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3 PREDICTING PERMEABILITY OF SEDIMENTARY ROCKS
FROM MICROSTRUCTURE

The concept of permeability allows a macroscopic description of the fluid flow
phenomena in porous media under a regime of sufficiently low fluid velocities (Schei-
degger, 1974). This property is linked to other properties of porous media such as
capillary pressure and relative permeability. In order to understand the relationships,
one has to understand how all those properties are conditioned by the connectivity and
geometrical properties of the pore space. The simplest model that can be constructed
is one representing a porous medium by a bundle of straight, parallel cylindrical cap-
illaries of uniform diameter that go from one face of the porous medium to the other.
Equations based on this type of 1-D model are called Kozeny-Carman equations. The
opposite extreme of this parallel case would be to assume a serial model in which all
the pores are connected in series. Obviously, for a natural porous medium, this model
is as idealized as the parallel model, and a realistic model lies somewhere between

these limits.

In this study, we look at a natural porous material which is defined as a two-phase
material in which the interconnected pore space constitutes one phase and the solid
matrix the other. A distinctive property of a natural porous medium is the irregular
pore-size and pore-shape distributions. We consider here the pore scale and its ex-
tention to the laboratory scale which is of the order of tens to thousands times larger.
The laboratory samples are considered homogeneous in the sense that the irregular
pore structure reproduces itself in the various portions of the sample. In a typical fluid
flow laboratory experiment, the rates of flow are measured over areas which intersect
many pores. Space-averaged or macroscopic quantities such as permeability are the
ones of interest in applications. The main aim of this Chapter is to develop equations
relating a macroscopic property such as permeability to rock microstructure. A few
methods have been used in the past in order to achieve this (Schlueter, 1995). Two
basic averaging approaches have been employed here. In the first one, the discrete
approach, a macroscopic variable such as effective conductance is determined as an
appropiate mean over a sufficiently large representative elementary volume (r.e.v.)
defined through the concept of porosity associated with it. The length scale of the
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r.e.v. is larger than the size of a single pore so that it includes a sufficient number of
pores to allow the meaningful statistical average required in the continuum concept.
It is assumed that results concerning the macroscopic quantities are independent of
the size of the r.e.v. In the second one, the statistical approach is related to the
uncertainty of the spatial distribution of microscopic quantities such as pore-sizes
and pore-shapes. The statistical averaging is carried out over one realization. The
actual sample is one of the possible realizations of media of some gross features. But
the inference of statistical information about the realization is based on the unique
sample. This is possible only under restrictive conditions of statistical homogeneity
(stationarity) which are similar in essence to those underlying the concept of r.e.v. As
long as we limit ourselves to deriving relationships between space averaged quantities
with no special concern as to their fluctuations, the results of the two approaches

should be essentially the same.
3.1 Discrete approach to individual conductances

Consider an inhomogeneous, disordered, composite system (conductive/non-con-
ductive) in which one can define locally a given property, e.g., conductance, which
can be calculated from the geometry of the conductive element (e.g., the coefficient
in Poiseuille’s law for cylindrical tubes). This is possible as long as the dimensions
of the local elements are large with respect to the scale of the conduction process
involved (i.e., as long as the individual pores are wide enough so that fluid flow obeys
the macroscopic Navier-Stokes equations, and is not dominated by surface effects).
Such a medium can be approximated by a 3-D network with the same topology,
in which all the conductances have a single effective value. The effective medium
can be defined as one in which the macroscopic conductance is the same as for the
heterogeneous system, and therefore the effective conductance can be considered as
the mean value controlling the physical property of concern. Since we are concerned
with a random medium, it is assued that no spatial correlation exists between the
individual conductances. Details of the effective medium theory of solid state physics

are given in Section 3.1.1.

For this study, rock cross sections have been prepared for imaging with the scan-

ning electron microscope (SEM). The resulting 2-D SEM photomicrographs have been
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employed to infer the hydraulic conductance of the individual pores. We assume that
the pores are cylindrical tubes of varying radius, and that they are arranged on a
cubic lattice, so that the coordination number of the network is 6. The hydraulic
conductance of each tube is estimated from its area and perimeter, using the hy-
draulic radius approximation and the Hagen-Poiseuille equation. In the section under
consideration, the pore cross sections are assumed to be randomly oriented with re-
spect to the directions of the channel axes. The orientation effect has been corrected
by means of geometrical and stereological considerations. Account is also taken for
possible variation of the cross-sectional area along the length of each tube, e.g., pore
necks and bulges. The effective-medium theory of solid-state physics is then used to
replace each individual conductance with an effective average conductance. Finally, a
unit cubic cell is extended to relate the effective-hydraulic-tube conductances to the
continuum values of permeability. Preliminary results, using Berea, Boise, Massilon,
and Saint-Gilles sandstone, yield very close agreement between the predicted and

measured permeabilities, with essentially no arbitrary parameters in the model.
3.1.1 Effective medium theory

The objective of the effective medium theory (Kirkpatrick, 1973) is to infer an
average conductance parameter for heterogeneous disordered media from the statis-
tics of local conducting elements. Consider an inhomogeneous disordered continuous
system in which one can define locally the conductance. Such a medium can be
approximated by a 3-D network with a regular topology in which each bond is oc-
cuppied by a conductance C;. According to Kirkpatrick (1973) it is possible to build
a homogeneous network with the same topology but in which all conductances C;
have a single value C,¢; which is an effective value controlling the physical property
involved. The effective medium is by definition the homogeneous equivalent network
for which the macroscopic conductance is the same as for the heterogeneous system.
The idea then, is to represent the average effects of the random conductors by a homo-
geneous effective medium in which the total field inside is equal to the external field.
As a criterion to fix C.yy it is required that the incremental voltages induced, where
individual conductances C; are replaced by C.ss in this medium, should average to

zero.
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The distribution of potentials in a random resistor network to which a voltage has
been applied along one axis may be regarded as due to both (1) an external field
which increases the voltage by a constant amount per row of nodes, and (2) a local

fluctuating field whose average over a sufficiently large region is zero.
3.1.1.1 Uniform field solution (external field)

By introducing a regular cubic mesh of points r; with spacing Ar (Figure 3.1),
and applying the principle of conservation of charge, one obtains a system of linear

equations for the voltages V; = V..

At point i,

> Cy(Vi—V;) =0, (1)

where j is summed over all neighboring points.

Replacing the conductance C;; with a constant effective conductance Ceyy, gives

at point A (refer to Figure 3.1)

Ceff([V + ZV;ff]ll — V4 3Vess + V4 Vegr + V42V +V + 2Veff]) =0, (2)
where all conductances C.s; have associated with them AV = Vess per row.
3.1.1.2 Fluctuating field solution (local field)

To find a mathematical expression for the effective conductance, a classical self-
consistent method can be employed in which a single conductance C, is embedded
in the homogeneous medium of similar topology. The inclusion of C, in the effective
medium disturbs locally the uniform solution for the field but the deviation is easily

calculated since the effective network is homogeneous.
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FIG. 3.1: Construction used in calculating the uniform field solution, in which the voltages increase
by a constant amount, V;,,, per row.

4 io
/ ’
2 /
CCf S Ce ff
Cs 3 2 G 2Cyr = 2 Cas 3G
w B__w B
Cess Cess

FIG. 3.2: Construction used in calculating the voltage induced across one conductance, C,, sur-
rounded by a uniform medium (after Kirkpatrick, 1973).
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Consider one conductance having the value C, surrounded by an otherwise uniform
effective medium. The solution of the network Eq. (1) in the presence of C, can be
constructed by superposition (Figure 3.2). Far from C, the field is uniform. To the
uniform field solution given by Eq. (2), we add the effects of a fictitious current 7,
introduced at A and extracted at B. Since the uniform solution fails to satisfy current

conservation at A and B, the magnitude of %, is chosen to correct for this.

At A,

Vetf(Cepy — Co) = - (3)

The extra voltage, V,, induced between A and B, is given by the conductance Cyg
of the network between points A and B when the perturbation is absent, i.e., when

Co - Ceff =0

1
V, = ___"_,__ . 4
Co+Cugp )
The current flowing through each of the z equivalent nodes at the point where
the current enters is 4,/z so that a total current of 2i,/z flows through the path
AB. We then calculate the voltage developed across AB, the conductance across

AB, Cap = (2/2)Cess, and Cyp = (2/2)Cess — Cefs-
Thus we can write

v, = Ve (Cesr — Co)

~ Co+[2/2-1]Cs° ®)

valid both in 2-D and 3-D.

The requirement that the average of V, vanishes gives

Cess — Ci _ N C.rs — C; B
< ((2/2) = 1Cess + Ci> = LD 3G (6)

where the sum is taken over all NV individual conductors.
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Upper and lower bounds on the effective conductivity are found from the two

limiting cases z = 2 and z = co. For z = 2, Eq. (6) can be solved for

N

Cessr = =w 1 (7
i=1 C;

whereas for z = 0o, Eq. (6) can be solved for

N
i=1 Ci

=1 ®)

Cess =

When the coordination number is 2, the tubes are arranged in series, and the
effective conductance reaches its lowest possible value. On the other hand, when
the coordination number is co, the tubes are arranged in parallel, and the effective
conductance reaches its maximum value. The limiting values of both the effective
conductance and the coordination number correspond to one-dimensional arrange-
ments of the tubes. For a coordination number other than z = 2 or z = oo, Eq. (6)
must be solved numerically to find the effective conductance, given the individual

conductances (See Code Listing 3.1).

The effective medium theory is expected to work best when spatial fluctuations
of hydraulic (or current) flux are small in a relative scale. Our laboratory imbibition
experiments in Berea sands%one, in combination with SEM analysis of the pore space,
indicate that the distribution of pores and throats controlling permeability is narrow.
Consequently, the effective medium theory is expected to, and does, give very good
results in Berea sandstone. The effective medium theory coupled with a network of
resistors has been used by Koplik et al. (1984) to predict permeability of Massilon
sandstone, although the predicted value was ten times higher than that measured.
Doyen (1988) calculated the transport properties of Fontainebleau sandstone, and
predicted permeability within a factor of three of the measured value. These models
do not account for the fact that the 2-D section under consideration slices each pore
at a random angle to its axis or for the variation of the cross-sectional area along the
length of each tube, both of which are significant effects. These effects are discussed

below in sections 3.1.4 and 3.1.5, respectively.
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3.1.2 Method of analysis

Figures 3.3 and 3.4, stereo SEM photomicrographs of pore casts of Berea sandstone
and Saint-Gilles sandstone, respectively, reveal that the pore space is comprised of a
three-dimensional network of irregularly shaped pores. Although an exact description
of key pore space morphological characteristics is rather complex, it is possible to

isolate three main features:

1. Multiple connectivity of the pore segments;
2. Converging-diverging cross sections of pores;

3. Roughness and irregularity of pore walls.

Since the actual rock geometry is too complex for any quantitative study, we have
replaced it by a standard model geometry that preserves the main observed morpho-

logical features.

For the purposes of developing a network model for permeability, we need to know
the volumetric flow through each pore. According to the Hagen-Poiseuille equation,

the volumetric flux of fluid through a cylindrical pore of constant radius r is

_7r7'4 (©)
q= 81 vp,

where p is the absolute viscosity, and Wp is the pressure gradient. We now use the
hydraulic radius concept to rewrite Eq. (9) in a form that is applicable to non-circular
pores (See Section 3.1.3 for details).

The hydraulic radius Ry of the tube is defined as

area

Ry = .
H wetted — perimeter

(10)
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FIG. 3.3: Stereo SEM photomicrographs of a Berea sandstone pore cast. The pore space is partially
impregnated with Wood’s metal alloy and the quartz grains removed by hydrofluoric acid.
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FIG. 3.4: Stereo SEM photomicrographs of a Saint-Gilles sandstone pore cast. The pore space is
partially impregnated with epoxy and the quartz grains removed by hydrofluoric acid.
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Using Eq. (10), we can rewrite Eq. (9) in terms of the hydraulic radius as

_ RYA

4=5-Vp, (11)

where A is the area of the tube.

The conductance of a tube of area A and length [ is given by oA/l, where ¢ is
the conductivity. The hydraulic conductance per unit length of each tube is therefore
(aside from a length factor which eventually cancels out of the calculations) given by

= 2H g (12)

The constant length of each tube assigned to all tubes in the model is assumed
to be of the order of the correlation length characterizing the fluctuations of the
channel cross-sectional dimensions. Measurements of two-point correlation functions
(Berryman and Blair, 1986) show that the correlation length is of the order of the
size of the grains in sandstone. Thus, the pore length can be assumed to be equal
to the grain diameter. However, as mentioned earlier, the length does not need to
appear explicitly in Eq. (6) where all conductances are proportional to L. The
local conductive elements have been obtained from 2-D SEM photomicrographs of
rock sections. Figures 3.5a, 3.6a, 3.8a, and 3.9a show 2-D SEM photomicrographs
of Berea sandstone (Sections B and T), Boise sandstone, and Saint-Gilles sandstone,
respectively. Typical pore-space contours obtained from 2-D SEM photomicrographs
of Berea, Massilon, Boise, and Saint-Gilles sandstones are shown in Figures 3.5b, 3.6b,
3.7, 3.8b, and 3.9b, respectively. The pore space contours are employed to estimate
the area, perimeter, and individual conductance of each tube of varying radius using

the hydraulic radius approximation and Poiseuille’s law.

