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Transient Dual-Porosity Simulations
of Unsaturated Flow in Fractured Rocks

Robert W. Zimmerman, Teklu Hadgu, and Gudmundur S. Bodvarsson

Earth Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

This report describes the development and use of a semi-analytical dual-porosity
simulator for unsaturated flow in fractured rock masses. Fluid flow between the frac-
ture network and the matrix blocks is described by a nonlinear equation that relates the
imbibition rate to the local difference in liquid-phase pressure between the fractures
and the matrix blocks. This equation is a generalization of the Warren-Root equation,
but is accurate in both early and late time regimes. The fracture/matrix interflow equa-
tion has been incorporated into a computational module that acts as a source/sink term
for fracture elements; this module is compatible with the unsaturated flow simulator
TOUGH. Flow processes are then simulated using only fracture elements in the com-
putational grid. This semi-analytical dual-porosity module has been tested with
TOUGH on various problems involving transient flow in fractured/porous media, and
compared with simulations performed using explicit discretization of the matrix blocks.

The new semi-analytical dual-porosity model accurately simulates flow processes in
unsaturated fractured rocks, and typically requires an order of magnitude less computa-
tional time than do simulations using fully-discretized matrix blocks.




Introduction

Yucca Mountain, Nevada is being studied by the U. S. Department of Energy as a
potential site for an underground radioactive waste repository (U.S. DOE, 1986). The
geologic setting at Yucca Mountain consists mainly of volcanic tuff, some units of
which are highly-fractured. The potential repository horizon is about 300 meters
below the surface, and about 300 meters above the current mean location of the water
table. bne part of the process of characterizing the geological and hydrological system
at Yucca Mountain is the development of methods for modeling and predicting the
unsaturated flow of water in fractured rock masses having low matrix permeability.
Such models will also be useful in assessing the travel-times required for radionuclides

from the repository to reach the saturated zone below the water table.

For the analysis of certain aspects of the long-term hydrological behavior of
Yucca Mountain, it is possible to treat the rock mass as a locally homogeneous porous
medium. For quasi-steady-state behavior, the fractures and matrix blocks can be
assumed to be in (local) equilibrium with each other, so that a single pressure (tem-
perature, etc.) can be assigned to both the fractures and the matrix at each point in
space. In order to study the highly transient flow processes that may occur after precip-
itation events, however, it is necessary to account for the fact that the flow actually
occurs in two intermingled networks of porosity: a relatively high-permeability, low-
storativity fracture network, and low-permeability, high-storativity matrix blocks. This
is due to the fact that in a transient process, the fractures and matrix blocks will not
always be in local thermodynamic equilibrium with each other. Existing unsaturated-
flow simulators, such as TOUGH (Pruess, 1987), are capable of treating such dual-
porosity systems if both the fracture system and matrix blocks are discretized. Numer-
ical simulations of fully-discretized systems require a large number of computational
cells, and consequently a large amount of computer time. We have attempted to miti-

gate these problems by developing a method in which flow between the fracture
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network and matrix blocks is modeled in a lumped-parameter manner, by an ordinary
differential equation, eliminating the need to discretize the matrix blocks. This method
has been incorporated into a computational module that is compatible with TOUGH,
and which allows dual-porosity simulations to be performed in a much more computa-
tionally efficient manner than would be possible using fully-discretized grids. This
new method should therefore be useful in studying transient flow processes that may

be expected to occur at Yucca Mountain.

Dual-Porosity Models

When modeling processes that occur on a sufficiently slow time scale, it is often
assumed that a fractured rock mass can be treated as an equivalent porous medium.
Peters and Klavetter (1988) developed a numerical model for unsaturated flow at
Yucca Mountain in which the fractured rock mass was treated as an equivalent porous
medium. The conditions under which such an approximation would be acceptable
were also studied by Pruess et al. (1988). The equivalent porous medium that would
be used in a model such as that of Peters and Klavetter (1988) will have an effective
permeability and an effective capillary pressure function that are some sort of appropri-
ate weighted averages of the corresponding properties for the fractures and the matrix
blocks. This approach assumes that the matrix blocks are always in local thermo-
dynamic equilibrium with their surrounding fractures, and is therefore only capable of
simulating processes that occur slowly enough so that pressure equilibrium can be
achieved between the fractures and matrix blocks. However, the time required for
fracture/matrix equilibration is inversely related to the permeability of the matrix
blocks, and is consequently large for a hydrologic system such as the fractured tuffs at
Yucca Mountain. Numerical simulations of imbibition into blocks of Topopah Spring

tuff have shown (Zimmerman et al., 1990) that the equilibration time will be on the

order of days to years, depending on the type of rock and the fracture spacing. A
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more detailed discussion of this equilibration time, along with numerical examples for
various of the geological units at Yucca Mountain, is given in Appendix C. For
highly-transient processes, such as the infiltration that would occur after a precipitation

event, the ‘‘dual-porosity’’ nature of the rock mass must therefore be accounted for.

In a dual-porosity medium, the fractures provide most of the permeability,
whereas most of the fluid storage takes place in the relatively low-permeability matrix
blocks (Duguid and Lee, 1977; Douglas and Arbogast, 1990). The complex behavior
of dual-porosity systems arises from the fact that there are different time scales
corresponding to diffusion of water in the fracture network and in the matrix blocks.
These time regimes have been defined and delineated by Nitao and Buscheck
(1989,1991) in their analytical and numerical studies of infiltration into a system con-
sisting of parallel, periodically-spaced fractures. In principle, one way to model flow
in a fractured/porous rock mass would be to explicitly account for each fracture and
each matrix block in the computational mesh. In practice, however, this is rarely pos-
sible, due to the inordinately large number of gridblocks that would be needed. For
example, assuming a fracture spacing of about 20cm (Wang and Narasimhan, 1985),
the total number of fractures in the vicinity of the potential repository at Yucca Moun-
tain can readily be estimated to be on the order of 10°. Another difficulty is that
sufficient geological information concerning the locations, lengths, and other properties
of the fractures would rarely be available on a large scale. On the other hand,
laboratory-scale rock blocks whose lengths are on the order of 1m may contain a
manageable number of fractures, in which case explicit modeling of each fracture may

be feasible.

A commonly used conceptual model of a dual-porosity system assumes the
existence of two overlapping continua, the fracture continuum and the matrix contin-
uum. Flow is assumed to take place not only through the fractures, but also between

the fractures and the matrix blocks. This type of model was originated by Barenblatt
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et al. (1960) for saturated flow in aquifers, and by Warren and Root (1963) for single-
phase flow in oil reservoirs. Each point in space has associated with it a pair of pres-
sures, representing the local fluid pressure in the fractures, and a mean fluid pressure in
the matrix block. This is equivalent to treating the matrix block in a lumped-
parameter manner. Barenblatt et al. (1960) and Warren and Root (1963) were origi-
nally interested in the development of analytical solutions to problems in dual-porosity
reservoirs. Hence, in order to maintain the linearity of the equations, they assumed
that the volumetric flow rate of fluid from the fractures into the matrix blocks, per unit
volume of matrix block, was governed by the following linear expression, which is

often referred to as the Warren-Root coupling equation:

ok, V,, _
P =Py, (1)

q:

where k,, is the permeability of the matrix block, with dimensions of [L?]; u is the
viscosity of the fluid, with dimensions of [PT]; Pf is the local pressure in the frac-
tures, with dimensions of [P]; P, is the mean pressure in the matrix block at a
specified point in the fracture continuum, and also has dimensions of [P]; V,, is the
volume of the matrix block, with dimensions of [L3]; and o is a geometric factor with
dimensions of [L™2]. The flowrate ¢ therefore has dimensions of [L3T™!]. The rela-
tionship between the numerical value of ¢ and the size and shape of the matrix block
is discussed by deSwaan (1990) and Zimmerman et al. (1993), and, for convenience, in
Appendix D. (When giving the dimensions of variables, we will use M for mass, L
for length, T for time, and P for pressure. Although pressure is not a fundamental
dimension, but in fact has dimensions of [ML™2T !}, its frequent occurrence makes it

convenient to use M, L, T, and P when expressing the dimensions of physical vari-

ables.)
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The flow of fluid into the matrix block causes the fluid pressure in the block to
increase. If the fluid is a slightly-compressible liquid, this pressure increase is
described by the following equation, within the context of a lumped-parameter

approach:

O Ve —— =4 » )

where ¢,, is the (dimensionless) porosity of the matrix block, and c,,, with dimensions
of [P7!], is the combined compressibility of the pore fluid and the pore space of the
matrix blocks. If egs. (1) and (2) are combined, they yield the following equation that

governs the fluid pressure in the matrix block:

aF, ok,
it~ b,uc,

(Ps=P,,). 3)

The combination of terms %, /¢, uc,, is often referred to as the hydraulic diffusivity
(Matthews and Russell, 1967). Since k,, has dimensions of [L?], ¢ has dimensions of
[P~1], 1 has dimensions of [PT], and ¢ is dimensionless, the diffusivity has dimensions

of [L2T~!]. We can re-write eq. (3) in terms of the diffusivity to arrive at

—— = 0D, (P; -P,), C))

where D, =k, /9, lUc,,.

For saturated flow into a matrix block, eq. (4) can be interpreted as representing

the most-slowly-decaying Fourier mode in the exact solution for infiltration into a
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matrix block (see Zimmerman et al., 1993; also Appendix D). As such, it correctly
predicts the relaxation time needed for the matrix block to equilibrate with the sur-
rounding fractures. However, as it does not contain any of the higher modes, it is not
accurate at earlier stages of imbibition. Consider the case where a step-function
increase in the fracture pressure occurs at f=0. The imbibition rate will initially be
proportional to ™2, where ¢ is the elapsed time (Crank, 1975, p. 91). The Warren-
Root equation, however, predicts that the early-time imbibition rate is constant. The
cause of this error can be explained as follows. The Warren-Root approach assumes
that any fluid that enters the matrix block is instantaneously distributed uniformly
throughout it. Therefore, at early times, after a small amount of fluid has entered the
block, the average pressure P,, is still essentially unchanged. Hence, the right-hand
side of eq. (1) remains nearly constant, and so the predicted flux rate is also nearly
constant. More generally, regardless of how the fracture pressure varies with time, the
matrix pressure predicted by the Warren-Root equation will be grossly incorrect at
early times (see deSwaan, 1990; Zimmerman et al., 1993). When incorporated into a
dual-porosity model, the Warren-Root equation leads to qualitatively incorrect behavior
during the transition between fracture-dominated and effective-continuum flow regimes

(Najurieta, 1980; Streltsova, 1983).

One way to improve upon the poor accuracy of a Warren-Root-type
fracture/matrix coupling equation would be to treat the internal flow in the matrix
block numerically, by discretizing each matrix block into a nested series of gridblocks.
This allows the pressure gradients inside the matrix block to be resolved on a finer
scale. Since the pressure gradient at the outer boundary of the block is inversely pro-
portional to the depth to which the pressure front has penetrated, discretization of the
matrix allows the calculated penetration depth to increase with time, thereby correctly

predicting that the imbibition rate decreases with . One such dual-porosity model, in

which the matrix is discretized into concentric shells, is known as the MINC method
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(Multiple INteracting Continua; Pruess and Narasimhan, 1985). In practice, the com-
putational fracture gridblocks are typically much larger than the typical matrix block.
Hence, each fracture gridblock is associated with a hypothetical set of nested matrix
blocks that do not have the same dimensions as the actual matrix blocks. However,
the volumes, areas, and nodal point distances of the gridblocks can be scaled so as to
accurately model flow in the actual matrix blocks. MINC-type simulations require
many fewer computational cells than do discrete-fracture simulations that utilize
actual-size matrix blocks, but still require large numbers of matrix gridblocks. For the
types of problems discussed in this report, we have found that accurate treatment of
transient effects with the MINC method requires that the representative matrix block
associated with each fracture gridblock must be broken up into about ten nested grid
blocks. MINC simulations of transient processes may therefore be expected to require
about eleven times the number of computational cells needed for quasi-steady-state
equivalent porous medium simulations having the same macroscopic resolution. Since
the CPU time required by most numerical simulators grows at a rate at least directly
proportional to the number of computational cells, MINC-type simulation of large-

scale transient processes in fractured rocks can become computationally burdensome.

Our intention has been to find a method of simulating unsaturated flow in frac-
tured rocks that combines, in a sense, the computational efficiency of a Warren-Root-
type model, in which the matrix blocks do not need to be discretized, with the accu-
racy of the MINC method. In order to do this, the following steps had to be taken.
First, it was necessary to find the unsaturated flow parameters that are analogous to the
hydraulic diffusivity that appears in eq. (4). Secondly, it was necessary to find a way
to modify eq. (4) so as to be applicable to all time regimes of the imbibition process.
Finally, a method was needed to relate the parameter o to the geometric properties of
the matrix blocks. These developments are discussed in the next section of this report.

The final result of this analysis is a differential equation that predicts the rate of fluid
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exchange between fractures and matrix blocks, and which can be used as a source/sink

term for fracture elements in a numerical simulator.

