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Magnetic Properties of Surfaces and Interfaces

Daryl C. Chrzan

Abstract

A survey of the magnetic properties of three types of planar defects is presented: 

a model interface in an Ising antiferromagnet, a model of the surface of an andfer- 

romagnet, and a realistic calculation of the magnetic properties of stacking defects in a 

bulk ferromagnet. The simplest interface studied is the antiphase boundary in the 

nearest-neighbor face-centered-cubic Ising antiferromag-ieL The properties of this 

defect are understood by means of the construction and solution of an exactly solvable 

thermodynamic model which mimics the boundary’s properties. The implications for 

further calculations using the nearest-neighbor face-centered-cubic Ising model are 

explored. This thesis then examines the effects of introducing a free surface in a real 

antiferromagnetic semiconductor, EuTe^% The complex magnetic structures of the 

{001} faces of this material, which include spin structures incommensurable with the 

underlying lattice, are understood in terms of a classical Heisenberg Hamiltonian. 

Finally, the magnetic properties of {111} stacking faults in nickel are investigated util­

izing a self-consistent, layered Korringa-Kohn-Rostoker formalism based on the local- 

density approximation to density-functional theory. Very simple expressions for the 

spin polarization and internal energy are developed. The range of behaviors displayed 

by these three systems is remarkable in its diversity, and yet the underlying mechan­

isms are all similar. This similarity suggests that many of the tools necessary for 

understanding the magnetic properties of surfaces and interfaces are readily available.

•/; •/P
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Chapter I: Introduction
The properties of magnetic materials have been the subject of study and wonder 

for over a thousand years.1 The lodestone appeared in Greek writings about 800 B.C., 

and the compass was certainly introduced into Europe by the twelfth century A.D. 

Magnetism was applied technologically long before its underlying mechanism was 

understood as it took until the twentieth century and the advent of quantum mechanics 

for the physics to begin to be unraveled. Even today, the complete characterization 

and understanding of magnetism and related phenomena remains as one of the great 

challenges to scientists.

The special class of systems studied here consists of planar defects: surfaces, 

interfaces and antiphase boundaries. While it is important to understand the bulk pro­

perties of magnetic materials, it is equally important to understand the effects of planar 

defects. Many important magnetic devices (e.g. computer disk drives) directly involve 

surfaces and interfaces of magnetic materials.

The study of planar defects performs another vital function. If a theory, based on 

experiments which measure bulk properties, accurately reproduces the experimentally 

observed surface or interface properties, it is highly probable, that the theory is correct. 

Alternatively, failure to reproduce the observed planar defect behavior suggests an 

incorrect or incomplete theory. The information gained from this failure generally 

leads to improvements in the theory of the bulk properties.

Before delving into the details of these defects and their magnetic properties, it is 

necessary to present a brief introduction to the field of magnetism. There are two 

important aspects of the magnetism problem: the physical interaction which leads to 

ferromagnetism or antiferromagnetism, and the thermodynamic properties of magnetic 

systems. While these aspects are not truly separable, both are sufficiently complex that 

studies of real systems are often simplified by handling each aspect separately. When 

appropriate, this thesis will do so as well.
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A. Physical Origins of Magnetism

Dirac2 and Heisenberg3 independently discovered exchange, the interaction lead­

ing to magnetism, in 1926. They argued that because the Pauli exclusion principle 

keeps two electrons with the same spin spatially separated, the parallel-spin 

configuration has a lower Coulomb energy than that of electrons in different spin 

states. At the same time, however, the electrons must have a higher kinetic energy 

(correlations between electrons must induce more nodes in the wavefiinction). In most 

cases, this increase in kinetic energy outweighs the decrease in Coulomb energy, and 

the system does not become ferromagnetic. In special circumstances the reverse is 

true, which results in ferromagnetism. Ferromagnetism originates in the Coulomb 

force, not the much weaker magnetic dipole-dipole interaction of classical physics 

and, being an inherently quantum mechanical phenomena, would vanish if 7i were zero.

The variation in observed magnetic behaviors is noteworthy. The 3d transition 

metals Ni, Co and Fe all display ferromagnetism. The ground state of Cr is an antifer­

romagnetic spin-density wave. The insulators NiO and MnO are antiferromagnets. The 

rare-earth metals and their alloys have even more complicated magnetic properties. 

For example, EuO and EuS are two of the very rare insulating ferromagnets, EuSe is 

both a ferromagnet and an antiferromagnet (depending on the temperature), and EuTe 

is antiferromagrfetic.

One fundamental process underlies these phenomena, all of which can be under­

stood as manifestations of the various aspects of exchange. The simple model Hamil­

tonian described below, which explicitly includes exchange, demonstrates this fact It 

will allow for the description of magnetic phenomena in the transition metals, the 

transition-metal compounds and alloys, and the rare-earth metals, compounds and 

alloys.

Consider a one-electron Hamiltonian defined on a Bravais lattice:
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H ■" 2 2 2 hjn^ma^jno 
i.j O n

where the operator c£0 (c^) creates (destroys) an electron with spin a in the nth 

Wannier orbital4 at site i. The matrix element of the one-particle Hamiltonian, ri;n, 

includes the kinetic energy and the average effects of the nuclei and all the other elec­

trons. The inclusion of the average effects of all the other electrons results in a self- 

consistently renormalized band structure.

To study magnetism, however, it is advantageous to calculate some of these aver­

aged terms explicitly, and not include their effects in the renormalized band structure. 

Doing so may artificially enhance the magnetism of the Hamiltonian, but the Hamil­

tonian should be a good first approximation to the real system.

The first term singled out for explicit treatment is the direct Coulomb interaction 

between two electrons, which has the following form:

H' = (1/2) EES K.jn' «lnc 
i,j njt' ©.O'

where nino is the number of electrons on site i in the nth Wannier orbital with spin a, 

and Vc is the Coulomb-interaction matrix element.

The exchange terms, also treated explicitly, act as a correction to the Coulomb 
»

repulsion for two electrons in a triplet state and lowers their energy relative to the 

singlet state. In this interaction, an electron at site one scatters, via the Coulomb 

interaction, with an electron at site two, and in the final state the first electron is at site 

two and the second electron is at site one. The spins do not flip in this process. The 

Hamiltonian corresponding to this interaction is

= E Z Z V5t,jn' Cjn’o 4o' Cjn’cf cina
ij n,n' a.0'

where



4

V£,jn' = 1/2 jdrjdr' y^r') ynU(rf) {rjpj ¥»'/(*•) ¥«>(r)

Ha can be recast in terms of the number operators, n, and the spin operators, S, by 

writing out the sum over the spins explicidy and noting that

= 1/2 (n^r ~

stn = CLrcini

and

S«V» = CiiCmT •

Then

«“ = - 2 E W [S„- • Sto + 1/4 iv^]
nji’

(Here, the exchange interaction is Jij1 - 2 Vg^.) This form explicitly displays the 

spin dependence of the Coulomb interaction. The in the last term of this expres­

sion is the total occupation; for both up and down spins, of the nth Wannier orbital on 

the i th site.
%

For insulatprs, with more than one orbital per site, the Coulomb term, Hc, and 

the intra-site exchange (responsible, in atomic physics, for Hund’s rules) are the largest 

terms in the Hamiltonian. Calculations, then, treat these terms exactly; the inter-site 

exchange and the the hopping terms (H° minus the effects of the Coulomb term and 

the exchange terms) are treated using perturbation theory. This approach yields the 

simple Heisenberg Hamiltonian

/,««»■ = - £ J‘/f S, • Sj
ij

where Jf/f is the effective exchange constant for the interaction between sites i and j
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and can have either sign: a positive sign gives a ferromagnetic interaction, a negative 

sign results in antiferromagnetism. The S; are the site spin operators, not the spin of a 

single electron, a feature arising directly from the intra-site Hund’s rule coupling.

The Heisenberg Hamiltonian forms the foundation of the modem theory of local- 

moment magnetism. It has been used with remarkable success to study a variety of 

systems. The range of behaviors described by this Hamiltonian includes ferromagne­

tism, antiferromagnetism, and helical or more complicated structures.

In the Heisenberg Hamiltonian, the magnetic electrons are all localized. A wealth 

of evidence, however, indicates that itinerant, not localized, electrons are responsible 

for magnetism in the 3d transition metals. Perhaps the strongest of the arguments is 

that the number of Bohr magnetons observed in these systems is generally a non- 

integer (e.g. Ni is observed to have a moment of 0.606 |ifl, Fe a moment of 2.22 }iB, 

and Co a moment of 1.71 |iB)5. The Heisenberg Hamiltonian does not describe 

itinerant magnetism.

As a first attempt at understanding itinerant ferromagnetism, one can imagine the

gradual delocalization of the localized magnetic electrons. It does not seem likely that

a small amount of delocalization would destroy the magnetism. The Hamiltonian,

H° + Hc +Ha, where H° no longer contains the averaged effects of the direct 
*

Coulomb interaction or the exchange contained in //**, can still be used to understand 

these materials, but some modifications must be made. This thesis, however, 

approaches itinerant magnetism from a different viewpoint.