The basic method to calculate individual pore areas, perimeters, and hydraulic
radii involves counting size and perimeter grid (or pixel) units for every feature in
a standard scanning electron micrograph of some fixed magnification. The field im-
aged by each micrograph must contain a large enough number of pores to assure a
statistically representative sample; we have found that 30-40 pores suffice for this

purpose. The analysis was carried out using both a manual and an automated im-
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age analysis procedure to verify the accuracy of the manual technique. The manual
technique involved overlaying a square grid, with grid size of 2.54 mm, and visually
counting the number of grid blocks occupied by the area of each pore, as well as the
number of grid blocks that the perimeter passes through. Digital images with typical
image sizes of 482 x 640 pixels, and 8 bits per pixel to quantify the darkness level,
were used for studying the accuracy of the manual technique. The image analysis
program sets a threshold level of darkness to distinguish between the pore contours
and mineral grains. The digitized thin sections of Berea, Massilon, Boise, and Saint-
Gilles sandstones (Figures 3.5b, 3.6b, 3.7, 3.8b, and 3.9b, respectively) then show
pore space in white, and mineral grains in black. This method was used to estimate
the area, perimeter, hydraulic radii, and hydraulic conductance of individual pores
for each rock. Results for Berea (Sections B and T), Massilon, Boise, and Saint-Gilles

sandstones are presented in Tables 3.1 to 3.5, respectively.

In the next section, the effect of pore shape on permeability will be studied:
(1) to compare the exact permeabilities of various polygonal-shaped pores with the
hydraulic-radius predictions, and (2) to calculate the error involved in using the hy-
draulic radius approximation and Poiseuille’s law to estimate the individual pore

conductances.
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FIG. 3.5a: Typical SEM photomicrograph of Berea sandstone (Section B). The rock is composed
mainly of quartz grains (dark gray), feldspar grains (medium gray), and products of grain dissolution
(light gray). The pore space is impregnated with Wood’s metal alloy (white), and epoxy (black).
Actual width of field is about 1 mm.

FIG. 3.5b: Pore-space contours obtained from image analysis of the photomicrograph of Berea
sandstone (Section B) shown in Fig. 3.5a. The width of field is about 1 mm.
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TABLE 3.1: Conductance data - Berea sandstone SEM section B.

N; | 4 P 4; P; Ry, C;
(units) | (units) | x10~*%(m?) | x10~° (m) x10~%(m) | x107%° (m*)

1 27 34 168.75 85.00 1.99 332.61
2 3 8 18.75 17.50 1.07 10.76
3 7 9 43.75 22.50 1.94 82.73
4 4 7 25.00 17.50 1.43 25.53
5 2 5 12.50 12.50 1.00 6.25
6 3 6 18.75 15.00 1.25 14.66
7 6 12 37.50 30.00 1.25 29.33
8 8 16 50.00 40.00 1.25 39.10
9 13 15 81.25 37.50 2.17 190.69
10 3 8 18.75 20.00 0.94 8.25
11 5 10 31.25 25.00 1.25 24.44
12 3 7 18.25 17.50 1.07 10.76
13 5 9 31.25 22.50 0.94 13.94
14 3 7 18.75 17.50 1.07 10.76
15 1 4 6.25 10.00 0.63 1.23
16 34 24 212.50 60.00 3.54 1332.80
17 4 8 25.00 20.00 1.25 19.55
18 24 24 150.00 60.00 2.50 468.75
19 7 12 43.75 30.00 1.46 46.55
20 7 14 43.75 35.00 1.25 34.21
21 2 5 12.50 12.50 1.00 6.25
22 2 5 12.50 12.50 1.00 6.25
23 18 21 112.50 52.50 2.14 258.30
24 4 9 25.00 22.50 1.11 15.45
25 10 14 62.50 35.00 1.79 99.69
26 10 13 62.50 32.50 1.92 115.56
27 2 6 12.50 15.00 0.83 4,34
28 9 16 56.20 40.00 1.41 55.58
29 1 4 6.25 10.00 0.63 1.23
30 12 10 75.00 25.00 3.00 337.50
31 2 5 12.50 12.50 1.00 6.25
32 8 13 50.00 32.50 1.54 59.20
33 2 4 12.50 10.00 1.25 9.78
34 1 3 6.25 7.50 0.83 2.14
35 2 3 12.50 7.50 1.67 17.36
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FIG. 3.6a: Typical SEM photomicrograph of Berea sandstone (Section T). The rock is composed of
quartz grains (dark gray). The pore space is impregnated with epoxy (black). Actual width of field

is about 1 mm.
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FIG. 3.6b: Pore-space contours obtained from computerized image analysis of the photomicrograph
of Berea sandstone (Section T) shown in Fig. 3.6a. The width of field is about 1 mm.




TABLE 3.2: Conductance data - Berea sandstone SEM section T.

N; A; 2 A; 5 Ry, C;
(units) | (units) | x1071°(m?) | x107° (m) x10~5(m) | x10~2%(m*?)

1 3 7. 18.75 17.50 1.07 10.76
2 1.5 6 9.38 15.00 0.63 1.83
3| 455 56 284.38 140.00 2.03 586.67
4 35 9 21.88 22.50 0.97 10.34
5 9.5 15 59.38 37.50 1.58 74.42
6 5 12 31.25 30.00 1.04 16.96
7 9.5 18 59.38 45.00 1.32 51.68
8 2.5 10 15.63 25.00 0.63 3.05
9 3 9 18.75 22.50 0.83 6.51
10| 35 11 21.88 27.50 0.80 6.92
11 5 11 31.25 27.50 1.14 20.18
12 11 17 68.75 42.50 1.62 89.95
13 4 11 25.00 27.50 0.91 .10.33
14 2 8 12.50 20.00 0.63 2.44
15| 35 9 21.88 22.50 0.97 10.34
16| 45 10 28.13 25.00 1.13 17.80
17| 6.5 15 40.63 37.50 1.08 23.84
18| 2.8 11 17.19 27.50 0.63 3.36
19| 125 24 78.73 60.00 1.30 66.23
20| 3.8 10 23.44 25.00 0.94 10.30
21| 45 12 28.13 30.00 0.94 12.36
22| 55 16 34.38 40.00 0.86 12.69
23| 135 19 84.38 47.50 1.78 133.11
24| 25 7 15.63 17.50 0.89 6.23
25 13 3 81.25 75.00 1.08 47.68
26 2 7 12.50 17.50 0.71 3.19
27| 10 18 62.50 45.00 1.39 60.28
281 20 35 125.00 87.50 1.43 127.57
29| 175 14 46.88 35.00 1.34 42.04
30| 25 11 15.63 27.50 0.57 2.53
31| 36 47 225.00 117.50 1.92 412.52
32 13 18 81.25 45.00 1.81 132.44
33 6 14 37.50 35.00 1.07 21.53
34| 15 7 9.38 17.50 0.54 1.35
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FIG. 3.7: Pore-space contours obtained from serial section of Massilon sandstone (after Koplik et
al., 1984).
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TABLE 3.3: Conductance data - Massilon sandstone SEM section.

N; A; P, A; P; Ry, C;
(units) | (units) | x10~8(m?) | x10~* (m) | x10~%(m) | x107*° (m*)

1 33 43 22.92 35.83 6.40 4687.54
2 54 62 37.50 51.67 7.26 9877.23
3 28 38 19.44 31.67 6.14 3665.33
4 14 36 9.72 30.00 3.24 510.50
5 8 15 5.56 12.50 4.45 548.83
6 10 14 6.94 11.67 5.95 1229.90
7 7 15 4.86 12.50 3.89 367.56
8 6 21 4.17 17.50 2.38 118.13
9 10 25 6.94 20.83 3.33 385.74
10 6 20 417 16.67 2.50 130.23
11 6 14 4.17 11.67 2.50 265.78
12 5 14 3.47 11.67 2.98 153.74
13 5 15 3.47 12.50 2.78 133.93
14 5 10 3.47 8.33 4.17 301.37
15 5 10 3.47 8.33 417 301.37
16 4 10 2.78 8.33 4.53 154.37
17 4 9 2.78 7.50 3.70 190.57
18 4 9 2.78 7.50 3.70 190.57
19 4 9 2.78 7.50 3.70 190.57
20 3 7 2.08 5.83 3.57 132.82
21 3 8 2.08 6.67 3.12 101.67
22 2 7 1.39 5.83 2.38 39.38
23 2 -6 1.39 5.00 2.78 53.60
24 3 10 2.08 8.33 2.50 65.08
25| 15 6 1.04 5.00 2.08 22.63
26| 1.5 7 1.04 5.83 1.79 16.63
27 2 7 1.39 5.83 2.38 39.38
28 | 1.25 5 0.87 417 2.08 18.83
29| 1.5 6 1.04 5.00 2.08 22.63
30 2 9 1.39 7.50 1.85 23.82
31| 15 7 1.04 5.83 1.79 16.63
32 1 5 0.69 417 1.67 9.63
33 2 7 1.39 5.83 2.38 39.38
34 2 5 1.39 417 3.33 77.17
35 1 4 0.69 3.33 2.08 15.05
36| 0.5 2 0.35 1.67 2.08 7.52
37| 05 3 0.35 2.50 1.39 3.34
38| 05 |-25 0.35 2.08 1.67 481
39} 075 4 0.52 3.33 1.56 6.37
40 | 0.75 5 0.52 4.17 1.25 4.07
41 1 4 0.69 3.33 2.08 15.05
421 0.25 1.5 0.17 1.25 1.39 1.69
43 { 0.75 3 0.52 2.50 2.08 11.31
44| 0.50 1.5 0.35 1.25 2.78 13.37
45| 0.13 0.75 0.09 0.63 0.14 0.84
46| 0.13 1 0.09 0.83 0.10 0.47
47| 0.13 1 0.09 0.83 0.10 0.47
48| 0.75 4 0.52 3.33 0.16 6.37
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FIG. 3.8a: Typical SEM photomicrograph of Boise sandstone. The rock is composed mainly of
quartz grains (dark gray). The pore space is impregnated with epoxy (black). Actual width of field
is about 1 mm.

FIG. 3.8b: Pore-space contours obtained from image analysis of the photomicrograph of Boise
sandstone shown in Fig. 3.8a. The width of field is about 1 mm.




TABLE 3.4: Conductance data - Boise sandstone SEM section.

Z

A;

P;

A:

£

Bx,

C:

(units) | (units) | X107°(m?) | x10~* (m) x1075(m) | x10720 (m*)
1 5.5 12 34.38 3.00 11.46 22.57
2 5 11 31.25 2.75 11.36 20.18
3 12.5 21 78.13 5.25 14.88 86.50
4 40 47.5 250.00 11.88 21.04 554.02
5 18 31 112.50 7.75 14.52 118.53
6 12 19.5 75.00 4.88 15.37 88.76
7 16 27 100.00 6.75 14.82 109.74
8 7 11 43.75 2.75 15.91 55.37
9 4.5 9 28.13 2.25 12.50 21.97
10 11 18 68.75 4.50 15.28 80.24
11 22 30 137.50 7.50 18.33 231.08
12 8 14.5 50.00 3.63 13.77 47.56
13 16 21 100.00 5.25 19.05 181.41
14 17 -22.5 106.25 5.63 18.87 189.55
15 1 3.5 6.25 0.88 7.10 1.59
16 6 12.5 37.50 3.13 11.98 27.00
17 1.5 6 9.38 1.50 6.25 1.83
18 12 17 75.00 4.25 17.65 116.78
19 3 8 18.75 2.00 9.38 8.24
20 2 6 12.50 1.50 8.33 4.34
21 1 _ 4 6.25 1.00 6.25 1.22
22 6 10 37.50 2.50 15.00 42.19
23 13 22 81.25 5.50 14.77 88.66
24 2.5 6.5 15.63 1.63 9.59 7.22
25 15 23 93.75 5.75 " 16.30 124.61
26 1 3.5 6.25 0.88 7.10- 1.59
27 18 21 112.50 5.25 21.43 258.29
28 2 6 12.50 1.50 8.33 4.34
29 17.5 - 22 109.38 5.50 19.88 216.27
30 3.5 7.5 21.88 1.88 11.64 14.89
31 15 5 9.38 1.25 7.50 2.64
32 35 47 218.75 11.75 18.62 379.09
33 5 10 31.25 2.50 12.50 24.41
34 6.5 .12 40.63 3.00 13.54 37.25
35 2 6.5 12.50 1.63 7.67 3.70
36 11.5 19.5 71.88 4.88 14.73 78.12
37 6.5 T 12 40.63 3.00 13.54 37.25
38 5.5 11 34.38 2.75 12.50 26.86
39 7 14.5 43.75 3.63 12.05 31.86
40 23.5 36.5 146.88 9.13 16.09 190.26
41 2.5 6 15.63 1.50 10.42 8.48
42 2.5 5 15.63 1.25 12.50 12.21
43 5.75 10 35.94 2.50 14.38 37.13
44 6 13 37.50 3.25 11.54 24.96
45 3.5 9 21.88 2.25 9.72 10.34
46 2 6.5 12.50 1.63 7.67 3.70
47 12.5 17 78.13 4.25 18.38 132.00
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FIG. 3.9a: Typical SEM photomicrograph of Saint-Gilles sandstone. The rock is composed mainly

of quartz grains (dark gray). The pore space is impregnated with epoxy (black). Actual width of
field is about 1 mm.
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FIG. 3.9b: Pore-space contours obtained from image analysis of the photomicrograph of Saint-Gilles
sandstone shown in Fig. 3.9a. The width of field is about 1 mm.