Several other dual-porosity models have been developed in recent years for unsa-
turated flow, with the aim of eliminating the need for explicit fine-scale discretization
of the matrix blocks. In each case, the fracture/matrix coupling equation was essen-
tially taken to be of the Warren-Root form, in that the volumetric rate of flux depends
linearly of the difference between the fracture potential and the mean potential in the
matrix block. In the code DCM3D (Updegraff et al., 1991), the fracture network and
matrix rock were assumed to behave as two interpenetrated continua, each governed by
a macroscopic pressure diffusion equation. The source/sink terms for the two continua
were assumed to be equal in magnitude, but opposite in sign. The rate of
fracture/matrix interflow was assumed to be proportional to the difference in potential
between the fracture and matrix continua, as in eq. (1), with the nonlinearity of the
unsaturated flow process accounted for by multiplying k,, by the relative permeability
function of the matrix rock. Gerke and van Genuchten (1993) also modeled the
fracture/matrix interflow with a Warren-Root-type differential equation, and allowed
the effective diffusivity to vary from one timestep to the next, in response to changes
in saturation, etc. Their model also allows for flow between matrix blocks, which is
not currently included in our model. However, due to the inherent limitations of the
Warren-Root approach, their predicted fracture/matrix fluxes are not accurate at all

time scales (see their Fig. 2).

A different approach to the problem of accounting for fracture/matrix leakage in a
semi-analytical fashion was taken by Pruess and Wu (1993), who approximated the
pressure profile in the matrix blocks by a polynomial that was damped by an exponen-
tial term. The exponential damping factor was taken to have the form exp(~x/\4D,,t ),

where x is the distance from the outer boundary of the block. The coefficients of the

polynomial were found, at each timestep, by requiring the approximate pressure profile
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to satisfy the governing equation in an integrated sense over the entire matrix block,
and point-wise at the outer boundary. The calculation of the fracture/matrix interflow is
thereby reduced to a small number of algebraic calculations at each timestep. Their
approach has been used successfully for saturated flow and heat conduction, but has

not yet been applied to unsaturated flow.

Finally, we mention that, for mathematically linear processes such as saturated
flow, the fracture/matrix interaction term can be found exactly by utilizing a convolu-
tion integral, as was done by Elsworth (1989). A drawback of this approach is that it
at each timestep the convolution integral must be evaluated from ¢ =0 to the current
time £. 'Consequently, all previous values of P,, must be saved, in order to carry out
the convolution integrals. These factors tend to be at variance with the goal of minim-
izing the amount of computational effort, and computer memory, required to simulate

flow in a dual-porosity system.

Fracture/Matrix Flow Interaction Equation

In principle, fluid flow in a two-component air/water system would be governed
by a pair of equations, representing conservation of mass for water and air, respec-
tively (see Appendix E). However, it is common to assume that the low viscosity of
the air renders it effectively ‘‘infinitely mobile’’. In this case the air pressure is
always uniform (aside from gravitational gradients, which are small for air), and the
two conservation equations decouple from each other. In this approach, only the
water-balance equation is used. If Darcy’s law, modified by a relative permeability
function, is used in conjunction with the conservation of mass equation, we arrive at

the Richards equation (Richards, 1931; Hillel, 1980, p. 203):

oS (x,t)
ot

=0 &)

0 | Kk (W) Bwy(x, 1)
ox|{ M ox
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In eq. (5), ¥ represents the ‘‘capillary potential’” or ‘‘matric potential’’ of the water in
the matrix block, which has dimensions of [P]. This potential is measured relative to
the pressure in the air phase, ie., ¥ = y,, —y,, where the subscripts w and a denote
water and air, respectively. In regions of full liquid saturation W is positive, but in
regions of partial saturation it is negative (see Hillel, 1980, p. 141). The saturation S,
which is dimensionless, represents the fraction of pore space that is filled with water.
S and wy are related through the capillary pressure relation, the precise form of which
depends on rock type; forms of this function that have been used to describe the
behavior of volcanic tuffs are described below. The parameter k£, which has dimen-
sions of [L?], is the permeability of the rock matrix under fully-saturated conditions; W,
with dimensions of [PT], is the viscosity of the pore water; and ¢, which is dimension-
less, is the porosity of the rock matrix. k,(y) is the dimensionless relative permeabil-
ity function, which quantifies the decrease in the permeability to water due to the fact
that some of the pores are occupied by air; it is typically a strongly increasing function

of S.

Aside from assumption that the air phase is always at uniform pressure, there are
various other assumptions and simplifications used in eq. (5). The porosity is assumed
to be independent of the potential, which is equivalent to ignoring the compressibility
of the rock matrix. For tuffs in the unsaturated zone, this assumption is acceptable
(see Peters and Klavetter, 1988), since the capacitance associated with the change in
saturation is much larger than that associated with expansion of the pore space. Most
rocks and soils are hysteretic with regards to capillary pressure, which means that the
S (y) relationship depends on whether drainage or imbibition is occurring, and on the
past saturation history of the rock (see Niemi and Bodvarsson, 1988). For many of the
processes of interest with regards to the hydrological behavior of Yucca Mountain, the

saturation varies monotonically, and so hysteresis can be ignored. Hence, we assume

that § is a single-valued function of y, with no dependence on past values. Eq. (5)
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also assumes that as the liquid water imbibes into the matﬁx, it is not impeded by the
air that is initially in place. This assumption is known to be correct for flow into an
unbounded medium, since the air can escape ahead of the advancing liquid front. For
flow that is assumed to be entering a finite-sized matrix block, it has been thought that
air might be trapped in a pocket at the center of the block, thus impeding the imbibi-
tion of water. Studies of this and related air-impedance effects have been conducted
by Wilson and Luthin (1963), Youngs and Peck (1964), Adrian and Franzini (1966),
Phuc and Morel-Seytoux (1972), Touma and Vauclin (1986), and Constantz et al.

(1988). This issue is addressed to some extent in Appendix E.

Eq. (5) also neglects gravity, which otherwise would cause an additional potential
term pgz to be added to the pressure potential Y. Roughly speaking, gravity can be
neglected if the matrix block sizes are smaller than the so-called ‘‘sorptive length’’ of
the rock material. If this condition holds, then the gravitational gradient will be negli-
gible compared to the capillary pressure gradient. To understand this criterion, con-
sider a matrix block whose characteristic length is L. The potential difference
between the matrix block and the adjacent fractures will be on the order of y,, which
is the characteristic potential that appears in the capillary pressure function, and so the
magnitude of the pressure gradient will be on the order of |y, /L. The gravitational
gradient is always pg, where p is the density of the liquid, and g is the gravitational
acceleration. Hence, the criterion for the gravitational gradient to be negligible is

pg < hy, /L, which can be written as

L < =L,. ©

The term hy, l/pg is defined as the sorptive length, and denoted by L;. Using hydro-

logical parameters believed to be appropriate for the Topopah Spring welded tuffs at




-13 -

Yucca Mountain, and a more precise definition of sorptive length due to Philip (1987),
Zimmerman et al. (1990) found a sorptive length of about 8 m. This means that grav-
ity can be ignored in any matrix block whose diameter is much less than 8 m. Since
fracture spacings in the Topopah Spring unit are thought to be on the order of tens of
centimeters (Wang and Narasimhan, 1985), imbibition into matrix blocks will be dom-
inated by capillary forces. Estimated sorptive lengths for some of the geological units

at Yucca Mountain are given in Appendix B.

Each rock has its own set of ‘‘characteristic functions’’ that describe the relation-
ships between S, W and k,. Two sets of characteristic functions that are often used in
modeling the hydraulic behavior of the volcanic tuffs at Yucca Mountain are those
proposed by Brooks and Corey (1966), and Mualem (1976) and van Genuchten (1980).
Although these two models use different equations for the two characteristic functions,
the imbibition rates that result for the two cases are not very different, since imbibition
rates are insensitive to the precise details of the characteristic curves. In Appendix F it
is shown that if the parameters in the two models are chosen so as to have the S ()
curves asymptotically coincide at low saturations, the resulting imbibition rates are
nearly indistinguishable. Our dual-porosity model has therefore been developed under
the assumption that the matrix blocks can be described by the van Genuchten charac-

teristic curves, which are given by the following equations:

S(W) = Sr + (Ss—Sr)[l +(w/Wa )n ]—m s (7)

=) T L+ (g, ) T Y
[1 + (‘If/\l’a )n ]m/2

k. (W) , 8

where Y, is a characteristic potential that has dimensions of [P], and m and n are
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dimensionless parameters that are related by m =1—1/n. The characteristic potential
y, is, in some rough sense, inversely proportional to the mean pore size of the rock.
The parameter n is inversely related to the broadness of the pore-size distribution, in
the sense that smaller values of n are associated with broader distributions, and vice
versa. Although van Genuchten (1980) originally implied that » could in principle
take on any value greater than 1, it has subsequently been argued on theoretical
grounds by Fuentes et al. (1991) that » cannot be less than 2. Although soils often
have values of » on the order of 6-12 (van Genuchten, 1980), the characteristic curves
of Yucca Mountain tuffs tend to have very low values of », in many cases 1<n <2
(Rulon et al., 1986; Peters and Klavetter, 1988). This discrepancy can probably be
explained by the fact that the experimental values of n are found from data taken at
intermediate saturations, whereas the criterion n >2 follows from considerations of the
low saturation regime. S, is the dimensionless residual water saturation, which is the
value of S at which the liquid phase becomes immobile. S;, which is usually very
close to 1.0, is the saturation at which the matric potential goes to zero. Egs. (7) and
(8) express the saturation and the relative permeability as functions of the capillary
potential. It is sometimes convenient to use the saturation as the independent variable,

in which case the two characteristic functions would be written as

Y(S) =y, (§m — plin | 9

k,.(S) =S~‘1/2[1_(1_§1/m)m]2, (10)

where § =(S - 8,)/(S; —S,) is the normalized saturation. Normalized characteristic
curves for various values of n are shown in Figs. 1-3, using different combinations of

independent and dependent variables. The relative permeability in each case drops off
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monotonically with decreasing liquid saturation, although it does so more rapidly for
larger values of n. The capillary pressure function varies rapidly at high and low
saturations (i.e., near S; and near S,), and varies less drastically in the intermediate
region.

Eq. (5) is essentially a nonlinear diffusion equation (see Brutsaert, 1976), with the
conductance and capacitance related to the characteristic functions %,(y) and S(y).
This can be seen by using the chain rule to relate dy/ox to dS/dx, and treating S as

the independent variable, which leads to

oS (x,t)
ot

(11

i[kkr(s) dy BS(x,t)} o

ox| WU dS ox

This equation is now precisely in the form of a diffusion equation, with the combina-
tion of terms kk,(S)y’(S)ud playing the role of a diffusion coefficient (see Hillel,
1980, p. 205), ie., |

kk (S
D)= *S) dy (12)

Since the diffusion coefficient varies with S, eq. (11) is typically very nonlinear, and

in general cannot be solved in closed-form.

The governing differential equation (11) must be augmented by the appropriate
boundary conditions and initial conditions in order to constitute a well-posed
mathematical problem. Initially, the rock is at some partial saturation S;, which
corresponds through eq. (9) to some potential y; <0. At time ¢ =0 the potential at the

x =0 boundary of the block is raised to, say, y=0. Mathematically, these conditions

can be expressed as
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Yx,t=0)=vy;, (13)
Y(x=0,t>0)=0, ) (14)
limy(x,t) = ;. (15)
X —oo

The final condition, (15), expresses the fact that at any fixed time, the saturation must
approach S; infinitely far from the wetted boundary. In other words, the wetting front
cannot travel infinitely far into the rock in a finite amount of time. In principle, egs.
(11-15) can be solved to find the potential profile y(x,t). From this solution, the

imbibition rate can be found by applying Darcy’s law at the boundary:

fw] | 6
x=0

As the dimensions of both £ and A are [L2], the dimensions of p are [PT], and the

dimensions of oy/dx are [PT ], the flowrate ¢ has dimensions of [L3T 1.

Due to the mathematical structure of the governing equation (11), which contains
one derivative with respect to ¢ and two with respect to x, it can be shown (Bruce and

Klute, 1956; Gardner and Mayhugh, 1958; see also Appendix A) that the imbibition

-1/2

rate at the boundary will always be proportional to ¢7~, regardless of the precise

details of the hydraulic diffusivity function. This fact led Philip (1955) to define the

sorptivity ¢ by

AC

9= (17
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where A is the wetted outer area of the block. The féctor 2 is included so that the
cumulative imbibition, which is obtained by integrating g with respect to ¢, is given
by Q =Aoct V2 The sorptivity has dimensions of [LT~Y2), which corresponds to the
square root of the dimensions of the diffusivity. If the diffusivity were independent of

saturation, the sorptivity would be given exactly by (see Kutilek and Valentova, 1986)
o = 20(S, - 5;)(D Im)2. (18)

For the case where the diffusivity varies with saturation, eq. (18) can be used to define

the effective diffusivity, i.e.,

no?

= — 19
4’¢2(Ss —Si)z 2

e

Various methods have been proposed to estimate the sorptivities of unsaturated
media, based on their characteristic functions. Many of the more commonly used
methods are discussed by Kutilek and Valentova (1986) and Lockington (1993). Zim-
merman and Bodvarsson (1989) used the Pohlhausen integral method (see Macey,
1959; Goodman, 1964) to find the following approximate expression for the sorptivity

of a van Genuchten medium:

172
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When compared with numerical solutions using the hydrological properties of the

Topopah Spring welded tuff, this expression was found (Zimmerman and Bodvarsson,
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1989) to have reasonable accuracy. Eq. (20) is in fact asymptotically accurate for
large values of n, and for high initial saturations (see Zimmerman and Bodvarsson,
1991b), but it is not uniformly accurate over all ranges of possible conditions. Guided
by the algebraic form of eq. (20), and utilizing numerical solutions of the Richards
equation, it is possible to derive a much more accurate expression for the sorptivity.