Since the magnetic electrons are delocalized, the Bloch states of the crystal form 

a better basis for understanding itinerant magnetism. The following analysis uses the 

techniques of first quantization; in this form they are applied below to study stacking 

faults in nickel.

The study of itinerant magnetism begins with the single particle Hamiltonian
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Hi =-V? + V(ri)+ 2 iFf-ryl

The first two terms are the kinetic energy of the electrons and the potential arising 

from the ions, respectively. The last term is the pairwise Coulomb interaction (the 

sum runs over all but the /th electron). Summing over all electrons gives the total 

Hamiltonian:

2 Trvr
i lr« rJ 1

(the second term corrects for the double counting of the Coulomb interaction).

In the Hartree-Fock6 approach, a determinantal product of wavefunctions which 

are the solution to self-consistent, one-particle-like eigenfunction eigenvalue equation 

approximates the true solution. The determinantal form insures compatibility with the 

Pauli exclusion principle. The resulting equations must be solved self-consistently; but 

the solution includes two types of terms, generally called the direct Coulomb interac­

tion and the exchange interaction.

Unfortunately, the Haftree-Fock solution does not represent the physical situation

very well. While explicitly including correlations between spin-aligned electrons by
*

means of the aptisymmetrization of the trial wavefunctirin, the approximation com­

pletely neglects correlations between electrons of opposite spin. This neglect leads to 

an overestimate of the energy of the system, because of the excess Coulomb energy of 

the uncorrelated electrons. In general, correlating electrons with opposite spin 

significantly decreases the potential energy of the system, which more than compen­

sates the induced increase in kinetic energy. The difference in energy between the 

Hartree-Fock approximate energy and the true energy is referred to as the correlation

energy.

The shoncomings of the Hartree-Fock solution motivate improvements. Most
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commonly, theorists add an extra term representing the exchange and correlation 

energy to the single-particle Hamiltonian. Slater7 suggested a term proportional to 

p(r)1/3, where p(r) is the density of electrons at the point r. In the Hartree-Fock 

approximation, electrons of the same spin are more separated than electrons of oppo­

site spin, essentially enhancing the repulsion between electrons of the same spin. This 

enhanced repulsion creates an "exchange-hole" in the density of electrons of the same 

spin; the deficiency in charge amounts to exactly one electron. The radius of the 

"exchange-hole" must be on the order of p(r)”1/3, suggesting that the electrons on the 

outer edge of the hole feel a potential proportional to p(r)1/3.

In 1964, Hohenberg and Kohn8 developed density-functional theory, which 

justified Slater’s methodology, but modified his exchange potential. Hohenberg and 

Kohn established that the ground-state energy of an electronic system is a unique func­

tional of the electron density. The variational equation describing this dependence is

£[p(r)] = r[p(r)] + e J p(r) VCr) d3r

+T' ^ d'r 'd3r+E~[p(r>1 •

where T [p(r>] is the kinetic energy associated with the electrons, V (r) the external 

potential (i.e. arising from the ions in the lattice), the third term represents the electros­

tatic energy of the electrons, and the fourth term is the exchange-correlation energy 

functional. The true density of the system is obtained by varying the energy with 

respect to the electron density with the number of electrons constrained to take the 

proper value.

The non-local theory described above depends in a complicated way on the elec­

tron densities at points r and r\ making its application very difficult. The 

simplification most often applied was developed by Kohn and Sham9,10 and is referred 

to as the local-density approximation. In this approximation, the exchange-correlation
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energy of free-electron gas of density p(r) replaces the nonlocal exchange-correlation 

energy functional. Furthermore, the density, p(r), is written as

P(r) = 2V*(r)Vf(r) >

with N, the number of electrons in the system, and ^ (r), a single-particle wavefiinc­

tion.

These assumptions reduce the calculation to the self-consistent solution of a set of 

one-particle equations:

[-V2 + V(r) + e2j d3r' + V„(r)] v,(r) = e, y,-(r)

where (r) is the exchange-correlation potential defined as the variational derivative, 

8Fa:/8p(r).

The original formulation of the local-density-approximation to density-functional 

theory applied to spinless electrons. The formulation was later extended to electrons 

with spin, which allowed the investigation of magnetic systems.11 The extension, how­

ever, was a non-trivial task, complicated by the fact that a spin density does not

uniquely determine a spin-dependent potential. Hohenberg and Kohn’s density- 
»

functional theory insures, however, that there is still a unique spin density for the 

ground state. A parametrized form of the exchange-correlation energy facilitates self- 

consistent band-structure calculations; the calculations below employ a spin-polarized 

form of the parametrization developed by Hedin and Lundqvist.12

In general, the results of local-spin-density-functional theory do not agree with 

experiment as well as one would like. For example, the experimentally measured 3-d 

bandwidth of nickel is one electron-Volt narrower than the calculated bandwidth. 

Furthermore, self-consistent local-spin-density-functional methods predict too large an 

exchange splitting.13
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The issue is, then, whether or not local-spin-density-functional theory can predict 

the true behavior of the spin polarization of stacking faults in nickel. While a proof 

that this may be the case is not available, there are some indications that the local 

theory does work. For example, it predicts a spin polarization of 0.58 \iB for nickel, 

and a spin polarization of 2.15 \ig for iron.13 The experimentally determined values 

are 0.56 \iB and 2.12 |ia, respectively. This agreement between the theory and the 

experiments suggests that the local approximation adequately represents the physical 

mechanism responsible for the magnitude of the spin polarization in nickel. Further­

more, the stacking-fault studies presented here are aimed at understanding trends of the 

spin polarization near a stacking fault. In that respect, the absolute values of the spin 

polarization are not very important, only variations in spin polarization matter. Sys­

tematic errors in the calculations may cancel, and the trends may be accurately 

predicted.

B. Thermodynamic Aspects of Magnetism

The most striking feature of the three-dimensional magnetic systems studied here 

is that they undergo a phase-transition at a finite temperature, called the critical tem­

perature (in ferromagnets, the Curie point and in antiferromagnets, the Neel tempera­

ture). A complete theoretical understandirig of phase transitions still eludes theorists, 

but many promising (relatively) new techniques14,15 are currently being explored.

Since the difficulty of the phase-transition problem often precludes an exact solu­

tion, approximate methods are sought. These approximate methods differ for the 

itinerant and the localized cases. This thesis will concentrate on understanding the 

thermodynamics of the localized picture.

As stated above, the Heisenberg Hamiltonian describes localized spins interacting 

via exchange to a high degree of accuracy. When studying the thermodynamics of 

spins on a lattice, a further simplification of this Hamiltonian, assuming that the spins
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can point only up or down, yields the famous Ising model:

H1™* * -2 Jij * Gj 
ij

where G; = ±1 and 7x;- is the Ising exchange between sites i and j. The partition 

function is then written:

Z = £ e-*Eia)
(o)

where 3 = 1/^7' (kg is Boltzmann’s constant, T is the temperature), {a} denotes all 

the possible configurations of the Ising spins, and E (a) is the energy of the system in 

a particular configuration.

The Ising model approximation reduces the thermodynamics of magnetism to its 

simplest possible form. Even so, finding the solution to the problem can be very 

difficult In fact exact solutions to the model are known only for one- and two- 

dimensional systems.

The one-dimensional Ising model, which was actually suggested by Lenz16, was 

solved for the case of nearest-neighbor interactions by Ising17 in 1925. This model, 

however, does not display a phase transition at a finite temperature.18

Lars Onsager19 calculated the partition function of the two-dimensional Ising fer­

romagnet with only nearest-neighbor interactions in 1942, and published the result in 

1944. Later, in 1948, while at a meeting, Onsager produced the formula for the spon­

taneous magnetization as a remark during a discussion, but he never published the 

derivation. (The derivation was later published by Yang.20)

The importance of Onsager’s work can hardly be overstated. The two- 

dimensional Ising model represented the first exactly solved non-trivial thermodynamic 

model showing a phase transition. Perhaps the most important function of this solu­

tion, outside of its fundamental interest and relationship to "two-dimensional" magnetic
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systems, is its use as a test case for approximate methods. By comparing approximate 

results with the exact solution, the nature of the approximation can be understood.

"Real-world" systems are inherently three-dimensional. There are many methods 

for approximating the thermodynamic functions of three-dimensional Ising models; 

each has its advantages and disadvantages. Taken together, they provide a reasonably 

detailed picture of the exact properties of these systems. There are, however, many 

fine points that must be understood. Some of these methods are investigated in 

chapter II.

C. Overview

The systems studied below have one common feature: all involve two- 

dimensional planar defects interacting with a three-dimensional bulk. Chapter n 

discusses the properties of {001} antiphase boundaries in the nearest-neighbor face- 

centered-cubic Ising antiferromagnet (or equivalently, the simple substitutional binary 

alloy).21 Chapter HI investigates the ground state properties of the surface of a mag­

netic semiconductor, EuTe.22 The ground-state magnetic properties of {111} stacking 

faults in nickel forms the .subject-matter of chapter IV.23

There is another, common bond between these systems. The observed physical
*

phenomena aris$ directly from competition between (at least) two effects. In the anti- 

ferromagnetic Ising model a one-dimensional disorder competes with a two- 

dimensional internal energy. The magnetic surface structure of EuTe perfectly demon­

strates the physics of competing exchange interactions (i.e. nearest-neighbor vs. next- 

nearest-neighbor exchange). The magnetic properties of the {111} stacking faults are 

understood in terms of the competition between band-like behavior and magnetic 

interactions. The physical propenies resulting from these various forms of competition 

are certainly interesting, and often times surprising.