TABLE 3.5: Conductance data - Saint-Gilles sandstone SEM section.

Ny | A P; A; F; Ry, C;
(units) | (units) | x1071%(m?) [ x10~* (m) | x 10~%(m) | x10~%° (m?)

1 13.5 25 84.38 6.25 13.50 76.89

2 1 4 6.25 1.00 6.25 1.22

3 1.5 5 9.38 1.25 7.50 263.67
4 1 6 6.25 1.50 417 54.25

5 1 6 6.25 1.50 417 54.25

6 25 38 156.25 9.50 16.45 21134.06
7 1.5 7 9.38 1.75 5.36 134.53
8 9 19 56.25 4.75 11.84 3944.12
9 14 20 87.50 5.00 17.50 13398.44
10 1.5 6.5 9.38 1.63 5.76 156.02
11 19 40.5 118.75 10.13 11.72 8167.34
12 14 24 87.50 6.00 14.58 9304.47
13 5.5 11 34.38 2.75 12.50 2685.55
14 10 21.5 62.50 5.58 11.62 4225.26
15 2 6.5 12.50 1.63 7.67 369.82
16 3 8 18.75 2.00 9.38 823.98
17 5 13.5 31.25 3.38 9.25 1339.59
18 1 4.5 6.25 1.13 5.53 96.45
19 1 4 6.25 1.00 6.25 122.07
20 12.5 17 78.13 4.25 18.38 13199.65
21 1.5 4 9.38 1.00 9.38 411.99
22 39 47 243.75 11.75 20.75 52447.91
23 2.5 8 15.63 2.00 7.82 476.84
24 1.5 7 9.38 1.75 5.36 134.53
25 9 19 56.25 4.75 11.84 3944.12
26 6 12.5 37.50 3.13 11.98 2700.00
27 11 17.5 68.75 4.38 15.70 8488.52
28 9 13.5 56.25 3.38 16.64 7812.50
29 4 12 25.00 3.00 8.33 868.06
30 6 14 37.50 3.50 10.71 2152.42
31 22 36 137.50 9.00 15.28 16046.97
32 4 12.5 25.00 3.13 7.99 800.00
33 7.5 14 46.88 3.50 13.39 4203.95
34 1 4 6.25 1.00 6.25 122.07
35 11.5 22 71.88 5.50 13.07 6137.31
36 7.5 15.5 46.88 3.88 12.08 3429.66
37 1 4 6.25 1.00 6.25 122.07
38 3.5 11 21.88 2.75 7.96 692.07
39 4.5 12 28.13 3.00 0.38 1235.96
40 6 15 37.50 3.75 10.00 1875.00
41 8.5 17 53.13 4.25 12.50 4150.39
42 5.5 14 34.38 3.50 9.82 1657.91
43 2.5 8 15.63 2.00 7.82 476.84
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3.1.3 Effect of cross-sectional pore shape on permeability

As part of our analysis of the relationships between pore structure and transport
properties, we have studied the effect of pore shape on permeability using the torsion
analogy concept borrowed from the theory of elasticity (exact solution) and compared

these results to those obtained using the hydraulic radius approximation.
3.1.3.1 Ezact solution

There are many problems in mathematical physics which lead to the same equation
and the same boundary conditions. This is the case for the analogy between the
torsion of prismatic bars and the viscous flow through pipes. Thus, the general
solution of the torsion problem of prismatic bars of non-circular sections will be used.
The stresses are given by the relations (Sokoinikoﬁ', 1956)

oY ov
Toz == Gwa—y ; Tyz = —Gw% , (13)

where ¥ = ¥(z,y) is the stress function, G the shear modulus of elasticity, and w

the angle of torsion per unit length.

If a stress function ¥(z,y) is assumed to exist such that the equations of static
equilibrium are satisfied, then the equation of compatibility in a region I" in x-y plane
that the shear stresses satisfy becomes (Sokolnikoff, 1956):

Pv  5*v
W + 53;{ =-2. (14)
The torsional rigidity is by definition,
D=2G |.¥dA,
/r dA (15)

where G is the shear modulus of elasticity on A, the area of interest.

The equation of conservation of momentum or equation of motion for viscous pipe

flow in a region I in x-y plane is (Purday, 1949)
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&%u O&%u ldp

2 T2 F 16

where z is the coordinate along the axis of the tube, u is the fluid velocity in the

z-direction, p the viscosity of the fluid, and p the fluid pressure.

From the comparison of Eqs. (14) and (16) we can write

1 dp
=———=—0, 17
¢ 2u dle, (17)

Then the continuity equation for hydraulic flux can be expressed by

_ _ 1dp _—Ddp —kAdp
q—/rUdA— 2udz I'\:[IGZA_lluG'dz—~ p dz’ (18)

Therefore, if the torsional rigidity D of the section is calculated, the exact perme-
ability k£ can be calculated.

3.1.3.2 Hydraulic radius approrimation

According to Hagen-Poiseuille equation, the volumetric flux of fluid through a
cylindrical tube of radius a is given exactly by

4

Ta
T -, 19
q SﬂVP (19)

Since the area A of a circle is wa? and the perimeter P of a circle is 2wa, then
the radius a is 24/P. Therefore, the permeability can be expressed in terms of the
hydraulic radius as

a2 1 /2A\% 1/A\* 1,
e=5=5(7) =3(5) =37 (20)

This equation is exact for circular cross sections. The ‘hydraulic radius’ method

assumes that Eq. (20) can be used for all cross sections.
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Now we show examples to test the equivalence of the calculated permeabilities
for various pore shapes using the torsion analogy (exact solution) and the hydraulic

radius approximation, respectively.
3.1.3.3 Ezamples

1. Circular shape of radius a:

Since the area A of a circle is wa? and the perimeter P of a circle is 2wa, then

the radius a is 24/P.
The permeability using the hydraulic approximation is

1 /24\% a?
HR _ > — )

The torsional rigidity D for a circular shape of radius a is (Sokolnikoff, 1956)

7Ga*

D=——. (22)
Thus
_ —7Ga*/2dp _ —ma*dp (23)
T 4uG dz 8 dz’
According to Darcy’s law
kAd —kma? d
= =2 R, (24)
u dz p dz
where k is permeability.
Thus, the exact permeability is
4 8 0,2
kE_’XAcz"z’”a/ - )
circle ra? 8 (25)
Hence, for a circular shape
ke = krde - (26)
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As expected then for a circular tube, the calculated permeability using the torsion
analogy (exact solution) is equivalent to the permeability given by the hydraulic
radius approximation.

. Triangle of side a:

The area A of an equilateral triangle of side a is v/3a?/4, and the perimeter P
is equal to 3a. Thus, 24/P = /3a/6.

The permeability using the hydraulic radius approximation is

1/24 V3a a?
ktrtangle - g (?) 8 ( 6 ) - % . (27)

The torsional rigidity is (Berker, 1963)

V3Gat
D= . 28
The permeability using the exact solution is
LEXACT _ D G\/§a4/ 80 _ a_2 (29)
triangle — g4~ 4G\/§a2/4 T80
Thus, the error involved in the hydraulic radius approximation is
kiR 80
ERROR = —5288 — — x 100 = —20% . (30)
ktrzangle 96

. Square of side a:
The area A of a square of side a is a?, and the perimeter P is equal to 4a. Thus,
2A/P = a/2.
The permeability using the hydraulic radius approximation is
2 2
The torsional rigidity is (Berker, 1963)

2.253Ga*
= ——, 2
D T (32)

42



The permeability using the exact solution is

pxaor _ D _ 2.253Ga*/16 _ o

= = — 3
square 4GA 4Ga? 28 (33)
Thus, the error involved in the hydraulic radius approximation is
krjiere _ 28
ERROR= -2 = — x 100 = -11%.. (34)

LEXACT — 39

square

. Slit of length L and width & (h < L):

The area A of a slit of length L and width A is Lh, and the perimeter P =~ 2L.
Thus, 2A/P = h.
The permeability using the hydraulic radius approximation is

24 h?
= () =2 (35)
The torsional rigidity is (Berker, 1963)
3
p = 3:333GLA (36)
16
The permeability using the exact solution is
LEXACT _ D  5.333GLh%/16 _ h_2 (37)
slit - 4GA - 4GLh - 12 .
Thus, the error involved in the hydraulic radius approximation is
kHE 12
ERROR = 5¥ior i = < X 100 =+33%. (38)

slit

Ellipse with major axis 2¢ and minor axis 2b:

The area A of the ellipse is wab, and the perimeter P is equal to 4aE(z) with ¢ =
Va? —b%/a (see elliptic integrals, Ride and Westergren, 1992). Thus, 24/P =
wb/2E(3).

For an ellipse with a : b = 4 : 1, the ratio 24/P = a/3.325. Thus, the perme-
ability using the hydraulic radius approximation is
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24\%  a?
kellzpse - 8 (?) = -8—8 :

The torsional rigidity is (Berker, 1963)

Gra®

D=
63

The permeability using the exact solution is

LEXACT _ D _G7ra4/68 a_2

ellipse ™ AGA = 4Gma/4 68

Thus, the error involved in the hydraulic radius approximation is

EEE. 68

ellipse
ERROR = kEXXCT 88

ellipse

x 100 = —23% .

For an ellipse with @ : b = 10 : 1, the ratio 24/P = a/6.366.

permeability using the hydraulic radius approximation is

LE <2A>2__1f_
ellzpse - 8 P - 324 .

The torsional rigidity is (Berker, 1963)

Grat

D= .
321
The permeability using the exact solution is
LEXACT _ D  Gma*/321 o

ellipse = 4O A ~ 4Gra?/10 403
Thus, the error involved in the hydraulic radius approximation is
kEE: 403

ERROR = —2itipse _ x 100 = +26% .
FEXACT = 331 +26%

(39)

(40)

(41)

(42)

Thus, the

(43)

(44)

(45)

(46)



TABLE 3.6: List of comparative values to show equivalence of the cal-
culated permeabilities using the torsion analogy and the hydraulic ra-

dius approximation, respectively.

[ Cross section [ kBXACT T kHE | Error (%) |
Circle a®/8 a®/8 -
Equilateral triangle a?/80 a?/96 -20
Square a?/28 a?/32 —-11
Slit B2j12 | B8 +33

. a:b=4:1 a®/68 a?/88 —23
E“lpse{ a:b=10:1 || a2/403 | a?/324 +26

A list of comparative values to show equivalence of calculated permeabilities using
the torsion analogy and the hydraulic radius approximation, respectively, is presented
in Table 3.6. The results of this study show that the error involved in the hydraulic
radius approximation lies within _i30%. The approximation does not systematically
either underpredict or overpredict the pore conductances, so that the errors will can-
cel, at least partially, when applied to a network of pores of different cross sections.
One may reasonably conclude that the conductivity of a tubular pore is well approx-

imated by the hydraulic radius theory.

Boussinesq expressed the hydraulic flux ¢ in terms of a dimensionless coefficient &

defined by the relationship (Berker, 1963)

g=r-2.5, (47)

where s represents the area of the cross section under consideration. The values of

the coefficients k are (Berker, 1963)

for the circle 0.0398
for the square 0.0351

for the equilateral triangle 0.0289

Thus, we can write

Keirele = 0.0398 > Ksquare = 0.0351 > Keguilateral triangle = 0.0289 . (48)
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Results of our analysis using the torsion analogy show that for cross sectioms of
equivalent areas after normalizing permeability with respect to the equivalent circular

radius a,,

kcircle = 013&3 > ksquare = 0-11‘13 > kequilateral triangle = 009(1(21 ) (49)

where k is permeability.

Therefore, the permeability results obtained using the torsion analogy are in close

agreement with the Boussinesq solution.
3.1.4 Effect of pore orientation

In the 2-D section under consideration, the pore cross sections are randomly ori-
ented with respect to the directions of the channel axes. The orientation effect has
been accounted for by means of the following geometrical and stereological consider-

ations for projected images.
3.1.4.1 Projected line

The fundamental relationship for projected lines (Underwood, 1970) relates the
mean projected length of a randomly oriented line segment to the true length.

Consider a line segment 6 with one end fixed which is free to rotate in any direction
described by ¢ and 0. Figure 3.10 shows one octant of the spherical surface of area
S = w6I?/2 generated by rotating the line segment 61.

The average projected length is

— T Eleras [ 5/ 6isin 061 sin 0dfdg

6l = = 50
I 5% ds T2 712 512 sin 0dOde (50)

We then have
— T
I'==6l.
) 46 (51)
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$—axis

FIG. 3.10: Mean projected length of a randomly oriented linear segment (after Underwood, 1970).

< Amcasured > Aactual

e ) -
- S
- =~

~ Aactual

FIG. 3.11: Relationship between area of a circular tube (area actual) and its projection onto a plane
(area measured).
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3.1.4.2 Projected area

Consider a cylindrical tube of circular cross section that has been sliced by a plane
oriented at an angle with respect to the channel axis (Figure 3.11). The projected
cross section into the 2-D section under consideration is an ellipse with major axis
2a, minor axis 2b, and an area measured Ameqsured €qual to mab, where a = b/ cosé.

The actual area of the circular section Agcuar is equal to 7b2.