We start by rewriting eq. (20) in a more general form:

172 S,~S; B .
5.5, |’ (21)

2%k oy, IF (m)
u‘(Ss - Sr)

where F(m) is some function of m (or, equivalently, of n, since m =1-1/n), and B is
some parameter. These open functions/parameters can be found by fitting eq. (21) to
numerically-computed sorptivities. The function F(m) is found by fitting the
numerically-computed sorptivities for an initial saturation of S; =S,. This procedure

leads to the choice F(m)= m*3.

By finding the best-fitting value of B at various
values of m, and then performing a linear regression on the B—m pairs, we have found

B =0.62-0.12m. Hence, we arrive at the following expression for the sorptivity:

2m¥oly, | 12 S, S, 0.62-0.12m
=[ m koY } : (22)

u(Ss —Sr) Ss_Sr

The accuracy of eq. (22) can be tested by comparing its predictions to exact sorp-
tivities found by direct integration of the Richards equation. This integration is per-
formed by first transforming the Richards equation into a second-order ordinary
differential equation, which is then written as a pair of first-order equations. These
two equations are then solved using a fourth-order Runge-Kutta algorithm (see Press et

al., 1992, pp. 704-708). This procedure is described in more detail in Appendix A. In




-19 -

Fig. 4, these numerical values are compared to the values given by eq. (22); the agree-
ment is fairly close, for all ranges of n and S;. As rn is theoretically restricted to
values n >2, and as the sorptivity curves are very insensitive to n when n > 10, Fig. 4

essentially covers all relevant cases.

As mentioned above, the Warren-Root-type model is not accurate at early stages
of the imbibition process. Dykhuizen (1990,1991) attempted to improve upon the per-
formance of a Warren-Root ‘‘quasi-steady-state’® coupling term by using a different
ordinary differential equation in the early stages of imbibition, which would correctly
predict the 12 dependence of the infiltration rate. Zimmerman et al. (1993) used a
similar approach which differs in that a single coupling equation is used, which in a
sense contains Dykhuizen’s two equations as special cases for small and large amounts
‘of cumulative imbibition, respectively. This approach is based on an approximation to
the pressure response of a spherical block subjected to a step-function increase in the
pressure at its outer boundary, which was developed by Vermeulen (1953). This

expression can be shown to satisfy the following ordinary differential equation:

dap, —P;*—(P,,—P;)?
dt 2(P,,~P;)

where P; is the initial pressure in the matrix block, and o is the same shape factor that
is used in the Warren-Root equation. When P, is close to Ps, which is to say that
the matrix and fractures are nearly in equilibrium with each other, it can be shown that
eq. (23) reduces to eq. (4). At early times, when the fracture pressure is varying
rapidly, and the matrix pressure has not yet had sufficient time to respond, eq. (23) can
be shown to approximate the actual transient pressure response of the block with rea-
sonable accuracy (see Zimmerman et al., 1993). For example, Fig. 5 shows the mean

pressure P,, in a fully-saturated spherical matrix block whose outer boundary is
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subjected to a step-change in the pressure from P; to P,, as predicted by eq. (23), by
the Warren-Root equation (3), and by the exact solution (see Zimmerman et al., 1993).
Eq. (23) predicts the mean pressure in the matrix block (which is equivalent to the
cumulative flux into the block; see eq. (2)) very accurately, at both early and late
times.

Zimmerman et al. (1993) utilized eq. (23) in place of the Warren-Root equation
(4) as part of a modification to the TOUGH simulator for the special case of single-
phase flow, and verified its accuracy. In conjunction with certain modifications (dis-
cussed below) to render the equation applicable to unsaturated flow, eq. (23) is the
basic form we have used for the fracture/matrix coupling term. The question of deter-
mining the correct shape factor, o, to use in the fracture/matrix coupling equation is

discussed in detail in Appendix D.

Dual-Porosity Simulator

We have implemented a Vermeulen-type expression for fracture/matrix flow as
part of a module of subroutines that is compatible with the TOUGH code (Pruess,
1987). TOUGH is an integral finite difference code that can simulate the flow of
liquid water, water vapor and air in porous or fractured media. Before describing the
coupling procedure, and the structure of the new module, we will briefly review the
structure and capabilities of TOUGH. Further details concerning TOUGH, along with
sample problems, etc., can be found in the TOUGH User’s Guide (Pruess, 1987).

TOUGH solves the equations that represent conservation of mass for water and
for air, and conservation of energy, for water/air flow through porous'media. The
equations are solved using the ‘‘integral finite difference’” approach (Edwards, 1972;
Narasimhan and Witherspoon, 1976), in which the governing partial differential equa-
tions are first integrated over each gridblock, leading to first-order differences in space.

Time is also discretized as a (forward) first-order finite-difference. All thermodynamic
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variables that appear in the finite-difference equations therefore represent values that
are averaged over the gridblock. The basic thermodynamic variables are usually taken
to be temperature, pressure, and mass fraction of the air component. If the water is in
a two-phase state, which would occur in regions of boiling near a waste canister, for
example, the pressure and temperature would not be independent, and the third
independent variable would be taken to be the vapor saturation of the water com-
ponent; see Pruess (1987) for further details. As there are two mass conservation
equations and one energy conservation equation to be solved, there are always only
three independent variables, which are referred to within TOUGH as the ‘‘primary

variables’’.

In passing from the known conditions at timestep ¢ to the unknown conditions at
timestep ¢ + At, all properties, such as internal energy, etc., are evaluated at the values
of the primary variables that obtain at time r+Af. This is a so-called implicit
approach, the use of which is required in order to avoid the numerical instabilities that
occur when using an explicit method, in which all properties are evaluated at time
(Richtmyer and Morton, 1967, pp. 7-16; Rossen, 1977). Use of an implicit method
causes the equations for the new values of the three primary variables to be coupled to
each other. If there are N gridblocks, there will be 3N primary variables, and 3N
coupled equations. Since internal energy, relative permeability, etc., vary nonlinearly
with the primary variables, the 3N coupled equations are nonlinear, and are solved by
Newton-Raphson iteration, which is essentially an iterative sequence of linearizations.
Typically, about three or four iterations of the Newton-Raphson procedure are needed
to solve (to within a certain required accuracy) the nonlinear equations in order to find
the new values of the primary variables. Hence, the major computational burden of
the TOUGH code is the solution of a sequence of 3N X3N systems of linear algebraic

equations. In the version of TOUGH that we have used, these equations are solved

using direct solution procedures; newer versions of TOUGH have options of using
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other methods, such as conjugate gradient methods, etc., that may be more efficient for

certain problems (see Moridis et al., 1994).

In order to demonstrate the computational approach used by TOUGH, without
requiring the elaborate system of superscripts and subscripts that are needed for a com-
plete formulation, for illustrative purposes we will consider the one-dimensional
Richards equation, eq. (5). This is equivalent to ignoring the energy balance equation
and the mass balance equation for air, as well as other factors such as diffusion of
water vapor through the gaseous phase, etc., which are included in TOUGH. Consider
three adjacent gridblocks in a one-dimensional system that is broken up into slab-like
gridblocks of equal thickness, with their centroids located at points x—Ax, x, and
x+Ax, and which are labelled i-1,i,andi+1. The integrated form of the left-hand
side of eq. (5) for gridblock i represents the net flux into that block, from the two
adjacent blocks, and the integrated form of the right-hand side represents the change in
the amount of water stored in that block. In integral finite difference format, this mass

balance takes the form

plkk, /1);_1 ;A [y;_ (1+A1) = y; (2+A7)]At . PRk, IW); ; 1A (W (F+AL) = ; (2 +A2) ] A2
Ax Ax

+ pg At = ph;AAx[S;(¢+AL)~S;(2)], 24)

where A is the cross-sectional area perpendicular to the flow, p is the fluid density,
and ¢, with dimensions of [L3T"!], is a source/sink volumetric flux that is assumed to
be instantaneously distributed throughout the gridblock. The terms with overbars
represent some appropriate average transmissivity across the interface between adjacent
blocks, the determination of which is discussed in the TOUGH User’s Guide (Pruess,
1987). Eq. (21) can formally be solved for S;(t+At), which is the saturation in
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gridblock i at time ¢ +At. However, since the three potentials that appear on the left
side of eq. (21) depend on the saturations at time ¢ +Af, the equation for the new
value of S; is coupled to those for S;_; and S;,;. In this way, the implicit method

leads to a system of coupled nonlinear equations.

The TOUGH code utilizes the discretization method outlined above to derive a
mass balance (water and air) equation, and an energy balance equation, for each grid-
block. In each case, the sum of all the fluxes into a gridblock should exactly equal the
change in the accumulation term. The difference between the flux and storage terms is
known as the residual, which will vanish if the equations are satisfied. This set of
equations is solved by Newton-Raphson iteration, which entails linearizing the equa-
tions about the current values of the primary variables, leading to a set of linear alge-
braic equations that can be solved by any number of standard methods. The Newton-
Raphson method is iterated until all residuals are less than some specified accuracy. If
this iterative process converges within fewer than a prescribed number of steps, usually
taken to be four, Ar is doubled for the next timestep. This procedure allows the
timesteps to grow rapidly and become large, which is desirable for diffusive-type
processes, the rates of which usually decrease with time. However, the procedure of
doubling the timestep does not account for the increase in the truncation error that is

associated with approximating the time derivatives with first-order differences.

The TOUGH code contains provisions for sources/sinks of mass and heat, which
are calculated in the subroutine QU. The sources/sinks are typically used to account
for fluid that is injected or withdrawn from a borehole that penetrates one of the grid-
blocks. We have modified this subroutine so as to include a new type of source/sink,
which represents liquid water flowing into (or out of) the fracture gridblock from the
matrix blocks that are contained in a given fracture gridblock. The magnitude of the

fracture/matrix flux for each fracture gridblock is computed using the following equa-

tion, which is found by combining egs. (2,12,23):
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OV kmke [0 =Y:)? = (W =V:)]

— (25)
u Z(Wm =V )

q:

This ‘‘generation’’ term represents the average flux ¢ into a given fracture gridblock,
over the time interval [z,7+Ar]. The volume V,, represents the total volume of
matrix rock contained within the fracture gridblock; it is therefore related to the
volume of the fracture gridblock by V,, =(1-0,)V,, where ¢; <1 is the fracture
p(‘)rosity. The relative permeability function %, in eq. (25) refers to the relative permea-
bility of the matrix block. As the imbibition rate is primarily controlled by the
hydraulic conductivity of the matrix block at the wetted boundary, k, is evaluated at
the capillary pressure that exists at the outer boundary of the matrix block, which is to
say at Yy, using eq. (8).

In order to make the calculation fully implicit, the flux is computed using the
values of the variables at time # +A¢. The new value of y,, that exists in the matrix
block at time ¢ +Ar must be consistent with the new average saturation. From a mass

balance in the matrix block, the new average saturation at time 7 +Af is given by

4 24
q)me

S, (t+At)=8,(t) + (26)

The mean saturation S,, and the mean capillary pressure V,, are related to each other
through eq. (7), using parameters appropriate for the matrix. At each TOUGH iteration,
eqs. (7,25,26) are iterated (for each fracture element) to find a consistent set of values
of {y,,,S,,,and ¢ }. Once this is done, it is also necessary to calculate additional con-
tributions to the Jacobian matrix, whose components are the partial derivatives of the
energy, water and air residuals with respect to changes in the primary variables. For

unsaturated flow, the primary variables are the liquid saturation, the gas phase
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pressure, and the temperature. In our formulation, the possible presence of any dis-
solved air in the water that flows between the fracture elements and their associated
matrix blocks is neglected. However, we do include the latent heat that is transported
with the liquid, which is calculated by multiplying the mass flux given by eq. (25) by
the liquid phase enthalpy.

Horizontal Flow Along a Single Leaky Fracture

One basic problem which has much relevance to understanding the behavior of
the hydrological system at Yucca Mountain is that of water flowing along a fracture,
with leakage into the adjacent matrix. This is also one of the simplest transient prob-
lems that involves flow in both fractures and matrix rock. If we consider a single, iso-
lated fracture, the matrix must be modeled as being semi-infinite in extent, in each
direction. The solution to this problem, and its relevance to the hydrological behavior
of Yucca Mountain, has been discussed by Travis et al. (1984), Martinez (1987), and
Nitao and Buscheck (1991). A schematic diagram of this problem is shown in Fig. 6.
Flow into the fracture is driven by the imposed potential at the y =0 boundary. Water
flows along the fracture, while at the same time slowly leaking off laterally into the
matrix rock. Due to the symmetry of the problem, only one of the two matrix regions

needs to be included in the computational grid.

For the matrix blocks, we use the hydrological parameters that have been
estimated for the Topopah Spring Member of the Paintbrush Tuff (Miocene) at Yucca
Mountain (Rulon et al., 1986), which are k=39%10"8m2, vy, =-0.8718 X 10° Pa,
¢=0.14, S, =0.984, S, =0.318, and n =3.04. More recently-measured values are given
by Flint and Flint (1994); however, as our present purpose is merely to compare the
semi-analytical simulation method to MINC-type simulations, it is only necessary that

the numerical values of the parameters be roughly similar to those for the rocks at

Yucca Mountain. Very little experimental data exists for determining the appropriate
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characteristic curves for single fractures, at Yucca Mountain or elsewhere. In the stu-
dies conducted by Martinez (1987) and Nitao and Buscheck (1991), the fracture was
assumed to be bounded by two smooth, parallel walls that are separated by a distance
b. The absolute permeability for this type of fracture can be exactly calculated to be
b?/12 (Bear, 1972, p. 164). The capillary pressure function S (y) and the relative per-
meability function for a smooth-walled fracture of aperture b are represented by unit-
step functions located at some value . (see Martinez, 1987, Fig. 3). The value of y,
is related to b and to the surface tension properties of the rock/water/air system

through the equation (Martinez, 1987, p. 15)

_ —2ycosO

PR (27)

Ve

where v, which has dimensions of [MT"2 = PL], is the surface tension between water
and air, and O is the (dimensionless) contact angle of the water/rock interface. At

room temperature, Y = 0.076 N/m.

