMWy) Tt 7~
H
mg=mgy= O
R R R I
3 c2v2dr 3 7sy2 2dr 3 2 ;2dr
A S L n A N N A
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u c2 Mo e dr
[ wu 'R" (F— singcosp + ¢ cos;;coss)f3 T
H

Man= M =
23 732 R (r+u) o Ry

[ w(—g—singcosp + g sinp) = f,f4
H

' dr
)] R—Z—COSpcosef2f3-R-—
H

2
2
= H(E% (sinzs + SinzpCOSZB) + i-é- (coszs + sinzpsinzs)
H

x

2
(reu.) 2 \.2dr

+ ——f—- Cos p)f3 T

R (r+uc) e (r+uc) W

/ "(—T—R' sinpcospsing - —p—— p— sinpcospcosg
H

+
.QIO\

o R

W
oe . 2 ye2dr
+ g g sinscosscos p)fy o~

/ -Ez (sinpcosw(', + c05pcosssinw6)2f§ %ﬁ
H

R1
3 2 2 2 c2dr
a— f FCOS pS'|n8 f3-R—-
H

I
K P - . 2 2dr
E-Z- (s1nps1nwo - c05pcosw°coss) f3 T
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( 751- / u[(§9)£(1 + COSZpCOSZB) + (%)z(l + sinzscoszp)
quH
Z
(r+u ) .
+——~?;L—-(l + sinzp)]fi%I
R
K W e ()
3 02 L 28 0 28 ¢’/ .
+ a:‘kf u[(§) t RO CospCosp + = - sinp
H
- ﬁé-% COSpsina]fi-%ﬁ
L3 R (r+u ) w e (r+uc) . .
- ”("TT_" R Sinpcospcosp - ; —x—— sinpcospsing
U Ky,
e wo r4 2dr
Maq = $ - R % sinscosg(l - sin%p)]t, =
N / jl (cosZ cos‘w' + sinpsinn! of s% + sinw'sin®
Y, ) & pCOS W, P 05’8 o'!ne
H
o 2 dr
-2 s1npco>ps1nw0coswocoss)f4 7
RI
3 2 2 2 dr
+-27]:f (sm psin“g + cos B)f4'R"
H
3 2 .. 2., . 2 2 2 2 .. 2
+ 55— ] *ﬁ-(cos pSIN"Wy +Sin"pcos™w cos™8 + cos w sin"g
H
- + ZsinwécoswésianOSpcoss)fi %ﬁ
where

blade's mass per unit length

=
"

3l
cl —Ts-evaluated at nominal value
aql

ce
]
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au
uc2 = —jg-evaluated at nominal value
aq2
IF = mass moment of inertia of the hub
[]
1 = mass moment of inertia of the generator unit and gear box

Damping coefficient matrix of the rotor

., W
3 cl 0 _. e dr
N [ ua Raq, (g~ sinscosp + §~c05pcoss) T
H
R U
3 cle dr
+ a: RI uQ _R T Cospcosw, singf,
H
C,p =f - f g.auc cosw'singcospf, 9L - 3 fR Q g-X—vg-sm g2 dr
11 qa 2R Raq, oSTMBCOSP Ty 2= = 3 R R PT1R
H H
R (r+u) R W,
. 3 e ¢ 2dr | 3w teey2c ¢ dr
M [ v g —g—— cosscospf) =+ 3 f W=’ V= 1R
H H
R .

e e
t ¢ 2 1 Uml dr
f VR a'v:(k f1= R sTmmg)fy &
H
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R au w
3 c 0 e dr
@) W mq, (g stnecose + g cospcoss) ¢~

= R

x ™

e s dr
T Cospcosw si ns\“1 T

e

R
3
+— [ ua
9 RH
R R
+ 33: RI u %R’i singsinw cosef,f, .g.’i

H

R (r+u )

3 e (A . dr

| wa R R simgsingcosef,f, o~
H

+ =
q 0

o R

+ 3 [R n(e)zsin sinw'f, £ dr
q R WITR P 0l1'2 R
H

R w
[ -ﬁ- cosw‘;(ﬁ-"- singcosp + cospcosg)f, )

H

R (12-13) : .i [] ' f fl dr
J —E-z—n(n Npsinw -cospcosw cosg)f, f, o
H

)

Jﬂo:

xja.
S

® R

.3
un

RF u e u
1 . d2 . 1 ml . dr
S R{q v (Rgcoswfy - Rg)sinug) (g™ ) - - sinwg) ¢
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R
/ uﬂ(%)z(sianOSpS'i nssinwa- sinscosecosw(‘)(l-si nzp))f1f3 %—
H

.olm

o R
6 e "o es 2is 2 2

- RI M ¢ g cosw (sin“B+sin“pcoss)
® "H

. . dr
+ sinpcospcospsinw)f s o
(r+u )
e c 2 .. dr
f ue g —p—— (cos psinw +sinpcospcospcoswy)fyfy o=
Ry

.olcn

R auC (r+u.)

2
7]— [ u Raql( R cosp
H

(o]

W
- (-R2 Cosg - % sing) sinpcosp)f, .g_’l

T RI TQCOSpS'inB(Sil'lpS'inw(')-COSpCOS\M(;COSB)flf:; %5
H
R [r+u) el °m1 dr
+ 3 RI ((—-V——cosw + -v—smw )c05ps1ne)F1(ﬁ—f1— E—-s1 nwo)f3 .
H
-3 IR °3 (sinpsinw'+cospsinw'cosg)F (el f ﬁl-si e 40
g W (STNesSTmigTcosesTNGCoSE)T) R~ 1™ 7R wo)f3 7
H
R W, (r+u ) e, u
d ml _. dr
L + 3 Rf (-V— sinp - —v———c05pcose)F ( 1 - -—R-s1nw(‘))f3-R—
H
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(3 fR
qu
H

+a§-f
ooRH

3 e
-a— f ue —-a—qz R cosw s1nfsc05p1’1 T
H

au W
ue C]. ( 0

1

el Ieod

(Rg

R

R
S
R R s1nf3cos;>f2 R—

R sinesinwoflfé e

C

W
cosw'(-R—Q singcosp +

SinBCcosp + & cOSpCOS
7 sinscosp pCoSB)

R

dr
R

R

f ue (§J251nps1nw f.f)
H

dr

dr

cos;;coss)flfé _g_r_

S @ s il dr
) TR STmw,si nscos;;flf2 T

R

1 d2 . ] S (] m2 : ]
cosw f - R(—g=)sinw ) (g~ fcoswy - = sinw}) =

3 3 ] [} ]
Q(smpsmwo c05pcosw0cose)f f

dr
1'2 R

2 singcosp + < COSpCOSR) %

114

dr
5T
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R
6 YofRs , .2 .2 2 dr
@y I @ 7 = (sin“Bsinpcos ) f f3 o=
H

- o jR Q Qi\i sinscoss(l-sinz )f £, Or

R du (r+u ) 2 Yo e dr
j 9§5—~{ R~ cos’p - (g~ cosg -  sing)sinpcosp)fy o~

6 R (r+uc) Rs
a- [ ua R Sinecosgf,fy “—
H
R(I -1.)
g—- [ ——— -2 3 3 [sianOSpcossc052w6
H
2 2 2 d
+ sinwicoswi(cospcosp - sin p)]f2f3-§£
R (r+u,) W, .
1 ' . . 1 _S '
3 RI [——v:- cosw cospsing + T s1nwoc05pcose]F1(R fcosw,
H
U
- ——'33 sinw('))f3 %.’l
R e, W,
3R£ LV: (sinpsinw6+c05psinw6coss)F1-(v: sinp
(r+u ) Rs ﬁmz . o
- — - cospcos)F,] (7= focosiy - = sinw )ty o=
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R W (r+u_ )
3 VE’ﬁ' —2% o OSW6COSpSiﬂB
H w

-+T;—sinw6COSpsins]f1f3-%5

327

33°

R
3 EE‘E-C ‘21 (sinpcosw oFcospsinw cosg)f,f dr
R V,Ron VR P P 1'3R
H
R W e, (r+u ) w
t ¢ 2 m . 0 . dar
3'R[ TF G V—'( R Cospsing - o= sinp)f fqy o
Hco aQ ™
3n jR EI;(EQZ S (sinpcosw'+cospsinw'cosg)f.f dr
g 0 VW Y PCOSH,ICOSPSTIMMCOSBIT T3 &
o ®
R F, (r+u )

. 1 f _ [ . f m ' .
3 [ g (Rgcoswif, - u ,sinw ) (—g— cosw cospsing
H

=

0 . . dr
+ o st nw6c05ps1 ns)f3 T

R
3
RH

-

[TY
x1o-
S

' e -l___];- ) s on b
Ricosw fo-u sinw ) R (s1npcoswo+c05p51nwocose)f3

S 0

|

1 e ® . ' ( r“'.ul'l'l) . wO . dr
3 f V—-(RSCOSWOfZ-UdZSIHWO)(-—-ﬁ——-COSpSIﬂB -7 Sine)fy g
H

R (r+u ) W

3 [ Ne( R m cosw6c05951ns + ﬁg-sinw6c05951ns

1 ... : 2dr
+ ¢~ (sinpcosw +cospsinw cosg))fy +

R (r+u) w

3 [ Ho(—p " cospsing - ﬂg sinp)f g

[=8

r
Tt
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Cyy = O
Cq1 =C4p =Cy3 =10
where

(r+u)) _ Wo . .
{-—Wc:-— cosw cospsing + v:smwocos;)sme}F1
N6 =
e, Wy (r+u )
- V—{sinpsinw6+c05psinw6coss)F1 +(V-'51ﬂp - c05pcoss)F2
(r+u ) Wy .
( V. Cosw cospsing +-v:-sinw6c05ps1ns)61
H6 =
eq Wy (r+ud)
- v—{sinpsinw6+ COSpSiﬂWéCOSB)Gl+ (V-s1np - —-v-——'COSpCOSB)Gz
CG = Slip rate
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(r+u )
Rf (N4)(R singcosw, + —f—— sinpsingcosw,
H

N w

W
+ <2 sinw'sin sins)f2 dr
0> P 4 R

R ey R 2 dr
[ (N4) e (51nps1nw COSB - COSpCOSW )f4 'S

N

R . (r+u )
J (N5)(g (sinpcospcosw +sinw cosp) + —p—— cospcosw'

Ry

™ o

w

o 2 1
+
g Sinw cosg)f

dr
X

EoJ N

R e
| 2 dr
Rf (N5)-§— s1nwos1nef4-ﬁ—
H

R (r+u ) w
3 .
t5 [ (W) (%-coss * =3 T sinpcosg + ﬁg-COSp)fi %5

Ry

R (r+u)

/ (H5)( sinpsing + —p—— sing)f
R

H

N w

ar
R

'
N

N

(r+ugy)
i, J (Nl)( s1n3coswo * =3 sinpsinscoswé
qg Ry

+
[N R

Yo N
e
* g sinw sinpsing) o f

o

ar
4 R

o

e
1 "N dr
(N1) R (s1nps1nw0cose -COSpCOSW )R fa R

+
rolw
[ 2N
—

3. (r+um) . "o N dr
+5 f (Hl)( Cosg + —p—— sinpcosg + ﬁ-COSp)ﬁ-f4-§-

R (r+u)

3 : — m '
-5k [ (N)( (S]anOSBCOSW6+S1nw°COSp)+ R COSBCOSW,

ofRe

Yo ™. dr
g sinwcosg)e= f, o
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R e
3 1 N
* 5k, ] (Nl)——smw sing T,

qg Ry

dr
R

R (r+u ) r
+ 3k [ (H) ( sinpsing + ™" sing) N dr
275 R R R T4 R
94 Ry

Q.