12

D. References for chapter I

1 For an interesting historical account of the progress in understanding magnetic 

phenomena see D. C. Mattis, The Theory of Magnetism I, (Springer-Verlag, 

Berlin-Heidelberg-New York-Tokyo, 1988).

2 P. A. M. Dirac, Proc. Roy. Soc. 112A , 661 (1926).

3 W. Heisenberg, Z. Phys. M , 441 (1926).

4 G. H. Wannier, Phys. Rev. 52,191 (1937).

5 C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1986).

6 C. Herring, in Magnetism, Vol. IV, edited by G. T. Rado and H. Suhl (Academic, 

New York, 1966).

7 J. C. Slater, Phys. Rev. &1,385 (1951).

8 P. Hohenberg and W. Kohn, Phys. Rev. 126 , B864 (1964).

9 W. Kohn and L. J. Sham, Phys. Rev. 14Q , A1133 (1965).

10 L. J. Sham and W. Kohn, Phys. Rev. 145.561 (1966).

11 For a review of the r density functional formalism see J. Callaway and N. H.

March, in Solid State Physics, edited by F. Seitz, D. Turnbull, and H. Ehrenreich

(Academic, New York, 1984) Vol. 38} .p. 135; or R. O. Jones and O. Gunnarsson, $
Rev. Mod. Phys. 61,689 (1989).

12 L. Hedin and B. I. Lundqvist, J. Phys. C; Solid State Phys. 4,2064 (1971).

13 C. S. Wang and J. Callaway, Phys. Rev. B 15,298 (1977); J. F. Janak and A. R. 

Williams, Phys. Rev. B 14,4199 (1976).

14 K. G. Wilson, Phys. Rev. B 4,3174 (1971); Phys. Rev. B 4,3184 (1971).

15 M. E. Fisher, Rev. Mod. Phys. 46,597 (1974).

S. G. Brush, Rev. Mod. Phys. 22,883 (1967).16



13

17 E. Ising, Z. Pkys. 21,253 (1925).

18 L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I, third edition (Per- 

gamon Press, Oxford, 1980).

19 L. Onsager, Phys. Rev. 65,117 (1944).

20 C. N. Yang, Phys. Rev. 55,809 (1952).

21 D. C. Chrzan and L. M. Falicov, Phys. Rev. B, 4Q , 8194 (1989).

22 D. C. Chrzan and L. M. Falicov, Phys. Rev. Lett 61 , 1509 (1988); D. C. 

Chrzan and L. M. Falicov, Phys. Rev. B 22,3159 (1989).

23 D. C. Chrzan, L. M. Falicov, J. M. MacLaren, X.-G. Zhang, and A. Gonis, sub­

mitted to J. Appl. Phys.



14

Chapter II: Antiphase Boundaries in an Ising Antiferromagnet

A. Introduction

The true nature of the phase diagram of the face-centered-cubic antiferromagnetic 

Ising model with only nearest-neighbor interactions, or equivalently the simple binary 

ordering alloy, has recendy been the subject of great debate. Three of the best avail­

able methods for calculating the diagram give either conflicting results or are simply 

not direcdy applicable. This is particularly alarming as the results of all the methods 

give good agreement when applied to other systems. The three methods under con­

sideration are 1) low-temperature expansions, 2) the cluster variation method, and 3) 

Monte Carlo numerical simulations.

The discrepancy1 centers on the exact location of the triple point (the point 

defined by the temperature and the magnetic field at which the disordered phase and 

the two types of ordered phases appearing in the diagram are in equilibrium), and is 

related to the methods’ failure to treat antiphase boundaries (defined below) in a con­

sistent manner. The adequate treatment of antiphase boundaries reconciles the predic­

tions of the three methods.*. In order to understand how these failures come about, it is

necessary to understand something about the three methods.
- »

Low-temperature expansions'4 are extremely useful for obtaining exact information 

about the low-temperature behavior of the system being studied (low-temperature is 

defined in terms of the excitation spectrum of the model). The justification of this 

expansion technique is straightforward. In general, the partition function of an Ising 

system is given as the sum of e~^E over all possible configurations (|3 = \/kBT, where 

kB is Boltzmann’s constant and T is the temperature; E is the energy of a 

configuration - see chapter LB). At low temperatures, (3 becomes very large. There­

fore, only terms with very low energy (so that (3E < 1) will contribute to the partition 

function. The low temperature expansion includes only these terms.
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Writing down the expansion still requires some work. The derivation of the low 

temperature expansion for the partition function for an Ising ferromagnet with only 

nearest-neighbor interactions defined on a simple-cubic lattice of N sites (with periodic 

boundary conditions) demonstrates the technique. In addition to the Ising interaction 

described in chapter I, this calculation also includes an externally applied magnetic 

field, h. The total Hamiltonian is

H =-J % Ci oy - /i X >
<ij> i

where <ij> indicates that the sum includes all nearest-neighbor pairs only.

At zero temperature, the system will have all of its spins pointing in the direction 

of the magnetic field (the ground state). At a very low, but finite, temperature, some 

of the spins are flipped. The lowest lying excited states of this model consist of those 

states where only one spin is flipped and have an energy of (12/ + 2h) [2J for each 

pair of spins aligned antiparallel in the flipped configuration and 2h for each spin 

aligned antiparallel with the magnetic field]. These N configurations contribute 

Me-$(l2J+2h) to the partition function.

The next level of excited states consists of those in which two spins align 

antiparallel to the magnetic field; the spin's can be nearest-neighbors or they can be 

further apart. In flipping two nearest-neighbor spins, five of the six nearest-neighbor 

bonds on each site connect a flipped spin to a spin aligned andparallel to it. Each of 

these bonds costs 2J in energy for a total of 207. The interaction with the magnetic 

field then contributes an energy of 4/t. A total of 3/V nearest-neighbor pairs in the lat­

tice gives a contribution to the partition function from these excitations of 

3Ne-^20J^h). Flipping two spins that are further apart than nearest-neighbors costs 

double the energy of an isolated spin flip. The calculation of the number of 

configurations in which two spins, not nearest-neighbors, are flipped proceeds as fol­

lows. There are N ways to choose the first site. After choosing the first site, there are
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only (N—l) sites left to choose from. The total number of ways to choose the two 

sites is then N(N-l)/2, where the factor of one-half accounts for the double counting 

of each configuration. Note that the total number of two-site configurations is 

N(N-l)/2 as it should be.

Letting x = and y - e~2^h, the low temperature series now appears as

Z = l+N x3y +3N xsy2 + N(N-7)/2 * V

The expansion can be continued to higher order by considering higher energy excited 

states (i.e. those with a larger number of flipped spins), although counting the number 

of configurations soon becomes difficult. (Graphical methods2,3, similar to those used 

in the linked-cluster expansion are often used for this task. The difficulties stem from 

constraints imposed by the topology of the lattice.)
4

Completion of the calculation requires that the thermodynamic limit be taken. In 

this limit, one expects, on physical grounds, that

z = <z.f

where Z0 = and / is the Helmholtz free energy per site. (This follows from the 

extensive property of the Helmholtz free enprgy.) It is assumed that

Z0 = l+ y 8i(x) + y2g2(x) + ....

where the gi (x) are to be determined by comparing the two expressions for Z given 

above. The comparison gives

Z0 = 1 + yx3 + 3y 2(x5-^6) + O (y3xs).

ZQ can then be used to calculate the low-temperature thermodynamic properties of this 

model.
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The above derivation includes at least one implicit assumption: that the internal 

energy of an excitation scales with the number of flipped spins. In the limit of vanish­

ing magnetic field (or low magnetic field), it is not, however, rigorously correct to 

assume that all excited states with (n+1) flipped spins are at a higher energy than 

those with n flipped spins. If no external field is present, the energy of excitation for 

flipping a cluster of spins scales with its surface area and not its volume. The order of 

the error in any given expansion can be determined, so this assumption does not pose 

a fundamental problem.

The expansions do have limitations and difficulties associated with them. For 

example, their analytic properties imply that the expansions alone cannot make precise 

predictions about thermodynamic properties near a phase transition. There have been 

attempts to extend their range of validity to near the transition temperature through the 

use of Padd approximants, which have met with some success.4 But overall, the 

difficulties inherent in predicting the physical properties of a system, at a temperature 

for which the free energy is non-analytic, from the properties at temperatures for 

which the free energy is analytic, seem overwhelming.