The experimental evidence that currently exists seems to indicate that fractures
can be described by the same type of characteristic functions that are used to model
three-dimensional porous media (Persoff and Pruess, 1993; Reitsma and Kueper,
1994). For the fracture, we will use the characteristic curves that were derived by
Pruess et al. (1988) using a mathematical model of a fracture as a rough-walled chan-
nel. Although these curves are not based on direct measurements, the parameters in
the model were to some extent conditioned by data from Yucca Mountain. The values
of the hydrological parameters for the fracture are taken to be k =5.5x10"11m? (per
fracture), S;=1.0, S,=0.0, y,=-1.65x103Pa, and n=2.89. If the permeability
b%/12 of a smooth-walled channel is modified to account for fracture roughness and

contact area (see Kumar et al.,, 1991; Zimmerman et al., 1991¢,1992), this single-
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fracture permeability is seen to be consistent with a fracture whose aperture is on the
order of 100 um. The volumes of the fracture elements were chosen to correspond to
an aperture of 800 um, however. This relatively large aperture was chosen so as to
accentuate the early-time regime of the solution, in which matrix imbibition is not yet
of much consequence, so as to clearly verify whether or not the new method is capable

of capturing the transition between the two regimes (see below).

In our simulations, the fracture was discretized into 45 elements, with the length
of the n—th element given by L, =(1.2)" ~Im; i.e., the element lengths were 1.0 m, 1.2
m, 1.44 m, etc. Relatively small fracture gridblocks are needed near the surface in
order to accurate model the diffusive front, particularly at small times. The tempera-
ture was taken to be 20°C, and the initial capillary pressure was taken to be
—1.013%10° Pa. This capillary pressure corresponds, through the capillary pressure
functions, to an initial matrix saturation of 0.6765, and an initial fracture saturation of
0.0004. For the fractures and matrix blocks to be in equilibrium at the start of the pro-
cess, their capillary pressures must be equal. In general, this will lead to different
saturations in the fractures and matrix. Since the average fracture aperture is typically
much larger than the average pore diameter in the matrix block (Nitao and Buscheck,
1989), the magnitude of the van Genuchten capillary scaling parameter y, will be
much larger in the matrix than in the fracture. For equal capillary pressures, the
matrix will have a much smaller value of y/vy,, and therefore a higher saturation. A
capillary suction that is sufficient to almost completely dry out the fracture will conse-

quently cause only moderate drying of the matrix.

We have solved this problem using TOUGH with the new dual-porosity module
to perform the fracture/matrix interaction calculations, and also using TOUGH without
the source/sink expressions, but with explicit discretization of the matrix rock adjacent

to the fracture. When solving the problem with explicit discretization of the fracture

and matrix regions, the matrix elements must be extended sufficiently far into the the
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formation so as to effectively simulate a semi-infinite region. This distance will
depend on the total elapsed time of the simulation. In the example simulation, which
covered an elapsed time of 10%s (about 3 years), the matrix elements were extended
about 20m away from the fracture. This was achieved using 20 matrix gridblocks in
the direction transverse to the fracture, with the thickness of the n—th gridblock given
by L, =(2.0*x10>m. The total length of matrix gridblocks in the direction normal to
the fracture was therefore equal to 21.97 m. Note that very small matrix gridblocks
are needed near the fracture in order to accurately resolve the saturation fronts in the

matrix at small times.

The instantaneous flowrate of liquid into the fracture at the y =0 inlet, as a func-
tion of time, is shown in Fig. 7. At early times, no appreciable leakage has taken
place into the relatively impermeable matrix, and the flow field is essentially that of
diffusive flow along the fracture. In this regime, the flux into the fracture at the inlet
decays as 172, As time progresses, the wetted interface area between the fracture and

the matrix rock increases, and the effect of leakage becomes more important. The

-172 -1/4

overall flowrate into the fracture gradually changes from a ¢ variation to a t
variation, as was predicted theoretically by Nitao and Buscheck (1991). The saturation
profiles in the fracture are plotted in Fig. 8, at elapsed times of 10*s, 10%s, and 108s.
At each time, there is very close agreement between the saturation profile predicted by

the semi-analytical method, and that predicted using a discretized matrix.

The amounts of CPU time needed for the simulations, performed on a Solbourne
(Series 5) computer, are shown in Table 1. In each case the simulation was carried
out to 108 s, starting with an initial timestep of 0.01s, and with no restrictions placed
on the timestep growth. The semi-analytical solution required about 70% fewer
timesteps than did the fully-discretized solution, which is to say it allowed, on the
average, timesteps that were about 3.38 times larger. The total number of Newton-

Raphson iterations needed by the fully-discretized simulation was about 3.04 times
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greater than that needed by the semi-analytical method. The savings in CPU time for
the semi-analytical method was about 96%, which corresponds to a 25-fold increase in

speed. This reflects both an increased speed per iteration, and a need for a fewer total

number of iterations to reach the desired total simulation time of 108s.
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Table 1. CPU times for the problem of horizontal infiltration into a single fracture
located in a permeable formation. Both simulations were conducted with TOUGH

running on a Solbourne (Series 5) computer.

Fully-Discretized Semi-Analytical
# fracture elements 45 45
# matrix elements 45x20=900 0
Total # elements* 946 46
Timesteps 624 | 185
Iterations 3205 1053
CPU time (s) 20901 823

* Includes one boundary element
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Vertical Infiltration into a Formation Containing Parallel Fractures

Another idealized hydrological problem that is relevant to the site characterization
process at Yucca Mountain is that of infiltration of liquid water into a formation con-
taining an array of parallel fractures, under the influence of both capillary and gravita-
tional forces (see Fig. 9). Such infiltration can occur under conditions of either con-
stant pressure at the surface, or constant flux. We will consider infiltration that occurs
under constant pressure conditions; in particular, we will consider the ‘‘barely-
ponded’’ case, in which there is a very small positive potential at the surface, caused
by a small depth of standing water. The effect of a positive potential of magnitude
at the surface will have a negligible effect on imbibition compared to the capillary
forces, as long as Iy, l<ly,|. Since a ponded head of depth % causes a surface
potential of magnitude pgh, the effect of ponding will be negligible as long as
h <vy,/pg = L, where L, is the sorptive length of the fracture (see Appendix B). For
the parameters used in this example, the sorptive length is 0.17m, or 17cm, so the
case of negligible ponded head is physically realistic. Therefore, in order to simplify
the interpretation of the results, we take the ponded head to be zero. The type of
infiltration modeled in this problem would occur, for example, after a brief but intense
rainfall event. Assuming uniform properties in the horizontal plane, the imbibition can
be modeled as a one-dimensional problem, similar to the leaky-fracture problem dis-
cussed in the previous section. The only differences in the simulations are the inclu-
sion of a gravitational gradient, and the use of a finite size for the matrix blocks.
TOUGH allows for the gravitational gradient to be set equal to zero, or to its actual

value of 9.81 m/s?, or to any other value, as specified in the input file.
For this problem the fracture continuum was discretized into 50 elements, with
the length of the n—th element given by L, =(1.2)""'m. This is a similar gridding

scheme as was used for the horizontal flow problem, except that five additional grid-

blocks were needed to insure that the front did not reach the end of the grid within
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10%s. Fourteen matrix gridblocks were placed normal to each fracture gridblock, with
their lengths given by L, =(2.0)" x10°m. These matrix gridblocks therefore extend a
total distance of 0.3277m away from the fracture, which corresponds to a spacing
between fractures of 2L =0.6554 m. This spacing is in the range that was reported by
Wang and Narasimhan (1985). The matrix blocks in this problem are therefore slabs
of length 2L. The proper shape factor for a slab of thickness 2L, which is needed for
the semi-analytical simulation, is given by a=n(2L)*=22.98 (see Appendix D). The
equivalent-continuum fracture permeability was taken to be 3.357x 1074 m?, and the

fracture gridblock volumes were again chosen to correspond to an aperture of 800 (m.

Fig. 10 shows the saturation profiles in the fractures, as a function of depth below
the surface, after elapsed infiltration times of 106 s, 107 s, and 10% s. Gravity causes
the liquid front to extend much farther down into the formation than would have been
the case under the influence of capillarity alone (compare Figs. 10 and 7). The agree-
ment between the fully-discretized TOUGH solution and the solution obtained with our
new source/sink method is again quite close. Fig. 11 shows the infiltration rate into
the formation as a function of time. The initial downward-sloping region that exists
for  <10%s reflects the influence of capillarity, which is important only at small times.
After the effect of capillarity diminishes, the volumetric flux tends towards the value
q =pgks/u, which would be the infiltration rate into the fractured formation of per-
meability k;, if the matrix blocks were impermeable. In this problem,
pgks/n=3.29% 10”7 nvs. Eventually, at times that are sufficiently large that the matrix
blocks near the surface are full, the infiltration rate re-stabilizes at g =pgks/\. How-
ever, as predicted analytically by Nitao and Buscheck (1989,1991), there is an inter-
mediate regime, during which the the matrix blocks near the surface are in the process
of being filled, when the infiltration rate rises somewhat above pgks/i. The
infiltration rate calculated using the semi-analytical approach displays this qualitative

feature, whereas the fully-discretized solution in fact shows a slight decrease below
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this infiltration rate. Although these effects are relatively small (the two infiltration
rates never differ by more than 20%), and do no not seem to have any simple physical
explanation, it nevertheless .seems that the semi-analytical method can more readily
discern this subtle aspect of the solution; presumably, a finer gridding of the matrix

blocks would enable the fully-discretized solution to predict this effect.

Table 2 shows the computational details of the two simulations. The number of
timesteps needed to reach 10%s was about 27% less for the semi-analytical simulation
than for the fully-discretized case. The ratio of CPU times between the two simula-
tions was about 6:1. Note that in the case of horizontal infiltration, the flowrate into
the first fracture element continually decreases, whereas for vertical infiltration, the flux
is more or less constant in time. Recall that TOUGH will allow the timestep to grow
if the Newton-Raphson iterations converge within, say, four iterations. Our simula-
tions have generally shown that one of the factors that controls the ease of conver-
gence is that the total volumetric flux through any given gridblock in one timestep can-
not exceed about 10* pore volumes. If the flowrate decreases, the maximum allowable
timestep will grow at a rate such that gAr = 104(¢V)mm. Hence the timestep can grow
continually in the vertical flow problem, but will not grow beyond some fixed value
during vertical flow. This accounts for the fact that both methods required less
timesteps for the horizontal flow problem as for the vertical problem. In either case,
the maximum timestep will be controlled by the size of the smallest gridblock. In the
fully-discretized horizontal flow problem, the smallest gridblock was a matrix element
adjacent to the first fracture element; the elimination of this element in the grid that

was used in the semi-analytical simulation had the effect of allowing larger timesteps

to be taken. This is an additional advantage afforded by the new method.
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Table 2. CPU times for the problem of vertical infiltration into a formation consisting
of a set of parallel, equally-spaced fractures. Both simulations utilize TOUGH running

on a Solbourne (Series 5) computer.

Fully-Discretized Semi-Analytical
# fracture elements 50 50
# matrix elements 50x14 =700 0
Total # elements™ 946 46
Time steps 970 705
Iterations 5082 4785
CPU time (s) 20508 3431

* Includes one boundary element
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Conclusions

This report has described a new semi-analytical dual-porosity model for unsa-
turated flow in fractured/porous media. The model is based on a lumped-parameter
formulation, in which the mean liquid potential in each matrix block is represented by
a single value. Fluid flow from the fracture network into the matrix blocks is modeled
by a nonlinear equation, with an effective transmissivity that depends on the hydrologi-
cal properties of the matrix rock, the geometry of the matrix blocks, as well as on the
mean saturation of the matrix blocks. This expression for fracture/matrix flow has
been incorporated into a module that is compatible with the TOUGH simulator to act
as a source/sink term for the fracture elements. The modified code has been tested on
the problem of flow along a single horizontal fracture, as well as vertical infiltration
into a fractured formation under constant-head boundary conditions. In both cases the
new method gives very close agreement with simulations carried out by explicitly
discretizing the matrix blocks, while yielding a substantial savings in CPU time. Since
the new method permits an order of magnitude decrease in the number of computa-
tional cells, the process of creating the grid and the input file for the TOUGH simula-
tions is greatly simplified. Both of these factors will allow for much more efficient
simulation of unsaturated flow processes in fractured/porous formations, such as, in
particular, the unsaturated zone at Yucca Mountain, Nevada. The new dual-porosity
module described in this report is currently being used, in conjunction with the three-
dimensional site-scale model of the unsaturated zone at Yucca Mountain that has been
developed by scientists at Lawrence Berkeley Laboratory and the U. S. Geological

Survey (Wittwer et al., 1994), to conduct transient simulations of infiltration processes

at Yucca Mountain.
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saturation, are given by eq. (9), and the adjoining text.