Thus we can write

1
cos@

-1
Aa.ctual = < > Ameasured ’ (52)

where

<_1__> _ J5 Jome g’ sin 0d0d¢ )
COS 0 Jgf'lbvnaz ‘12 Sille?augciqb b)

with Onez = arctan(L/D), where L/D is the maximum ratio of pore length to di-
- ameter. Using an average of L/D = 5, as estimated from the micrographs, we find

that

Aactua.l = 0-61Ameasured . (54)

Evaluation of the integral appearing in Eq. (53) shows that the factor () is not
sensitive to the value chosen for L/D.

3.1.4.3 Hydraulic radius

The elliptical cross section in the 2-D section under consideration, with major axis

2a and minor axis 2b, has a measured area Amegsureq €qual to mab, and, to within 10%,

a measured perimeter Pregsurea = T4/2(a? + b?) = wa4/2(1 + cos? ) (CRC Standard

Mathematical Tables, Beyer, W.H., 1988).

The measured hydraulic radius Ry, of each tube is

easured
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— Ameasured wab
Ry =

measured Pmeasured - Ta 2(1 + C0S2 0) .

The actual hydrauiic radius Ry__, , of each tube is

(55)

Aactual 7I'b2
R = =—. 56
Hactual Pact'u,al 27rb ( )

Thus we can write

V2 1 -
R =Y2( __ - ) R , 57
Hactual 2 <-\/]TICOS_20 Hmeaaured ( )
where
< 1 > Jo [ \/H_——a sin 0dfd¢ (58)
v1+cos?6 - Jo Jo™= a?sinbdfdo )

Numerical evaluation of this integral, using 0. = arctan(L/D) = 78.7°, gives

Ry,

actual

= 0.85Ry,

measured °

(59)
3.1.4.4 Hydraulic conductance

The elliptical cross section in the 2-D section under consideration, with major axis

2a and minor axis 2b, has a measured area Ameassured €qual to mab, and a measured

perimeter Preasured = Ty/2(a? + b2) = wa,/2(1 + cos? 6).

The actual hydraulic conductance C;

actual

factor, which eventually cancels out of the calculations)

RY 1 (#b?\* bt
Ci — = —_— 2 = — . 6
actual ( 2 A) wctual 2 (27rb) ﬂ'b 8 ( 0)

of each tube from the 2-D section

of each tube is (aside from a length

The measured hydraulic conductance C;__,, ...,

under consideration is (aside from a length factor, which eventually cancels out of the
calculations)
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2
2 1 wab wb*
. ==K = ———_— = . (61
Cimearurea ( 2 A)meawe s 2 (W /2(a? + b2)> mab 2 cos §(1 + cos? 9) (61)

Thus we can write

1 1 -1
aA actual = 3 RLA measured » 62
(RgA)actual 2<cos€(1+00820)> (RgA) d (62)
where
< 1 > T it )d sin0dfde -
cosf(1 +cos?0) [ J§ J3me a*sin §dfd¢ '

Numerical evaluation of this integral, using 8,,.. = arctan(L/D) = 78.7°, gives

(R_%{A)actual = O-4O(R?{A)measured . (64)
3.1.4.5 Tortuosity and projection

We have derived the tortuosity factor, 7, for randomly oriented cylindrical tubes

in three dimensions.

According to the Hagen-Poiseuille equation, the volumetric flux of fluid through a
cylindrical tube is given by (Figure 3.12)

E ,Ap k mab Ap
= — _—— = - —_ 6
7 #wb Al pcos@ Ay’ (65)
where @ is the polar angle in spherical polar coordinates.
Since b = a cos§ we get
Ap ., ODp b’
Ale "~ Aycos?f (66)
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Ameasured = ab

FIG. 3.12: Construction used in calculating the tortuosity factor, 7, for randomly oriented cylindrical
tubes in three dimensions.

FIG. 3.13: Sinusoidal variation of the radius along the length of a tube used to calculate the con-
striction hydraulic factor.
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‘We then have

—-;3 — (cos? )2 (67)

where

w w2 29 2
(cos? 6) = Io Jo :/c;s fa” sin 6dOdo _ /3 _ 1 . (68)
Jo Jo'" a?sin0dod¢ T 3
Thus we can write

Lp_ 1 ALp 14p (69)

Ay~ {cos?2@)-1 Al 3AL’

with the tortuosity factor defined as follows:

7= (cos’f)1 =3. (70)

3.1.5 Pore body to pore throat ratio dependence

Pore casts of sedimentary rocks, such as that of Berea sandstone and of Saint-Gilles
sandstone (Figures 3.3 and 3.4), show that the cross section of a-pore typically varies
along its length. This factor must be accounted for when estimating the areas and

perimeters of the pores, or else the predicted conductances will be overestimated.

We have seen that the Hagen-Poiseuille equation for the volumetric flux of fluid

through a cylindrical tube is expressed as

g=—vVp. (1)

This form of the Hagen-Poiseuille equation is valid for considering flow of water
through a tube of uniform cross-sectional area. To account for the radius variation
consider that for a tube of non-uniform cross-sectional area, it is more convenient to

use an integral form of the Hagen-Poiseuille equation:
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7rAp

“rzz _do ? (72)
8“ f 12 r(z)%

qg=

in which the z axis is oriented along the flow line.

Although 7 may vary with z, the volumetric flowrate ¢ must be constant across all

cross sections. If Eq. (72) is written in the standard form ¢ = Cy A p, we find that

Cy = —;ﬁ<r—4) - (73)

where the average is taken over the length of the tube.
If we estimate from the micrograph the radius of such a tube, we will be estimating

the mean value of the radius, (r), and thus will overestimate the conductance by an

amount

CHzctua (7_4)—1 —
Ctreanrs (7 0 ™

where f is the hydraulic constriction factor.

The magnitude of this contriction factor will depend on the extent to which the
pore radius varies. If the radius is in fact constant, then (r~*) = (r)™%,and f = 1. In
order to relate f to a parameter that may be relatively simple to estimate, consider
the case where the radius varies in a sinusoidal manner along the length of the tube

(See Figure 3.13), according to the expression

r(z) = (r)[1 + Esin(2rz/A)] (75)
where ) is the wavelength of the radius variations. This type of variation is supported

by some pore casts, such as that of Berea sandstone shown in Figure 3.3.

For convenience, we can assume that an integral number of segments of length A
will fit into the total length I. The hydraulic constriction factor can then be expressed

as
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L %f[l + ¢ sin(2rz))| "z . (76)

Foon
Using the change of variable w = 27z, the integral in Eq. (76) takes the form

1_
7=

With the aid of integral tables, the constriction factor f can be expressed as

1 2%
— /0 (1+ Esinw) *dw . (77)

_ 256072
T (14 0)4(50% +302 +30+5)°

f (78)

where 0 = (1 — &)/(1 + £) = Tmin/Tmaz- The factor f is plotted in Figure 3.14,
as a function of the parameter Tmin/Tmaz- This factor may be as small as 0.26 for
a quite reasonable value of Tmin/Tmez = 0.33 estimated from a pore cast of Saint-
Gilles sandstone (See Figure 3.4). We have estimated a throat-to-pore radius ratio
of 0.50 from a pore cast of Berea sandstone, and have tentatively used this value
for a comsolidated rock. The throat-to-pore radius aspect ratio of 0.50 for Berea
sandstone is further verified by analysis on the relationship of capillary pressure of

Berea sandstone to microgeometry in Chapter 5.

Although some sandstones also exhibit roughness at scales much smaller than
the average pore diameter, it is known that such roughness has little effect on the

hydraulic conductance (Berryman and Blair, 1987) and can therefore be ignored.
3.1.6 Permeability Calculation

Now we show how the continuum value of the hydraulic conductance is calculated.
Recall that the hydraulic conductance per unit length of each tube is given by Eq. (12)

as
C.; - %R%IA .

According to the Hagen-Poiseuille equation, the volumetric flux of filuid through

one tube is given by
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FIG. 3.14: Constriction factor for hydraulic flux as function of the ratio of the minimum pore radius
to the maximum pore radius of an individual pore. The calculated conductances of the pores must
be multiplied by this factor, which account for the converging-diverging nature of the pore tubes.
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FIG. 3.15: Microscopically inhomogeneous pore system and its skeleton (after Doyen, 1988).

FIG. 3.16: Cubic lattice representation of the pore structure employed to calculate the permeability
of sedimentary rocks with the effective medium theory.
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o R%LA

q,-=—A = . 79
LAVP== " VP (79)

Study of stereo SEM photomicrographs of Berea sandstone has indicated the pres-
ence of a statistically isotropic three-dimensional pore structure represented by Fig-
ure 3.15. These observations have led to the idealization that the pores of varying
size are arranged on a cubic lattice (Figure 3.16), so that the coordination number,

which is the number of pores that meet at each node, is 6.

Finally, the individual conductors are imagined to be placed along the bonds of a
cubic lattice in the effective medium. Recall that for a general discrete distribution

of conductances, the effective medium expression (Eq. 6) takes the form

< Cess — Ci _
22 -1y 3G

i=1

0.

By solving the above equation numerically for a cubic lattice (z = 6), we have then
calculated the value of the effective conductance given the individual pore conduc-
tances obtained from the SEM micrographs (See Code Listing 3.1).

In the cubic lattice, the total volumetric flux in the vertical direction is

NC.ss
T

Vo, (80)

1
q=;2;qeff =

where g.s; is the volumetric flux of fluid through an effective conductor and 7 is the
tortuosity of a cubic lattice, which is exactly equal to 3 (since one-third of the pore
tubes are aligned in each of the three lattice directions).

According to the Darcy equation, the total volumetric flux through the porous

medium is given by

k
q= ; vatotal ’ (81)

where k is the permeability and Ao is the total area of the porous medium under

consideration.

57

WTTF TG T T TP RTINS o T St Y I e e e W S LAt gy e W TR el A Y T ———— T — DL £ S e e vy - - B ————



Equating Eq. (80) to Eq. (81) gives the continuum value of the hydraulic conduc-

tance that is related to the effective conductance of the individual tubes:

_ NCes

k= .
TAtotal

(82)

The tortuosity for randomly oriented cylindrical tubes, 7 = (cos?§)~! = 3 has
been derived independently (See Section 3.1.4).

3.1.7 Results and discussion

In this investigation, a network model has been developed for calculating perme-
ability from microgeometry; this analytical model is simple, reliable, and permits
accurate prediction of the laboratory measured permeability of sedimentary rocks.
Calculated permeabilities for different rocks and for different coordination numbers
are presented in Tables 3.7 to 3.11. A comparison between laboratory measured and
predicted permeabilities with the cubic lattice-network model is given in Table 3.12.
Good agreement was found between measured and predicted permeabilities for a va-
riety of sandstones when using the cubic lattice model, with essentially no arbitrary
adjustable parameters. The major conclusions that can be drawn from this study are

as follows:

1. The pore structure is the most important variable influencing the permeability

of sedimentary rocks.

2. The effects of the pore structure are interrelated in a complex manner with
the porosity, specific surface area, and pore shape factors in the permeability
analytical expression given by Eq. (82). As with the standard Kozeny-Carman
model, the predicted permeability is proportional to the number of pores.

3. All the parameters in our model have an unambiguous physical meaning and are

readily measured from SEM photomicrographs of rock thin sections.
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TABLE 3.7: Calculated permeability data - Berea sandstone SEM section B.

[2 ] Cpy @Y | Fs | Tmin/Tmaz | Fe | N | Atota (m?) | T | k(@®) [k (D)]
2 [4.54x107%° | 0.40 0.50 0.55 | 35 ] 9.63x10~7 | 3* | 1.21x10~%° | 0.12
6 | 18.2x102° | 0.40 0.50 0.55 | 35-] 9.63x10~7 | 3 | 4.84x1071% | 0.49
oo | 56.0x1072° | 0.40 0.50 0.55 | 35 | 9.63x107 | 3* | 14.9x10713 | 1.51

* Assumed.

TABLE 3.8: Calculated permeability data - Berea sandstone SEM section T.

I z ' Cef_f (m4) l Fs | Tmin/'rma:t l Fc I N I Atotal (mz) I T l k (m2) I k (D) |
2 [7.49x10%° | 0.40 0.50 0.55] 35| 9.84x10~7 | 3* | 1.89x10~%% | 0.19
6 | 24.2x107%° | 0.40 0.50 0.55 [ 35 | 9.84x10°7 [ 3 | 6.12x107* | 0.62
oo | 59.9%x1072° | 0.40 0.50 0.55 | 35 | 9.84x10~7 | 3* | 15.2%x10713 | 1.53

* Assumed.

TABLE 3.9: Calculated permeability data - Massilon sandstone SEM section.

l 4 | Oeff (m4) I F | Tmin/'rma:c | F, | N | Asotal (mZ) I T | k (mZ) I k (Dﬂ
2 [11.7x107* [ 0.40 0.50 0.55 | 48 | 8.74x107% [ 3* | 0.47x10~** | 0.47
6 | 90.7x107° | 0.40 0.50 0.55 | 48 | 8.74x107% | 3 | 3.65x107!? | 3.65
oo | 525x10~1° | 0.40 0.50 0.55 | 48 | 8.74x107% | 3* | 21.1x107%% | 21.1

*Assumed.