A more serious problem is that in certain systems (e.g. the nearest-neighbor Ising 

antiferromagnet defined on a face-centered-cubic lattice field) the ground state is 

infinitely degenerate. In these situations, it is not clear which of the ground states 

should be used for the expansion. The seemingly obvious choice of averaging over all 

ground state configurations is not always the correct approach, as will be discussed 

below.

The cluster variation method5 (CVM) represents a variational approach to calcu­

lating the thermodynamic properties of a simple spin system. The number of 

configurations of a system is approximated in terms of the probability of finding clus­

ters of a predetermined size and configuration in the lattice at a specific temperature. 

The method proceeds through the calculation of a trial Helmholtz free energy (or in an
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equivalent but somewhat more useful formulation, a trial grand potential is calculated). 

Minimization of the trial free energy with respect to the cluster probabilities calculates 

the best estimate of the true free energy, within that level of approximation, at the 

specified temperature and magnetic field.

It is a simple task to express the internal energy of an Ising system in terms of 

cluster probabilities. It is not as simple to calculate the entropy associated with a 

given set of probabilities. This task is accomplished systematically in CVM. The 

hierarchical structure of CVM starts with the simple mean-field approximation6, moves 

into the Bethe pair approximation7, and even further into more accurate approxima­

tions involving larger clusters, the topology of which depends on the lattice being con-
*

sidered.

As an example of the procedure used to calculate the entropy, the trial free 

energy of the simple cubic lattice is derived using a nearest-neighbor pair as the largest 

cluster.8 There are two types of clusters which enter the calculation: the single-site 

clusters, and the nearest-neighbor pairs. The single-site probabilities are denoted by 

jc+(jc_), which refer to the probability of finding an up(down) spin at a site of the lat­

tice. These variables must satisfy the constraint:

* *+ + *_-1

The pair probabilities are denoted by y[+i+], y[+_] = y [-.+]. and >[-_], and must be such 

that

>v.+]+ y (+.-]= •*+

y[-,+] + y[_._]=x_ .

Here, y [+i+j is the probability of finding a nearest-neighbor pair of spins both pointing 

in the positive z -direction, etc.
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In the first step of the approximation, one calculates the number of ways of 

arranging the nearest-neighbor pairs, without regard to whether or not the arrangement 

is physically allowable (the bonds are assumed to be distributed completely at random 

over the possible bonds in the lattice without concern whether or not all bonds ori­

ginating from a given site require the same atom to be at that site -- see figure 2.1). In 

the second step, a connection is applied to the number calculated in the first step. 

Using these ideas, the number of configurations for the Ising model on a simple-cubic 

lattice is

# conf. = - _______________ (3AQ!_______________

x*
[(6^)!/(6x+/V)!(6xJV)!]

where N is the total number of sites in the lattice. The second factor on the right

(arising from the second step) represents the fraction of the number of configurations

of the pair variables [the first factor on the right] which are physically allowable

(figure 2.1). The correction factor is calculated simply as the fraction of the total

number of ways to arrange zN spins over the N sites of the lattice (where z is the
*

coordination number - for the simple cubic lattice z = 6), with z per site, which have 

all z spins at each site pointing in the same direction.

Using Sterling’s approximation and a simple pairwise expression for the internal 

energy of the Ising model, the trial free energy per site is written

F = 3/(-y[+,+]-y(-.-j+y[+.-]+>'[-,+]) -h{x+- x_) - 5kBT(x+\n x+ + xjn xj

+ 3£BT(y[+>+)ln y [+>+] + y[+(_]ln y[+_j + y(_>+]ln y K+] + y^jln y hH) .

Minimization with respect to the site and pair probabilities, subject to the constraints 

given above, finds the best approximation to the true free energy, in the pair
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approximation, at the specified magnetic field and temperature. Information about 

long-range order, short-range order and all the thermodynamic properties can be 

obtained from this best estimate.

A similar analysis can be carried out using larger clusters, although the approxi­

mation becomes more difficult to perform with increasing cluster size. Unfortunately, 

rigorous estimates of errors made in using only a finite number of cluster probabilities 

are not available . In fact, for the face-centered-cubic Ising antiferromagnet with only 

nearest-neighbor interactions the pair approximation fails completely, predicting that 

the system will never become ordered. Even for the four-site approximation to this 

system, the absolute CVM minimum underestiniates the free energy of segregation9, 

and a local minimum in the trial free energy must be used to obtain meaningful 

results. The use of larger clusters eliminates this problem, but the calculation rapidly 

becomes prohibitively expensive.

As in the low-temperature expansions, CVM includes implicit approximations and 

assumptions. Most notably, all possible ordered phases are not investigated because 

the choice of the maximum-sized cluster predetermines which ordered phases are pos­

sible. It is therefore necessary to know which phases appear in the phase diagram 

before the calculation is begun. In addition, there are certain types of disorder which 

cannot be handled within the formalism of CVM. The antiphase boundaries discussed 

below are one example.10

Monte Carlo numerical simulations are a third approach to solving the Ising 

model in three dimensions. The properties of a large cluster of spins ( = 15000 with 

periodic boundary conditions) are computed statistically.

These simulations begin with the choice of an initial configuration, usually either 

a completely random or completely ordered state. A site (or group of sites) is chosen 

at random and the spin (or spins) is (are) flipped with a probability defined by
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P
e-$*E ££ > 0

1 A£ < 0

where A£ is the change in internal energy associated with flipping the spin (or cluster 

of spins). The flipping process is continued until equilibrium is reached, and the ther­

modynamic properties of the system are then extracted from the final equilibrium 

configuration.

In principle, this method should produce the exact thermodynamics of the 

periodic cluster being investigated, although the computer time necessary to do so 

grows rapidly with cluster size. It is thought that the thermodynamics of the finite- 

sized cluster adequately represents the thermodynamics of the infinite system. Therein 

lies the fundamental difficulty of the Monte Carlo approach. It is well known that 

finite-sized systems cm never show a phase transition; the free energy is always ana­

lytic. However, as the size of the cluster used in simulations increases, the tempera­

ture regions at which the non-analyticities appear in the infinite system will begin to 

show a "tendency" towards non-analytic behavior. The observation of this "tendency" 

is the foundation of the usefulness of the Monte Carlo approach.

Computers are now fast enough, an4 the methods efficient enough, to perform 

calculations on very large systems for which the "tendency" towards non-analyticity is 

clear. In addition, Monte Carlo studies do not require prior knowledge of the phase 

diagram. In fact, the studies are believed to produce the most accurate calculations of 

the thermodynamic properties of the three-dimensional Ising model.

Like the other methods, Monte Carlo techniques do have drawbacks. While it is 

not necessary to have prior knowledge of the phase diagram, this lack of information 

can make interpretation of the results difficult. In addition, a rigorous technique for 

for correctly inferring the thermodynamics of infinite-sized systems from those calcu­

lated for finite-sized systems does not exist. In fact, finite-sized clusters allow excita-



22

dons which are not present in the infinite-sized systems. These excitations have seri­

ous implications for how one calculates the true thermodynamic properties of the 

infinite system, as demonstrated below.

A remarkable similarity exists between the simple ordering substitutional binary 

alloy and the antiferromagnetic Ising model in the presence of a magnetic field. Hence 

most of the literature on the antiferromagnetic Ising model defined on an fee lattice 

appears in the context of alloys. An A-B binary alloy can be mapped onto the Ising 

model: an atom of type A (B) is equivalent to an up (down) spin. The chemical 

potential difference between atoms of different types is equivalent to an external mag­

netic field. The energy is then written:

£ = Z Jij aiCj - h E a«
U *'

where a,- is an Ising spin at site i which can take on the values ±1, is the interac­

tion energy between spins at sites i and j, and h is the external magnetic field. (The 

particular model under consideration in the following is defined in an fee lattice and 

such that = J > 0 (i.e. .antiferromagnetic exchange) for i and j nearest-neighbors, 

and Jij - 0 for all other pairs).

Real alloys are significantly more complex than the simple Ising model anal-t

ogy.11,12 In particular, many body effects13, atomic-size,14 and Fermi-surface15’16 pro­

perties are all expected to play important roles in determining the true phase stability. 

It is unlikely that these effects can all be reduced to pairwise interactions. The Ising 

model, however, does provide a good starting point for understanding the thermo­

dynamic properties of alloys, and the model can be made more realistic by successive 

inclusion of some of the neglected effects. A clear understanding of the Ising model’s 

phase diagram will indicate which properties of the alloy are a direct result of 

configurational terms, and which stem from electronic terms.
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Thus far, approximate methods have resulted in a widely accepted topology1 for 

the phase diagram of the nearest-neighbor fee Ising antiferromagnet, but some 

discrepancies still remain. There are three types of phases present in the phase 

diagram: the disordered phase, the Ll0 (AB) phase, and the L\2 (A3B) phase (see 

figure 2.2). The fee lattice can be decomposed into four interpenetrating simple-cubic 

sublattices. The three phases can then be understood in terms of the concentrations of 

up and down spins on each sublattice. In the disordered phase, all of the sublattices 

have equal concentrations of up spins. In the L10 phase, there are two groups of two 

sublattices which have different concentrations. In the L12 phase, the sublattices are 

divided so that three of them are equivalent to each other (i.e. have the same concen­

trations of up spins) and different from the fourth.