Stiffness coefficient matrix of the rotor

-

2y 2o 22
(

e 2d
oz cosw;“(sin“g+sinpcos g)f]

zJI

2

i unz(%)z(cos B+S'in2pS'in28)f§ r
H

R

2 dr
olR

3 f unz(%)zcoszpsinzwéff%—t
H

singcosg(1-si nzp)ff %f-

2dr
1

% R sinpcospsingf '

(]

r

2
3 R, (r+u) o, W 3°u dr
R

11 ° 3 f uQ (—r—-cos p- -R—QsianOSpCOSB+ ﬁsianOSpsins)
H

™)

Raq]

3 3) 2.2 s 2 ¢2dr . 3
H H

R Qe e
3 . ' : ' B ——— S ! -_—
-3 Rf -V:-FZ(S'IanOSWO+COSpS'Inw0COSB)(R fi - s1nwo)f1 R
H
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iy - sinpcospcosgcosw)f,f) o
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R ar Y4 ) €1
-3 1 (g (~eoswgeospsing Fy+ cosocoss o) (= )
H

nl sini!) - - 3 fRF (elf g

"ROS™I R R TalR TR ST™) 1
R au

(+3 [ N
Ry

R e
ml . ,dr 1 .2dr
o Ta, S™er T3S N f
H

2 ugz(%)z(sinscosssinw(')(l-sinzp)-sianOSpSinBCOSW(',)flfég"r'
H

R R

= (coswt')(sin2 2ocos?p)

g+sin“pcos B

= ®

dr

+ Sinpcospcosgsi nw(‘))flf2 T

Ioo

W
2 % R'P' (sinwy(si ng+si nzpCOSZB)

ol

R
[ e
Ry

dr

R (r+u) T
- c . ) 2 , dr
[ wa" g —g— (sinpcospcospsinw -cos pcosw )flfé R
H

1
.nlw

o R °

2
R o u (l‘+u ) w
“ngaqlagz{ RC‘COSZQ - (_ﬁg COSB - % S'inB)S’ianOSB)-g-E

1
.olw

o R

xr

R du_ du
3 2 °"¢c C 2 dr
'TCRIH W Taay Raa, P X

R (I -1 )
2 "3 2 . . . . dr
RI - Q COSpS'lnB(SlanOSWO+ c05ps1nwocose)f1fé T
H

-3
%

\



R u 1
[+ 3 f (N7)(R f, - s1nw)
H
k =
12b . | .
R u R
_nl o ar _ml , dr
+3 f N Roq, ST R * 3 J N, =g cosw f) o=
R 2 R
H H
where
r+u )
. ' N ' d’ . : '
((s1npcoswo+<:os;>s1nwocoss)(l-a)f2 - @ —y—— sinw cospsingf
gR au
+ v Cosw cospsing Raq wa F1
R aw
N7 = (Q—R-& sinw cos singf, + — cosw cos singf,
V_R e vﬂ e 2
Qe
“f s : ‘ ' [
+ g (sinpsinw -cospcosw cosg)f,)F;
R du
QR s arR “"d_
+ (v = smpfZ v Raq2 cos;;coss)F

N = [(v_e_)d 9R- Cn] evaluated at nominal value

W
H = [(Vi) ﬁ—ct] evaluated at nominal value

13

21~ “12a T a1
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R Qeq R
-3 R{_| v (sinocosw + cospsimi cosg)F,(x= cosw f,
u
- R si)f) g
R Re (2!d . Rs
+3 RI T (R-:Wl-)(coswosmeFl- cosF,)cosp (= cosw f,
H
u
- R simeg) 7
R au R u
m2 .dr S m2 . dr
+3 o T6g o -3 f F (R—coswf < s1nw6)-R-—
RH 1
H
3 R oaRsa 2 2 . 2. .2dr
- E:R{' ut“(g7) "(sin’s + cos’gsinp)f, o
3 22 A% ‘24r
--q-; f ud cos pfﬁ-gq——) T
RH 2
2
R ,93u  (r+u) W
-3 / ua %[ R ¢ cos? - (]} cosg - % S'inB)S'ianOSp]-gL
9o RH R'c)q2
+ 3 fR ) nzcosZw'(sin2 ~cosZpcos? )f'2 ar
Ce Rl o P pcosB)f," =
H
R (I,-1,)
12 1 °3 2 2 dr
+ T Rf -—-2—-9 sinpcospsinw coswocossf2 T
H
a=p N R
H R
R R u
S ' m2 dr
+3 [ (N7) (g fcosw, - — sinw )
Ry
R R R Uno . dr

R 22R

R U
3 J No Rm2 COSW fé .g_r
H

dr 2
3 [ N R—smwff *+3 [ N
H
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R ne3
3 Rf 7 (
H [ -]

3I[QR

!

3 (s .
f v:—-[s1npcosw6+c05ps1nwécoss)Gz(
H

R

+ (

W

au

r+u

0

e

e

sinpcosw + cospsinw cosg)F,

m ' . | P ' .
R)COSW cospsing + R(Sinpcosw + cospsinmi cosg) )f, o
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L(reup)

\ .
(—g— coswcospsing

0. . ., : 1, . . .
+ g sinw cospsing *‘TT{SlanOSWO + COSpS1ﬂW6COSB))f1f3'R—

(reu )

-—TTEL'COSpSiHB

w

(Rag )(-coswsingF + cosgF,)cosp+F (%1 nwlcospsing
1

dr

R ar,2Yd
3 Rf [v:(ﬁsaza(-coswésin361+ COSBGZ)COSp
H

3

R

(r+u

+ G,]( ) cospsing - il sinp)f dr
glim R =T R->7P/T3R

H

R
RI
H

R

au

No Raq1°

e

. .
osw0c05ps1nsf3

R

-3
R

H

R au

Ho Raq1

[~

OSpCOSBf3'§£

1 . ) .
3 Hy 7= (51anOSW8+COSpS1nw6COSB)f f3-§-
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{
kyq = K
kgy =K

R (r+u ) W
[ (N7) (
Ry
R ey
+ 3 RI (N7) 'R_ (sinpcosw +cospsinw coss) 3 T

H

w

0

R (r+u ) W d
+3 (H7)(—-§-m—-c05psine - R2-51np)f3-F£
R
H
au_

dr
-3 [ N
RH 0 Raq2

cosw cos;;s1 nﬁf3 T

R (r+u) R

0 - ; dr
+ 3 Rf N (—g— f5 - g fp)simicospsingf,
H

R
%
-3 [ N o X COsW c03ps1n3f2f3r
H

R
€1 o .
3 Rf No R (51nps1nwo-c05pcoswocoss)f f3 'F-
H
R au dr R R
-3 RI H, Raq2 COSpCOSBf3—-+ 3 f H R smpfszR—
H H
=0
=Kkgq = 0

cosw cospsing + sz' simw'cospsing
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(reu )
0 -2 f (NZ)(TS singcosw + —R—— sinpsingcosw,
H
W
+ FQ sinw(')si npsi ne)fz %L
R e
-g— RI (N2) 'Rl (sinpsinw(')coss-cos;;cosw('))fz -g—':
H
3 fR (N3)(¥{ sinpcosgcosw' +sinw'cos )+ -—R——(Hum) COSBCOSW!
? R ‘R( P 0 0 p 0
H
Yo . ., 2dr 3 R © . .. 2dr
+ g sinwjcosg)f, p— - 5 Rf (N3) g= sinw singf, =
H
R (r+ug)
- f (H3)(-R- sinpsing+ _FT_ si ns)f2 dr
H
(r+u ) Wy 2 dr
+ j (H2)(R- cosp +—T—S'IanOSB +R—-cos;>)f4 T
. H
3 R L2 (r+um)
t5 jq4 Rf (Nl)(R- sinecosw6+ e sinpsinscoswa\
H
" r
+ -R-°— sinw} sinpsi ns)-ﬁﬂ 1R dr
3, N1 WIN . dr
+ > Jq4 Rf (N1) = (sinpsinw cosg-cospcosw )= f, 17—
H
R (r+u ) W r
3. L m . 0 N dr
t5 Jq4 Rf (H1)( cos+ —p—— sinpcosg+ R Coso)p— fy o
H
3k (s b i (r+iy) :
- > 4 Rj ( )(],{(smpcosecosw0 s1nwoc05p)+ R COSBCOSW,
H
W e r
+ 'R'Q' sinw(;coss- Rl sinw(;sins)Rﬁ f4 %—C
R (r+u_) r
3 . . m/ . N d
+§k / (Hl)(% S'lnpS'lnB+—r-—-S'InB)-§-— f4§-5

q
4RH
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Forcing function vector

1)

02

3 unz ey2 51nscosecosw 1- s1n2p -s1npc05ps1nss1nw
R 1"R"

W . .
+ 3 f % 9 (COSW'(SiﬂZB+SiﬂzpCOSZB)
9, H 0

+ s1npc05pcosesinw5)f1-%£
R (r+uc)

2 e 2 ..
-=— [ ug TR (cos ps1nw0+s1anOSpCOSBCOSw('))f1

dr
R

(r+u ) W
c c 0 .
Raa, ( R Cos"p- 7~ Sinpcospcosp

e . . dr
+ ﬁ'S1ﬂpCOSpS]ﬂB) i

R (1,-1.)
2 3 dr
— =0 c05ps1n3(s1nps1nw ~C0SpCOswW COSB) T, ¢~

e .
+3 ] NO(-,-{-l-f1 - ~%l-s1nwo) dr

R

R W . R

/ Tk §§-(E9{sin23 + sinzpcoszs)+ dr
H

S .
g-singcosgcos2p)f, o~

x| m

R (r+u ) R
3 2 C S . dr
- a: RIH 119} R R"S'IanOSBf2 rE

Ro,0u (ru) 5, W

+-§—- [ ua
coRH

?{—-{——————cos 0~ =251 npCOSPCOSB+ ~s1npc05951ns)dr
aqZ R R

; R(I ) ?
+ 3 ] -_ELEQ—-Q (sianOSpcosec052w6

Yo
R, R

, 2 2 . 2 dr
+ sinw cosw (cos"pcos 8 - sin"p))f5
u

R R

| Y df‘ S ' Z dr
/ "y f2 T 9 * 3 Rf Nofﬁ~ fzcoswo— - sinw )-§~
H H



where

R (r+u) W,
] : . ] .
3 No [ R COSW COSpSing+p=sinw cospsing

1, . . dr
+ = ' ' ar
R (s1npcosw0+ cosps1nw0cosB)]f3 R

(r+u_) W
+ 3 IR Ho( R M cospsing- Rpsinp)f39£ - N.T
R
H

.
GGO
04

generator torque at nominal speed
0

Summary of symbols used in this section

Uc blade's radial displacement at center of mass
uq blade's radial displacement at mid-chord
Up blade's radial displacement at 1/4 blade chord
. 3un
un T3t
. 3l
u ., = —2 evaluated at nominal value
nl .
CLP
where
n = ¢,d,n
i=1,2,3,4
e = distance from mass center to shear center of blade cross
section

R G G0
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ey = distance from 1/4 blade chord to shear center of blade cross

ey = distance from 3/4 blade chord to shear center of blade
section

Cross

es = distance from mid blade chord to shear center of blade

section

cross section
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u = blade's mass per unit length
N = (‘rqz Cn-% evaluated at nominal values
H = (VSJZ ¢ ® evaluated at nominal values

N1

. . . .
(s1nps1nwo-c05pcoswocoss)F1 c05ps1neF2

N2

cosw°s1neF1-cossF2

N3

(cospsinwi+sinpcosw cosg)F +sinpsingF,

0

(r+u ) w
R. -4 1 d 2 L] [] 0 'y ] Iy .
(v:-s1nscoswo +-——q:—— sinpsingcosw, + v:s1nwos1nps1ns)F1

N4

e
3 1 . : '
+ -
'S (COSpCOSWO S'InpS'I‘ﬂWOCOSB)Fl

. (r+u)) Wo
- (v:-cose + ——V:T—-sinpcoss +-v: cosp)F,

. (r+uy) Wy
3 I+ s ] + I+ : ]
(V:(smpcosscoswo sinw cosp) __V:T—-COSBCOSWO"V: Sinw coss

€3

N5 +-V: sinwgsing)F,

. (r+uy)
+ (= sinesing + —py— sing)F,

(r+u ) W,
: . - .
(——V:——-coswoc05ps1ns V:-s1nw°c05ps1ns)F1

N6

ey Wy (r+u )
- V—{sinpsinw6+c05psinwécoss)Fl + (V—sinp --—Tr——COSpCOSB)FZ
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(r+uy)

. 1 . ] !
(sinpcosw'+ cospsinw cosg) (1-a)f, - @ V_ sinwcospsingf,

0

ar 2Yq
= V_ T, cosw cospsing)F,

aR R nw
N7 = + (V_R_ sinwicospsing f, + V— cosw cospsingf,
Qe
ty— (sinpsinw(;-cos;)cosw(')coss)1’5)F1

au
+ (-V— T sinpf, V— W cos;;coss]F

The expressions for Hl, H2, H3, H4, H5, H6, and H7 are the same as N1,
N2, N3, N4, N5, N6, and N7, respectively, except Fy and Fp in N; terms
are replaced by Gl and Gz in H1- terms.



APPENDIX V
COMPUTER CODE

A FORTRAN computer program is developed to handle the numerical
values of the coefficients of the system's equations of motion. The
code will calculate the axial induction factor along the blade at a
particular tip speed ratio. At the same time it also calculates the
integral terms for the variations of the axial induction factor with yaw
and yaw rate. Then it calculates the power and thrust coefficient.
Finally, the code calculates the constant coefficients in the equations
of motion (mass, damping, stiffness coefficients, and forcing function).