TABLE 3.10: Calculated permeability data - Boise sandstone SEM section.

| 2 l Ceff (mé) I Fs I 7"‘rn-in/"‘ma::: | Fc I N l Atotal (m2) | T I k (m2) l k (D) I
2 [8.96x10%° | 0.40 0.50 0.55 [ 47 | 9.84x10~7 | 3* | 3.14x107* | 0.32
6 | 45.0x10720 | 0.40 0.50 0.55 | 47 | 9.84x10~7 | 3 | 15.8x10713 | 1.59
oo | 80.1x10720 | 0.40 0.50 . 0.55 | 47 | 9.84 x10~7 | 3* | 28.1x1071® | 2.83

* Assumed.

TABLE 3.11: Calculated permeability data - Saint-Gilles sandstone SEM section.

(2 [ Copy @D | Fy | Tomin/Tmaz | Fe | N | At (@) |7 |k (@m*) [k (D)]
2 [3.37x107%° | 0.40 0.33 0.27 [ 431 9.84x10~7 [ 3* [ 1.59x10~* | 0.16
6 | 21.2x10%° | 0.40 0.33 0.27 | 43 | 9.84%x10~7 | 3 | 3.34x10713 | 0.34
oo | 48.3x10729 | 0.40 0.33 0.27 | 43 | 9.84 x1077 | 3* | 7.59%1073 | 0.77

" Assumed.
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10.

When applying the method and evaluating our results one has to keep in mind
that the effective medium theory is expected to work best when spatial fluc-
tuations of hydraulic (or current) flux are small in a relative scale. In Berea
sandstone for instance, our laboratory imbibition experiments in combination
with SEM analysis of the pore 'space indicate that the distribution of pores and
throats controlling permeability is narrow. Consequently, the effective medium

theory is expected to and does give very good results in Berea sandstone.

The results given in Tables 3.7 to 3.11 emphasize the importance of pore connec-
tivity in understanding the relationship of permeability to rock microstructure.
For example, if a Kozeny-type parallel tube model (z = 00) or a serial model

(z = 2) is applied instead, permeability is overpredicted or underpredicted, re-

spectively.

The investigation shows that the effective medium approximation with a parallel-
tube or Kozeny-Carman arrangement with a coordination number z = oo, over-
predicts the measured permeability of Berea sandstone by a factor of three, and

that of Massilon sandstone by a factor of six, respectively.

Thus, it is found that the permeability predicted with the effective medium
approximation assuming a cubic lattice arrangement of the pores is consistent
with the Kozeny-Carman formulas for a ‘principal’ pore network approaching

microscopic homogeneity such as Berea sandstone’s (Section 3.3.4).

. The analysis on the effects of pore constrictivity show that permeability is con-

trolled by connected intergranular pore throats (pore constrictions in between

the grains).

It is found that intergranular pore throats are smaller than pore bodies, with an

aspect 1atio Tmin/Tmez = 0.50 for the consolidated sandstones under study.

For a lightly consolidated rock such as Saint-Gilles sandstone, an aspect ratio
Of Trmin/Tmez = 0.33 is detected. This is a direct result of the lower degree of

consolidation and the more angular particle shape.
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TABLE 3.12: Measured vs. predicted intrinsic permeabilities of four sedimen-
tary rocks.

km.easured kpredicted (za. = 6)

Rock @) | @ @) [ (@
Berea sandstone 4.80%x10733 ] 0.48° || 5.55x1071° | 0.56
Boise sandstone 13.0x107%3 | 1.30° || 15.8x10~13 | 1.59

Massilon sandstone 25.0x10713 | 2.50° || 36.5%10713 | 3.65
Saint-Gilles sandstone || 1.70x10~%3 | 0.17¢ || 3.34x107*% | 0.34

2Coordination number.

bDistilled water used as permeant.
“Data from Koplik et al., 1984.
?Data from Leblanc, 1988.

11. The effect of pore shape on permeability was studied by comparing the hy-
draulic radius approximation predictions with the exact permeabilities of various
polygonal-shaped pores, and the error involved was calculated. The results of
this study show that the error involved in the hydraulic radius approximation lies
well within £30% (See Table 3.6). The approximation does not systematically
either underpredict or overpredict the pore conductances, so that the errors will

partially cancel when applied to a network of pores of different cross sections.

12. For equivalent pore areas, Eq. (49) shows that permeability of polygonal pore
shapes is not very sensitive to decreasing pore perimeter. This result is a direct
consequence of the fact that the fluid velocity vanishes at the pore-grain interface.

Therefore, small scale roughness is irrelevant to permeability.
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3.2 Statistical approach using the perimeter-area

power-law relationship of pores

Since the intrinsic permeability is a measure of the viscous resistance to fluid flow
through the rock pores and is controlled by the geometry and topology of the pore
space, it is expected to correlate with the amount of surface area of the pore system.
In this Section, a brief discussion is given of how the perimeter-area power-law re-
lationship of pores, along with a pore-size distribution, can be used to estimate the
permeability. Consider Figure 3.17. If the outer circle has radius R, and the inner cir-
cle (dashed line) has radius R;, then the permeability k of a single such rough-walled
cylindrical pore must satisfy (Berryman and Blair, 1984)

k<k<k,, (83)

where k, = R%/8, and k; = R}/8. If R, = R; + 6R, then for small 6R we have

R? R? 6R
2L < =i — N 4
8_k_8<1+4&) (84)

In terms of hydraulic radius this can be written as

3(3) <#<3(3) (1+45) )

where A; and P; are the inner tube area and perimeter, respectively.

If the surface is very rough (e.g., fractal), the pore perimeter may become so large
that Eq. (85) is not satisfied. Nevertheless, it follows from Egs. (84) and (85) that
an effective hydraulic radius may be used such that

A; A A,
— 1 <{=)<l=1].
(7)=(3)=() )
The parameter (%) has the significance of being the hydraulic radius of a smoothed

representation of the true void/solid interface. For a single straight tube (Eq. 84), if

we make an error of 1% in estimating the tube radius, the error in the estimate of k
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FIG. 3.17: Schematic drawing of a rough-walled tube (of radius R,). Surface roughness does not
have a strong effect on the overall fluid permeability of a tube, because a slightly smaller tube (of
radius R;) is known to have a comparable permeability (after Berryman and Blair, 1987).

FIG. 3.18: Typical serial section of Saint-Gilles sandstone at 100x magnification. The mineral
grains of different shades are quartz, carbonate, feldspar, and muscovite, whereas the darkest regions
represent pore space.

63

— ——— g £ A (Y L oy 4 e S et 8 T e £ Y, o g i — ~ ., a—— p——— T an o ma



TABLE 3.13. Perimeter-area power-law relationship vy param-
eter and correlation coefficient 7 measured from perimeter-area

data of five sedimentary rocks.

| Rock ” ¢"rzneasu1'ed (%) l v l r I
Berea sandstone 22 1.49 { 0.99
Boise sandstone 26 1.4310.98
Massilon sandstone 22b 1.43 | 0.98
Saint-Gilles sandstone 21 1.49 | 0.98
Indiana limestone 14 1.67 { 0.99

“Porosity.

*Data from Koplik et al., 1984.

is 4%, at worst. Indeed, since the fluid velocity vanishes at the pore-grain interface,

the permeability k should not be sensitive to surface roughness.
3.2.1 Perimeter-area power-law relationship of pores

Perimeter-area relationships of a smooth representation of pores are estimated from
scanning electron micrographs of thin sections of typical reservoir-type sedimentary
rocks (See Figure 3.18). The basic method involves counting size and perimeter
grid (or pixel) units for every feature in a standard scanning electron micrograph of
some fixed magnification. The analysis was carried out using both a manual and an
automated image analysis procedure to verify the accuracy of the manual technique
(See Section 3.1.2 for details). The digitized thin sections (Figures 3.192 and 3.20a)
then show pore space in white, and mineral grains in black. This method was used

to estimate the area-perimeter statistics for a group of pores in a thin section.

Tt is found that the perimeter-area relationship of such a representation of the true

void/solid interface satisfies the perimeter-area power-law relationship

A=mP7, (87)

where log m is the intercept on the log A axis, and -y the slope of the log A-log P
plot (Figures 3.19b and 3.20b). The constants m and v appearing in Eq. (87) are
found by performing a linear regression on the log perimeter-log area data. From this
analysis we find slopes ranging from 1.43 to 1.49 for the four sandstones examined
and a slope of 1.67 for an Indiana limestone (Table 3.13).

64



FIG. 3.19a: Pore-space contours obtained from serial section of Massilon sandstone (after Koplik et
al., 1984).
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FIG. 3.19b: Perimeter-area power-law relationship for Massilon sandstone obtained from pore-space
contours shown in Fig. 3.19a.
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FIG. 3.20a: Pore-space contours obtained from image analysis of the photomicrograph of Berea
sandstone (Section B) shown in Fig. 3.5a. The width of field is about 1 mm.
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FIG. 3.20b: Perimeter-area power-law relationship of pores for Berea sandstone obtained from pore-
space contours shown in Fig. 3.20a.
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3.2.2 Permeability implications

We now show how the area-perimeter power-law relationship of a smoothed rep-
resentation of the pore space of a rock can be used, in conjunction with a pore-size
distribution and a classical model for permeability, to yield reasonable estimates of
permeability. The Kozeny-Carman model for transport through a porous medium is
based on the idealization of the pore space as consisting of a bundle of parallel tubes,
the total conductance of which is merely the sum of the individual conductances. It
is traditional to then divide this result by a tortuosity factor, 7 = 3, to account for
the fact that, in a hydraulically isotropic rock, we would expect only one-third of the
total number of tubes to be oriented in each of the three orthogonal directions (See
Section 3.1.4.5 for specifics). If n(4) is the number distribution function for pores
of cross-sectional area A in an area of rock having total cross section of A and
C(4) is the conductance of each pore of area A, then the total conductance can be

expressed as

Chotat = /0 “ n(A)C(A)dA . (88)

In practice, of course, the distribution function n(A) will vanish for all A greater
than some Az, although it is often convenient to represent n(A) by a function that
drops off, say, exponentially as 4 — oo.

If the pore tubes were all of circular cross section, their individual conductances
would be given by the exact Hagen-Poiseuille law. As explained in Section 3.1.3, the
Hagen-Poiseuille solution can be modified to account for irregular cross sections by
using the ‘hydraulic radius’ approximation, which predicts a conductance of A%/2P?
for a tube of cross-sectional area A and perimeter P. Invoking the perimeter-area
power-law relationship P = m~Y7AY7 the hydraulic conductance can be expressed
as C(A) = A3~%7/2m~%/7. Combining this with the general expression (88) for the
total conductance yields

oo 3-2/y
Crotal = = / nAAT 4 (89)

O9m—2/"

We now define a normalized distribution function S(A) = n(A)A/pAstar, where
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the total porosity is defined as Apores/Atotar. This distribution function has the prop-
erty that [ B(4)dA = 1. The total conductance can then be expressed as

A ota < —_
Crota = g;%—jz—j;’; | a-mpa)dA. (90)

We have found that the area frequency distribution of the pores (Figures 3.21 and
3.22) can be well approximated by a lognormal distribution:

Blu) = (2m03) 7/ exp[—(u — uo)*/207] , (91)

where u = log A, u, = log A,, where A, is the most probable area, and o, is the
variance of log A. The corresponding mean area A,, is larger than the most probable

area and is given by

A = A, exp[(0,In10)2/2] . (92)

The permeability coefficient k can then be estimated as

Ctotal ¢ et 2(1—
ko= - / AX-UNBA)dA
Arpa 2m27 Jo B(A)
_ P saa-12 g20-1me-D)
= omongim | e

In terms of the variance of log A, the permeability can be expressed as

k= L4 o A KA e 10 (94)

As with the standard Kozeny-Carman model, if the pore sizes are held constant,
the predicted permeability scales with the po.rosity, which is to say it is proportional
to the number of pores. It is worth noting that if the perimeter-area relationship of
the pores follows the law derived by Mandelbrot (1982) for islands whose boundaries
are fractal, P = ¢? AP/2, where € is some constant that depends on the length of the

measuring grid size and D is the fractal dimension of the pore perimeter, then the
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FIG. 3.21: Pore-size distribution of Massilon sandstone obtained from pore-space contours shown in

Fig. 3.19a.
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FIG. 3.22: Pore-size distribution of Berea sandstone obtained from pore-space contours shown in

Fig. 3.20a.
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parameter € would quantify the perimeter of the pore cross sections when the pores are
projected back into three dimensions. The parameter € would in some sense represent
the pore actual surface area, k being a decreasing function of e. Therefore, if the rock
pore boundaries are very rough (e.g., fractal), not only would the physical bounds
for permeability be violated (Eqs. 84 and 85), but also the predicted permeabilities
given by Eq. (94) would be artificially lowered by several orders of magnitude.