The thermodynamic calculations reported in literature for this Ising system fall 

into three categories: small cluster variational techniques, numerical simulations, and 

low- and high-temperature expansions. The results of the different methods are often 

compared among themselves, for consistency, and also compared with experimental 

results believed to reflect Ising-like behavior (e.g. the Cu-Au alloys).

One early small-cluster calculation on the fee binary alloy was due to Shockley6, 

who calculated the Cu-Au phase diagram using a mean-field approach. The agreement 

with the experimentally known Cu-Au phase diagram was not satisfactory: the calcu­

lated phase diagram was topologically different from that of the experiments. The fol­

lowing years brought the development and application of the quasi-chemical method17, 

and later the cluster variation method5,18-20 (CVM). The latter led to qualitatively 

good agreement with the experimentally determined phase diagrams, and the agree­

ment with experiment was improved even further with the inclusion of "many-body" 

effects21. In addition, CVM results produced the currently accepted topology of the 

nearest-neighbor fee Ising antiferromagnet’s phase diagram.
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The initial Monte Carlo results of Binder22 and Phani et alP for the fee Ising 

antiferromagnet with only nearest-neighbor interactions disagreed with those of CVM, 

which necessitated reexamination of both results.24'27 As mentioned above, the conflict 

centered on the exact location of the triple-point [the point where the disordered, the 

L10, and the L12 phases are in equilibrium]. While the calculated transition tempera­

tures of the stoichiometric compounds were not too different (the Monte Carlo calcula­

tions gave slightly lower transition temperature for all compositions of the alloy). 

Binder’s Monte Carlo results placed the triple-point at T = 0, and CVM placed the 

triple-point temperature at a nonzero value, of the order of the pair-interaction 

energy.5,17-19

One source of this discrepancy arises from the frustration present in the fee lat­

tice. The frustration may lead to the appearance of {001} antiphase boundaries, which 

are explicitly excluded in CVM, and difficult to interpret in Monte Carlo studies. A 

{001} antiphase boundary in the /i - 0, T - 0 case is depicted in figure 2.3, using a 

description similar to Kikuchi and Sato’s.28 The configurations of the four possible 

(001) planes for the perfectly ordered case are shown. Each dark symbol (either 

square or circle) represents an lip spin (Cu atom), and the lighter symbols represent

down spins (Au atom). The L 1q phase is constructed by stacking the planes in one of%
four configurations: (...AaAaAaAa...), ' (...AbAbAbAb...), (...BaBaBaBa...) or

(...BbBbBbBb...). An antiphase boundary is introduced by a slip of one half of the lat­

tice by [a/2, a/2, 0] where a is the cubic lattice spacing. This is the equivalent of 

going from (...AaAaAaAa...)-type stacking to (...AaAaBbBb...)-type stacking. (In the 

definition of antiphase boundary used here, it extends throughout the entire crystal; 

domains separated by antiphase boundaries are not considered). The dashed boxes in 

the figure contain one nearest-neighbor tetrahedron of the face-centered-cubic lattice, 

with two atoms from each of the planes. Each of these tetrahedra has two up spins 

and two down spins, the minimal energy configuration, for both Ba and Bb stacking



25

order. This is also true for Aa and Ab stacking. It therefore costs no energy to stack 

the planes in a random order (...ZzZzZzZz...) where each Z (z) is a plane of type A (a) 

or B (b). The system has an infinitely degenerate ground state. An infinitesimal next- 

nearest-neighbor interaction, however, removes this degeneracy.

Antiphase boundaries are present in the Monte Carlo calculations25-27, as revealed 

by studies of the triple point region. The presence of antiphase boundaries in the 

Monte Carlo results raises important issues. In Binder’s calculations, one antiphase 

boundary would result in a state with no long-range order, but, physically the system 

still has a large degree of long-range order, at least in two dimensions, and is very 

different from the random, disordered configuration. With a more precise definition of 

order (which accounts for the long-range order still present in the antiphased state), the 

Monte Carlo calculations yield a nonzero triple-point temperature.25-27 The puzzle is 

not completely solved, however, for the triple-point temperature in the Monte Carlo 

results is roughly two-thirds of the triple-point temperature predicted by the best avail­

able CVM results.1 In addition,, the transition temperatures predicted by the Monte 

Carlo methods are still consistently lower than those of CVM.

It is not yet clear whether or not antiphase boundaries appear in the true phase 

diagram of the nearest-neighbor/cc Ising antiferromagnet. There are reasons to expect 

that the boundaries might be present. Antiphase boundaries cost no energy, but there 

is an entropy associated with their presence. In the thermodynamic limit, the free 

energy is of order n3 [where n3 is the number of spins (atoms) in the system], and the 

contribution from antiphase boundaries is of order n, hence negligible.

This argument suggests that the antiphase boundaries are present even as 7 —» 0, 

but do not affect the thermodynamic properties of the system. Clearly, the system 

with antiphase boundaries is considerably different from the system without them (e.g. 

the x-ray diffraction pattern of the system with antiphase boundaries is considerably 

different than that of the system without antiphase boundaries), regardless of their
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influence on the free energy, which makes it important to determine whether or not 

antiphase boundaries exist at a given temperature.

Slawny29 made significant progress in this direction when he pointed out that the 

one-dimensional structure of this system does direcdy influence its thermodynamics. 

Slawny noted that the excitation spectrum of a particular ground state depends 

extremely sensitively on its one-dimensional antiphase boundary structure. Since the 

excitation spectrum determines a particular ground state’s thermodynamic properties, 

the one-dimensional disorder has a dramatic influence on the thermodynamics of the 

system. Slawny’s exact arguments apply to a class of systems satisfying three criteria: 

the system must have a (1) finite number of degenerate, (2) periodic states in the 

ground-state manifold which all (3) meet the Peierls’ condition*0: that there be an 

energy gap between the ground state and the first excited state. For these systems, the 

"true" ground state is the state which admits the largest number of low-lying excita­

tions.

The nearest-neighbor fee Ising antiferromagnet clearly violates the first two of 

these conditions. The ground-state manifold contains an infinite number of not neces­

sarily periodic states. Slawny introduces interactions into the model which insure 

long-range order in three dimensions so that the conditions of his theorem are met, and 

then considers the limit as these interactions go to zero. He concludes that antiphase 

boundaries do not appear in the low-temperature expansion for the nearest-neighbor 

fee Ising antiferromagnet. Based on Slawny’s arguments, Mackenzie and Young31, 

and later, Lebowitz et alf calculated low-temperature expansions about the "true" 

ground state: the ordered L10 phase without antiphase boundaries. This is a somewhat 

surprising result: the "true" ground state of the system is "selected" based solely on 

entropic contributions, and the result of this "selection" is the completely ordered state.

Slawny’s conclusions most probably apply to the fee Ising system under con­

sideration here, but there is some danger in his approach. The infinite one-dimensional
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degeneracy of the model only exists in one point of parameter space. The fact that an 

infinitesimal next-nearest-neighbor interaction removes the infinite degeneracy suggests 

that limiting processes may not be applicable.

Assuming that Slawny’s conclusions are correct, there is still more work to be 

done. It is of interest to understand the behavior of the Ising model at temperatures 

for which low-temperature expansions are no longer valid. Slawny’s arguments do not 

indicate whether or not antiphase boundaries appear at higher temperatures.

The purpose of this chapter is to investigate, in greater detail, whether or not anti­

phase boundaries appear in the equilibrium phase diagram of the nearest-neighbor fee 

Ising antiferromagnet (and by analogy, in the simple binary substitutional alloy). The 

approach chosen is the construction and solution of an exactly soluble model for cubic 

{001} antiphase boundaries which violates the first two Slawny criteria. This violation 

is of the kind encountered in the nearest-neighbor fee Ising antiferromagnet. The 

insight gained by solution of this simple model can be applied to the more difficult 

Ising problem, and to understand the role of antiphase boundaries in more complex 

real alloys.

Section B of this chapter develops the model, which is subsequently solved in 

section C. Analysis of the results comprises section D, and section E contains the con- 

elusions.

B. The Model

The excitations of the Ising systems consist of spin flips in given configurations. 

Each antiparallel spin pair that gets converted into a parallel spin pair requires a posi­

tive energy of U. Conversely, each parallel spin pair converted into an antiparallel 

one yields a negative -2J energy. There is an additional ± 2h extra energy arising 

from the change of orientation of each spin with respect to the external field. The 

energy spectra of the all states in the ground-state manifold of the nearest-neighbor/cc
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Ising antifenomagnet are characterized by a set of common low-lying excitations. 