-38 -

10’ 3
-1
10 =
£ 3 7
= 107 3 e
g E .0". '00
w : . ..'« /
E 10-3_ .0' "
o E s n=15
o 3 s n=20
g -4 i :: ll“lfl4l.I0lII..l
E 10 _§ :: / n=6.0 -
-] J o .
T . I.' N
c [
1074k /
: s ’
7 ]
] E :
1/
10 ] 1 ) 1

0 0.2 0.4 0.6 0.8 1
NORMALIZED SATURATION, (S-Sr)/(Ss-Sr)

Fig. 2. Relative permeability curves of Mualem - van Genuchten media, as functions
of normalized saturation. The parameters n and m are related by
n=1/(1-m). The equation of the curves, and the definition of normalized
saturation, are given in eq. (10), and the adjoining text.
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Appendix A: Numerical Solution of the Richards Equation

The Richards equation is a second-order, nonlinear partial differential equation in
two variables, x and r. However, because of its mathematical form, which contains
two derivatives with respect to x and one derivative with respect to 7, a Boltzmann
“‘similarity’’ transformation can be used (see Hillel, 1980, p. 208) to transform it into
a second-order ordinary differential equation. This second-order ordinary differential
equation can then be written as a pair of first-order differential equations, which can
then be solved numerically using standard methods. This approach is more efficient
and more accurate than a numerical solution of the original partial differential equa-

tion, due to the reduction in the number of independent variables from two to one.

For a van Genuchten medium, the Richards equation (without gravity) takes the

form (see eq. (4))

i[kkr(\v) N(x,1) | _ 9S(x,1)

ox| uo ox ot (AL
where the characteristic functions are given by
SY) =8, +(S=SHL+ My, )" T, (A2)
{1= W) L+ iy, )" 177 )
k(9 = hihf . (a3)

[1 + (W/Wa )n ]m/2

The boundary and initial conditions for the problem are

Y(x,t=0)=vy;, (A4)
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Yy(x=0,:>0)=0, (AS)
lim y(x,t) = y; . (A6)
X oo

Guided by the approximate solution developed by Zimmerman and Bodvarsson

(1989a), we define the dimensionless potential ﬁl by

o= Y
y=-r, (A7)
Ve _
the normalized saturation by
. S-S5
S = r s (AS)
Ss _Sr

and the dimensionless similarity variable by

_ 21122
_ l:!»'-q’(ss S, )x ] . (A9)

REPA

As ¥ will be negative in the unsaturated zone, and Wy, <0, the normalized capillary
potential Y will be positive. In terms of these dimensionless variables, the Richards

equation is transformed into

~

e ond¥| 4 ngondY -
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where the normalized characteristic functions are given by

S =[1+y"T™, (Al1)

oy - (=g T2
k = . Al2
L (¥) 125 e (A12)

and the symbol ’ denotes differentiation. The three boundary/initial conditions, egs.

(A4-6), collapse into the following two boundary conditions:

v(©0)=0, (A13)
nli_gnw\?f(n) = . (A14)

Egs. (A10-14) form a second-order ordinary differential equation two-point
boundary-value problem. To solve these equations numerically, we first transform eq.
(A10) into a pair of first-order differential equations. This is done by defining two

independent variables

v =V, (A15)
- _dy
=Tk (A16)

Using the product rule to expand out the derivative of the bracketed term, eq. (A10)
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can be written as a pair of first-order equations:

—L =¥, (A17)

dy k(¥ . S(yy) .
Vo kW) ., M (Wl)\liz’ (A18)

~ V. =
dT] kr (Wl) 2 kr (Wl)

where, as before, the symbol * denotes differentiation. The two boundary conditions
(A13,14) now apply to the dependent variable \]}1. The derivatives k, ’(\]}) and S'(\fl) are
found by differentiating egs. (A11,12).

After the potential profile ﬁl(n) is found, the volumetric flux into the medium can

be found from Darcy’s law (eq. (13)), as follows:

k| e =5 ]
uw" dn | 2hy,lk

I, 16k (S, —S»T’z[dﬂ
) Al9
2uz dn n=0 (AL9)

Comparing this expression with the definition of sorptivity, eq. (14), we see that

20y, lok (S, =50 | [ g4
G = { Yo ¢k(Ss Sr)} [dl]l:l ) (AZO)
“’ dﬂ n=0
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If we define the normalized sorptivity & as in Fig. 4, we have

6= {%ﬂ . (A21)
n=0

The normalized sorptivity is therefore equal to the value of {1}2 at n=0.

The initial condition for s is always taken to be 0. The relationship shown in eq.
(A21) shows that if we take the sorptivity to be known, we could integrate egs.
(A15,16) to solve for the potential at infinity, which is y;; this is equivalent to solving
for the initial saturation 5,-. This integration could be performed using any standard
integration technique for a system of ordinary differential equations, such as a Runge-
Kutta algorithm, or a simple first-order Euler algorithm (see Press et al., 1992, pp.
702-708). The integration would begin at =0, and end when \]}2 has essentially
reached zerd, and \'[!1 has leveled off to some asymptotic value ﬁ!,-. For the purposes
of generating a plot of the sorptivity as a function of the initial saturation, as in Fig. 4,

this procedure would be sufficient.

If, on the other hand, it was desired to find the sorptivity for a given value of \?},-,
the following iterative approach could be used. The sorptivity could be guessed,
thereby supplying a value for \}2 at =0, and the integration carried out to yield some
value ;. This value y;° will essentially be a function of 6. Conversely, 6 will be a
function of \]}f" , although instead of being given as an explicit function, the functional
relationship is a result of the numerical integration. Aside from this seeming compli-

cation, the problem has been reduced to a one-variable root-finding problem, i.e.,

vre) = v; , (A22)
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where ; is the initial capillary potential, and \Ifi” is the value found as a result of
numerical integration using a certain value & for the potential gradient at N=0 (see eq.
A21). Hence any standard iterative method, such as bisection or Newton-Raphson
iteration (see Press et al., 1992, pp. 355-360) could be used to converge to the value of

& that yields the correct value of \y;.

As an example of the use of the similarity transformation for solving the one-
dimensional Richards equation without gravity, consider the problem of horizontal
imbibition into a slab of Topopah Spring tuff whose initial liquid saturation is 0.63,
from a saturated boundary that is held at zero capillary pressure. The physical param-
eters for this rock are taken from Rulon et al. (1986), and are listed in Table Al.
This problem was solved using the Boltzmann ;ransfonnation method outlined above,
and also using TOUGH. In the TOUGH simulations, the potential at the inlet is held
constant by means of a very large boundary block that is connected to the first grid-
block (see Fig. A2). This ‘‘source’ gridblock has the same characteristic functions as
the slab, but a volume of 10°°m?. Initially, this source block is at a pressure of 10° Pa,
and has a liquid saturation of 0.984. At this saturation, the capillary pressure is zero
(see Table Al), so the liquid phase pressure is also 10°Pa. As the liquid in the slab of
tuff is initially at a saturation of 0.65, its capillary pressure is —1.062x 10° Pa, its air
phase pressure is 1.0x10°Pa, and so the liquid phase pressure is
V=V, +y, =1.0x10°-1.062x 10°=-0.062x 10°Pa. Hence, there is a pressure gra-
dient in the liquid phase that drives water into the slab from the source block. The
volume of the source block is sufficiently large that the loss of fluid into the slab will

not cause any noticeable drop in its pressure.

In order to mimic the physical situation modeled by the Richards equation, the air
phase is allowed to *‘short-circuit’’ out of the block. This is accomplished (see Pruess,
1987) by connecting each tuff gridblock to a large “‘sink’> block, also of volume

109m3. The characteristic functions of this sink block are chosen so that there is no
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capillary pressure effect, which implies that the air and liquid in the sink block are
always at the same pressure. The sink block is initially fully saturated with air at a
pressure of 10°Pa. As there is no capillary pressure effect, the water potential in the
sink block is also at 10°Pa, which is higher than that of the water in the slab; hence,
water will not enter the sink block from the slab of tuff. As water enters the slab from
the source block, it slightly compresses the air ahead of it, raising its pressure above

10° Pa, thereby driving air into the sink block.

In one TOUGH simulation the mesh consisted of 20 gridblocks, each of 0.05m
thickness, and in the other there were 100 gridblocks, each of 0.01 m thickness. For
comparison with the TOUGH results, the similarity solution can be expressed in terms
of the distance from the inlet, x, and the elapsed time, ¢, by using eq. (A9). The
results of the three simulations, after an elapsed time of 10”s, are shown in Figs. A3
and A4. The TOUGH simulations show a certain amount of broadening of the wetting
front, due to numerical dispersion (see Moridis and Pruess, 1992, pp. 4-8). Since the
discretization error in the integral finite difference method is proportional to the square
of the gridblock thickness (Moridis and Pruess, 1992, pp. 81-82), the fine-grid simula-
tion is more accurate than the coarse-grid results. The numerical dispersion, which is
an artifact of the solution method, can also be limited by using midpoint-weighting
instead of upstream weighting for the inter-block transmissivities. The saturation
profile and liquid potential profile computed with the fine grid lie very close to those
computed using the Boltzmann transformation. Since TOUGH has already been vali-
dated for one-dimensional imbibition problems (see Pruess, 1987, pp. 50-52), this

example serves in a sense to validate the solution method described in this appendix.



-55-

Table Al. Physical properties and parameters used in solution of one-dimensional
imbibition problem into a slab of Topopah Spring welded tuff. Rock property values
are taken from Rulon et al. (1986).

Property Symbol Value Units
Porosity o 0.14 -
Permeability k 3.9x10718 [m?]
Air-entry pressure Y, -8.72x10* [Pa]
van Genuchten parameter n 3.04 -
Viscosity* 18 0.001 [Pas]
Satiated saturation S, 0.984 -
Residual saturation S, 0.318 -
Initial saturation S; 0.650 -

* This value is used in the similarity solution; TOUGH uses pressure-dependent values
computed from equations of state. At the simulation temperature of 293 °K, there is

very little difference between the pressure-dependent values and the value 0.001 Pas.
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Fig. A2. Schematic diagram of the computational grid used in the TOUGH simula-

tions. The 1m long slab is broken up into either 20 or 100 equally-sized gridblocks,

each with a cross-sectional area of 1m3. The large boundary gridblock at the left

‘serves as a source of liquid water at 1x 10° Pa pressure, and zero capillary pressure,

while the large sink block serves as a sink for air, as described in the text.
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Fig. A3. Potential profiles computed for one-dimensional absorption of water into a
slab of Topopah Spring welded tuff. Properties and parameters are listed in Table Al.

The elapsed time is 107 s.
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Appendix B: Sorptive Lengths of Yucca Mountain Tuffs

The sorptive length L, is a characteristic length in an unsaturated porous media at
which the capillary and gravitational forces are of roughly the same magnitude. For
lengths scales much less than L, capillary forces will dominate gravitational forces,
whereas for length scales much larger than L, gravity will be the dominant force. If
the diameter 8,, of a matrix block is much less than the sorptive length for that block,
the gravitational term in the Richards equation can be ignored, and imbibition into the
block can be assumed to be governed by capillary forces alone. The sorptive length is
also of importance in other processes in which there is a combined influence of capil-
lary suction and gravity. For example, consider the phenomenon of fingering, in
which an initially uniform downward-moving imbibition front breaks up into one or
more narrow fingers that travel at a much faster rate. This is an instability
phenomenon which is caused when gravitational forces overtake capillary forces. The
diameter of these finger-like flow perturbations can be shown to be, aside from a
dimensionless multiplicative constant, equal to the sorptive length (Selker et al., 1992).
Hence, if a matrix block is sufficiently small (i.e., d,, <L;) so that gravity can be
neglected in the Richards equation, the possibility of fingering within that block can

also be ignored.

To derive a simple expression for the sorptive length, consider the full Richards
equation for one-dimensional flow in the downward vertical direction, including both

the capillary and gravitational gradients in the term for the flux (Hillel, 1980):

kk, (W)
uoé

0
0z

9 _ 985G, 1)
az [W(Z,t)—pgz)]jl - at ’ (Bl)

where p is the density of the pore water, g is the gravitational acceleration, and the

coordinate z points in the downward direction. The gradient that drives the flux of
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water consists of two terms, the capillary pressure gradient, dy/dz, and the gravita-
tional gradient, d(pgz)/0z. The order of magnitude of the capillary gradient within the
matrix block can be estimated as |y, [/L, where y, is the characteristic potential that
appears in the van Genuchten functions, and L is a characteristic length of the matrix
block (in the vertical direction). The gravitational gradient is uniform throughout the
block, and is equal to pg. Equating the magnitudes of these two gradients leads to eq.

(5), which states that

L= , (B2)

According to this analysis, the sorptive length will depend on the hydrological proper-

ties of the rock, but not on the initial saturation.