3.2.3 Effects of pore orientation and constrictivity

In the two-dimensional sections under consideration, the pore cross sections are
randomly oriented with respect to the channel axes. The orientation effect has been
taken into account by means of geometrical and stereological considerations, which
indicate a stereological factor of 0.40 (See Section 3.1.4). In addition, constrictions
within the individual branch channels, i.e., pore throats and bodies, have been taken
into account using an analysis based on a sinusoidal variation of cross section which

gives a hydraulic constriction factor of 0.55 (See Section 3.1.5).
3.2.4 Results and discussion

In this investigation, we have constructed a model that allows reasonable predic-
tions of the permeability of sedimentary rocks, based on the perimeter-area power-law
relationship of pores and the pore-size distribution. Since the permeability of rocks
can range over many orders of magnitude, this prediction is not trivial. Calculated
permeabilities for two different rocks are presented in Table 3.14. Image analysis of
the pore system of Massilon sandstone yields values A, = 13.5 x10* pm?, o, = 0.43,
4 = 1.43, and m = 1.17 pm?". Similarly, for Berea sandstone, 4,, = 77.9 X 10% pm?,
oy = 0.42, v = 1.49, and m = 0.66 um?~". Equation (94) then predicts a permeability
of 10.9 D for Massilon sandstone, and of 1.5 D for Berea sandstone, respectively (after
applying the hydraulic stereological and constriction corrections) (See Table 3.14). A
comparison between these results, the laboratory-measured and the predicted perme-
abilities with the cubic lattice-network model, is given in Table 3.15. As would be
expected for an essentially parallel arrangement of conductors, as is assumed in the
model, the predicted values are higher but of the same order of magnitude as the
experimentally measured values of 2.5 D for Massilon sandstone (Koplik, 1984), and
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TABLE 3.14: Calculated permeability data - Massilon and Berea sandstones SEM photomicro-
graphs.

[Fodk [ ) [ 0 | 7 [m @) [ B [ B [+ [£ () [£ ()]
Massilon || 13.5x10% | 0.43 | 1.43 1.17 0.40 | 0.55 | 3* 10.8 10.9
Berea 77.9%x10% | 0.42 | 1.49 0.66 0.40 | 0.55 | 3* 1.50 1.52

*Assumed.

TABLE 3.15: Measured vs. predicted intrinsic permeabilities - Massilon and Berea
sandstones.

k‘measured kpredicted kpredicted (za = 6)
Rock (m®) | (D) (m®) [ (D) (m*) [ (D)
Massilon || 25.0x10~13 [ 2.50° || 108x10~%3 [ 10.9 || 36.5x10~*° | 3.65
Berea 4.80x1071% | 0.48° || 15.0x107%2 | 1.52 || 5.55x107*® | 0.56

%Coordination number.
*Data from Koplik et al., 1984.

“Distilled water used as permeant.

of 0.48 D for Berea sandstone (using distilled water as permeant) (See Table 3.15).

The major conclusions that can be extracted from this study are as follows:

1. The pore structure is the most important variable influencing the permeability

of sedimentary rocks.

2. Equation (94) shows that k is an increasing function of both the mean pore size
and the variance of the pore size, as would be expected for an essentially parallel

arrangement of conductors.

3. All the parameters in our model have an unambiguous physical meaning and are

readily measured from SEM photomicrographs of rock thin sections.

4. As with the standard Kozeny-Carman model, if the pore sizes are held con-
stant, the predicted permeability scales with the porosity, which is to say it is

proportional to the number of pores.

5. Since the parameter m in Eq. (94) quantifies the perimeter of the pore cross sec-
tions, when the pores are projected back into three dimensions, m will represent

the pore surface area; hence k is a decreasing function of m.

71



10.

Our expression for k includes some length scale raised to the 2 — 2/ power. It
has a resemblance to that derived by Hansen and Skjeltorp (1988). Our result
is more explicit in that our length scale is clearly identified in terms of the pore

size distributions.

. The analysis on the effects of pore constrictivity show that permeability is con-

trolled by connected intergranular pore throats (pore constrictions in-between
the grains). It is found that intergranular pore throats are smaller than pore
bodies, with an aspect Tatio Tmin/Tmez = 0.50 for the consolidated sandstones

under study.

Results in Table 3.15 show that the parallel-tubes statistical model overpredicts
the measured permeability of Berea sandstone by a factor of three, and that of

Massilon sandstone by a factor of four.

The parallel-tubes statistical model is consistent with the effective medium ap-
proximation and Kozeny-Carman formulas for a ‘principal’ pore network ap-

proaching microscopic homogeneity such as Berea sandstone’s (Chapter 3.3).

Of course, more accurate estimates of the permeability require more sophisticated
models than the parallel-tubes model, which will somehow account for factors
such as the interconnectedness of the pore-tube network (See Section 3.1 and
Table 3.15); the above examples were intended to be plausible demonstrations of
how direct pore microgeometry measurements such as the area-perimeter power-
law information, along with a pore-size distribution, can be used for making

quantitative predictions of the permeability.
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3.3 Note on the validity of the Kozeny-Carman formulas

for consolidated porous media

The simplest and oldest capillaric model is one representing the porous medium
by a bundle of parallel capillaries of uniform radius. In deriving this Kozeny-Carman
model, the multiple connectivity of the pore space is completely neglected. Applying
the well-known law of Hagen-Poiseuille for V circular tubes of radius r, and relating
the result to the macroscopic Darcy’s law, it follows that the permeability k of the
bundle of capillaries is given by (Scheidegger, 1974) -

Nzt ¢F?
8

where 7 represents an ‘average’ pore radius, and ‘porosity’ ¢ = N#72. This model
gives permeability in one direction only. All capillaries being parallel, there can be
no flow orthogonal to the capillaries. A simple modification to Eq. (95) consists of
putting one-third of the capillaries in each of the three spatial dimensions. To account
for this, the tortuosity factor, 7 = 3, is introduced, and Eq. (95) takes the form

k= =, (96)

The above expression for permeability can be compared with Eq. (82) which de-
termines observed permeability of sedimentary rocks from microgeometry with rea-
sonable accuracy (section 3.1), based on the assumption of a regular cubic lattice,

consisting of pores of different shapes and varying cross sections:

_ NCes
TAtotal |

k

If there are no marked spatial variations of the channel dimensions, the rock is
microscopically homogeneous with individual conductances C; = C; = ..... = C; =
C.s; = C, and the effective conductance becomes independent of the average lattice
coordination number z. Therefore, under conditions of microscopic homogeneity we

can write
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and Eq. (82) and Eq. (96) become equivalent. Indeed, the hypothesis of microscopic
homogeneity of the pore space is implicit in the derivation of the Kozeny-Carman
equations. This would be the case of a rock pore space characterized by a very
narrow distribution of channel dimensions, e.g., a single-spike pore-size distribution
or a distribution characterized by a single size. However, the pore space of a rock
is generally characterized by a wide distribution of channel dimensions, and so the
permeabilities predicted by the Kozeny-Carman equations deviate from the measured
values. In this case, it will be shown that the Kozeny-Carman formulas based on a

parallel arrangement of the pores give an upper bound on the rock permeability.

In section 3.1, a regular cubic lattice, consisting of pores of varying cross sections
and different shapes, was introduced as a pore structure model. Permeabilities of
sandstones obtained with this model are in good agreement with experimental data.
This outcome confirms previous research by Chatzis and Dullien (1985), who found
that the simple cubic (or tetrahedral) network of angular pores yields good agree-
ment with the observed data when modeling the mercury porosimetry curve for a
variety of sandstones. These results are not surprising when one notes that the above
properties are strong functions of the pore structure of the sample, which is multiply
connected (Figures 3.3 and 3.4). On the other hand, consider Berryman and Blair’s
(1986) estimates of Berea sandstone permeability using digitized SEM images of rock
sections. Parameters such as porosity, specific surface area, and formation factor were
employed to successfully predict permeability from Kozeny-Carman relations, and so
there seems to be a discrepancy. Hence, there is a need to assess the region of validity
of the Kozeny-Carman formulas to predict permeability of consolidated porous me-
dia from microgeometry, as it relates to the microscopic spatial variation of channel
dimensions. It is also important to evaluate the extent to which the parallel pore
structure model moves away from the regular cubic model as the pore space becomes
more and more inhomogeneous at the pore scale. We undertook this research with
five main objectives in mind: (1) to re-examine the effective medium theory to treat
conductor networks based on the distribution of individual conductances, (2) to study

the region of validity of the effective medium theory by comparing its results with con-
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ductances evaluated numerically using large 3-D simple cubic networks in which the
values of the conductances are chosen by a Monte Carlo procedure from one of several
distributions (Kirkpatrick, 1971), (3) to compare results with the critical-path analy-
sis (Ambegaokar et al., 1971) which focuses on the details of the critical paths along
which much of the flow must occur (the total conductance obtained by this method
gives an upper bound for conductivity valid for the case of a very broad distribution
of channel dimensions, e.g., a microscopically heterogeneous porous medium), (4) to
study the validity of the Kozeny-Carman formulas for consolidated porous media as
they relate to the microscopic spatial variations of channel dimensions using the ef-
fective medium theory, network theory, and the critical path analysis, and ultimately
(5) to compare the analytical results thus obtained with experimental results for a

variety of consolidated porous materials.
3.3.1 Region of validity of the effective medium theory

Recall section 3.1.1 where it was shown that the average effect of a random dis-
tribution of conductances in the effective medium can be expressed by giving all
conductances a single value Cefy, and choosing C.ys such that the effects of changing
any conductance back to its true value will, on the average, cancel. Changing the
value of a conductance located along the electric field from C.z; to C, causes an

additional voltage V, to be induced across C, given by Eq. (5),

v — Yeri(Cess = Co)
Co+ (% - l)ceff

where V, is the voltage drop between adjacent rows far from C,, and 2z, the number of
bonds at each node of the network, is 6 for the simple cubic lattice employed in our
model. If the conductances are distributed according to some distribution function

f(C), the self-consistency condition for C,s; is

0=V = Cuy [ (0) [ ] ac (98)

Assume a binary distribution of conductances Cj;, in which two values C; and C;

occur with probabilities f and 1 — f, respectively. Applying Eq. (98), we can write
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Ceff - Cl

C
e_ff 2
' =0.
Ci+(5- 1)Cess = (A=)

Cy+ (2 —1)Ceyy

I

The following quadratic equation on C.gs is thus obtained:

(g- —1) CZis + Cess (Cz [g(f—— 1)+1] +Cy [1— gf]) - C1Cy=0.

Solving, we get

—C, [%(f“l)'i‘l] -G [1— %f]
Ces = z—2

\/(02 [2(f-1+1]+C [1-:f]) -4(z-1) G |

z—2

Now let C, — 0, in which case C.zy becomes

~Cy [1—-f] +Cy [1- £f]

Cess = " ;
with solutions
Cets, =0,
and
~2¢; [1-% f]
CeffZ = z — 2 .

For a simple cubic lattice, z = 6, and the non-zero root for C.s; becomes

Cess = ——[3f -1].

Thus
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Cs 3, 1
A5 (106)

This result is plotted in Fig. 3.23. Therefore, for C, < Cy, Eq. (106) predicts a
linear decrease in C. s with decreasing f, with Cess — 0 when f — 1/3.

3.3.2 Numerical evaluation of the conductances of large regular 3-D networks

To study the region of validity of the effective medium theory, Kirkpatrick (1971)
evaluated numerically the conductances of large regular 3-D networks, in which the
simple cubic values of the conductances (the bonds of the arrays) are chosen by a
Monte Carlo procedure from a distribution. The voltages V; at the nodes of each
network, and from the total current flow for a fixed external applied voltage, were
calculated by a relaxation procedure based upon the Kirchhoff current law, allowing
C.ss to be determined. If Cj; is the conductance of the link between adjacent nodes

i and j, the condition that all currents into node ¢ cancel is given by Eq. (1)
> Ci(Vi—V;)=0.
i

Resistor networks give a discrete model of a continuous medium in which conduc-
tance varies with position. Kirkpatrick (1971) studied the behavior of a simple cubic
network of conductances with binary disorder. The values of the conductances are 1
with probability f, and C; < 1 with probability (1 — f), assigned at random. Cal-
culations for networks with 15% nodes (data points) and predictions of the effective
medium theory are given for three values of C; in Fig. (3.23). For C; < C; the data
shows a linear dependence except in the critical regions where Cezs/Cy < 0.1 for
the binary distribution. Hence, the effective medium theory is expected to work best
when the spatial fluctuations in the current (or the channel dimensions) are relatively
small. This limit leads to Cefs/C1 — 1.0. The opposite limit occurs when most of
the current is channeled along the paths of least resistance or critical paths along
which much of the current will flow. This limit leads to Cess/C1 — C., where C. is
the critical conductance (section 3.3.3). Indeed, the effective medium theory works

as long as we are not too close to f, the percolation limit.
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FIG. 3.23: Total conductance of a simple cubic network of conductances Cj; with binary disorder.
Values of the conductances are 1 (with probability f) and C» < 1 (probability 1 — f), assigned at
random. Calculations for networks with 153 nodes (data points) and predictions of the effective

medium theory (solid line) are displayed. f. indicates the critical concentration for bond percolation
on this lattice (after Kirkpatrick, 1971).

50}

c/co

FIG. 3.24: Symbols show total conductance of a simple cubic network of 153 nodes, with values of
the conductances chosen at random from the distribution f(C') = (2Clog A)~! with conductances

C;;j’s range from A~! to A. The critical path C. and the effective conductance C.s; have also been
plotted (after Kirkpatrick, 1971).

78



Kirkpatrick (1971) also calculated conductances of 3-D cubic networks of 15°% nodes,
with values of the conductances chosen at random, distributed uniformily with a
distribution f(C) = (2CIn A)~! and the conductances range from A~ to A, and
compared this result with the effective medium theory (Fig. 3.24).