The 1ift curve and drag curves are approximated to use in the
computer code. The 1ift curve is approximated and can be described in a
simple yet fairly accurate form by six parameters. The curve consists

of four straight line segments as follows:

CL = ansin(a+a0) a < ac
ma X
CL=CmaX ap <a<aBR
max
C, =C a <a a
L Lf]at BR stall
Sin(%-- a)
CL=¢ @ 2 Agpal

flat sin(%-- “sta]l)

The six parameters are

m - 1ift curve slope divided by Zn
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oL - zero 1ift angle of attack

0
ac - maximum 1ift coefficient

Lmax

- angle at which C; drops to C
“BR ] L PR R0 Mgrat
CLf1 ¢ " an approximate to the average C| on the far side of the C;
a

curve, this can be adjusted up and down depending upon
the characteristics of the airfoil

asta]] - angle at which C, begins to decrease

The drag coefficient curve is also in multiple sections. Below

oc » the drag is given by the following:
Lmax

Cp=C (L+C (=N
0 CL
where Cy» N» and CDO are constants determined by the airfoil character-
istics. If a > ac the drag coefficient can be represented by a
single curve fit or gxseries of curve fits.

The axial induction factor "a" is calculated by equating momentum
flux to blade force. There are six possible intersections of blade
force and momentum relations due to two regions on momentum relations
and three regions on blade force. Two regions on momentum relations are

the region of parabolic curve when "a" < " and the straight

"acritical
Tine when "a" > "a_ jtjca1"+ Three regions on blade force are the
linear slope curve where the angle of attack is less than the angle at
the maximum 1ift force, the flat part of 1ift curve (CL and C, )s
max flat
and the 1ift curve in the stall region. Once the particular region is
identified, the solution is a straightforward procedure of finding where

the momentum and blade element curves intersect. These intersections of

blade force and momentum relations are shown in Figure V.1.
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case 2

1
T [
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| .
0 0.5 1
a
case 5
/1
C 1
T ]
1
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a

Figure V.1 Regions of operation for momentum calculations
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A subroutine and two functions are developed to handle the inner
integral term of the double integration. The inner integral terms are
terms involving the derivative of flapwise deflection (radial displace-
ment and its derivative). The composite Simpson's rule method is used

for the numerical integration in the code.

Input Data

The input data for the program consists of the physical character-
istics of the wind turbine rotor itself. They consist of physical
airfoil data and operation variables. The physical airfoil data and

operation variables are:

BCRR chord to radius ratio at blade root (Bc/R)

B number of blades

EM slope of linear portion of 1ift curve/2n

DRR dr/R

XMIN tip speed ratio to start program

XMAX last tip speed ratio - used to end the program
DBX the increment of tip speed ratio

CD ZERO minimum drag coefficient

CL MAX maximum 1ift coefficient

CL FLAT 1ift coefficient on the horizontal portion of the

ALPHA BREAK

1ift curve
angle of attack where the 1ift curve changes values,

from the maximum value to CL FLAT, degrees

ALO angle of attack at zero 1ift, degrees
AST stall angle of attack, degrees
SI coning angle, degrees



PITCH
BETA ROOT
DBETA

RT

DCND

RC

RH

ESC

XCG

OMEGA

RHO
YL
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prepitch angle, degrees

pretwist angle at blade root, degrees

(Broot - Btip); twist angle change, degrees

local radius at twist angle change from linear to
constant twist

(c/R at chord change - ¢/R at tip), chord change
ratio

local radius at chord change from linear taper to
constant chord

hub radius

blade shear center position given as the ratio of the
distance from the blade leading edge to the shear
center and blade chord (es/c)

position of blade cross-section's center of mass
given as the ratio of distance from blade leading
edge to center of mass and blade chord (xcg/c)
modulus of elasticity, psi

modulus of shear, psi

rotor speed, rad/sec

air density, s]ug/ft3

distance from the nacelle yaw axis to the center of
the rotor, ft

blade tip radius, ft

number of integration steps in subroutine
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The output for the program is on a tape file entitled TAPE 1. On

this file are written both the program operating conditions and program

output. The following are the output quantities:

QS
cp

CT

Cnn
Knn
HP
HF

SKDEL

SJDEL

SKRDEL

SJRDEL

For nn parameters

P

F

nondimensional static tip deflection

power coefficient

thrust coefficient

rotor mass coefficient where nn is the indication of
which variables it represents

rotor damping coefficient

rotor stiffness coefficient

rotor forcing function of pitch equation

rotor forcing function of flap equation

coefficient accounting for the variation of the axial
induction factor with yaw, kY

coefficient accounting for the variation of the axial
induction factor with yaw, jY

coefficient accounting for the variation of the axial
induction factor with yaw rate, k;

coefficient accounting for the variation of the axial

induction factor with yaw rate, j;

generalized coordinate in pitch
generalized coordinate in flap
generalized coordinate in speed

generalized coordinate in yaw



If the code is not
on the output 1list.

PCR

A

PHI

BETA

ALPHA

CL

CD

BCR

]

CTB
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suppressed, additional output quantities are printed
They are as foliows:

local distance on the blade, r/R

axial induction factor

summation of angle of attack and pretwist angle

pretwist angle

angle of attack

1ift coefficient

drag coefficient

local chord to radius ratio, Bc/R

power coefficient

thrust coefficient

For the tower shadow part in yaw equations, the additional quantities on

the output 1ist are:

SMnn

GCnn

SKnn

cQo

mass coefficient in shadow region per unit shadow
width/(B/2r)

damping coefficient in shadow region per unit shadow
width/(B/2r)

stiffness coefficient in shadow region per unit
shadow width/(B/2r)

forcing function per unit shadow width generated from

the shadow/(B/2r)

The quantities from the tower shadow effect will be calculated when the

magnitude of the velocity deficit is given. For example, if the veloci-

ty deficit value is 50%, the forcing function at tip speed ratio of 2

due to tower shadow is given as
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width of the shadow segment (degree)

number of blades

tip speed ratio

correction factor due to nondimensionalized value at

different tip speed value [= 1 - (% velocity deficit)/100]

For the gravity effect, the gravity forces on the pitch equation for a

single blade are listed as the components of sine and cosine of the

azimuth angle.

GNCOS

GNSIN

GPCOUS

GPSIN

GFCOS

GFSIN

GOCOS

GOSIN

Cosine component of the forcing function due to
gravity

Sine component of the forcing function due to gravity
Cosine component of the ki, of a single blade due to
gravity

Sine componet of the ky; of the single blade due to
gravity

Cosine component of the ky, of a single blade due to
gravity

Sine component of the kj, of a single blade due to
gravity

Cosine component of the k3 of single blade due to
gravity

Sine component of the k3 of a single blade due to

gravity
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The properties of the blade and shear center position are also listed in

the output
ER %
El ;l
E2 ;3
AE Modulus of elasticity, psi
AG Shear modulus of rigidity, psi

The integration step sizes are shown as

N Number of integration step sizes used in the main
program
M Number of integration step sizes used in subroutine

(double integral)

Note

The code does not calculate some of the terms in the expression of
the coefficient of rotor equations of motion. These terms have to be
calculated by hand then added to the resuits of the computer code.

These terms are

1 2 2 .
a;—(IH + NGIG) f3 in M33
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pBTA INCREM
ALO ANGLE
AST STALL
SI CONING
e RTT T REDIAL
DCND INCReM
RC RADIAL
RH HUB FRA
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27

ll‘l‘&.#lll#i#‘&l“‘;l“.l‘6.ClQ#lQ!&#“O"G.‘C#Q‘40#‘&#4"Qllegf,

INDEFPE NDEANT VARIARLE INPUT SeCTION

Y Y Ry Ry Y Sy S Y Y Y YT I oYY VR Y Y Y Y Y Y ¥ Y

TIMIN=SECCONO()
PRINT1

PFINTZ

READ® s By PCRRyE My LFRyAMINGXM_L 4D IX

PRINT 3

READ* ,CDU JCLMyCLFL ABR

PRINT 65

READ* 3 ALD WAST4SI PTCH,3RT,D3TA

PRINT 66

READ® ¢ RT o OCNGy RC ¢ KH

PRINT 67

FORMAT (* INPUT SHEAR CENTER POSITION £S/Cy XC68 CENTER OF MASS™)

- READ*,ESC.XCG

PRINT 50

FORMAT (* INPUT I ANO G ")

READ*,AE 4, AG

PFINT Si

FORMAT (®* INPUT CHzGARHC YL gFy 4" )
READ* yOMyRHGy YL o koMM

PRINT 68

REACS,, SUPP

FCRMAT (*SLPPRESS INTERMED, CUTPUT? (Y)*)

LI R Y R Yy R Y Yy P Y Y P Y PRV Y P P Y Y YR IS YR Y Y
HEADINGS AND CALCULATION OF CONSTANTS

Y I Y Y Y Yy Y Y P Y YR YT T Y

WEITE (1,€0)

WRITE($42S) By3CFRFRyICNDIyRTHyRC9RH43RT,028TA
WRITE (1,B8ICLM,CLFL,IHAST,ABRRALD,,CO0
WRITZ (1 ,9) XMINOIMAXyORRySI

CONVT=PI/180,.

AC=,38

FAT=1.,

YL=YL/FK

SI=SI*TCNVY

CSI=CasS(s

SSI=SIN(ST)

DBTA=DBTA*CONVY

ABR=A3R*CONVT

ALO=ALO*CCNVT

LST=AST*CCNVT

AMAX=PI/Z.

ZLNT =41,

COL=CLFL/ZLDT
CO2=(CLFL/ZLDTI* (L +SINAST))Z(LE*SIN(2,.%A5T))
ROSE=ATAN(( 41 /CLFL)**,37)

EMI=CLFL/Z (SIN{AMAA-AST)Y)

WRITC(2.21)VPTCH

X=XMIN

ANG=BKT*CONVT

RTR=RT /F

RCR=RC /%

REK=KH/R

CONT INUE
KK=Q
V=0OM*R/X



[~

Xe=x

KL=1 14

IM=L
1S=.023
DX=DRR*X
DR=DRESE "
TNUM= (R=RF) /DK
NUM=TNUM

N=NUM

IF(NUMoNE s TNUM) N=NUMel

CHes3 28 INITIALTI D

c

c

214=712=213=71u=215=216=217=218=7219=7140=2142=2122=2123=2i24=C.
2115=711€=2117=2118=7113=9,
IMPP=IMPF=ZMPO=7MFF=ZMFO=7M00=7MDD=7CPP=7CPF=2CPQO=2CFP=2CFF=l.
LFO=7COPE2COF=Z2C00ZC07=7001{=2Ch2=27XPP=2IKPF=2KB = IKF P=ZKFF =(,
IKFO=7KOP=2KCF=2k0J=2KDZ2=7KD1=2XD2=2HP=7HF=ZHG=(,
CCO=SMOP=EMIF=531L0=3M00=SCDP=SCOF=SCOC=5C0L=SCAJ=SCHK =0,
SKOP=SKDF=3KCO=3K0L=SKDJ=SKDK=].,
SCPO1=SCPL2=SCFD.=3CFD2=5C071=5C002=0.,
SKPDL=SKPL2=SKFD1=SKFD2=SKXAC1=3KGN2=C.

81=52=81=8S5{=832=53 3=, - T
GNCOS=GNSIN=GPCOS=GPSIN=GFCIS=GFS IN=GOCOS=50SIN=0,

6=3z2.2

GF=G/¢€

720L 1=700L2=20L3=20R1i=ZDR2=7DRI=Z3WL=20W2=20MW3={,

Ci=0.

cp=0, e e e

AT=LP=ATR=(,

APR= =X 237 20D *(ECRR=3*JICND)

7€=0.7

79=COS(PI/2.*7F)

Re =SNORT ((X*B3** 6665) /(X *R**,E66%9641,32))

IFMX LT TY RESSCRT(B*¥ €606 7(3%¥ , 65BE +4 4u))
GLUART=L4+*(1e=2.,%AC)

KL=1

NN=N+J

Ju=1

I=1

Ceoeess CHECK TO Sttt 1IF NUM3ER OF INTERVAL IS EVEN
Ce*%838 CYENe==1/2 RULE CDROe==3/78 RULE ON THe FIRST
Cessvsy THREE INTLRVALS

KHALF=N/2

IFCIN=2%KHALF) +£Ced) IM=T
IF(KL.ENeL) GG TC 355
IFISUPP.ENIHY) GC TC 555
WFITE ($425)

IF(KL.EQel) THEN
NHALF=JU/2
NTEST=JU=Z¥NHALF
ELSE

NHALF=I/2
NTEST=I=c®NHALF

ENDIF

RLR=XL /X

RLRZ2=RLUR*®LR
RLRI=FLEZ*RLR
RLRL=RLRI*RLK

BPELBUREBEASESRIESSLSAB PSP SSRBISABEN SIS RBIEN R FR NN SRS SR ENSFENIBBY
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CALCULATION CF LCCAL TWIST ANGLE AND

LCCAL CHORD TOC RAZCIUS RATIOD

A BB B BN RS SN B P LN BRE BB SE LS SN E L NS S NASEP ARG VS RBG S LB SIS GIISIEEIES
PCR=XL /4

Ep=(1e=PCF)/(1a=FF)

EFSML=79%*E

FOIG=Co/FZ%ACCS(EFSHLY

71={i=PCK)I*1L .,

Zi=(Z.%*71)-1.