Since each spin has eight antiparallel and four parallel nearest neighbors, individual, 

disconnected spin flips produce the lowest level excitations, equal to (87 ± 2h). The 

first configuration-dependent differences in the spectra appear in the third level of exci­

tation.32 The difference, related to the antiphase structure, arises from the simultaneous 

flip of four closely situated spins33 ; they are shown in figure 2.4. They are in three 

successive (001) planes, in the configuration 1-2-1. In this cluster each spin has two

of its twelve nearest neighbors within the cluster, and the other ten outside. If all
•

nearest-neighbor pairs connected to this cluster are included, there are altogether 44 

pairs; four within the cluster, 40 outside it. The important difference, as shown in 

figure 2.4, is that in the perfectly ordered L10 structure the four internal bonds are all 

antiparallel, whereas in the structure with an antiphase boundary two of the pairs are 

antiparallel, and two parallel. Moreover the 44 total pairs related to the cluster are 28 

parallel and 16 antiparallel pairs in the perfectly ordered L10 structure, as opposed to 

30 and 14, respectively, in the one containing the antiphase boundary. When those 

four spins are simultaneously flipped the four internal "bonds” remain unchanged; the 

40 "outside bonds” on the other hand change character. As a consequence the excita­

tion energy of that four-atom flip is 16/ in the perfect structure, and (32/ ± 4/i) in the
%

defective one.34. (The ± Ah term corresponds to the fact that in the defective structure 

there is a net change of two spin orientations; the sign is chosen to reflect the relative 

orientation of these two spins with respect to the external magnetic field.)

The presence of one antiphase boundary shifts of the order of n2 excitations of 

this type to a higher, magnetic-field dependent energy. (The number of sites in the lat­

tice is n3.) For zero external field (chemical potential difference), the state with the 

highest number of third-level excitations is the L10 phase, and this number decreases 

as the number of antiphase boundaries increases.

The model constructed in this chapter mimics these properties as closely as possi­
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ble while still allowing a simple, exact solution for the thermodynamic properties.

Similarly to the nearest-neighbor fee Ising antiferromagnet, the model below has an

infinite ground state degeneracy in which the states are not necessarily periodic. The

antiphase dependence of the excitation spectra is very similar in the two systems.

Each state in the ground-state manifold of the constructed model admits a common set

of lowest-lying excitations, but the number of second-level excitations is determined

by the antiphase structure of the state: a state with more antiphase boundaries has

fewer second-level excitations because the presence of an antiphase boundary shifts

some second-level excitations to higher energy.35 However, the model does not
%

account for in-plane correlations among the spins.

The model system is composed of n planes, each of which contains N sites. The 

planes are indexed by the subscript k, and each site within a plane is indexed by the 

subscripts i and j. The thermodynamic variables are defined to be <ji;* and £*, both 

of which can assume the values ±1. The variable corresponds to individual 

spins; on the other hand £* is the antiphase-boundary variable. The spins on plane k 

interact directly with the spins immediately adjacent on planes k - 1 and fc + 1, but do 

not directly interact with the other spins on plane k. The perfect structure corresponds 

to 2* which are all of the same sign. An antiphase boundary in the model occurs at a 

plane k such the = -1, and changes the interaction energy between spins on

adjacent planes. A configuration is designated by {a, Z}. The internal energy is

£({a, Z}) = e
*

, 2 (1 + Gijk) + (1/4) 2(1+ Gijk) (1 + Gij(k+l)) (Yo ~ Y£*£(*+l))
ijk ijk

to
where the indices run over the entire system, and periodic boundary conditions are not 

assumed. The first term accounts for the elementary excitations of the sites; they have 

energy 2e and correspond to flipping a spin in an external field. (The energy scale is 

set by the value of e.) The second sum represents an antiphase-structure dependent 

interaction between excitations on adjacent planes. The states of two adjacent planes.
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reflected in the values of their £*’s, determine the excitation spectrum of the sites in

those planes. If both sites i, j, k and i, j, (£+1) axe excited (the factors containing

the o’s impose this restriction) there is an additional excitation energy associated with

their juxtaposition. This additional energy is [Yo - Y] for the normal C£*2(Jk+1) = 1]

state and [Yo + Yl for the antiphased [S/kZ(Jk+1) = -1] state. (The parameters Yo and Y

are positive dimensionless constants such that Y < Yo-) The local excitations involving

two correlated sites have energies of (4 + Yo - Y)e and (4 + Yo + Y)e- The energy

difference between excitations correlated across and antiphase boundary and those

correlated away from an antiphase boundary is the antiphase excitation gap, 2ye. For
«

y = 0, the energy of the correlated excitations is no longer antiphase structure depen­

dent. In this limit, (and, as is shown below, for the case where n goes to infinity and 

N ~n2) the model becomes a collection of N one-dimensional Ising chains, each with 

n sites; the external magnetic field is given by A = -e[l + (Yo “ Y)/21 and the nearest- 

neighbor spin coupling is / = e(Yo - YV4.

The partition function of the model system containing nN sites is written:

. * £ e-WW
' ' ■ ■ {0.1}

where (3 = l/kBT, kB is Boltzmann’s constant, and T is the temperature.
*

C. The Solution of the Model

Let jijk denote the number of sites in plane k which are excited, and vk the 

number of these for which the equivalent site in plane (£+1) is also excited. The 

number of configurations for a two plane system is

^ vi ^ " v! on(4.1)

where C(f is the binomial coefficient:

(N -M)\ M\ ‘



31

The first coefficient in (2.1) is the number of ways to choose the |i1 sites on plane 1, 

the second, the number of ways to choose the Vj sites on plane 2 which are juxtaposed 

with an excitation on plane 1, and the last, the number of ways to place the remaining 

excitations on plane 2. There are restrictions on the values for vl5 and All 

physically allowed configurations of the planes are included by summing over all terms 

for which expression (2.1) is defined.

The analysis above is easily extended to the case of n planes. The energy in 

terms of the p* and vk is

£ = + e I) v*(Yo “ Y^Z*+1). (2.2)
*=i *=1

The partition function is

(i) m n. vj v...
y'"' ^ TT/'"’ V*/^ M’i+i “ v*

k=l *=1

2>*
(w)*’1 (2.3)

where ^ a sum over ^ configurations of the antiphase boundaries, the remaining 
(2)

sums run over all physical values of p* and v*, w = e~2^& and xk = ~

The terms involving vrt_! and pn redute to terms involving pn_j

2 w1*- = (1 + W)A'-^- (l
v,-i

This reduction of terms allows exact solution of the model, using techniques similar to 

those employed in the transfer matrix method. If the variable yk is defined by the fol­

lowing (descending index) mapping:

yk
(i +**y*+i)w ----------------  ,
a+y*+i)

Yn = W , (2.4)

then the partition function is then given by
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(2.5)
{2}*=1

The sum over all configurations of the antiphase boundaries, which is not performed 

analytically, is complicated because each yk depends on the antiphase structure of all 

the layers ^ k. (The sum has been calculated numerically for small n.) The apparent 

asymmetry of this solution is caused by the method of solution; it can be demonstrated 

(analytically for small n, numerically for larger n) that the expression for a given 

configuration is independent of the end from which the mapping (2.4) is begun.

D. Analysis

Expression (2.5) can be used to prove that in the thermodynamic limit (i.e. 

infinite-sized system), the free energy, of the three-dimensional system is exactly the 

free energy of one of the two states without antiphase boundaries. Slawny’s conclu­

sions that only one of the many states of the ground-state manifold should appear in 

the low temperature expansions is indeed applicable to this system. Even more impor­

tantly, in the thermodynamic limit antiphase boundaries have zero concentration at any 

finite temperature.

The free energy of the d -dimensional model system (i.e. a system where 

N ~ nd~l) is proportional to the natural logarithm of the partition function

F -kBT In «
m *=i

(2.6)

The two states without antiphase boundaries contribute the largest terms to the sum, 

and the next largest terms are from configurations with just one antiphase boundary. 

This makes physical sense, because each antiphase boundary replaces approximately 

nd~l second-lowest-lying excitations by slightly higher ones. The result of this 

replacement is a reduction in the value of the product over k. The free energy can be 

written
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F = -kBT In Sma, - kBT In > 2+1/^ s na+^)^
{D *=1

(2.7)

where is the largest term in the sum over configurations in (2.6), i.e. that 

corresponds to the two perfectly ordered states, and the sum over {S'} includes all 

configurations except those two corresponding to 5^. The first term in (2.7) is pro­

portional to nd. For the last term of expression (2.7) to contribute to the free energy, 

it must also be proportional to nd. The second largest terms in the sum over antiphase 

configurations differ from the largest for some m < n of the y*. Define a to be the 

geometric mean of the ratio of these altered terms to their corresponding values in the 

product for the system with no antiphase boundaries:

“=n
;=i

-Lt*-r<i
b 1 y max j j

If the number of configurations with only one antiphase boundary is taken to be 2n - 

obviously an overestimate since 2n is the total number of configurations -- then the 

last term in equation (2.7) is less than or equal to

* * 0 ^

kBT In 4 2 + 2nand~'m

---
---

---
-v

—
ii 5“

__
__

__
A

__
_

2 + a)nd'lm '

The only way in which (2.8) can be of order nd is if (2n2^lm a) > 1, which is possible 

only if n2~d/m > 0. Since \ £ m < n, antiphase boundaries do not appear36 in the 

free energy for d > 2, and hence do not appear in the three-dimensional system.