A more careful analysis given by Philip (1987), which accounts for the variation
of the capillary pressure gradient with saturation, yields the following expression for

the sorptive length:

0

1
L. = k dv. 3
= Pa T, Ok Wl 4 Y ®

By this definition, the sorptive length depends on the initial saturation of the medium,
through ;. Division of both terms in eq. (B3) by y; shows that eq. (B3) generalizes
eq. (B2) by replacing y, by the ratio of the average value of k, over the range from 0
to y; to the mean slope of k, over this range of potentials. In the special case where
k, =exp(—=y/y,), the sorptive length given by eq. (B3) would agree with the simpler
approximation given by eq. (B2). For a van Genuchten medium, Philip’s expression

takes the form
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0 _ n—1 ny-my2
1 {1-(uy, )" 1+ (g, )] }dw

L = B4
° pg [1—kr(\|’1)] "'[ [1+(W/Wa)n ]m/2 ( )

This expression can be simplified slightly by utilizing the normalized capillary pres-
sure, as defined in Appendix A,

v=-L (B5)
M \ 2
in which case eq. (B4) can be written as
Ial v —unyn—1 Tar1may2
L= —Yel [ Lo@rTOE @I e B6)
pgll—k.(y;)] o [1+(y)"]

The integral appearing in e€q. (B6) can be evaluated numerically for various values of
\Il,-, each of which correspond to a particular value of the initial saturation, through the
capillary pressure equation, eq. (6). Note that L, does not depend on the absolute per-

meability, the porosity, or the viscosity of the pore fluid.

Table B1 shows the computed sorptive lengths of various Yucca Mountain tuffs,
along with their characteristic capillary pressures, Y, (taken from Rulon et al., 1986).
The sorptive lengths were calculated by evaluating eq. (B6) numerically at two
different saturations, and also by using the simpler expression (B2). In these calcula-
tions, the pore fluid density is taken to be 1000kg/m’, and the gravitational aceleration
is g =9.81m/s2. For the three Yucca Mountain tuffs discussed in Table B1, Egs. (B2)
and (B3) give reasonably close values for L, in the range of saturations that is prob-
ably of most interest at Yucca Mountain. Fig. B1 shows the sorptive length as a func-

tion of initial saturation, for various values of the van Genuchten n parameter,
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normalized with respect to the approximate value hy, l/pg; the curves therefore reflect
the discrepancy between egs. (B3) and (B6). For a broad range of initial saturations
from about 0.30-0.90, the two methods give the same order-of-magnitude estimate for
L, with the discrepancy increasing at very high or very low initial saturations. How-
ever, the purpose of calculating the sorptive length is to decide whether or not the
gravitational term in the Richards equation can be neglected during matrix block imbi-
bition. As the gravitational term can be ignored if 3, < L,, a precise value for L, is
not needed. It therefore can be concluded from Table B1 and Fig. B1 that gravita-
tional forces are negligible in any matrix block at Yucca Mountain which has a diame-

ter less than about one meter.
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Table B1. Sorptive lengths of various Yucca Mountain tuffs, at two different initial

saturations. The van Genuchten parameters are taken from Rulon et al. (1986). The

sorptive lengths at the two different initial saturations are calculated by evaluating eq.

(BS) numerically. The last column contains the approximate sorptive length, computed

from eq. (B1), which is independent of the initial saturation.

Rock type -y, (Pa) n S; =0.6 S; =0.8 eq. B1)
Paintbrush nonwelded 2.74x10% 2.250 261 m 1.96 m 280 m
Topopah Spring welded | 8.72x10* | 3.040 | 827 m 574 m 8.89 m
Calico Hills vitric 7.30% 10* 2.345 8.96 m 7.74 m 744 m
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Fig. B1. Sorptive length of a van Genuchten medium, as a function of the initial

saturation and the van Genuchten n parameter, normalized with respect to the approxi-

mate value ly, l/pg. The curves are found from numerical integration of eq. (B6).
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Appendix C: Matrix Equilibration Times for Yucca Mountain Tuffs

The main criterion for deciding if a fractured rock mass can be treated as an
equivalent porous medium is whether or not the times scales of interest are long or
short compared to the characteristic time scale of matrix imbibition. If the time scales
of interest are long, then the matrix blocks will have sufficient time to equilibrate with
their surrounding fractures, and the rock formation will behave as an equivalent porous
medium. For shorter time scales, the pressures in the fractures and matrix blocks will
not be equal, and transient interflow will be taking place. For these situations, dual-
porosity simulations would be needed. In order to decide which of these two cases

obtains, it is necessary to know the characteristic matrix equilibration times.

Zimmerman et al. (1990) derived approximate expressions for the time needed for
sheet-like, cylindrical and spherical matrix blocks to fully saturate with water, under
conditions where the boundary potential abruptly increases from W; to 0. A scaling
law was then proposed to extend this result to irregularly-shaped blocks. This scaling
law involved a characteristic length scale of the matrix block, which was defined to be
the ratio of the volume of the block V to its outer surface area A. For three-
dimensional blocks, they found that the time needed for the matrix block to (essen-

tially) achieve full saturation is given by (Zimmerman et al., 1990, egs. 38-42, Fig. 7)

_ Anpdlm (S, - S (VIAYKS, - S;)"
- (n+D)ly, &

) €1

e

where the subscript ¢ denotes the ‘equilibration” time, and the rock properties are

those of the matrix block, not of the fractures.

As it will suffice to know merely the correct order of magnitude of the equilibra-
tion time, this expression can be simplified. First note that as it is generally the case

that S; =1 and S, =0, and n >2, the term (S, —S,)"" can be ignored. Furthermore,
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since m =1-1/n, the term m" will always be close to unity, and so it too can be
ignored. This is also true for the ratio n/(n+1). Finally, as long as §; is not too close
to S, (which is true almost by definition in the unsaturated zone), the term (S; —S; )™

will also be of order one, which leaves

= 4ud(V/IA)
¢ y, &~

(C2)
Eq. (C2) shows that the equilibration time is proportional to the porosity of the rock
and the viscosity of the pore fluid, although this latter parameter will not vary substan-
tially. It is inversely proportional to the permeability of the matrix rock, and inversely
proportional to y,, which measures the strength of the capillary suction. The equili-
bration time is proportional to the square of the characteristic size of the matrix block,

V/A.

Another simple way to derive an expression for the matrix block equilibration
time is to utilize a Warren-Root type equation for matrix imbibition. The admissibility
of this procedure rests on the fact that although the Warren-Root equation is not accu-
rate at early stages of imbibition, it does correctly predict the time eventually needed
for the matrix block to equilibrate with the fractures (see Zimmerman et al., 1993).
For unsaturated flow into a spherical matrix block of radius @, the Warren-Root equa-

tion (3) can be written as

d Vo 7t2D
= =, C3

where we use the fact that Y, =0 in the fractures that surround the matrix block. The

unsaturated hydraulic diffusivity of the matrix can be related to the sorptivity as in eq.
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(16):

L2
D=—"——, (C4).
40%(S, =)
and the sorptivity can be estimated from eq. (19) as
2m 3k oly, | 172 S, =S, 0.62~0.12m <5
- p'(Ss _Sr) Ss—sr .

The initial condition for imbibition is that y,, =y, when 7 =0, so the solution to eq.

(C3) is
v, ) = v; e—1c2Dt/a2 , (C6)

where D is given through egs. (C4,5). The time needed for the potential to decay to
about 1% of its initial value can be found by setting the argument of the exponential to

4.6, since e~+$=0.01. This procedure gives

9.2u0a’(S, — S;)076+024m (g _ g )224-0.24m

m*3k y, |

(C7)

e

Again eliminating parameter-dependent terms that are of order one, we can simplify

this to

_ 9.2u¢a’(s, -5, )076+0.24m
’kly, |

(C8)

e
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We can generalize this result to non-spherical blocks by recognizing that V/A =a/3,
and then replacing a2 with 9(V/A )%. Ignoring the resulting numerical constant, which

is 82.8/m*= 1, we find

;= RO(VIA)XS, — S;)0-76+0.24m
e ™ l\pa P

(C9)

Finally, we again assume that S; is not too close to S, in which the saturation-

dependent term can also be ignored, leaving

2
t, = i‘%“k—)— : (C10)

Except for the factor 4, this expression agrees with that given in eq. (C2). For a con-

servative estimate of the equilibration time, eq. (C2) can be used.

Although the spherical matrix block is a useful mathematical idealization that
allows the imbibition equation to be reduced to one variable, a cube is actually a more
realistic model of a matrix block. If the spacing between successive fractures is L,
then the matrix block volume would be L3, the outer surface area would be 6L2, and

so (V/AY>=L%36. In this case eq. (C2) can be written as

L2
-

As the pore fluid viscosity i does not depend on the properties of the matrix rock, and

¢ will usually be equal to 0.10, to within at most one order of magnitude, we see that

the parameters that have the greatest effect on the matrix equilibration time are fracture
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spacing, permeability, and the characteristic capillary pressure ¥, .

The fact that both methods of estimating ¢, led to nearly the same expression pro-
vides some evidence that the results are reasonable. Eq. (C11) can also be derived
using dimensional analysis and simple physical arguments. We start by listing the
dimensioned variables that are involved in the problem, and their dimensions in an
[MPLT] system, in which mass, pressure, length and time are the basic dimensions: ?,
[T}; uw [PTL; L [L); & [L?]; and Y, [P]. Since there are five variables and three
dimensions (P,L,andT; M does not appear), the Buckingham pi theorem (Collins,
1990, p. 240) shows that two independent dimensionless ‘pi-groups’’ can be formed.

Using the standard procedure, we find

¢,y |
m =Y (C12)
U
2
m==. (C13)

Hence there exists some functional relationship of the form IT; =f (I1,), or

t,hy, !

= f(L%k). (C14)

We now note that since the Richards equation is invariant under the transformation
{t =>ct,k —)c‘lk}, for any constant ¢ (as can be verified by direct substitution), ¢,
must depend inversely on k. [To prove this, consider that #, is a function of k, i.e.,
t,=f(k). Nowlett—ct and k —» ¢ 1k, which leaves solution to the imbibition prob-

lem unaltered, in which case z, —>ct,, and ct, =f (c"'k). Since this holds for any
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value of ¢, we can pick ¢ =k, in which case we get kz, =f(1). But f(1) is by
definition a single constant, hence kf, =constant.] The relationship between the two

dimensionless groups in eq. (C14) must therefore be a linear relationship, i.e.,

thw !l g2
e Va =c£—, (C15)

u k

where C is some dimensionless constant. Finally, we note that, all other parameters
being constant, the equilibration time should be proportional to the porosity. This can
be proven, starting from eq. (5), by using reasoning similar to that used above to show

that z, = 1/k. This implies C =C¢, in which case we can solve eq. (C15) to find

_ Cu¢L?
t, = l\lfa TR (C16)

The preceding arguments give the same form for #, as did the more detailed quantita-

tive analyses, except that the value of the dimensionless constant C is not specified.

The estimated matrix block equilibration times for several Yucca Mountain tuffs
are listed in Table C1, as calculated from eq. (C11). The pore fluid viscosity is taken
to be 0.001Pas, which corresponds to a temperature of 20°C. Fracture spacings of
0.1m and 1.0m are chosen for the calculations. The fracture spacings estimated by

Wang and Narasimhan (1985) were about 0.2m, which would lead to equilibration

times four times larger than those calculated for L =0.1 m.
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Table C1. Matrix equilibration times (z,) for various Yucca Mountain tuffs, calculated

from eq. (C11), for different fracture spacings. The hydrological parameters are taken

from Rulon et al. (1986). For ease of interpretation, times are not given in SI units

(i.e., seconds), but in the unit most closely corresponding to the magnitude of 7,.

Rock type o k (m?) -y, (Pa) L=01m L=1m

Paintbrush nonwelded 0.46 1.0x10°1 2.74x10* || 5.2 hours 21.6 days
Topopah Spring welded | 0.14 | 39x1071® | 872x10* | 5.3 days 1.45 years
Calico Hills vitric 037 | 50x1071® | 730x10* || 3.1 hours 13.0 days
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Appendix D: Matrix Block Shape Factors

The general forms of both the Warren-Root and Vermeulen equations contain a
parameter o that has dimensions of [L™2]. It is therefore inversely proportional to the
square of some suitably-defined characteristic length scale of the matrix block. Even
for the case of a constant diffusion coefficient, which has received the most study, the
proper choice of this parameter has been the source of controversy. Barenblatt et al.
(1960), Warren and Root (1963), and Moench (1984) suggested leaving o as an open
parameter whose value is found by fitting field data to the predictions of the dual-
porosity model. One difficulty with this approach is that, if the matrix blocks are dis-
tributed over different sizes and shape classes, the overall behavior of a formation will
not be characterizable by a single value of a (Hayot and Lafolie, 1993). It would
therefore be useful to be able to determine the correct values of o corresponding to

matrix blocks having specific sizes and shapes.

For cubical matrix blocks of length L, Warren and Root (1963) proposed ihe
value o0=60/L2. Their derivation was somewhat ad hoc, however, and cannot be gen-
eralized to other shapes. A more extensive discussion of the relationship between o
and block geometry was given by deSwaan (1990). He suggested choosing the value
of o so that the Warren-Root equation correctly predicts the time at which the imbibi-
tion process is 50% complete. In other words, the exact solution and the Warren-Root
solution were forced to agree at one, arbitrarily chosen, point in time. This approach
has the effect of making the Warren-Root method relatively accurate for some inter-
mediate time regime, for the particular case of a step-function change in the fracture
pressure. The asymptotic quasi-steady-state flux will, however, be off by some multi-

plicative constant.

One simple and reasonable criterion that can be imposed on the choice of o is
that the appropriate value of o should lead to the correct imbibition rate in the long-

time, quasi-steady-state regime. This approach was proposed by van Genuchten and
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Dalton (1986); see also Barker (1985). They found the long-time asymptotic behavior
for flow into spherical, cylindrical, and sheet-like matrix blocks by examining the
behavior of the step-function response in Laplace-space, for small values of the
Laplace parameter s. The relationship between the large-time behavior of a function
and the behavior of its Laplace transform for small values of s is discussed by Latta
(1974, p. 639) and Chen and Stone (1993). The relationship between ¢ and matrix
block geometry can be analyzed in the time domain, rather than the Laplace domain,

as follows. Start with the pressure-diffusion equation in the form

V2y(x, 1) = %% (D1)

1
D

where x is the position vector of a generic point in the block, and D is the diffusivity.
To make this problem tractable, we assume that the diffusion coefficient is constant.
This should cause no loss in generality, as the shape factor o is a geometric property
of the matrix block, and does not depend on the hydrological properties of the rock.