BCR=BCA:

IF(RLRSGE 4RCR) BCR=3(IR=-A*OCNDO* (SLR=RCR) /(i +=RCK)
IF(F3IG.NEeDe) 3BCRF=RCR/FSBIG

Cr=BCF/8

LP=(ESC-¥LG)*Ck

Li=s(E35C~.25)*CR

ES=t0,75=-28CY*Cs 7

E3=(0.5«ESCI*®CR

CV=CR=*k/V

BFTA=ANG

IF(RLRSGE «RTR) BETA=LNG=ZATA*(RLR=RTR)/ (1 ,.,=RTR)
Bt TA=BETA4PTCH*CCNVT

JFI{FBIG NZTs) CtMz=EMI*¥ZCRF¥N¥CSTI /(. *PI)
STEL=RCR/7P* (XL /X)

AMSASINICLM/(2.,¥PI*iM)) =Ll

Y Y Yy Yy Y Y Y Y Y Py Y Y Y Y Y Y YV YY YY)

CALCULATICN OF AXIiL INDUCTION FACTOR

AR ER RS AR RS EES SRR RS RS RI R IR RS RI RS RS RIR RSN R R RS RS R R K XX

IF(RLR.ECe1eY THEN
CL=ALPHA=].,
PHI=RZT.
A=,
ELSE
G=he*(1e=2.*AC)
Hzlb, *AC*¥(1,=-AC) =G*AC
AB=3CrF*x *cM*CSI*(COS(3LTA=ALQ) =)L*¥SIN(BFTA=ALT)) =H
ASAR/ (ACRFUX*L M¥CSI*COS(RTA=AL0) +0)
PHI=ATANT{(1.=A)/XL)
ALPHA=PRTI=-J:TA
IF(L.GT.AC) GG TC 39
Bizl  +BCRFOLM*X*CSI*COS(Be TA=ALE)
1=9CKF‘E}‘%¥CS:‘(CQS(B&TA-ALG"XL‘SIN(BtTA-ALQ))
A={R1~-SOFT(A1**2=-16,%C1)) /8,
PHI=ATAN((1.~A)/XL)
ALPHA=PHI=-3ETA
CL=2 *PI*ZM*SIN(ALPHL+ALL)
IFCABS{CL)JLTLCLM) GC TO 500
CL=(ABS(ALPHA)ZALPHAY*CL M
IF(ABS(ALFPHAY o GT e a3R) CL=(ALPHAZAAS(ALPHL)Y*CLFL
EN=BCRF*).*CL*C31/(2,+P])
BZ=(G¥H+EN**Z) J(G**2=EN**)
CC=(ENFPZR (1, +XL*%2)=HE30) /(22 2=EN*47)
BOOM=B2**c+C2
IF(BCCMLTeol) £=3,
IF(G00M,LT.eL) GG TC 32
A==324SNRT(BZ**2+C2)
CCNT INUE
PRI=ATAN({1.=-2)/X%L)
ALPHA=PHI=-A3tTA
IF(ABRS(ALPHAY «LZeABR) CL=(ANS(ALPHA) Z/ALPHA)Y*CLM
IF(RABS(ALPHA) (GT4n3R) CL=(ALPHA/ZABRS(ALPHA))Y*CLFL
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IF(A.GT.AC0) GC TC 35

BC 4 K=1,5
AI=3CPRF*RL*A2CL*CSI*SORT (144 ((Le=2)/XLV222)/7(2*P 1)
A={l .=SORT(1.=B3))1/2.
PHI=ATAN((Le=A4)/XL)
ALPHA=PHI=S3.TA
IF(ARS(RALPHA) o GTea3R) CL=(ALPHAZARS(ALPHANI*CLFL
IF(LARS(ALPHA) LT A3R) CL={ALPHA/ARS(ALPHA)Y*CLM
31! CONTINUT
25 CONTINUE
IFCALPHALLTWASTY GO TO 5CO
ETA=EBLTA+AMAX :
CETA=CCE(ETA)
SETA=SIN(ZTAY
EMA=ZOCRKRF®U/(Z*PI*SIN(AMLA=AST))
Az (L MA*(XL*SETA=CETA)=H) Z(G=-EMA*C-TA)
PHIZATAN((L.=A)/¥L)
ALPHA=PHI=3:TA v
CL=EMI*SINCAMAX=ALPHLY
IF(AeGTeACWANDWCLJLTWCLFLY 6C TO 30¢
B =EMZ*COS(2TAH)
CL=EMZ ¥ (XL2SINIETA) =COS(ETAY)
A= (BL=-SORT(34**2=:5,%C04)) /8,
PHI=ZATAN((L.~4)/XL)
ALPHA=PHI=BETA
CL=TIMLI*SIN(AMAX=AL2PHAY
500 ALPHA=PHI=3ETA
ENDIF
EXERE ENEN PSS N NS SN AN RN NG AN AR N U N AN R NS R AR R A NN R P S AN L R RN XX KX SR R B Y

CALCULATICN OF DFAG COEFFICICNT

P Y P R R O R S g B A Y Y Y Y I XY YYD YWY Y

ABSAL=ABS(ALPFA)

SA=SIN(ABSAL)

COA=CUS(AESAL)

Sk2=SA*SA

BCB=.20944

BOBZ =4ARR

IF(ABSAL.LT.BCB) CO=(00*(1.453.31%(ABSAL**2.))
IF(ABSAL.LT.BOB) CJA=107.62*CDO*LAASAL
IF(ABSALLCELBGRY CD=3.35*C07=~TAN(ROA)+TAN (A 35AL)
IFCARSAL.GEL.B0B) COA=1,+4(TAN(ABSAL))**2,
IF(ABSAL.GT.BOBL) CO0=24433¥CLFL*¥(TAN(ABSAL)**2.15)
IF(aBSAL.GCT.EQB2) THIN
COA=5,24385*CLFL*(TANCAISALII**1.15% (2 +(TAN(A3SAL))I**2)
ELSE

ENDIF
IF(ABSAL.CE.RCSE)CDA=COL* (L. +(TAN(ABSLL)I**2)
IF{ABSALCL FCSE) CD=COL*TAN(A3SAL)
IF{A9SAL.GELAST) CO=C02*Sa2/(1.4SR)
IF{ABSALICLAST) COA=CI2*(2*SA®COA+SA*SA*CTA) /7 (1, #53)**C
CSP=COS({PHI)

SNP=SIN(FHI)

CAS=COS(ALPHR)

SAS=S IN(ALPHA)

CN=CL*CAS+CO*SAS

CO=CL*SaS=CO*CAS

CLA=Z2.*P1*ZH

IF(ABSALWLCT M) CLA=G.

TF(ABSALCT.AST) CLA==EM1*COS(AMAX=-ARBRSAL)
COP=CLA*SAS~-CLA*®CAS+CH

CNP=CLA*CAS+CDA*SL5=CN



CNA=CLA*CAS+#CIA*SA3 144
CTA=CLA*SAS=-CCA*CAS

DPHI=PHI/CONVT

OAL=ALPHA/CONVT

DBET=8ETA/CONVT

IF{KL.EQW1) GO TG 2%

IF(RLFelNele) THEN

AP=C.

AT=0.

ELSE s

AP ( (L o=A)*CL=XL* )Y * AL 22 *SOART (L o+ ({1a=R)/XL)**2,)*ACK
AT=((1e=a)2CO+XALACLI*XL2SNRT (1,4 l{1.=A)/XL)*%2,)%2CR
ENDIF

CP3=CSI**3,*%(AP+LPA)*DX/ (2.*PI*X)
CIB=CSI**3.*%(AT+LT3)* ¥/ (2.%21*X)

CT=CT+(T3

CP=CP+CPR

AT8=AT

APR=AP

c
Cry*2s33pROPERYTIES OF THE BLAD:

c
2e

AFACTO=C.84752/1bxn,
IF(RLikeLE eL1e s ANJoRLReGT Lo b565) THEN
BIZ2=5.,6 7 %EAP(=3,3L3*RLR)

BI3=6AT7 43E36* L XP(=C,023€*FLR)
AMASS=45.,%aFACTO* (P (-1,2266*FLR)

ELSE IF(RLESLE oL oeB5450ANDeRL%eGToCol648) THEIN
BIZ=2+111%EXP(=1,8)2*%RLR)
BI3=29LU*EXP(=(,75*RLR)
AMASS=9,E5%AFACTC AP (=0 o 6Ly 7THRLAD

FLSE IF(RLReLE «Colou8eANDSRLPeGToLa2393) THEN
Bl12=G 5E7CEXP (=uoB8006%RLF)
IFIRLR«GTeCuctile) 3[2=2,142%CAP (2.8 2%RLK)
B313=11.3726%RLR**(«J.6535)

AMASS=5, U3 AFACTC*RLR* % (=0, 2635)

ELSE

RI2=2.321¢C

BI3=41.92Hh

AMASS=1( +R3*¥AFACTC

eNDIF

8l.=Bi2+8I3

tI=BIc*At

£10=24.321%AL

GJ=BI1*AG

GJI=4 U CLE*AG

CP** 3332 4CHANGE UNWIT TC FoET

c

c

ATi=AFACTC*3I2/(L044.%R*x)
AI2=AFACTC*312/(1644*R*R)
AI3=AFACTC*RI2/(i4k.*R*R)
ISEI/Z (L4 *R*%4,)
E20=EI0/7(14L*R**4,)
GJI=6GJ/ (144 *R2%L,)
GJI=GUG/ (6L %%*u,)
ATTI=AL %1/ (140" R*%y,)
AGJ=AG* {21,/ 1144, 2R3%,)

Corassssnsnsans

c



QVEL =0 4 S* THO¥ VoV 145

FC=1.,

Fn=1.

FS3=(1.=PHS)

7P= (RLR=-KHR) /RS

IP2=7P*2FP

IP3=2Pc*2P

IPW=7P3*7P

FF=6.42P2=4.*ZP34774

FFP=1 2 e*7Pet1l *7IPc ¥, ,*7P2

FEPP=222,-24,%79412.%7P2

FE=2,%2P=2P*7pP

FPP=Z4%(14=2ZP)

FPH=(,

FPHP=(,
Cesr»x23,3SUME STATIC ¥CD
c Rall

m

SHAPL EUAL DYNAMIC NODE SHAPE

FF3=FF
FFSP=FFP
FFSPP=FFPP
FFHS=FFH
FFHSP=FFHF
FFHSPP=FFHPP
WR=FFS*QS*RS
WP=FFSP*QS
WPP=FFSFEP*QS
CW=CCS(WP)
SW=SIN{(WP)
CEW=CW*(CW=SH*SH
CB=CO0S (8t 1A)
SB=SIN(BETA)
c
CHres 88348 CORRECTION OF MOQE SHAPZ THAT BASED CN LEINGTH GF THE BLADE
Cerssxrxr(E-PH) NOT ON TH RADIUS CF THE RCTOK ( CORRECTION FIR
CE¥s B3R MASS,DAMPING,STIFFNESS MATRICES )
c
FF=FF*pRS
FFPP=FFPP/RS
FPP=FPP/KS

CALL SUMRCWITOM, TIMyRLRyER,F1,E3,UC,AUC,3UT,y AAUC,ABUC,,B73UC,AUM, 4AU
i1M,A8UM,2UC,MM)
UG=UM=UC
uce3=AUC
UCFC=8UC
UCFO=UMF3=8UC
UMPD=AUM
BUD=83UM=BUC
AUCPC=AAUC
AUMPO=AAUM
BUCPD=AUCFDO=ABUC
BUMPO=AUMFD=ABUM
8UCFO=BUMFD=23UC
BRUM=3RUC
SB=SIN(BcTA)
C3=CC3(3¢tTA)
DIS=(RLR+UCI*CSI=WR*SSI
DYNA=0es/ (RHO*V*V)
c‘."‘
Coo2332450LVE FCR NS (STATIC TIP DEFLEZCTIONY
e
IF(KL.ENWe1) THEN
BNORMA=«CSI*CaA* (L. =A) +X*ELR*CSI*S3I=-X*:3%cS]