3.3.3 Region of validity of the critical path analysis

Ambegaokar et al. (1971) have suggested that most of the current is channeled
through the paths of least resistance at low temperatures, in inelastic hopping con-
duction among localized states. The localized states may be viewed as the nodes i of a
random network of conductances C;; with the conductance connecting any two states
depending exponentially on the distance between them as well as on their energies.
Ambegaokar et al. (1971) suggested that at low temperatures the conductances of
such networks, and its temperature dependence, can be estimated by looking at the
critical paths, and characterizing them by a critical conductance C.. The critical con-
ductance can be defined by a simple construction as follows. The resistance network

can be considered as composed of three parts (Ambegaokar et al., 1971):

1. A set of isolated ‘zones’ of high conductance, each region consisting of a group

of sites linked together by conductances Cj; > C..

2. A relatively small number of conductors with C;; of order C., which connect
together a subset of the high conductance clusters to form an infinite network
that spans the sytem. Conductors in categories (1) and (2) are said to form the

‘critical subnetwork’.

3. The remaining conductors with C;; < C..

It is worth noting that in the critical path analysis, the conductances of order C,
determine the conductance of the network. The conductances in category (1) could
all be set equal to infinity without greatly affecting the total conductance because the
current has to pass through conductances of order C, to get from one end of the system
to the other. The conductances with C;; < C, make a negligible contribution to total
conductance because they are effectively shorted out by the critical subnetwork of

conductors with C;; > C.. Thus the conductances are all removed from the network
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and then replaced one by one, the largest first. The values of C;; at which extended
paths open up is C..

Ambegaokar et al. (1971) argue that for a ver& broad distribution of conductances,

as is the case for low temperatures, the conductance may be expressed as

C~LC,, (107)

where L™ is less sensitive to the characteristics of the distribution of conductances
than is C, itself. Hence the temperature dependence of C is taken to be of that of
C. alone, the factor L~! adding corrections of order of In C, or less. This analysis
yields a very simple and elegant derivation of the T-%/% Mott law for conduction at

low temperatures.

The percolation threshold, f. = 0.25, of the numerical bond problem in the 3-D lat-
tice is shown in Fig. 3.23. This value has also been reported elsewhere (Efros, 1986).
If f denotes the ratio of conducting bonds to the total number of bonds, the conduc-
tance vanishing at a certain value of f is the threshold (critical) value or percolation
threshold. Since f. = 0.25, if the conductances are distributed uniformily over the
interval (A~! to A) with the weight factor f(C) = (2CInA)™!, then the critical

conductance C, is easily obtained as follows:

A _1 4 dC
fe= ffi fﬁ%‘;g = 21nA1°'° C =025 = ln-Cé =A%, (108)
A-1 €
and
C, = AY? (109)

The critical conductance for such a distribution is plotted in Fig. 3.24. For the dis-
tribution used in the calculation and for the conductances increasing up to A ~ 1000,
this plot shows that: (1) The effective medium theory and C.y; for the simple cubic
case only slightly underestimates the observed conductances, and (2) the conduction
process is not dominated by the paths of least resistance, and the critical path analysis

is immaterial.
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3.3.4 Region of validity of the Kozeny-Carman formulas for consolidated porous

media and the microscopic spatial variations of channel dimensions

In order to establish the validity of the Kozeny-Carman formulas for consolidated
porous media, we will use the effective medium theory and assume that the con-
ductances are distributed according to f(C) = (2CInA)~! for A1 < C < A. The
parallel (z = co) and the series (z = 2) arrangements will be compared to the simple
cubic arrangement of the conductors (z = 6). In particular, the parallel arrange-
ment (on which Kozeny-Carman formulas are based) will be compared to the simple
cubic arrangement of conductors, since it was the latter that was tested with rea-
sonable accuracy against experimental data to calculate permeability of consolidated
porous media from microgeometry (Section 3.1). Also, Chatzis and Dullien (1985)
have found that the simple cubic network yields results in very good agreement with
the experimental data when modeling the mercury porosimetry curve for a variety
of sandstones. For comparison purposes, in addition to the effective medium theory
results, we plot the observed conductances obtained for a simple cubic arrangement of

conductors by Kirkpatrick (1971), and the critical path analysis results in Fig. 3.25.
8.8.4.1 Parallel arrangement of the conductors

For any z we can rewrite Eq. (98) as follows

_ 4 dC Css—C | _
I=|  soma [-§-+(§—§) CeffJ =0. (110)

For a parallel arrangement of the conductors, z — o0, and we can write

4 dC 1 r4 :
I= — = dC=0. 111
a1t C Ceff Ay ( )

The two integrals can be evaluated to yield

4 dc
|G =24, (112)

and
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FIG. 3.25: Conductance envelope. The plot shows effective conductances of a parallel, simple
cubic, and series networks of conductors, with values of the conductances chosen at random from
the distribution f(C) indicated. The critical path conductance and the total conductance of a
simple cubic network from previous figure (data points) have also been plotted. Zones I, I1, and ITI
correspond to zones within which the Kozeny-Carman formulas are valid, approximately valid, and

not valid, respectively.
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4 A?—1
dC = .
- C " (113)
Thus, for a parallel arrangement of the conductores, C.sy is determined by
A?—1
2Cessln A= 1 (114)

Results are plotted in Fig. 3.25. Clearly, when A" = A = 1, C,ss becomes

independent of coordination number z.
3.8.4.2 Series arrangement of the conductors

For a series arrangement of the conductors, z = 2, Eq. (98) gives

4 dc Cess —C ]
I= =0. (115)
4-12Cln A |C + (% - 1) Cess
Thus
A dC 4 dC
—C. @° / .
I=Ct | . m~ [T =" (116)
Solving the two integrals yields
A4 dC A%2-1
4-1 E - A ] (117)
and
4 dC
|G =24 (118)
Thus, for a series arrangement of the conductors, Ceys is determined by
2 _
Coss [A E 1] —2InA4. (119)
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Results are plotted in Fig. 3.25. Clearly, as A™' = A — 1, Ccss approaches

independency of coordination number z.

3.3.4.8 Simple cubic arrangement of the conductors

For a simple cubic lattice, z = 6, Eq. (110) gives

L[t _dC Cr=C | _,
4+ 2CIA |C+ (8 1) Curs ’
Thus
o[t CaiC __*_d0
- A-1 C(C+ 2Ceff) a1 C + ZCeff o
Solving the partial integrals
A Cefde' 1 2Ce_ff + A
__Ceff® i e TE o4l
A1 C(C+ 2Ceff) 2 [ 2C.s5 + A1

4 dC . A+2C
a1 C+ 2Ceff - A1 4 2C’eff )

Thus C.;; for a simple cubic lattice is determined by

ZCeff + A

2y T AT 24

3n

(120)

(121)

(122)

(123)

(124)

Results are plotted in Fig. 3.25. Comparing the three plots (parallel, series, and

The solution to Eq. (123) for A — oo is readily obtained:

2Ceff + A

In
’ 2Cess

=3nA—3In2C; =24,

and
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1
Ceff ~ E.Al/s . (126)
For very large A, the data falls approximately on a straight line of slope ~ 1 /3.

3.8.4.4 Results and discussion

Figure 3.25 shows a log-log plot of Ces; for the parallel, series, and the cubic
arrangements, respectively. For comparison purposes, in addition to the effective
medium theory results, we have plotted the critical path analysis results and the re-
sults obtained by Kirkpatrick (1971) for a simple cubic arrangement of conductors.
In particular, the parallel arrangement will be compared to the simple cubic arrange-
ment of conductors, since the latter was tested with reasonable accuracy against
experimental data to calculate permeability of consolidated porous media from mi-
crogeometry (section 3.1). This result simply confirmed previous findings by Chatzis
and Dullien (1985) when modeling the mercury porosimetry curve for sandstones. For
the distribution used in the calculation and for the range of conductances increasing
up to A = 1000, this plot shows that: (1) C.ss for the simple cubic case only slightly
underestimates the observed conductances, (2) Cess for the series case provides a
lower bound for the observed conductances, (3) C. is the uppermost bound for the
observed conductances up to A = 70, whereas C,ss for the parallel case is the upper
most bound thereafter, and (4) the conduction process is not dominated by the paths

of least resistance, making the critical path analysis irrelevant.

To explore the region of validity of the Kozeny-Carman formulas, we have uti-
lized the conductance envelope for the given distribution of conductances (Fig. 3.25),
and divided it into three zomes: zome I (1 < A < 10), a zone within which the
Kozeny-Carman formulas are valid; zone II (10 < A < 100), a zone within which
the Kozeny-Carman formulas are approximately valid within limits; and zone III
(A > 100), a zone within which the Kozeny-Carman formulas are not valid. Zone
1, in which conductance span A varies between limits 1 (point D) and 10 (point E),
is characterized by conductances Cess for the parallel case being less than two times
higher than the cubic case over much of the conductance span. In this zone, the

Kozeny-Carman relations are valid within experimental error. Consider, for exam-
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ple, that in the analytical expression for permeability given by Eq. (82), the error
incurred in the hydraulic radius approximation lies within +30%. Notice that point
D corresponding to the limit A = 1 = A~! is associated with the point at which
Cess = 1. Therefore, at point D, the porous medium is microscopically homogeneous,
and the Kozeny-Carman formulas are strictly valid. In zone I, the spatial fluctuations
in channel dimensions are small and the Kozeny-Carman formulas are very accurate.
Notice also, that in this zone the critical path conductance C. provides an upper
most bound, and C.;; for the series case (z = 2) provides a lower bound conduc-
tance. Zone II, in which conductance span A varies between limits 10 (point E) and
100 (point F), is characterized by conductances Ces; for the parallel case being less
than an order of magnitude higher than the simple cubic case. Since the permeabil-
ity of rocks can range over many orders of magnitude, from about 10~!' m* down to
about 10~2° m?2, an estimation of permeability within less than an order of magnitude
of the observed value may be sufficient for many practical applications. However, in
this zone the pore system is, strictly speaking, microscopically inhomogeneous. Zone
II is a transition zone regarding the upper bound conductance because when A ~ 80,
C.ss for the parallel case becomes the upper bound conductance. Cesy for the series
case provides of a lower bound conductance during the whole span. Zone III, in which
conductance span A varies between limits 100 (point F) and higher is characterized
by conductances C.y; for the parallel case being more than order of magnitude higher
than the simple cubic case. At this stage, the pore system is considered highly inho-
mogeneous. Notice that C.;s for the parallel case is here the uppermost bound. The

critical path conductance, C,, is accurate only to within an order of magnitude.
3.4 Comparison of analytical and experimental results

The analytical results for permeability calculated in the manner described above
will now be (1) compared against analytical and experimental results for sandstones
obtained by Chatzis and Dullien (1985), (2) compared with analytical and experimen-
tal results for sandstones obtained previously (sections 3.1 and 3.2), and (3) analyzed
in light of the mercury porosimetry experimental data for a variety of sandstones
obtained by Batra (1973).

As shown in section 3.1, our permeability model was able to predict the property
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for a variety of sandstones while using, in every case, the same cubic lattice as the
pore-structure. Chatzis and Dullien (1985) also introduced a regular cubic lattice,
consisting of capillary tubes of uniform, but angular cross section, at the intersec-
tions of which are angular bulges. Drainage-type penetration numerical experiments
were performed in a number of regular networks representing the pore space, using a
modified site-percolation approach. All of their networks are composed of two topo-
logical entities: capillaries and nodes. The correlation between the probability of a
capillary being open and that of a node being open is considered in the calculation.
From these results the porosimetry curve of mercury in sand‘stones, the relative per-
meability curve of mercury in sandstones, and the relative permeability curve of oil
in a sandpack were calculated. The physical basis of the calculations is a one-to-one
correspondence between the probability of a capillary being open, and the cumulative
distribution function of capillary diameters. Capillaries and bulges are characterized
by size distribution functions, and the bulges of different sizes are distributed ran-
domly over the nodal points (sites) of the network. The choice of the size of a capillary
is limited by the condition that it may not exceed the size of either of the two bulges
located at the two ends of the capillary. In the calculations, realistic capillary and
node ﬁ@eter distribution functions, pore shapes and relationships between the vol-
ume and the diameter of a pore were assumed. In their model, however, the aspect
of the pore structure called ‘geometry’, such as the dimensions and the orientation
of the pores, are not modeled. The cubic (or tetrahedral) network was found to give

results in good agreement with the experimental data (Fig. 3.26).

The angular bonds (pore throats) correspond to pores of diameter D;. Consistency
with the customary definition of pore size used in mercury porosimetry, with the aid of
the well-known relationship of Laplace, enables Chatzis and Dullien (1985) to define
the capillary diameters as follows

Dy, = 2Ry, cos@ (127)

where Rj, is the radius of curvature of the meniscus of the nonwetting phase at
the prevailing capillary pressure, 6 is the contact angle, and D,, is the diameter of
capillary k.
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FIG. 3.26: Dimensionless experimental mercury-porosimetry data and analytical curve of sandstone
samples. A regular cubic lattice consisting of capillary tubes of angular cross section, at the inter-
section of which there are angular bulges, is introduced as a pore structure model. The experimental
data for all of the sandstone samples (except Belt Series) are well fitted by a single curve (solid line).
The capillary pressure is normalized to the breakthrough capillary pressure P? (after Chatzis and

Dullien, 1985).
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TABLE 3.16: Calculation of the mercury porosimetry curve
of the Berea (BE-1) sandstone sample (after Chatzis and
Dullien, 1985).