The boundary and initial conditions are
y(x,t=0)=y;, D2)

y(xeT,1>0)=0, ‘ (D3)

where I" denotes the outer boundary of the block. Using the method of separation of
variables, we search for solutions to eq. (D1) that have the form y(x,2)=F (x)G (¢).

The standard procedure (see Dettman, 1962, pp. 108-116) then leads to




= —7\'9 (D4)

where A must be a constant that does not depend on x or . The functions £ (x) must

therefore satisfy the equation
V2F (x) = ~AF (X), (D5)
along with the boundary condition
Fx)=0 forall xel. ‘ (D6)

The values of A are therefore the eigenvalues of the Laplacian operator for the region
interior to I', with Dirichlet-type boundary conditions. Only for geometrically simple
shapes can the eigenvalues be found explicitly. Nevertheless, there will always be an
infinite set of eigenvalues A,,, each corresponding to one or more eigenfunctions F,, (x).
For a finite-sized body, the eigenvalues will be discrete and positive, and can be
labeled as A; <A,< - - - (see Dettman, 1962, pp. 110). In certain cases an eigenvalue
can have more than one independent eigenfunction associated with it. This possibility
is of no importance in finding the o parameter, so we ignore it. From eq. (D4) the
functions G, (t) can be found to be exp(—A,Dt). Hence the general solution to eq.

(D1) can be written as

V&) = 3 C,F,e > ®7)

n=0

where the C, are constants. The C, are found from the initial conditions, although
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their precise values are not relevant to the determination of o.

The important point is that, for large times, the term involving A; will dominate
the series, since the other terms, corresponding to higher eigenvalues, will be exponen-
tially smaller. The long-time behavior of the matrix block is therefore dominated by
the smallest eigenvalue, A, =A,;,. Comparison of eq. (D7) with egs. (3) and (C3)
shows that, in order to give the correct long-time behavior, the parameter ¢ should be
chosen to equal Ay;,. These minimum eigenvalues can be found for various simple
shapes from the solutions compiled by Crank (1975) and Carslaw and Jaeger (1959).
For example, 0. = n%/a? for a sphere of radius a; o0 = w%/L? for a thin sheet of thick-
ness L; a.=3n%L? for a cubical block of length L; and oc='212/a2 for a long cylinder

of radius a, where z,=2.405 is the first positive root of the Bessel function J,(z).

For more general shapes, for which the minimum eigenvalue A, cannot be
found explicitly, it would be useful to have an approximate rule-of-thumb for estimat-
ing o. Zimmerman et al. (1990) suggested the following procedure. For a spherical
block of radius a, the volume/area ratio V/A is equal to a/3. Hence so a =3V/A, and

the parameter o.=7%/a? can be written as

_ T%/9
(ViaA® '

(D8)

Eq. (D8) can be used for arbitrarily-shaped blocks, provided the appropriate value of
V/A is used. It is of course necessary to examine the extent to which this approxima-
tion holds for realistically-shaped blocks. Whereas soils, for example, may contain
very irregularly-shaped microporous aggregate particles which play the role of matrix
blocks (van Genuchten and Dalton, 1986), the matrix blocks at Yucca Mountain are

most likely three-dimensional polygons (see Wang and Narasimhan, 1985). Although

we cannot test this approximation for arbitrarily-shaped polygons, we can test it for
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blocks that are shaped like rectangular parallelepipeds, which will be the case if the
fracture sets are orthogonal. In this case we can compare the proposed approximation

(D8) to the exact known result (Carslaw and Jaeger, 1959, p. 187):

1 1
Oloxaet =)"rnin=n2li 12 =t 2J > (DY)

where L, L,, and L3 are the lengths of the three sides of the matrix block. The
volume of the matrix block is L{L,L;, and its outer surface area 1is

2(L{L,+LyL3+L3L 1), so the approximation (D8) yields
2 2
. . {_1_+_L+_1__} . (D10)

The ratio of the approximate value of o to the exact value is

Ogpp  HLiLp+LyLy+LsL()

Oexa  O[(L L2 +(LoL3)?+(LsL )l

(D11)

The ratio in eq. (D11) takes on maximum or minimum values when the ratios of the
three lengths take on their limiting values, i.e., Li=L,>L3, etc. Table D1 summar-
izes these extreme cases, along with one arbitrarily chosen example. The table shows
that the approximation (D8) is reasonably accurate; in particular, in no case does it
grossly underpredict or overpredict the value of o. Since these cases cover a large

range of aspect ratios of the matrix blocks, from sheets to cubes to long prisms, it

seems reasonable to use expression (D8) in the general case, when the fracture sets




might not be orthogonal.

Another possible method of estimating o would be to utilize certain upper and
lower bounds that have been established for A,;,. These bounds are expressed in
terms of geometric parameters such as the block volume, the radius of the largest
sphere that can be inscribed within the block, etc. Knowledge of the value of the
outer surface area A cannot be used to calculate bounds on A, as Ay, is not greatly
affected by A. This can be explained as follows. The amount of surface area is very
sensitive to roughness of the fracture surfaces, whereas the volume of the matrix block
will not be affected by roughness. In fractal models, for example, a block that has a
finite volume may in fact have an infinite surface area (Korvin, 1992). But the equili-
bration time for a matrix block should depend on its gross geometry, and not on its
superficial roughness (see Fig. D1). Hence, A is not a parameter that can appear in
rigorous bounds on Ay;,. Two potentially useful bounds on A, are the following

(Garabedian, 1964, Chapter 11):

IA
r
IA
~
Stolaw

(D12)

N‘
PN

where r;, is the radius of the largest sphere that can be inscribed within the block (see
Fig. D2), and r,, is the radius of the sphere that has the same volume as the block,

ie.,

3y 1/3
req = {—Z{J . (D13)

It is also true that n%/r2 provides a lower bound to A, where r,. is the smallest

sphere that can be superscribed around the block (see Fig. D2). However, as r,,
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cannot be less than r,,, this lower bound is not as restrictive as the one given in eq.

€q’
(E12), and is therefore not as useful.

As an example of the use of the bounds given in eq. (D12), consider a cube of
length L. The volume of the cube is L3, and the largest sphere that can be inscribed

in the cube has radius L/2, so eqs. (D12,13) yield

< Ain = o S ——. (D14)

In this case, the bounds are reasonably close. In fact, the arithmetic mean of the two

bounds would narrow down the estimate of A, to

2
Agip = (330 + 0.70)—2‘—-— , (D15)

which is a maximum possible error (assuming that the correct value was unknown) of
only 26%. The actual error incurred by using the arithmetic mean of the bounds, how-
ever, is only 10% in this case. Unfortunately, these bounds become very far apart for
sheet-like or prismatic blocks, for instance. Consider a long cylindrical block of radius
a and length L, where L — . The largest sphere than can be inscribed inside the
cylinder would also have radius a. As L — oo, the volume of the block becomes

infinite, and subsequently r,, would become infinite; eq. (D12) would then give

_ (2405 _ 578 _ w* _ 9.87
- 2 g2 T g2 2

(D16)

0 < Ay -

a a a

where, as mentioned above, 2.405 is the first positive root of the Bessel function J,(z).
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The upper bound overestimates A;, by 71%, whereas the lower bound is trivial and
contains no information. The scaling law described by eq. (D8), however, yields an
estimate of 4.39/a2, which is only 24% less than the actual value. We conclude from
this and similar examples that whereas eq. (D8) is not a rigorous approximation in any

strict sense, it will generally yield reasonably accurate estimates of Ap;p.
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Table D1. Relationship between geometry of the matrix block and the value of the o
parameter. The matrix blocks are parallelepipeds with sides of length L, L,, and L.
The exact value of o is computed from eq. (D9), and the approximate value is com-
puted from eq. (D10). The approximate expression is always within about a factor of

two of the exact value.

Fracture spacing Block shape o(exact) o(approx) Olgpp [Olexy

2 2

Ly=L,=L, cube x an a5
Lj L3
2 2

L,=L,>L, sheet T an 419
L? 9L ?
: 21 16>

Li>L,=L long prism —_— 8/9
1 2=4L3 P L2 oL2
: 1472 16

Ly=2L,=3L arbitrary example — 8/7
1 2 3 ary p 9L2 oL 2




ESD-9404-0002

Fig. D1. The two blocks shown above have the same volume, and have essentially the
same macroscopic shape. It can be proven, using the bounding methods described in
the text and in Fig. D2, that their shape factqrs will be nearly equal. However, block
(b) has a much larger surface area, if measured on a micro-scale. Hence, when using
approximations such as eq. (D8) to estimate shape factors, a ‘‘smoothed-out” surface
area should be used; this is equivalent to replacing block (b) with block (a) before cal-
culating the surface area. If the surface area estimates are based on measured dis-

tances between fractures, this problem will not arise.
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ESD-9404-0003

Fig. D2. An arbitrarily-shaped matrix block, along with the largest sphere that can be
inscribed within it, and the smallest sphere that can be superscribed around it. The

radii of these two spheres, r;, and r,,, can be used to provide bounds on the shape

factor for the matrix block: n%/r2 <a<n¥r2.
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Appendix E: Effect of Air on Imbibition of Water

The question of whether or not air will impede the imbibition of water into an
initially unsaturated rock has been the subject of much study (cf., Adrian and Franzini,
1966; Phuc and Morel-Seytoux, 1972; Constantz et al., 1988). Before attempting to
answer this question, it is necessary to formulate it more precisely. Physically, those
portions of the void space of a rock or soil lying above the water table that are not
occupied by water will be occupied by air. It is the existence of the two components,
water and air, along with the interface between them, that gives rise to the capillary
pressure phenomena, the negative pressure in the water phase, and thus the driving
force needed in order for water to be imbibed by suction into the rock. Furthermore,
those portions of the void space that are initially filled with air provide the space to
accommodate the water as it imbibes into the rock. As this occurs, of course, the air
must somehow flow out of these regions of the pore space. Nevertheless, it is clear
that the entire process of water imbibition into a matrix block cannot occur without the

presence of the air component.

In order to ask whether or not air impedes the imbibition process, one must
specify an alternative process to be used for cbmparison. Since, almost by definition,
imbibition in the unsaturated zone does not occur in the absence of air, in a certain
sense the question is not physically meaningful. However, it is meaningful in the fol-
lowing mathematical sense. As mentioned in the main text, and in Appendix A, the
flow of water is usually modeled by assuming that the air phase is infinitely mobile,
and at a uniform pressure. This leads to the Richards equation as the governing equa-
tion for the saturation and pressure of the water component. The question can then be
raised as to whether or not solutions to the Richards equation will accurately refiect the
imbibition process. Alternatively, the question can be raised as to the relation between

the solutions to the Richards equation and the solutions to the full pair of coupled

equations describing the motion of the water and air components. This is what is
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actually meant by the question of whether or not air impedes the imbibition of water

into a matrix block.

Simultaneous flow of water and air in a porous medium is usually thought to be

described by the following equations:

o | Kk () oyy | 95;(x 1)

x| o ox } T (ED)
3 | My (y,) oy, | 9S,(x,1)
x| po  ox ] T (E2)

where the subscript / denotes the liquid phase (water), and the subscript v denotes the
vapor phase (air). These equations are coupled through the relations (see de Marsily,

1986, p. 215)

S +8, =1, (E3)

which reflects the fact that no other components are assumed to be present, and

VY — VW, =V, (Sl) > (E4)

in which the capillary pressure function y,.(S;) is described by an equation such as
that of van Genuchten (1980), Brooks and Corey (1966), etc. If the air pressure is
assumed to be constant, then 9y;/ox = dy,/dx, and eq. (E1) will be equivalent to eq.

(5). In this approximation, the mass balance equation for the air, (E2), is not quite

satisfied, since the term dvy, /dx will be zero, whereas the term dS,,/d¢ will be nonzero.




- 86 -

However, it is customary to ignore eq. (E2) in this approximation. The TOUGH simu-
lator (Pruess, 1987) in effect solves both eq. (E1) and eq. (E2), since they represent
conservation of mass for the two components. TOUGH also solves an energy balance
equation, although this equation is essentially superfluous in isothermal flow problems.
This is because, since internal energy depends strongly on temperature, but only
weakly on pressure, extremely small temperature changes are needed to balance out

the changes in energy that accompany the variations in pressure.

Although the Richards model is widely used, different physical interpretations
have been given for the approximations embodied in it. The common explanation is
that the air is infinitely mobile, and will flow instantaneously in response to the smal-
lest of pressure gradients (McWhorter, 1971; Touma and Vauclin, 1986). de Marsily
(1986), on the other hand, interprets the Richards model as assuming that the air phase
is immobile, in which case eq. (E2) is automatically satisfied. This is in some ways a
more consistent interpretation for our purposes, as we assume that no air from the
matrix enters the fracture network, and the fracture/matrix interflow consists only of
water. In order to use this interpretation, however, we must ignore the fact that an
immobile gas, when forced into a smaller volume, will undergo a pressure increase,
thus invalidating the assumption of constant pressure in the air phase. Hence it seems
that no interpretation is free from inconsistencies. Moreover, the existing experimental
and theoretical evidence concerning the air-impedance effect seems to be contradictory

and inconclusive.