BTANG=CST*S3* (L e=2) $X*¥RLF*C35I*CH 146
WNORM= (ANCRMA*INCFMA+ATANG* BT ANG)
DSL=CYNA®AMASSH*OM*D4» (ZX*SB+(CB*(1,~S ~RLR®*SSI*IBI*FF *ORE
OS2=CYNA*(AIL=-AIZ)«0H*OM*SSI*CSI*CI* '
OSTI=3 . *WNIRM*FF*( N*CR*JRR
Crx»xyrxx SINCE SUC=B3UC*AS
PAUL == BIUC
DSS1=CYNA®AMASS*OMP OM* (RLR®*CSI®CSI#ZR*SSI*CSI*S3)*PLUL*IRR
DSSZ==CYNAXAMASSHOAROM ¥ (SB SR+ (SSI*CRV**, ) *FF¥FF *3Rr
DSS3=0UYHKA*: I*FFPP*FFPP*J VR
IF{IM.EN.L) THEN
FEB=G.,/8.
Ip(JUoE001.OQoJUth-4’ FE?=3./8'
IF(JU.GE &) IM=(
ELSE

Fe 322473
IFINTLST2N.C) FiLB=4./3.
IF(JULEQeLsGReJUCENWNN) FEB=21./7,
ENDIF

Cewsr START THE INTLEGRATION
S{=Si+FFB*DSE
S2=S2+FL R*052
SI=S3I+FEB*D33
SS4=55i+Fg3*n5Sy
SS2=SSZ2+FEa*DSS2
SSI=CST+FEB*]SS3
XL=XL-0X
RLR=XL /X
IF(RLELLT«RHF) THEN
RLR=FRHR
XLERHE*X
DFR=(TNUM=NUM) *DKK
ELSE
ENDIF
Ju=sJgusl
IF(JU.LELNNY GO TC 555
ELSE
ENDIF
IF(KL.EQ.L) THEN

QS=(S514S2453)/7{551¢552+4553)
WHKITE(L,510) QS
KL=KL+1
xL=x
ORR=DX /7%
IFUIN=Z*KHALF) 4EQ42) THIN
IM=¢
ELSE
iM=1
ENDIF
GC TC 552
ELSE
ENOIF

Ce**®¥SOME CCFACTORS
PART1=SSI*SW=CSI*CH*CA
PARTZ=CSI*S3
PART3I=CSI¥C=SST¥SW*(3
PARTL=(RLF4UM) *CHEWR*SH
PERTS= (RLF4UM) *SH=4R*CH
PARTE=CSI¥SW+SSI*CH*CA
PART7=R/V*(YL*SB*CH+(RL+UD) #S55I*S3¥CWENR*SH*SSI*SA+L 3¥PARTI)



PART BZR/V *(YL*C24(3LF+UD) *SSI¥CR+UR*CST) 147
PERTG=R/VI(YL*DAkT5+ (RLR4UD) #CR*C W+HRASHS CR+E 3*SW*SA)
PARTLC=R/VA(YL*35T#SB+ (RL2+UD) *SR)

PART11=WF¥S3%CSI+ER*CST*CA

PARTI2=5S I+CWeCSI*3 W3

PARTL3=WF *SSI*53+£3°CP*55T

TLFL1= (YL*SB*SH+ (RLR*UM) *SS IS IS MWWk *CH¥SSI*S3=51 *PAFTH) *FFP
TLF1=TLF1-SW*SSI*53%FFeUMPSEI*SASCHY

PAL1= (RLF4UC)*CEI=AR*SSI*OB4E 25531553

PALZ=YL#(ILR+UC) *SSI+HIACSI*CI-LE*334CS]

TAIL1= (RLR®UM) *CWECSI*SA+WRPSWHECSTI*SH4E1*PARTL2
TAIL2=(RLR+UM) #CSI*SH=WR*»SS]
TAILZI=YL*CBACWH(RLRAUMI P SSI*SA*CU+WR*SW*SSI#S3=-L1 *PAKTS
TAILG4=YL*PAXTOH(FLR*#UM)*C3*C W4 AX*SH*CBeL 3 *SW*SR
TAILS5=YL*CA+(RLR+UM) *S5I%CB+WR*(CST

TAILG=YL*SSI*S3+ (~LR+UM) *S3

WT=CSI*SA*(1e=A)4X*((RLR+UD)Y*CII*CHA=WFK*SSI)
WN==PART1*(1s=2)=X*((RLR+UD) *CW*LCSI*S3+AR*SH* SI*SB=[ I*PAKTL2)
WE2=HWN*WNEWT*WT

BIl=We 2*CR*CR

WNO=We S*CN*CK

FASCR¥ (2 *CN*WN+LNP*WT)

F2=CR*{(2+*CN*NWT=CHP*iIN)

G1=CR* (2. ¥*CO*UNHCIP*WT)

GZ=CR*{(C+*CA*UT=CNP*WN)

FL=CR*WEZ*C MNA¥FP

GL=CR*WF2*CTA*FP

HELPZ=AUD* (=CW*CS1*SB3*GL+CSTI*C3I*G2)

WP2=X*E I*PART12*FP

WF11==PLRTLZ2%(1.,=2) %FFP

WFL2=X*(FLR*UD) *SH*CSI*SB*FFPas *¥SWACSI*SA*FF=aX*WR*CHA*CSI*SB¥FFP
WF13==X*[ 3*PARTI3FFPX*3UD*CW*CSI*SA

WFAL=WFLi+4WFL24WF1Z

WFZ2==x* [SSI*FF=-3UD%CSI*C3)
HACL=((RLE+UD)*(W*CSI*S T+ URBSWACSI*S I I+ (STI*SN4CSI*SHACI) )IPR*FO/V
WOZ= (WR*SSI-(RLE+UDY*CSI*C3V*&*+F/V

WDL= (YL*S3*CH+ (FLA*UDY *SST*SR*CHWSWR*SKESSTI*SB+ZI*PART I *F/V
WOZ=R/ZV*(YL*CR+ (FLR4UDY2XSSI*C 2+ WR*CS.I)
WOZ=R/ZV*IYL*(SSI*CR*CW+SWH*CSIYH(FLRAUD)I *CLA*CWEWF2*SW*C B+E2I*SHW*SB)
WOL=R/V* (YL*SSI*SA+{FLR+UDI*SY

WNDOYI =PART1#F1-PLRT2*F2

WTD1=PART1*#GL-PART2*G2

WNDC=PARTE*F1+SSI*SR¥F2

WND3=CW*SA*F{-C3*F2

WTDZ=PARTE*G14SSI*53*G2

HTDI=CW*SB*Gi=CB*G2

WNDD2=WD2*F1 +WIL*F2

WNDD3I=WD1*Fi=-WDC*F?2

WTDOD2=WOI*GL+WDL*G?2

WTDD3=W01*G1-WD2*52

C*e***#FIND THE INTecGRAL COELFFICIENTS OF YaW AND YAW BATE

c

90

SAM=(1.5/PI)

DCYDA=4.*{1.=2.,%R)

0ZI1=0CTCA*DIS*DIS*DIS*¥) R*FRIG*CSI

IFtR.LT.AC) GG TC 381

0ZI1=(GLUART/JCTUAY*D711
ADZIZ=(PARTI*FA=PARTZ*FEI* (L L*2ARTI=-PARTL4*S5I*38)
BOZI2=+(PART1*G1~PART2*G2) *(PARTS*PARTI=PLITH*PARTE)
DZI2=SAM* (ADZIZ+BNZIZ) *JIIS*CRK



ADZIZ=(PLARTI*FL1=PiRT24F2) * (=1L *SH*SB+PLRTLYLR) 148

BDZI3==(PART1%G1=PARTC*G2) *(PARTE*SW*SB4PARTLACW* £3)
DZI3=SAM¥ (ADZIZ+BOZ2I3)*DIS*0RE
D2IL=SAM* (CW*SB*F1=-CU*F2)*(f1*PART3=-PARTL*SSI*SR)*F*DRR
DZIS=SAM¥ (PARTA*F1+STI*SB*F ) *(C1*SW2SR=PART4L*CB) *FD*CRR
DZ2I6=+SAM*(CH*SR*G1=CR*GZY *(PARTG*PAFRT2I=PAKTL*¥PARTH)*FO*0RRA
DZI7=+SAM* (PARTE*GL4SSI*SA*RZ) *(PARTL*CH* SR+PARTS *SW*53) *FD*DRR
DZI8=SAM® (PART7*FLi=PARTA*F2)*(E1*DAFRTI~OAKTL*S3I*SBI*FO*ORR
DZ719=«SAM* (PAFTO*FL +PARTI0* ) * (PART L+  RB=L L *SW*ST)#FD *IKF
DZIL10=+SA M (PART7*5H1=PARTE*52) ¥ (PARTS*PAKTI=PART+*PARTH) *FD*DRK
TBZILL =45V PARTO*G14PART L0 G2 #(DARTL*CH*SR+PAFRTS*SW*S3) *FI*JRF

D2 12=SAM¥ (CW*SB¥*F_.=CRA*FZ)*(£1*SW*SR=PARTL*B)*FO*CRR
DZT13-SAMP(DARTO*FL+SSI*SRAF2)* (=EL*PLPTI+PARTL*SSI*58) *FD*DRR
DZI14=+SAM*(CHE*SB#G1=C3I*G2)* (PARTS*SHASB+PARTL*CH *SB) ¥F I*DRK
D7115=«Sia M (PARTE*GL4SSI*SB¥G2)*(PARTS*PART3-PART L*PARTH) *FO*DRK
DZI46=SAM*(PART7*FL=PARTB*F2)* (L1 *SW*SR=PARTL*CB) *FD*LRK
D 7T 7= AR FARTOR T L ePARTLOF Y * (U1 *PART 3=PARTU*SSI*SB) *FO*DRK
D7318=4SAMY(PART?7*G1=PARTA*GZ)* (PARTS*SW*SA+PARTL*CW*SI) *FO%DRK
02149==SAMS(PARTO*GL+PARTIO*GC2) *(PARTS*PARTI~PARTE*PLRT4) *FG*DRK

Ce*»3xMASS MATRIX
QVEL =0 «S*RRO*V*Y
DYNA=(3,/0VEL)
DZMPPL={ULPO¥UCPL =2, *UCPD¥ER¥SWEFDIL R*CR¥FOFFDYSAMASS +ATL*¥FPEFP
DZMPP=DYNA*DZMPPL*IRK
DZMFF=0DYNA*(AMASS*(UCFI*UCFI+FF*FF)+AI2*FFP*FFP)*pKK
Ci= (WRPWR¥(SB*SR4(3SI¥CN**2 V4T REZL®(CI*CB+(SSI*SBY**2,))
02=(RLR4UC) *%2 . #*CSI*CSI+Z+*(RLR*UC)I*SSI*CSI*( R*SA=HR*CI)
03=Z,.,*WR*ER*SB* CR*CSI*CSI
OL=AYL % (SEI*CW+CST#CRYSWY* ¥ L +A1*CSI#CCI#S3*53+2 I3*PARTLI**Z,
D2MCO=DYNA®(AMASS*(01402+03) +0u)*FO*FC*NRE
DDL=C o ¥YL*YL 4L, *YL*WR¥CSI®CA+L, *YL* (RLR4UC)*SST~4 ,*YL *ER*CSI*SB
DC2=Whk*WF * (1, +(CST#CRI %42, )+t K*EFE% (1 ,4(SR*231)%*Z )
DO3I=(RLRK+UC)I* 22, (1, ¢SSI*SSIV w2 *:R*WR*S*CI*% (4 ,~SSI*SS D)
DDL=2 *(RLR4UC) *Wr*3SSI*CSI*CR=2.*(RLR+UC)*LR*S5SI*(C3I*sR
DOS= (CSI*CWIF*¥L o (SETRTUSCBY®E2 .4 (SH¥SQ) *27 = ,*SSI*CSI*SWACHW¥(A
DDB=( (SSI*S2)**2 ,423%Ca)»812
DD7=(CSI*SWI**2, 4 (SSI*CW=C3)*%2 (+(CHWPSB)**2, +2,*SH*CW*S51*CSI*CB
DZ2MDO=DYNA* (AMASS*(DO0L140D2+503¢0DLY+A11*005+0D06+AII*C0T7)*FO*FB*DRR
DZMPF=DYNA*AMASS* (UCPD*UCFO=UCFD*ER* SH*FP+IR*CW*FF*FP) 4Rk
POL=PART11*(=UCPU#ER*SWH*FP) +ER*CH* ((RLF+UC) *CSTI*SR4EF*SSI) *FP
PO2=AI1*ISSIMLW+LSI*LASK)Y #FP
DZMPO=DYNA*(AMLSS*PO1+P0O2Z) *FO*ORK
ZFNL=«UCFO*PAFTLIL+ ((RLR#UC)I*SB*CSI+L R*SSI)*FF
ZFO2=AIz*CSI*CA%FFp
DZMFO=DYNA*(AMASS*ZFOL+2FQ2) *FQ*DFR