I Pc*k I Dbk | ngfb | Dsk I kafs l S:mk | S’ka |
1.00 | 29.5 | 102.3 | 44.5 | 848.0 | 0.113 | 0.170
1.02 | 28.8 | 104.9 | 44.0 | 843.8 | 0.164 | 0.252
1.09 | 27.0 | 109.5 | 42.5 | 826.3 | 0.286 | 0.415
1.15 | 256.5 | 110.6 | 41.0 | 802.1 | 0.365 | 0.519
1.23 | 24.0 | 109.4 | 39.5 | 771.8 | 0.443 | 0.599
1.32 | 22.4 | 105.6 | 38.0 | 735.9 | 0.496 | 0.667
1.43 | 20.7 | 99.1 |37.0| 709.2 | 0.552 | 0.724
1.54 | 19.2 | 91.4 | 35.5| 665.3 | 0.605 | 0.776
1.68 | 17.6 | 81.6 | 34.0 | 617.0 | 0.659 | 0.824
1.84 | 16.0 | 70.6 | 33.0 | 582.6 | 0.708 | 0.862
2.06 | 14.3 | 58.1 | 31.5| 527.6 | 0.764 | 0.902
2.36 | 12.5 | 44.7 | 30.0 | 468.3 | 0.818 | 0.937
2.78 1 10.6 | 31.1 | 28.5 | 403.1 | 0.869 | 0.965
347 | 85 | 17.8 | 27.0| 327.5 | 0.918 | 0.987
5.90 | 5.0 0 25.0 0 0.972 | 1.000

Analogously, for angular nodes (pore bodies) of diameter Dy, :

D,, =2R;, cosf, (128)

where R,, is the radius of curvature of the meniscus of the nonwetting phase at the
prevailing capillary pressure, @ is the contact angle, and D, is the diameter of pore
body k.

Table 3.16 (Chatzis and Dullien, 1985) gives the calculated values of the mer-
cury porosimetry curve of the Berea (BE-1) sandstone sample using a cubic lattice
of noncircular (and circular) pores. Berea (BE-1) sandstone has almost the same
macroscopic transport properties as the Berea sandstone used in our experiments
(i.e., porosity of 22%, permeability to N, of 400 mD, and a formation factor of 15.5).
The capillary pressure PZ, is given relative to the breakthrough pressure P;. The
diameters of the pores Dy, , and D;, were calculated for the prevailing capillary pres-
sure and its corresponding saturation. The density functions f3(D;) and fi(D;) were
assumed to be given by the beta function. The saturations S}, and 57, are the

saturations of the angular and circular pore networks, respectively.
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To compare our analytical calculations for permeability obtained above with the
results obtained by Chatzis and Dullien (1985) for Berea (BE-1), we need first to
relate the diameter D, of each angular pore to its individual hydraulic conductance
Cr (Equation 12). Schultze (1925a,b) has shown that the capillary pressures for

noncircular capillaries under the assumption of zero contact angle are given by

€ 1 1 i
Py —=—t—, 129
Ry Ry 7”1+7'2 (129)

where € is the surface tension, ; and 7, the principal radius of curvature, and Ry
the hydraulic radius as defined previously. For an equilateral triangle of side a, the
equivalence of the reciprocal of the hydraulic radius and the reciprocal mean radius

of curvature is (Carman, 1941)

1

Thus, at zero contact angle, D; and Ry are related. The area A and the perimeter
P of the equilateral triangular pore are v/3a%/4 and 3a, respectively. The hydraulic
radius is Ry = A/P = +/3a/12, and the pore diameter is D; = v/3a/3. Therefore,

the angular pore area in terms of the diameter Dy is A = 3/3D}/4.

Recall Eq. (12) used earlier for calculating the individual pore conductances
L2
Cr = '2_RHA .

In terms of pore diameter Dy, and under the assumption of zero contact angle, the

pore conductance becomes

33
Cr = 1%8—1),3 . . (131)

Table 3.16 (Chatzis and Dullien, 1985), gives the calculated pore diameters Dy, for
Berea sandstone (BE-1) for the full range of capillary pressures and saturation. At this
stage, we need to calculate the pore conductances of the ‘primary’ pore network which
is the one accountable for hydraulic transport. Our experimental results have con-

sistently shown that the hydraulically active or ‘primary’ pore network in sandstones
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consists of intergranular pores (bodies and throats), situated in between the grains
(Chapters 4, 5, and 6). The hydraulically active or ‘primary’ network of intergranular
pores in Berea sandstone comprises about 80% of the total rock porosity. About 20%
of the total rock porosity consists of grain-contact pores; both inside the cementing
material, and a few between grains when the pore has been narrowed down by de-
posits to a very narrow gap. Since the contribution of the grain-contact or ‘secondary’
network to hydraulic transport is small, it can therefore be considered hydraulically
inactive (see Chapter 6). The pore (pore throat) diameters of the ‘principal’ network
of Berea sandstone range from the critical diameter D, = 29.5 pm corresponding to
the breakthrough pressure P° (and corresponding saturation S;.,, = 0.113) to the
value Dy, = 12.5 pm (and corresponding saturation 57, = 0.80). The breakthrough
diameter D, = 29.5 pm is the largest diameter of the first connected cluster that
spans the whole sample. On the other hand, the pore diameter Dy, = 12.5 pm is
the minimun diameter of the ‘principal’ network, consisting of intergranular pores,
i.e., in between grains. From the ‘principal’ network of Berea sandstone (BE-1), the
maximum and minimum pore diameters are thus obtained, and the ratio of critical
to minimum pore conductances calculated with the aid of Eq. (129) is

C.  Df 295

C

Coin  DE._~ 125%

31. (132)

Using the C./Cpnin ratio for Berea sandstone, it is then possible to go to the
general conductance plot (Fig. 3.25) and obtain the ratio of effective conductance for

the parallel case (z = 00) to the effective conductance for the cubic case (z = 6)

Ce
ffpa.rallcl ~ 3 . (133)

Cos feutic
The above result is consistent with previous calculations on permeability of Berea
sandstone presented in sections 3.1 and 3.2. For example, conductance calculations
for Berea sandstone section B presented in section 3.1 (Table 3.17), using the effec-
tive medium theory in conjunction with the ‘principal’ pore network, gave effective
conductances for the parallel case (z = o) and for the cubic case (z = 6) such that

their ratio is given by
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TABLE 3.17: Calculated effective conductance data of various sandstones obtained from SEM
2-D sections (Chapter 3.1).

* * Cess (z=00)
Rock Cess (z* = 00) (m*) | Coss (2* =6) () | Ty
Berea sandstone B 56.0x10~%0 18.2x10~20 3.1
Berea sandstone T 59.9% 1020 24.2x10720 2.5
Boise sandstone 80.1 x10~2%° 45.0x107%° 1.8
Massilon sandstone 525x1071° 90.7x10™19 5.8
Saint-Gilles sandstone 48.3x10720 21.2x10~20 2.3
*Coordinatiom number.
TABLE 3.18: Calculated permeability data of two sandstones from rock micro-
geometry assuming a parallel pore model (Chapter 3.2).
ROCk k (Z* = 00) (mZ) kmeasurcd (m2) :mf::‘:’d
Berea sandstone B 15.0x10713 4.8x1071% 3.1
Massilon sandstone 10.8x10712 2.5x10~1% 4.3
*Distilled water used as permeant.
*Data from Koplik et al., 1984.
C. ) —20 ,..4 :
ffparallcl _ 56 0 X 10 m 3 . (134)

Ceffne  182x10-20mt ™

Analogously, for Berea sandstone section T shown in section 3.1 (Table 3.17), the
effective medium theory in conjunction with the ‘principal’ network gave effective

conductances such that their ratio is

Ce.ffpa,rallel _— 59.9 X 10_20 m4 N
Ceffcubic B 24-2 X 10—20 m4 ~

3. (135)

Similarly, in section 3.2 (Table 3.18), it was shown that a model based on the
‘principal’ pore network, a parallel arrangement, and a pore size distribution, gave

the permeability for Berea sandstone section B such that its ratio to the observed
value is

kparallel _ 15.0 x 10713 m?
kmeasured - 4.8 x 1013 m2

~3. (136)

It is then concluded that Berea sandstone hydraulically active conductances fall
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into zone IT of Fig. 3.25, and that the Kozeny-Carman relations are valid within a
factor of three of the measured permeability values. But, how general is this result
for most sandstones, especially considering that the range of pore diameters may vary
widely from one rock to another? This issue becomes quite clear when one examines
the normalized experimental capillary pressure curves shown in Fig. 3.26 for a variety
of sandstones. They almost without exception can be represented by a single function
(solid line). This is a direct consequence of the ‘similarity’ in the geometrical sense of
the pore structure and of the ‘principal’ pore network of ten of the eleven sandstone
samples under study. The absolute magnitudes of the pore sizes alone do not deter-
mine the results of these calculations. It is the pore diameters and pore conductances
of the hydraulically active pore network, relative to the breakthrough pore diame-
ter and corresponding conductance, rather than the absolute magnitudes of the pore
diameters and corresponding conductances of the complete network, that determine
the permeability and capillary pressure results. The successful prediction of perme-
ability from microgeometry (section 3.1), and of the mercury porosimetry curve by
Chatzis and Dullien (1985) of several sandstone samples, using the same cubic lattice
network model as pore structure, which may appear surprising at first considering
that the range of pore diameters sizes vary widely from one rock to another, becomes

apparent.

Finally, it is established that the permeabilities of most sandstones fall in zone II
of the conductance envelope (Fig. 3.25), and that the permeabilities predicted by
the Kozeny-Carman formulas are valid within more or less a factor of three of the
observed values. Consequently, even though the complete pore space system of most
sandstones is strictly speaking inhomogeneous, the hyciraulica.]ly active or ‘principal’
network approaches homogeneity. As the rock ‘principal’ pore network becomes more
and more inhomogéneous, the conductance plot shows that the Kozeny-Carman for-
mulas become less and less applicable. For a very inhomogeneous ‘principal’ network,

Fig. 3.25 shows that the critical path analysis can be applied within limits.
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CODE LISTING 3.1: FORTRAN source code for calculating the effective conductance
given the individual conductances using the effective medium theory.

c*i****t****i***‘k*************************ﬂ********‘k********************

c
c Program Per: This program calculates the effective conductance in a
c porous medium using the effective medium approximation
c
c created: 7/4/90 E. Schlueter
c .
c modified: xx/xx/xxX
c
c*****************************************:t*****************************
c
c DECLARATIONS
c
dimension hydr (5000), area(5000), peri(5000), ¢ (5000), n(5000)
c
c***********************************************************************
c
c INPUT DATA AND INITIALIZE
c
open (unit=1, file=’'per_in.dat’, status='o0ld’}
open (unit=2, file='per_out.dat’, status='014’)
c
1 format(’ input coon,imax’)
cece write(5,1)
cce read (5,*) coon, imax
read (1,*) coon,shfa,imax
fact=(coon/2.)-1.
c
do 5 i=1,imax
2 format (’ input c(’,i2,’)’)
cce write(5,2)i
cce read (5,*) c(i)
read (1.*) j, n(i), c{i) ! j,area(i),peri(i)
c
c***********************************************************************
c
[od CALCULATIONS
c

C******t******************************************* Ak hkxhkkkkxhkkhrhhkrrhhrkx

C

o] CALCULATION OF CONDUCTANCES
c
cce hydr (i)=area(i)/peri(i)
ccc c(i)=hydr (i) *hydr(i)/shfa
S continue
c
c*t****t*********'k*****************************;\(:************************
c
o) CALCULATION OF MAXIMA AND MINIMA CONDUCTANCES
c
cmax=0
cmin=1.e6
c
do 10 i=1,imax
cmax=amaxl {(cmax,c(i))
cmin=aminl (cmin,c(i))
10 continue
c

Ctta***x**x *t***t**t**********************t*t**t*** I SRR ZE SRR R A S SR

c
del_ceff=cmax-cmin
Jmax=11
fuad=0
ceff=cmin
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do 20 k=1,4
del_ceff=del_ceff/10.
do 30 j=1,jmax

c
C***********************************************************************
c
C BISECTION LOOP
c

ceff_old=ceff

ceff=ceff+del_ceff

fuad=sum(ceff, c, fact, imax,n)
c

if(fuad .gt. 0.) then

ceff=ceff_old
go to 20

endif
c
30 continue
20 continue
c
c***********************************************************************
c
c FORMAT STATEMENTS
c
101 format (* EFFECTIVE INTRINSIC PERMEABILITY CALCS." //,

& ‘coon = ‘, 9.3, ' shfa = *, £9.3, ' ceff = *, £10.3,
& ‘m*ml’, /)

cl02 format {xxx, ...
c
c***********************************************************************
c
c WRITE OUTPUT DATA
c

write(5,6) ceff
6 format(’ ceff = ’,£10.3)
write(2,101) coon,shfa,ceff

c
close (unit=1, status=‘keep’)
close (unit=2, status='keep’)
end
c
c***********************************************************************
c
[od CALCULATION OF EFFECTIVE CONDUCTANCES
c
function sum(ceff,c, fact,imax,n)
dimension ¢ (5000), n(5000)
sum=0
c
do 50 i=1,imax
do 45 k=1,n(i)
func=(ceff-c(i))/ (fact*ceff+c(i))
sum=sum+func
45 continue
50 continue
c
return
end
c

c*******************i******t******t*************************************
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