In order to test whether or not egs. (E4) can be ignored during an imbibition pro-
cess, we have used TOUGH to run a pair of imbibition simulations for a matrix block
comprised of Topopah Spring welded tuff. One of the outer boundaries of the matrix
block is connected to a very large source block that initially has an air-phase pressure

of 1.0x 10° Pa, and a capillary presssure of zero. The other boundary is impermeable,

which models the effect of a no-flow symmetry boundary in a finite-sized matrix
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block. The gridblocks that represent the slab of tuff are initially at an air phase pres-
sure of 1.0x10° Pa, but at a liquid saturation of 0.65. This saturation corresponds,
through the capillary pressure function, to a capillary pressure of —1.062X 10° Pa,
which implies a liquid phase pressure of 1.0—1.062=~0.062 % 10° Pa. Hence, there is
a pressure gradient in the liquid phase that drives water into the slab from the source
block. In one of the simulations, each gridblock is connected to a very large sink grid-
block that has an initial air-phase pressure of 1x10° Pa, a liquid saturation of 0.0, and
has a value of Yy, =0, ie., no capillary pressure effect. Hence, the potential of water
in the sink block would be 1.0x 10’ Pa, in which case water will not flow from the
slab into the sink block. The air-phase pressure gradient, however, will be such that
air will flow from each slab gridblock into the sink block. This has the effect of
short-circuiting the air flow out of the slab, and maintaining the air at a uniform pres-
sure. This case essentially corresponds to solving the Richards equation. Comparison
of the imbibition rates in the two cases described above provides an estimate of the

extent to which the air ‘‘impedes’’ the flow of water.

The parameters used in the simulations are listed in Table Al. They are taken
from Rulon et al. (1986), and represent a welded tuff from the Topopah Spring unit at
Yucca Mountain. The computed pressure profiles for the water and air components
are shown in Figs. E1 and E2. The liquid phase pressure profiles are similar, although
they diverge somewhat as time progresses. In the simulatioﬁ in which the air is
‘“‘short-circuited’” out of the slab, the air phase pressure is nearly uniform at
1.0x10° Pa. In the other simulation, the air is compressed slightly ahead of the liquid
imbibition front, creating a gradient that drives some air into the slab, and some air out
of the slab in a counter-flow direction to the liquid. The induced air-phase pressures
are relatively small, since, due to the low viscosity of air, only a small gradient is

needed drive the air out of the block. The computed liquid imbibition rates are shown

in Fig. E3, which shows that the air has only a slightly inhibiting effect on liquid
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imbibition. These results, which should not depend in any qualititave way on on the
geometry of the matrix block, seem to show that as long as the flow process is
governed by the usual continuum field equations, and as long as the liquid-phase pres-
sure is not greater than the air-phase pressure, the use of the Richards equation will

not lead to appreciable errors in the predicted imbibition rates.
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Fig. El. Pressure profile in the liquid phase, during one-dimensional horizontal imbi-
bition into a slab of Topopah Spring welded tuff. The parameters, initial conditions,
etc., are shown in Table Al. There is a no-flow boundary at x =1.0m, which models
simultaneous imbibition from both faces into a 2.0 m—thick slab. The individual grid-

blocks are each of width 5cm. In one simulation the air-phase pressure is maintained

at 1.0x10° Pa, as described in the text.
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Fig. E2. Pressure profile in the air phase, for same problem as shown in Fig. E1. For
the case in which the air is allowed to escape from each gridblock, the air phase pres-
sure is essentially constant at 1.0x 10° Pa. Note that the air phase pressure reaches its
maximum value at a point slightly ahead of the location of the wetting front (compare

Figs. E1 and E2).
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Fig. E3. Imbibition rates of liquid into the slab, for the two cases described in text
and Figs. El and E2. At early times, the imbibition rate are proportional to t~1/2, as
described in Appendix G. At later times, as the block fills with water, the imbibition

rate declines to zero. Except at very large times, the presence of air has a minimal

effect on the liquid imbibition rate.




-972 -

Appendix F: Comparison of van Genuchten and Brooks-Corey Sorptivities

The sorptivity is defined by eq. (17) as a measure of the rate of imbibition into a
one-dimensional unsaturated porous medium. The medium is assumed to be initially
at a uniform saturation, and is then abruptly subjected to a capillary potential of zero
at its outer boundary. The governing differential equation and the boundary conditions
for this problem are given by egs. (11-15). These equations must be supplemented by
specific algebraic forms for the capillary pressure and relative permeability functions,
in order to find an actual solution. As the imbibition rate will be proportional to 12,
and to the wetted surface area A, the sorptivity ¢ is defined by eq. (17), which is

repeated here for convenience:
Ac

Two commonly used forms for the characteristic functions of an unsaturated
medium are those that have been proposed by Brooks and Corey (1966), and by
Mualem (1976) and van’Genuchten (1980). They differ mainly in that the Brooks-
Corey capillary pressure curve exhibits a finite air-entry pressure, whereas the van
Genuchten capillary pressure curve gives the capillary pressure as a continuous func-
tion of saturation. According to the van Genuchten model, any negative suction will
~allow a certain amount of air to enter the rock, causing the liquid saturation to fall
below 100%. According to the Brooks-Corey functions, air cannot enter the rock until
the suction reaches a certain threshold value, known as the air-entry pressure, y,,. If
we adhere to the convention that W< O in the unsaturated region, then y,, will also be
negative. The van Genuchten functions are given by egs. (7,8), which are repeated

here for convenience:
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S(y) = [1+yy,)" 1™ , (F2)

{1- Qg )" 1+ (pry, " T 12
[1 + (\W\pa )n ]m/2

i k.(y) = (F3)

where the normalized saturation is given by § =(S -8 )(S; —S,). The Brooks-Corey
functions can be written as (see Brooks and Corey, 1966; Zimmerman and Bodvarsson,

1991a)

) 1 if (Wyg )<l |
S(y) = _ (F4)
(Wi ™ i (W )>1,

1 if (Wyg)=1
k. (y) = . (F5)
WL ) A F2 0 (WY )>1.

Although the capillary pressure curves predicted by the two models differ qualita-
tively in the region of low capillary pressures, they both predict a power-law relation
between S and Y at very large capillary pressures. This makes it possible to match
the two models in the low saturation region, as shown by Wang (1992). First consider

the van Genuchten capillary pressure function in the limit of large negative values of

Wy

S = [+, ' T™ = (yhy, )™ = (yiy, )y @D, (F6)
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where we use the fact that m =1—1/n in the van Genuchten model. Comparison of

eqs. (F4) and (F6) shows that the two models agree if we set
Yoo =V, » F7

A=n-1. (F8)

Note that although the parameter y, in the van Genuchten model does not have the
same physical interpretation as does the air-éntry pressure \, in the Brooks-Corey
model, they both play a similar role as scaling factors for the capillary pressure. Also,
if the parameters of the functions are found by fitting the curves to water retention
data, it seems reasonable that the resulting parameters would satisfy conditions (F7)
and (F8). We will ‘therefore assume that these relations hold, and will write the
Brooks-Corey functions in terms of y, and n. Note also that although relations (F7,8)
cause the capillary pressure curves to agree at low saturations, the relative permeability
curves do not quite coincide. Figs. F1 and F2 show comparisons between the charac-

teristic curves of the two models, assuming that eqs. (F7,8) hold.

The sorptivities associated with the Brooks-Corey and van Genuchten models can
be found by numerically integrating the Richards equation, as described in Appendix
A. The results are shown in normalized form in Fig. F3, for the case » =3,A=2. For
simplicity, we assume that S, =1 and S, =0 in this example. The normalized sorp-

tivity o* is defined by

*

[21% |q>kr’2
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as in eq. (A20). As might be expected, the qualitatively different forms of the two
capillary pressure curves in the high-saturation region causes the two sorptivity curves
to behave differently near S; =1. However, this is difficult to see in Fig. F3, since the
different behavior is highly localized near S; =1. Approximate analytical methods (see
Parlange et al., 1991,1992; Zimmerman and Bodvarsson, 1991a,1991b) tend to show
that the Brooks-Corey sorptivity varies as (1—S;)? in the high-saturation region,
whereas the Van Genuchten sorptivity varies as (1-S;)/2+1/27, The exponents agree
as n — oo, but differ somewhat at the lower values of n that are typical of Yucca
Mountain tuffs (see Wang, 1992). However, this range of high initial saturations does
not seem to be of much importance for the unsaturated zone at Yucca Mountain,
where initial matrix block saturations are probably in the range of 0.4~0.8 (Wittwer et

al., 1993).

The interesting aspect of the results plotted in Fig. F3 is that at intermediate and
lower initial saturations, the Brooks-Corey and van Genuchten sorptivities converge.
From this, we conclude that although the two models yield different predictions for the
characteristic curves, they will yield very similar predictions for the sorptivity, which
is the parameter that most closely controls the rate of fluid exchange between the frac-

tures and the matrix blocks. This is particularly true in the range of initial saturations

that are of most interest at Yucca Mountain.
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Fig. F1. Normalized capillary pressure curves of the van Genuchten and Brooks-Corey
type. The Brooks-Corey curves exhibit an abrupt air-entry pressure at y=Vy,, whereas
the van Genuchten curves are continuous functions of y. If the van Genuchten n
parameter and the Brooks-Corey A parameter are related by A=n —1, the curves will

coincide asymptotically at low saturations.
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Fig. F2. Relative permeability curves of the van Genuchten and Brooks-Corey type.

- The choice A=n ~1, which causes the capillary pressure curves to agree at low satura-

tions, does not cause the relative permeability curves to coalesce.
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Fig. F3. Normalized sorptivities of van Genuchten and Brooks-Corey media, com-
puted using the Boltzmann transformation method described in Appendix A. Normal-
ized sorptivity is defined by eq. (F9). By choosing A=n —1, the sorptivities agree
closely, particularly at low-to-moderate values of the initial saturation. At high initial
saturations, where the sorptivities are very low, the two curves have different power-

law behaviors.
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Nomenclature

Roman letters

a

aaa e s>

Fw SN oy YUy

nhhé??‘l?*

3

vy vos

3

radius of cylinder or sphere, half-thickness of slab [m]

surface area of block; gridblock interface area [m?]

fracture aperture [m]

compressibility [Pa™]

dimensionless constant in expression for equilibration time (Appendix C)
dimensionless constant in expression for equilibration time (Appendix C)
constants in solution to diffusion equation [Pa] (Appendix D)
diffusivity [m?s™!]

effective diffusivity of unsaturated rock [m?s™]

function of m appearing in sorptivity expression

eigenfunction of Laplacian operator (Appendix D)

gravitational acceleration [m s

ponding depth [m]

absolute permeability [m?]

relative permeability to liquid phase

relative permeability to liquid phase (Appendix E)

relative permeability to vapor phase (Appendix E)

characteristic vertical dimension of block; fracture spacing [m]

sorptive length [m] (Appendix A)

van Genuchten parameter, =1-1/n

van Genuchten parameter

pressure [Pa]

pressure in fracture [Pa]

mean pressure in matrix block [Pa]

instantaneous liquid flux {m s71]

cumulative liquid flux [m’]

radius of largest sphere inscribed within matrix block [m] (Appendix D)

radius of sphere with same volume as matrix block [m] (Appendix D)

radius of smallest sphere superscribed about matrix block [m] (Appendix D)




Y i W

=~ t’))éﬂ hcd‘

NN

R

liquid saturation

initial liquid saturation

liquid saturation (Appendix E)

residual liquid saturation

liquid saturation at zero potential

vapor/air saturation (Appendix E)

normalized liquid saturation, =(S —S, )/(S; —S,)

time since start of process [s]

time for matrix block to equilibrate with fractures {s]
volume of block [m?]

horizontal coordinate [m]

vector of generic location within matrix block {m] (Appendix D)
horizontal coordinate along fracture [m]

vertical coordinate [m]

Greek letters

"']~<_:SSO’)'@Q

e'otayyw
=]

matrix block shape factor in fracture/matrix interflow equations [m™2)
saturation exponent in sorptivity equation

diameter (or characteri.stic length) of matrix block [m]

Boltzmann similarity variable (Appendix A)

surface tension at the rock/water interface [kgs?]

boundary of matrix block (Appendix D)

Brooks-Corey parameter (Appendix F)

eigenvalue of Laplacian operator [m~2] (Appendix D)

., smallest eigenvalue of Laplacian operator [m™2] (Appendix D)

viscosity of pore water [Pas]

density of water [kgm™]

porosity

fracture porosity

matrix porosity

dimensionless pi group (Appendix C)
potential [Pa]

scaling factor in van Genuchten function [Pa]
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Y, Brooks-Corey air-entry pressure [Pa] (Appendix F)

Y
Vi
Y
Yo
Ys
Y,

A

v

A~

L5
Y2
(4]

G*

6

capillary potential, =y; — v, [Pa] (Appendix E)
initial potential [Pa]

potential in liquid phase [Pa] (Appendices A,E)
mean potential in matrix block [Pa]

potential at surface of block [Pa]

potential in vapor phase [Pa] (Appendices A,E)
dimensionless potential, =y/y,

same as \II (Appendix A)

derivative of W, =d y/dm (Appendix A)
sorptivity, = Q/ANt [ms™?]

dimensionless sorptivity, = [2ly, 1k (S, - S, )/u] %6 (Appendix F)

contact angle of water-rock interface
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