c

CP#**2n/MPING CCOEFFICIENTS MATKIX

C
CPPi=AUCPD*PARTL1S +UCPO¥ER*CSI¥CW*SB*FP=AUC*ER*CW*SB*CSI*FP
CPP2 ==fF R*WR*SSI*FP*FP+ER® (RLR*UC) *CR*CSI*FOrFP
CPPI=3  *WTHCR¥FP# (CNAPEC*(ZL*FP=UMPD*SH) +PI /8 *CR*CR*K) /V
DZCPP= (DYNA® (AMASS*OM* (CPPL4CPPZ) ) #CPFIYADRR
CFF1=4QUCFC*PARTI4¢UCFD3ER*CSI®SA*CUPFP+ R*IR* SW¥CSI*FF*FP
CPFZ=ER*(RLR*UC) *SWESB2*CSI*FFPH*FPILRALRASSINSUHFFpPaFp
CPF3==FF*CW*PAFTLLI*FFP*FP
CPFL=(A12=-AI3)*0OM*PART1*FFPsFpP
CPFB=34*F1/V* (=R*UDFO*SH+CWEFF*R) > (L 1#FP =lIMPO*5W)
DZCPF={CYNA* (AMASS*OM* (CPFL#CPF24LPFI)=CPFY) #CPF5) *OF K
CPOL=ER*FRP*(SSI*(SI*SR¥3W=S5I*CI* WA (L1,~SSI*3SIV)*Fp
CFOZ=<ER*WR*(CH*(SA*SB+(SST*CR) **Z,) +SSI*CSI*CI*SNI*FP
CPO3=ER¥(KLRAUCI*(CSI*CSI»SWHSSI®*CSI*CB*C W) *FP
CPOU=AUC* ((RLR4UC)I*CSI*CSI-WR*SSI*CSI*CI++R*SSI*CSI*SP)
CPOS==(2I2=-ATI3)*UM*CSI*SR¥PARTL*FP



: CPOB=2,* (WOL*FL+WC2*FZ) % ({15 FP=UMPO%SH) 149
DZCPU={C o *DYNA*(AMASS*OM* (CPOL4CPO24CPOI+CPOL) 4CFC5)*FO+CPO6) *DRR
CFP1=8UCPI*PARTL14UCPD*SB*CII*FF4ER¥ (FLN4US) *SI*SUSFFPAFP
CFP2=i R¥L R*SSI*SWAFFP¥FP4FR*SI*CROSSI*CWHFF*FP =L R*AUC*CW*S3*CSI*FP
CFP2=f RO CH*PAKTLLI*FFPEFP-FE Qe SH*SR*CSISFP*FF
CFPL=AIL*CM*PART L *FFP*EpP
CFPS =3 *WT*CR¥CNL*:2%(FF*CW=UMFD*SW) *FPoR/V
CZCFP=(OYNA* (AMASS*OM® (CFPL1+CFP2+CFP3) 4CFPL) $CFPS) *JRK
D7CFF=DYNA® (AMASS*)HA* (SUCFD*PARTALL¢UCFO*SB*CSI*EF))
DZCFF=(CZCFF43,*F./V* (=R*UDFD*SU+CH* FFAR) * (FF*CW=UMF3*S¥) ) *DRR
CFOL=WR*(S3*3R+(SSI*CR)*%2 .V 4£*S9%CB» (L, ~-S5I*5SI)=(RLR+UC)*SSI*C8
CFOC=((RLFMUC) *CSI*CST=WF*SSI*CSI*CR+EF*SSI*C3I*SB)*AUC
CFO3=(AIZ~AI3)*UM*(SSI*CSI*CR*C2W+SH*CH*((CSI*C3) **2,=53I*S51))
CF09=3.6(w01'F1+w02‘FZ)'(EF‘CN-UMFO'SN)

DZCFO=(=. *3YNA*(AMASS*IM® (CFOL*FF+CFCZ)*FO4CFOI*FFP*FQ) +CFOL) *CRK
DZCOP=3,*WT*CF* (£ 2%R* (CNL*TAILL+CTA*TAIL2)¢PI/B.*CR*CK*R*PART12) /V

T DZCOP=DZCCP¥FPRFC*)ZR
DZCOF =3, /V* (=K *ULFI*SHE W FEXR) # (FL*TAIL1#G4*TAILZ) *FO* KRR
DZ2CCO=3.% ((WO1*F1+4402*F2)*TAILL+(WOL*L1+WC2*G2)*TAILZ)*FO*DRR
CON1=((WLL1*F1=WoL*F2)*TAILI+(WOZ*FL+WRLAF2)STATILL)*FO*FD
COD2=(4(WCA*GL=HDT*GZ) *TAILS=(WD2*GL ¢WDL*GZ)*TAILG) *FD*FL
DZC02=1.5%(C0D1+("I2)*DRK

T DZCDA=PARTLI M FL~FPARTIFF2)NTATILIF(OART NG <BARTZ#52)#YATLS
DZC01=1.5%07COL*DIS*FI*3F N
DZCD2=(PARTL*F1=-PARTZ*F2)*TATIL4=(PARTL*G1=PART2*G2)*TAILE
DZCDZ=1.5*D7CC2*DIS*FO*IRR

c

C*¥*#8STIFFNESS COEFFICIINTS MATRIX

o e .

HELP=AUC* (=CW*CSI*S3*F1+CSI*C3*F2)

PPL==f R*LR*(CWPCWH(SB*SA+(SSI*CRI*32,)=(CB*CR+(SSI*SBI**2,))
PP2==t R*EF*CSI*CSI* (24 *S3SI*CR*SWECHeSWESH)
PP3=EF*WR*S3I¥(CB% (1, =SSI*SST) 45 R* (KLE#UC) *SSI*#CSI*S
PP4==AUC*AUC*CSI*CSI=AAUC* ((#LR4UC)*CSI*CSI- S;I‘CSI'(NR‘CB-QR‘SB))

T GJ*FPF*FP& -

PPB=3 . * (=X *HLLP=WP2*FZ=WEZ*CP*CNA*FP) *(EL*FP=UNPD*SHY)
PP?=3.‘(NNG‘SN‘AUH°0+NTJ‘¢1'FP'FP)
DZKPP=(NYNA®* (AMASS* M2 04*( (PPL+PP¢PPI)*FP*FP+PPY ) #+PP5))
PPz (AIZ=AI3)¥OM*U4*(SSI*SW=CSI*CW*CR) ¥4 *FD*Fp
PPI=(£12-213)*0M*0M*CSI*CSI*SI*SA*FP*FP
D7KPP=LZREP ALY NAS (PP BPT) - e
DZKPP=(D7KPPePPEIPPT)I*IRF
PFL=ER®ER*SA*(CB*SWH (1 o=SSI*SSI) =SST*CSI*CW) *FFP*Fp
PF2==FR*(CW*(S3*S8+ (SSI*C3)%%2,) +SSI*CSI*CB*SHI*FF*FF

PFI=ER¥WE ¥ (SW* (SB*S34(SSI*CI)V**2,)=CW*SSI*CSI*C3) *FFP*Fp
PF4 ==t R*(RLR+UC)I* (SSI*CSI*CI*SWH=CSI*CSI*CHW) *FFP*Fp
PF5==aUC*¥2UC*CSI*C3I-A3UC* ((FLR+UC)Y*CSTI*CST-SSI*CSI*(WR*CB-IR*SB)
PFE == (AIZ=AIT)*OM*IU¥CSI*SB¥PARTI2*FFP*FP

PF7=e34* (WF1*FL14+WF2*F2) * (E1*FP=UMPD* 5W)

PFB8=3 *WNG*{BUMPC¥SWeUMPI*CH*FFPY

DZKPF=(DYNA® (LMASS*OM® D% (PFL4PF2+4PF3+PFL4PFES) +PFH) +PFT+PFB) *DRR
ZFPL=3 % (=X *HE LP=WP2¥F2) * (FF*CW=UMFI*SW) 42, *AUMFD*WHND *SW

ZFPL1=7F21-3 , ¥WIZ¥CI*CNA*FP* (FF*CW-UMFTO¥SWY ~ ~ n
DZKFP=(CYNA® (AMASS®QU*OM* (PF1+PF2+PF3+PFL4PFS5) +PFE) +7FPL) *ORR
ZFFL{==(SBR*S3+(CB*331)*%2, ) *FF*FF=-CSI*CSI*3UC*BUC

ZFF2== ((FLK+UC)*CSI*CSI=SSI*CSI*(WR*CB=5F*38))*B3UC
ZFF3=(AI1=AI3)*0M*IM*C2W* (SSI*SSI=(CSI®CAI*¥2 )*FFP*FFP

ZFFL=ba® (AIZ=AI3) *OM*OM* SSI*CSI*SWPCH*CB*FFP*FFP

IFFS =L I*FFPP¥FFPP

IFFE==3 % ((HUFL*F1+WF24F2)* (FF*CN=UMFD*SW))

ZFFT=3*WND * (SW*FF*FFP+SW*3UMFN+UMFD*CW*FFP)
DZKFF=CYNA#(AHMASS*CA%NM* (7FFL47FF2) ¢ 2FF3+2FF L4+ ZFF 5)
DIKFF=(DZKFF+ZFFE+ZFF7) 4NRR




OPL==WPZ¥FO¥(FI*TAILL4G2*TATILZ) -WNDO*AUMPCH*CSI*SB*FC 150
OPL=0PL=(FU*TAILI+G4*TRILZI*FC

QP2==eWT(* (AUMPCSI*CA*FN-PARTLIC*FP*FC % L)
JPI=(=X*HELP¥TAIL1=A*AUS*(=CW*CSI*SR*GI+CSI*C3*G2)*TAIL2I*FO
D7KIP=3.%(0PL+40PZ+JP3) *IFR

OF L == (WFL1*F14WF24F2)*T AL L1 *FC=(WFL*GL4WFZI*52)*TALLZ*F O
CF2=WNC*CSI*S3*¥(SWH*(KLRAUMI*FFR«JUM* CUNZICH¥FFPaFF *S W) *F(
OF3=WNC*C1*PARTL*FFP*FO=WTO* (2UM*CSI*LA=SSI*FF)*FC

DZKIF=3.* (OFL1+0FC+JF3) *IRR

ZOD = ((CH*SA¥FLw(R*FL) *TLILI#(PAXTO*FL4SSI*SB*FZ) *TAILG)*FD*FD
ID02=(+(CWHSR¥GiaC3%G2)*TAILE=(PARTH*(C14SCI*SI*G2I*TLILE)*FO*FD
DZKGZ=1.5%(7001+42C02)*0RR
DZKDL=(PART._*FL=PARTC¥F2I*¥TAILTI#+(PACTL*GL-PAFT2*GC)*TAILS
DZKD1=1.5*07KG1*0I3*FI*%IRR
OZKD2=(PARTL*FLi=FART*F2)*TAIL4~(PARTL*GL-PART2*GZ)*TAILE
DZKDZ=1.5*07KN2*DIS*FD*IF R