For d > 2, it can be proven explicitly that the antiphase boundaries themselves do 

not appear. Assume that the second largest terms in the sum arise from configurations 

with approximately n antiphase boundaries, and that there are 2n of these 

configurations. With arguments similar to those developed above for the free energy, 

the contribution from these terms to the concentration of antiphase boundaries is found 

to be zero:
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lim (2',M/w nn“,m a)nd'lm =0 , d>2 . (2.9)
n —» •»

This is physically reasonable since it has been argued that, if present, antiphase boun­

daries must affect the observable thermodynamic properties of the system. In this 

situation, the absence of antiphase boundaries in the free energy is indicative of their 

zero concentration.

While antiphase boundaries cost no energy in the ground state, there is a free 

energy associated with their creation at any nonzero temperature (this energy stems 

from the coupling between the site spin-variables, Cfy*, and the antiphase variables, 

Et). The energy of one boundary is proportional to the "antiphase excitation gap", 

2te, multiplied by the necessarily finite number of juxtaposed single-site excitations 

which scales with the area of the planes, nd~l. In the thermodynamic limit, the energy 

cost becomes infinite (for d > 1). This argument suggests that antiphase boundaries 

have zero concentration in any version of this system with dimension larger than one, 

and that antiphase boundaries appear only for d = 1. [A seemingly unphysical one­

dimensional antiphase boundary is defined mathematically by setting d = 1 in expres­

sion (2.6).] , >v ;

For d > l it is possible to write down the complete partition function of the
%

model in a compact form, which can then be used to calculate all the thermodynamic 

functions. Since no antiphase boundaries appear, the partition function is determined 

entirely by the period-one fixed point of the mapping (2.4). (For the case with no anti­

phase boundaries, the xk of (2.4) becomes a constant, independent of

k). The partition function is

Zn- = (l+y)rt , d >2 (2.10)

where y is the period-one fixed point of the mapping (2.5) with substituted for xk:

y = 1/2 Xo. w - 1 + [ (x^ w - l)2 + 4W]1 (2.11)
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(Surface effects are neglected.)

The free energy is easily calculated from equations (2.10) and (2.11). In the limit 

Yo = y = 0, the free energy is that expected for an assembly of nd non-interacting 

two-state systems. (Strictly speaking, in this limit antiphase boundaries appear, but 

since they do not alter the excitation spectra of the various states, their contribution to 

the free energy is strictly one dimensional and vanishes in the thermodynamic limit. 

The concentration of antiphase boundaries is exactly one half for all temperatures.) For 

Yo * y = 0, the boundaries (which are again decoupled from the system) appear but, the 

two-state systems are now correlated. With Yo * 0, Y * 0, the system has no antiphase 

boundaries; the sites are, however, still correlated. The heat capacity per site for 

d = 3 (figure 2.5), which displays a Schottky anomaly, shows that the correlated sys­

tem is still very similar to a collection of isolated two-state systems.

In one dimension, the antiphase boundaries can be defined mathematically and are 

expected to occur. The entire expression (2.5) must be used to calculate the thermo­

dynamic properties. The partition function is calculated for periodic one-dimensional 

systems containing up to sixteen sites, and the concentration of antiphase boundaries is 

computed. This concentration is plotted as a function of Pe/(1 + (3e) in figure 2.6 for 

Yo^O.S, and (a) Y^O-l* (b) Y=0-3. anji (c) y=0.6. (The abscissae are zero at 

infinite temperature, and one at zero temperature.) The results are not very sensitive to 

the number of sites: there is no perceptible difference between the four- and sixteen- 

site calculations. At very low temperatures (right side of figure 2.6), the concentration 

of antiphase boundaries is one half, exactly the value expected from averaging over all 

of the ground states. The physical difference between the three curves is the antiphase 

excitation gap, 2yef which increases from curve (a) through curve (c). As the tempera­

ture increases from zero, the concentration of antiphase boundaries decreases; the sys­

tem becomes more ordered, with respect to antiphasing, as the temperature is 

increased. (In this situation, "order" is proportional to the concentration of antiphase
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boundaries; the boundaries themselves do not form an ordered structure but are distri­

buted randomly over the sites of the system). The physics behind this unusual 

behavior is quite clear. The system begins to order so that the number of excitations 

available to it at lower temperatures actually increases, just as in the three-dimensional 

case. The apparent ordering actually results in an increase in entropy. As the tem­

perature increases further, the concentration of antiphase boundaries increases towards 

its infinite temperature value of one half.

Whereas antiphase boundaries have zero concentration in the infinite three- 

dimensional model, they do appear with nonzero concentration at equilibrium in 

finite-sized clusters with periodic boundary conditions. These are precisely the type of 

systems used in the Monte Carlo calculations. It is therefore possible that these results 

reflect the presence of antiphase boundaries which are unstable in the thermodynamic 

limit. Figure 2.7 is a plot of the concentration of antiphase boundaries (for d = 3) 

versus the same function of fie used in figure 2.6, for y0 = 0.5 and y = 0.2, for systems 

with up to 163 = 4096 sites. (The Monte Carlo calculations are often performed on 

systems containing on the order of 6000 sites.1*-21) Figure 2.8 is the same type of plot 

for the parameters y0 = 0.8 and y = 0.6.

As in the one-dimensional case, the concentration of antiphase boundaries is one 

half for very low temperatures. For a finite range of temperatures an increase in tem­

perature reduces the concentration of antiphase boundaries. Unlike the one­

dimensional case, these results depend on the size of the system. For larger systems, 

the concentration of antiphase boundaries decreases more rapidly as the temperature 

increases. This makes physical sense, since the energy cost of a nonzero temperature 

antiphase boundary scales as n2. In the thermodynamic limit, the concentration of 

antiphase boundaries is zero everywhere except at 7 = 0 and 7 = The actual value 

of the minimum is also a function of the antiphase excitation gap.
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It is very likely that the nearest-neighbor fee Ising antiferromagnet behaves simi­

larly. Further insight is gained by analyzing how Ising model maps onto the model 

solved here. The most notable feature is that the effective value of the antiphase exci­

tation gap for the Ising model is magnetic field dependent In the Ising model at zero 

temperature, the antiphase excitation gap is given by 16/ ± Ah. (The antiphase excita­

tion gap is always determined by the lowest energy excitations which distinguish 

between the many ground states.) The gap actually decreases as the triple-point field is 

approached, suggesting that antiphase boundaries are more likely to appear, as is 

observed in the Monte Carlo studies.25-27,37 It seems unlikely, however, that the 

effective value of y can ever be identically zero, which is a necessary condition to 

have a nonzero concentration of antiphase boundaries in the thermodynamic limit.

The connection between complete disorder and and the appearance of antiphase 

boundaries needs to be carefully examined. Clearly, an antiphase boundary is not 

definable in the disordered state. If, however, there is any amount of long-range order, 

the concept of an antiphase boundary is meaningful and it is then imponant to under­

stand the relationship between the three-dimensionally disordered state and the one- 

dimensionally disordered state. It is conceivable that, near the transition temperature,

three-dimensional disorder could couple to (and reduce the value of) the antiphase
*

excitation gap, resulting in an increase of the number of antiphase boundaries.

This analysis may explain the depression of the transition temperatures found in 

Monte Carlo methods relative to CVM results. The appearance of antiphase boun­

daries near the order-disorder transition may be interpreted as complete disorder, 

resulting in the observed depression. Furthermore the relative depression of the transi­

tion temperature would be largest near the triple point because of the further reduction 

in the effective value of y due to the magnetic-field dependence. This is the observed 

behavior (figure 2.9).

The role of in-plane direct correlations in the Ising system, which are completely
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neglected in the model developed here, must be evaluated more carefully. In the Ising 

model, a large number of excitations in a plane can result in a plane which is "anti­

phased". Hence, antiphase boundaries could arise from this mechanism.

E. Conclusion

The model developed and solved here is a considerably simplified version of the 

nearest-neighbor fee Ising antiferromagnet which mimics its ground state properties. 

The model provides a unique insight into some of the characteristics of the more com­

plicated Ising system.

The simplified model is analyzed for consistency with the predictions of Slawny. 

As Slawny conjectured, the "true" thermodynamic ground states of the three- and two- 

dimensional versions of this system are in fact the states with the largest number of 

low-lying excitations — the ordered states without antiphase boundaries. Furthermore, 

in the thermodynamic limit, antiphase boundaries have zero concentration at any finite 

temperature, because, at finite temperatures, the excitation energy of an antiphase 

boundary scales with n\ where n3 is the number of sites, and the entropy scales as n.

In the (mathematically defined) one-dimensional system, antiphase boundaries do 

appear. Their concentration at zero and infinite temperatures is equal to one half, and 

is less than one half at intermediate temperatures. There is a range of temperatures for 

which increasing the temperature results in a more ordered antiphase structure. The 

degree to which the system orders is determined by the antiphase excitation gap, lye. 

Larger degrees of order conespond to larger values of y.