c
Cex*¥x FORCING FUNCTIONS
c
HPLzER®LE*(SB*CR*CW* (1 +=SS5I*SSI)=SSI*CSI*SR*SH)I*FF
HP2=CR*WF * (CW* (SB*33+(SSI*CR)**2,)+SS5[*CSI*CB*SH) *FP
HP3z«F R* (RLR+UC)* (CST*CII*SH+SSI*CSI*TB*CW)*FP
HPLU=AUC* ((RLR4UC)*CSI*CSI=WR*SSI*CSI*(R+R*SSI*CSI*SB)
HPS= (A1Z2=Al3)*OM*(CM*CST*SB*0ART L ¥FP
HPB=3 L *WNJ*(L1*FFP=UMPD*SK)
DIHP=(CYNA*(AMASS*OM*OM* (HPL +HP24HP I ¢HPw) +HPE) #HPE ) *D kR
HFL=WR* (SR¥SB+(SSI*CR) **. , ) +ER*SA*FCI ¥ (1 e=5Si*SS5D)=(RLR#UC)I*SSI*CS
THFZ=BUCY¥ ((RLR+UCY*CSI*CoT=WR¥SSI*CSI*CA+: R*SSI¥CSI*ER)
HF3=(ATLi=-AI3)*OM*OM* (SSI*CSI*CA*CEWN+SH*CW*((CSI®CBI**Z +=SS1*SSIN
HF h==t J*FFPP*FFPP¥NS
HFS5=3 ,*WNO*(FF*CWeUMFI*SW)
DZHF = (DYNA* (AMASS*0OM*OM* (HFL1*FF+HF2) 4HFI*FFP+HFL) 4HFS) *0RF
DZHO=3,*(WNO*TATL1~-WTD*TAIL2)*¥FO*DRR
TUORREREERRE PEFECTY OF TOWZIR SHAQOCW
LI R YR E LY ¥
DCAC==(WNC*TAILI*WTO*TAILS ) FL#DES
DZISMPL==UCPD*PART L3+ R*CWAS3I* (YL +(RLR+UC) *SST)I*FP=ER*LR*CW*CSI*FP
DZSMOP=(AMASS¥DZSEMPL-AT L *PARTI*FP) *FO*RK/OVEL
DZSMFL==UCFO¥PARKTLI+SB¥(YL +(FLRK#UC)*SSIV*FF=ER¥CSI*FF
DZSMDF={AMASS*O7SMFL¢AI2*¥CSSI*CI¥FFP) *FD*DRR/QVTL
DZSMOL=(AMASS*PALL*PALC~AT1*PART12%PART3=L]2*CSI*55I*58*SB)
DZSMDC=(C7SM01+ 3% PARTL*PARTO)*FO*F C*CRF/AVEL
7SMC1=(YL*CSI- WQ‘C?+F°‘°P$“2+(YL‘SSI4(RLR4UC))“2
ZSMD2 == (PARTL3#%24Pal2**z ¢PARTLL1**2)
ISMD3I=A11*(SW¥53)** . *AIZ‘C@‘C?*AI’*(CN‘:Q)*‘E
7SMOL == (ATL*PARTI*® 2¢ATI2* (SSI*S3V+%24213%PARTC**2)
DZSMOO=(AMASS* (Z7SMD247SM02) +7SMDI+7SMDL) *FO*FO*DRR/ZAVEL

ISCPL==CR*C2*R*UWT*FPY (CNE*TAILI+CTA*TAILE)*FO/YV

ZSCP2==PI/B, *WISCROCRECV*FPHPARTI*FD

OSCOP=(ZSCPL+ZSTUPL) *ORR

7SCPI=((AUC*CSI~L R¥PARTG*FP)I *PAL2+PALLI* (LUC*SSTI=-LIR*PART1*FP))
ZSCPL=(AIZ=AI2) ¥ (S3%3W*(CSI*CSI~SSI*SSI)+2.*SSI*CSI*CW*3SR*CB)I*FP
ZSCPS==WNCIO3I*(EL*¥FP=UMPI*SW) *FD
DSCPD2==WND1#DIS*(ZI1*FP-UMPI*¥3SW)* RR

DSCPL1=(7SCPS5+0OM* (AMASI*ZSCPI+ZSCPY) *FD/AVEL) *IRK
DSCTUF=(k*UDFO¥SH=CHA*FF¥R) /V* (FL*TAIL3+GL*TAILS)*F D*Dk#
Z50F2=AMASS*OM* ({3UC*CSI=SSI*CR*FFI*PALZ+PALL*(3UC*SSI+CSI¥*CR*FF))
ZEDF3==(AI4~-AI3)*CM*C3*FFP

ISOFL==WNDDI*(FFHCW=UMFI*SH) *FD*DRR

DSCFLZ==WNDL*DIS* (FF¥CH-UMFJI*SUW) *IRR
DSCFO1=7S0F4+4(=7SDF247SOF2)*FO*3RR/AVEL



DSCOO== ((WOL*F2¢WO2*F2)*TAIL I+ (WCL*GL+WO2¥52)*TAILS)*FO*0OKR 151
DECO2== L{WR*S34L kaZ8)* YL+ (WR*C3=TR*SB)*PAKTLL+(RLR+UC)*PARTLI) *FO
DSCO3=((ATL=AI3)*(SW*CHW*SRASSI-CH*CW*CSI*SB*CB)=RI2*CSI*33%CB) *FO
DSCOL4== (WNDOZ*TLILL#WTDO3*TAIL2)*FO*FC*DFK
DSCOCI==(WNDL*TAILL#WTOL*TAIL2) *3I5*FO*IRFE

DSCCO1=3SC044 (AMASS*OSCOZ#DSCC3I ¥ UMFFL*SRF/QVEL

DSOS i=(=WNDDZ*TAILw#WNIDI*TAILI+WTDDZ*TAILI+WTOD3I*TALLE) *FO*FO*DRK
DODOJ=(WMNCL*TAILI+WTOL*TAILS)*FO*DIS*CRR
DSDOK=(WNDL*TAILL4=WTLL*TAILS) *DIS*FO*CkE

DSKPL=(WTG*(ELL®PARTI*FO+LUM*SSI*CRI+WND*LAUM*SSI*SBACWI*FL*DRR
DSKPL=((WP2*FZ4X*¥HILP4FQ) *TATILI 4 (WP2#GO+K*HELF24G 4 ) *TLILS) *FD*ORP
DSKPZ=[LSKP2+Wi 2*CK* FP* (CNA®TAIL3+CTA*TAILS) *FDO*DRR
DSKDP=[LSKPL+DSKPZ

DSKF1=(=WMNO*TLFL4WTO*3UM*SST *CR) *FI*DrK

DSKF2=((WFL*FL1 4 UF2*Fe)*TAILI+(WFL*GL1+WF2*G2)*TAILE ) *FO*IkK
NSKCF=[LSKFL40SKFL o ‘ N - '
DSKOO=(=WAO*TATILL4+WTC*TAILS) *FO*DRR
DSKO1=(=WND2*TAILS+WNDZ*TAILZ+WTD*TALILE+WTD3*TAILS5)I*FO*FO*0RR
DSKDJ=(WNDI*TAILI+WTOL*TATILS ) *DIS*FD*0RR
DSKCK={WNDL*TAILL=WTDL*TAILB)*IISXFO*DRR

DEKPLCA==WNDI* (1*F2P=UMPD*SH) *FI*OKR
DSKPDZ==WNDL1*DIS* (I 1*FP=-UMPO*SW)*NRR

DSKFDL==WNDI* (FFYECW=-UMFI*SW) *FD*D PR

COKFDC==WAOL*CIS* (FF*CW=UMFD*SW) *DRK
DSKODi==(WNIL*TAILL#WTOL*TAILZ) *FD*F O*DRK
DSKODC==(WNIL*TAILL #WTDL*TAIL ) *DIS*FO¥DKE

Cexxxx

Cr*¥xvsx GRAVITY TERMS

Cexxax
DEGNCOS=AMASS*GR*{(UCPD=ER*SHWAFPY*CSILR*SSI*CR*CH*FP) *DRKk/Q Vel
DGNSIN==AMASS*GR*EXI*CW*3B*DRKR/OVEL
DGPCCS= ﬂN Sb*GF‘(ﬁJCPJ'CSI‘:F'SST‘DB‘FP*FD)‘OKQ/QV:L
DGPSIN= SS*GR*I R¥CA*FPEFP¥IRR/AQVEL T
UGFC03=AMASS'CR‘((BUCPD'hR‘CW‘FP‘FFP)‘CSI*ER'SSI‘CB‘SN‘FP‘FFP)‘DQR
DGFCOS=2GFCOS/QVEL
DGFSIN=AMASS*GR*r R*SUW*SI*FP*FFP*O KR/ OVEL
DGOCOS=~ANMASSH*GR¥ER*CH*SB*FP*FO*DRR/QVEL
DGOSIN=AMASS*GR* (= R*SSI‘C%‘CN‘FP-UCPD*CSI)‘FO’JRK/QVCL
IF{IM.ER.1) THEN
FtB=9./8.
IF(IOSQ.i.OHQIOE.QIQ, FL% »./6.
IF(I «GE o) IM={
ELSE

FEB=24/73
IF(NTESTLEN.CY FE3=4./3,
IFUI sECel eOReIJEQMNN) FZB=14/3.
ENDIF

C¥**¥¥STAFT THE SIMPSON INTEGRATION
ZI14=711+FEB*DZ1IY
ZI2=Z1I2+4FEB*(0ZIC)
213=713+4Fz8%(0Z12)
ZIW=7I4L+FE3*(D71Iu)
7I15=7154FE3*(0715)
2i5=716G+FER*(DZIE)
ZIT=717+FEB*(DZ1I7)
ZIB=7184FZB*¥{07718)
719=719+F:3%(D7219)
214G=ZI10+FEB*(DZ2110)
ZIL4=ZI11+FFEB*(2Z211)

I12=7I5i2+FEB*(CZIL2)



22332711 34F5B*(52I1 )
ZI4G=7Z1L4FEB¥{D72I00)
7I15=7T4C+F R%(0721.15)
71162711 6+F:B*(NZ1L56)
2I37=72I57¥FEB*{DZ2ILT7)
Zi18=7118+F:3%(071.l8)
ZI13=7T194FEB*(DZ119)
IMPP=ZMPPAFEB* (DZMPP)
ZMPF=7IMPF4FER* (DIMOF)
7MPO=ZMPGHFE R* (Z7420)
IMFF =ZMFFE SFL R¥ (D7MEF)
IMOO=ZMSL+FL 3*(DZM30)
IMOD=ZMOC+FEB¥(DZMID)
INFO=ZNFCAFER* (SZHF0)
ICPP=TCFP+FL3* (37CPP)
ZCPF=ZCPF4FZBR* (DICPF)
ICPC=2CPL+FEB*(52020)
JCFP=ZCFP+F>B* (DZCFP)
ICFF=7CFF+FEB* (DZCFF)
ICFC=2CFCH+FIB*(DZCFO)
7COP=ZCCP4FER*(D2COP)
ZCOFS7COF+FL B*(D2C0F)

ICCO=7CCC+FIB*IDZC30)

7C0Z2=7CT7+F 3% (D7CD17)
ICN1=7ZCoi+4FZB* (DZ2CO1Y
ZCD2=72Coe+F=8B*(DZCI2)
IKPP=ZKPP+FL O+ (DZIKPP)
JKPF=7KPF+FL 3% (CZ2KAF)
IKFP=7KFP+FER* (SIKFP)
IKFF=ZKFF+F:R* (DZKFF)
IKDZ=2KQZ+FCB*(D7x27)
ZKOP=ZK 2P +FEB*]D ZKGP
7¥QF = 7KCF +FE 3% 3 7k 0OF
IKD1=ZKD1 +FEB*(DZxD1)
ZKDZ=7KDC+FLB*(0ZKD2)
IHP=ZHF +FIR*(CIHP)
IHF=ZHF +FEB*(DZHF)
CRO=CNO+FFRB*NCAC
SMOP=SMCP+Fr3* 375D P
SMOF=SMIF+Fc B*07SMIF
SMDG=SMOC+FZB8*]Z5SM)D
SMDC=SMDLC+F=8*J75MID
SCDRP=SCUP+FZR*D5(CNP
SCOF=3SCOF+FCB*NSCHF
SCOA=SCUC+FR*5SCHD
SCD1=SCOL+FLB*DS50DL
SCDJ=SCDJ+F=ZB*ISODY
SCDK=SCLOK¢F3*D500K
SKDP=SKOP+F=B*OJ3SK[ 2
SKDF=SKCF +FUB*D3KAF
SKDO=SKOC+F~8*05K¢kDD
SKD1=SK{31+¢F2B*DSKDL
SKDJ=SKDRJ+FEB*ISKSY
SKDK=SKLK+FL B*DSKOKL
SCPO1=SCPo1+FZ3*[SCPDY
SCPD2=SCPIZ+FEI*LCSCPD2
SCFO1=SCFIi+FF3*LSCFDL
SCFDc=SCFC2¢FL 3I*LSCFD2
SCO01=SCCOi+FE3*CSCODY
SCODZ2=SCON2+F:-I*LSCOC2
SKPD1=SKPLi+FE3*LSKPDY:
SKPDZ=SKPL2+FC 3*0SKPie
SKFD1=SKFLl+FL 3*¥0SKFD]

152



SKFOZ=SKF (2 +FEB*LSKFD2 153

SK0D1=SKCL1+FEI*GSKODL
SKOD2=SKCC24FL 3*03K302
GNCOS=GNCCS+FEB*DGNCCS
GNSIN=GNSINFES¥PGNSIN
GPCIS=GPCCS+Fi 3¥LGPCOS
GPSIN=GPSIN+FEB*GGPSIN
GFCOS=GFCCS+FLB¥DGFCOS
GFSIN=GFSIN+FER*CGFSIN
GOCOS=GCCCS+FE3*LGICOT
GOSIN=GGSINSFEB*OCOSIN —
ZHO=THO+FEB*(DZHO)

(9]

IF{CUPP.ER1HY) GO TO 43

IF(RLReEQeRHR) GC TO 554

IFIKKWLT45) GO TO 43

554 WRFITE(I.d€)RLR,A,OPHI,0BET,DAL,CLyCCyBCR,CP3,(T8
KK=(C

L3 CONT INUE
KK=KK+1
XL=XL=DX
RLR=XL /X

- I=T1+1

IF{RLRLTLRHR) THEN
RLR=RHR
AL=RHR*X
DRR= (TNUM=NUM) *0RR
ELSE
ENDIF - e e e e e e e et
IF{I.LE.NN) GC TC 555

c
C¥»x3x2CALCULATE THE YAW AND YAW RATEZ VAKIATION
o : :

IF(RLReEQsla) THEN

SKDEL=S JOELESKROELESRIELSY . = o e

ELSE
73 DENO=(2I1~ZI3V**2+71c*712
SKIEL=((Z71442I5+Z10¢7I7)1*(714=712) =72 1c* (7224710342 2:442125))/70ENC
SUDEL=((ZTIW+Z2I5+7I0+47I7)%7I2 (211 =213V * (2112471134711 6+7115))/70eNC
SJDEL==SJCEL
SKROEL=(ZTI84ZII+ZILT7TIIV*(ZI1-7TY
SKROEL=(SKROLL=~212% (7115647117211 847129))/DENC
SURDEL=(ZTIB+ZIS+7ZI10+47111)4272
SURDEL=S=(SUFDEL4(7I1=7I3) % (71254712747 131847129))/0ENC
ENDIF
ZCJOG=ZCOZ+SJRDEL*ZCD1-SKFOEL*ZCD2
ZKDD=ZXKDZ +SJDEL*Z¥IL{-SKOFL*7KD2
SCOD=5CD1+SIRDEL*SCIJ+SKRDEL*SCOK
SKOD=SKD14SJDEL*SKDJ+SKIE L*SKDIK
SCPD=SCPDL1+3JRIEL*SCPNC
SCFC=SCFDL+SURDLL#5CFD2
SCOD=SCCD1+SJURDEL*SCOD2
SKPD=SKPD1+SJDEL*SKPDZ
SKFD=SKFD1+SJDEL*SKFLZ
SXO0D=SKO01+3J0zZL*sSx002
c
Ces»s¥82CORRECTION FOR MASS COEF, DUEZ TO TOWER SHAOOW SC 1T IS IN
CovvsaaspORM GF (MIJ=MIJS)
SHDP==3MOP
SMOF==SMGF
SMDG==-SMDC
S#DD=~SMDC
WRITE(LTUOILRIELE2,E39AEWAG



154
WRITE (L1,L432YNWMM
WrKITE (1,509) CP,CT
WRITE(L,5085)
WEITE (1 40405) ZMPF G ZMPF 4 IMP Q9 IMFF 4 7MFQO97ZM0OCyZMDD
WETTE (2,526) -
WRITE(1,0L06) 7CPPWZCPF,2(CP0O,ZCFP,7CFF,Z2CF0,ZCLP,ZC0OF,2CUC,2ZCDD
WRITE (1,507)
WFITE (L 26405) ZXKPPWZIKPF 4 ZKF Py IKFF ¢ ZKOPyZKUF4ZKTD
WRITE(L,508)
WRITE (1,408) 7HPZHF
WEITE (L ,407) SKOe Ly SJ3ZLSKEDAL,SURDEL
WRITE (1,513
WEITE (14524) GNCOSeGNSINGGPCOSHGPSINSIGFCOSsGFSINGGGCOS,4GOSIN
WEITE(L4515) SMOP,S™DF,34D0,S™M0D
WFITE(1,51€) SCCF,.3SCCF,3CD0,SC2D
WEITE(L1,517) SKOF,SXBF,43KD0,SKID
WEITE (4,313) SCPO,SCFD,3C00
WEITE (1,312) SKPLLWSKFD,Sx0D
WEITE(1,518) (20

DFR=DX /X
X=X+C8X
IF(NLGTJXFAYY G TI 48
GC TG 27

40 CCNTINUE
PEINT &
KEADS, CANSR
IF(DANSRJNELLHY) GJ TO 200
PEINT & e > ,
READ*,PTCH
GO TC 2¢¢

I I R Yy s S Y I S Y P R RS TEY Y

FCRMAT STATEMENTS

X X1 Xs)

I Y N Y YR RS Y R Y YR Y Y Y PSR PRSI NY PRSI RS SRR R SRR RS R RN YN
i FORMAT(* FORCES INPUT SENUENCE®)
2 FCRMAT(* WRITE 3430RRKeEMyDRRyAMINSXMAA,DBA")
65 FCRMAT(* WRITE ALL,AST,SILPITCH,BSTA FGOT,D3ETA®)
66 FORMAT (* WRITE RT9ICHD,RC,RH®)
T FORMAT (' WRITE CL ZfrRO, CL YAX, CL FLaT, ALPHA BREAK®)
4 FORMAT('CLC YOU WANT ANOTHER PITCH ANGLE? (Y)*)
5 FCOMAT (A1)
& FCRMAT("INPUT PITCH ENGLE®)
8 FORMAT (15X "ASROL YNAMIC DATA®// 46X 9* CLM® gEX ,*CLFL® 48X MY, 83X,y *AST"
197K "ABR® o7X o *ALL 97Xy CLO*/7FLE,27)
9 FORMAT (15X, *CPERATIONAL VARIABLES®//SXy *XMIN® 46X 4 *XMAX® 37X y"GRKRK® s
18X+*SI*/4F13.37)
19 FORAAT (15X, *PHYSICAL AIRFOIL DATA®// 47X 4" 8% 37Xy *3CRR® 46Xy "OCND*
197X o "RT® 43X 9 RO 92K, "RH" 98X,y "BRT* ,6X y*DBTA®/8F 104 3/)
E0 FORMAT (/7 /725K 4*FFIGFAM CPERATING CONDITICNS® /)
21 FCRMAT (//725X,y *PROGRAM FURCES QUTPUT AT PITCH =*,F7.3,* DEGREES®)
15 FORMAT (/777 46X 9" PCRY 4BX s A%y BX,*PHI® ,8X,*BLTA",
IGX g T ALPHA g 7Ry "CL 7Ry *CO* g7 X9 *3CR*y7X4"CPR* ,7X,*CTA")
16 FORMAT (2Fi0ei4sBFi0s 344X 4259.5)
100 FORMAT (/7 +SX¢*THIS SUN USED® »F3,3,3X,°SECCNDSY)
07 FORMAT (/ 43Xy *SKODL® 932Xy *SUDEL 912X,y *SKROL® 412Xy *SIRDEL"/
143X 4G1C€E))
405 FORMAT (7 (3¥,61i2.8))
406 FORMAT (1L (1X,h124 E))
408  FORMAT(3(4X,612.6))
402 FORMAT (L) o,* N = *,I3,° MM = *,13)
505 FOCRMAT (// 4BX g *MPP® 4 12Xy *MPF* 12X y *MPO* 412Ky *MFF*, 412X, *MFC* 412X



, 14°M00° 412X, *MCD*) 155
506 FCRPAT(//’6‘0'CPF'91¢X9.CPF.vilx"CPC'ollxo.CcP'qllxo'CFF'oilKo

LOCFO® g1 X9 COP° g iiX g "COF® 412X 4*°COC*y11X,°C0D")

507 FCQ&AT(//’O‘O'KPP'QXCIQ.KPF'oi’iQ'KFp'vlc\o KFF®g3lhy *KidP® g 32Ky
1°KOF *,12X,*00*)

508 FORMAT (/746X 4*HP* 412X

509 FCRMAT (/793XK+°CP= *4F10e548X,°* CT= *yF1G.3)

51C FURMAT (/41X " NS = *,G12.6)

513 FORMAT (// 92X o*GNCOS® g9Xy "GNSIN® 43X * GPCOS*yAX 4 "GPSIN® 49X4"GFCI5*,
195y *GFSIN® 994, *GLCIS*y X, *GOSIN®)

544 FORMAT (8(iX.6i2.6)) ‘

5{¢% FORAAT (/4R *SMOP = *4Gicebs* SHDF
AiSMDD = *,Gig.t)

546 FORMAT (/44X 4*SCOP
1SCDI = *H,CL2.¢€)

s "HF * 342X, "HO®)

9G12.69'

*eG1i2e5y* SMCO

“961246, "

w
O
[}
n
"

*e612.64" SCDO *9Gi2.60°

517 FORMAT (/oLXs*SKOF = *yG12¢69° SKOF = *4GLlZ2eb9* SKDO = *4Gi2ek,°
LSKDD = Y.Gaz.fy oY \ Al &

518 FORMAT (/4«X,*CAC = *4G12.6)

311 FORMAT (/48X 4*SCPI = *9yG1lZehy® SCFO = "y612e050" SCI0 = *4Gi246)

31¢ FORMAT (/94X s*SKPD = *yGicebs® SKFD = *4yGiZede*® EK(D = *4,G12.6)

70C FORMAT (/48X ® BER®yIN§*E1°%,9Y 2% ,9X,"63°,34%°4A5* ,9X, *AG"
1742X € (G12eEyen))
360 TIMOUT=SECZONCUY-TIHIN

WrRITE (L,100) TIMCUT

STOoP

END

SUBRCUTINE SUMROW(TOMaTIMIRLRICRIELI9EIGWUC L UC»BUC 9AAUC+4BUC yB3UCHA
1UN|AAUM¢AEUW AUD,WQ)

CONMON Ly RyRS

CUMMON /STIFF/ Z1421C09GJyGUT yRHE,0S

UC=4UC=AAUC=ARUC=RIUC=AUM=44UM=23UM= AU
ALOW=RHR
AHIGH'(FLF-KHF\)/Fr
N=Mw '
DRS=(AHIGF=ALOW) /N
DrS3I=DRS/ 3,
RLS=ALCW

K=N+1

GC 106 I=1i,K
IHALF=I/2
ITEST=I-Z2*IHALF

ZP=RLS

IP2=7P*7P

IP3=722%7P

IP4=72F3*70

FF=B 4 *7P =4 *7P34224
FFP=1Ce*7P=12.*7P #4.,*7P%
FFPP=1Z.=2h.%7P+i2.,%2P2
FP=2.,42pP=7P2
FPP=Z.,¥%(il.-7ZPY
WK=FF*QS*RS

WP=FFF*Q&

WFP=FFPP#NS

CH=COS(WP)

SW=SIN(WF)

DUC == « S*¥WP¥WP*TT
TOME=TONM(ELRyCW SWyFPFPP,HWPP)
TOM1I=TOMIEL CW SW,FRP,FPI,WPD)
EEI==t3

TOMI=TOMIEEZ yCW,SWyFP, FRPP, WPPR)



10

DAUC ==~ WP*TCMC 156
DAUM== WP*T (ML
CAUD =« WP*TQOM3
DEAULz=TCFO*TCMG /=3
DAAUM==TCNML*TOML/KS
TIMGSTIMIERWCWoSHWFP FPPyWPP FFP,FFPP)
TIMLISTIMIELWCHISHFP,FPPyHUPPFFPLFFPP)
DABUC=HP*TIMU=FFP*T OMD
DARBUM=WP*TIMi=-FFP*TOM]
DBBUC==-FF F*FFP*KS

“FER=r.
IFLITEST «CN.C) FER=4,
IF(Ie200ieO0ReletNK) FE%=1.
UC=UC+FEB*DUC*DRS3
AUC=AUC+F=3*DAUC*ORS3
AUM= LAUMSFE B*CLAUM*OR33
AUD= AUD+FEG¥DAUGSRRSS
ALUCSAAUCHFER®DALUC®LRS3
ARUM=ZAAUMIFE B* DAAUM*ORSS
ABUC=LRBUC+FzR*CABUC*DRS3
ARUM=ABUMFC 3*DABUM* DRSS
BRUC=2BLUC4+FEB*D3BUC*NKRSS3
BUC=RAUGYOS o e
RLS=RLS+ORS
CONT INUE
RETUEN
END
FUNCTION TOMUA 4Byl e NeE oF) e
COMMEN LyFogs T .
TOM=A*BY «A*C*F*(
RETURN
END
FUNZTTION TIM(A39CeDeF oFaGeH)
COMMCN Lo RoKS ,
TIM=AsCAE KEAVFRERYSERASEREH
Rt TURN
£MND
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