The behavior of the model for systems with sizes on the order of those used in 

the Monte Carlo calculations was investigated. It was found that for all finite-sized 

d -dimensional systems antiphase boundaries will appear at equilibrium with nonzero 

concentration. The antiphase boundaries are more likely to appear in smaller systems, 

and systems in which the antiphase excitation gap is small.
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The model can be used to infer properties of the more complicated nearest- 

neighbor fee Ising antiferromagnet and, additionally, suggests a possible resolution of 

the discrepancies between Monte Carlo and CVM results. In the nearest-neighbor/cc 

Ising antiferromagnet, the effective antiphase excitation gap is magnetic-field depen­

dent As the triple-point field is approached, the gap decreases, and antiphase boun­

daries appear in the Monte Carlo calculations. Furthermore, as the planes become 

more and more disordered, the effective energy cost of a nonzero temperature anti­

phase boundary may decrease. It is then possible that near the transition temperature, 

the concentration of antiphase boundaries might rapidly increase (for finite-sized sys­

tems). Since the order-disorder transition is known to be first order, it is unlikely that 

the energy cost per unit area of an antiphase boundary can ever be identically zero for 

the infinite system at finite temperature below the transition, and antiphase boundaries 

most likely do not appear.

The role of in-plane direct correlations in the Ising model needs to be assessed

more carefully. The chance that a significant number of excitations can "create" an

antiphase boundary leaves open the possibility that the boundaries may be stable in the

infinite three-dimensional Ising system. The density of excitations required for the

"creation" of an antiphase boundary is quite high. This information, combined with
*

the knowledge that the phase transition is first-order, suggests that the nearest-neighbor 

fee Ising model completely disorders before an antiphase boundary is "created". It is 

therefore plausible that complete (001) antiphase boundaries do not appear in the true 

equilibrium phase diagram of the nearest-neighbor/cc Ising antiferromagnet.
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Figure 2.1 Two possible completely random configurations of four of the six

bonds at a site of the simple cubic lattice. The dark circles refer to 

up spins and the light circles to down spins. The structure in (a) is 

not physical as it requires the central site to be pointing both up and 

down. The structure in (b) is physically consistent. The cluster 

variation method proceeds by calculating all the possible arrange­

ments of bonds on the lattice, even the ones that are not physically 

permissible [i.e. arrangements similar to that pictured in structure 

(a)] and then corrects that number (which is too large) by multiply­

ing by the fraction of all those states that are physically allowed. 

The fraction of allowed states is approximated by counting the 

number of ways to arrange zN spins over the N sites of the lattice 

(where z is the coordination number) with z per site so that all z 

spins at each site are pointing in the same direction, and dividing 

that result by the total number of configurations of zN spins over the 

N sites of the lattice, including those that are not physically allowed.

G. Figures for Chapter II



figure 2.1
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Figure 2.2 The three ordered phases which appear in the phase diagram of the

nearest-neighbor face-centered-cubic Ising antiferromagnet. Each 

cube shows a small section of three (001) planes. Dark symbols 

represent lattice sites that have spins pointing mosdy up, and the 

lighter circles are lattice sites with spins that point mostly down. 

The phase (a) is completely disordered; all sublattices are equivalent 

and may have most of their spins pointing either up or down (in a 

nonzero external magnetic field), or there may be equal numbers of 

up and down spins. Phase (b) is the L10 (AB) phase. This phase 

has two sublattices in which the spins are pointing mostly down, and 

two sublattices in which the spins are pointing mostly up. Structure 

(c) is the Ll2 (A3B) phase. In this phase, three sublattices have 

their spins pointing mostly up and one sublattice has its spins point­

ing mostly down (up is in the direction of the external field).

\



figure 2.2
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Figure 2.3 The four possible (001) planes of the perfectly ordered /i = 0, 

7 = 0, fee Ising antiferromagnet. Each dark (light) symbol 

represents an up (down) spin. The planes labelled Ba and Bb are 

the configurations produced by placing planes a and b, respectively, 

on top of plane B. The dashed boxes contain one of the nearest- 

neighbor tetrahedra which compose the fee lattice. Each of these 

tetrahedra is in the minimal energy configuration, containing two up 

spins and two down spins. The planes can be stacked in any order: 

(...ZzZzZzZz...), where each Z (z) is a plane of type A (a) or B (b), 

and the energy is still minimal.
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Figure 2.4 The four-site connected clusters which distinguish between the states 

in the ground-state manifold of the fee Ising antiferromagnet. The 

lines represent nearest-neighbor bonds. The planes are labelled as in 

figure 2.3. The cluster in (i) contains one site from the upper plane 

which is type A, two sites firom the central plane which is type a, 

and one site from the lower plane, also of type A. The energy asso­

ciated with flipping all four spins in this cluster is 16J. The cluster 

in (ii) contains one site from the upper plane which is type A, two 

sites from the central plane which is type a, and one site from the 

lower plane which is type B. This type of,cluster exists (at zero 

temperature) only if an antiphase boundary. The energy associated 

with flipping these spins is (32/ ± Ah) where the sign is chosen to
- 'V'

reflect the orientation of the external magnetic field. The result of 

one antiphase boundary is to replace n2 clusters of type (/) with 

clusters of type (ii) which clearly alters the excitation spectrum of 

the system.
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Figure 2.5 The dimensionless heat capacity per site, du/dr, where u is the 

internal energy and x = p_1, for a three-dimensional system for both 

correlated and uncorrelated systems plotted versus p. The correlated 

system has parameters y0 = 0-7 and y — 0.2 While the correlated sys­

tem is considerably more complex than the collection of non­

interacting two-state systems, the heat capacity still displays the 

characterisric Schottky anomaly.
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Figure 2.6 The concentration of antiphase boundaries plotted as a function of 

Pe/(1 + pe) for the one-dimensional system for three values of the 

parameters: (a) y0 = 0.8 and y= 0.1; (b) y0 = 0.8 and y= 0.3; and 

(c) Yo = 0.8 and y = 0.6. The abscissae are zero at p = 0 and one at 

P = 00. [Antiphase boundaries are defined mathematically in one 

dimension by putting d = 1 in expression (2.6).] The curves display 

a minimum in the concentration of antiphase boundaries at some 

intermediate temperature. For some range of temperatures, the anti­

phase structure actually becomes more ordered as the temperature is 

increased. The depth of the minimum is strongly dependent on the 

antiphase excitation gap, 2yE, which determines the energy 

difference between excitations involving an antiphase boundary and 

those which do not. The minimum is deeper for the larger values of

r-
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Figure 2.7 The concentration of antiphase boundaries plotted as a function of

pe/(l + (5e) for three-dimensional systems of finite size n3 for 

Yo = 0.5 and y = 0.2. The abscissae are zero at (3 = 0 and one at 

(3 =«». The curves all display a minimum in the concentration of 

antiphase boundaries at some intermediate temperature. The depth 

of the minimum is strongly dependent on the size of the sample and 

is deeper for larger samples. The depth of the minimum also 

depends on y.
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Figure 2.8 The concentration of antiphase boundaries plotted as a function of 

pe/(l + pe) for three-dimensional systems of finite size n3 for 

Yo = 0.8 and y = 0.6. The abscissae are zero at p = 0 and one at 

P = '». The curves display a minimum in the concentration of anti­

phase boundaries at some intermediate temperature. The depth of 

the minimum is strongly dependent on the size of the sample. The 

minima of the curves are deeper in this plot than they are for their 

counterparts in figure 2.7 because of the larger value of Y- The 

n = 16 case displays a considerable range of temperature for which 

the concentration of antiphase boundaries is numerically negligible. 

In the thermodynamic limit, n -»<*>, the concentration of antiphase 

boundaries is zero over the entire range of P (except the endpoints 

P = 0 and P = <*>).
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Figure 2.9 The equilibrium phase diagrams of the nearest-neighbor fee Ising 

antiferromagnet predicted by the CVM24 (dashed line) and Monte 

Carlo26 (solid line) methods. The transition temperature predicted 

by the Monte Carlo results is depressed relative to those predicted 

by CVM. The model constructed here suggests that the Monte 

Carlo results are influenced by the presence of antiphase boundaries 

which do not appear in an infinite system.
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Chapter III: Magnetic Structure of the Surface of EuTe

A. Introduction

Recent low-energy-electron-diffraction experiments, performed by V. A. Grazhulis 

et al} revealed a complex magnetic stracture for the (001) surface of EuTe, which 

included periodic structures incommensurable with the underlying lattice. Furthermore, 

the periodicity of the magnetic structure changed as the temperature varied.

This is a surprising result. Incommensurable structures are usually the result of

Fermi-surface effects2-4; the incommensurable structure arises from a Fermi-surface

instability as in the case of a charge-density wave. The periodicity of the structure is
*

related to the distance which spans the Fermi surface (i.e. -k^ to kF) and there is no 

a priori reason to expect this length scale to be commensurable with the underlying
• ' A %

lattice. (A distortion with a wavelength of 2kF opens a gap at the Fermi level, thus 

lowering the energy.) EuTe, a semiconductor, has no Fermi surface. The stability of 

incommensurable structures in this system appears somewhat puzzling.

Solving the puzzle requires an understanding of magnetic interactions responsible 

for the behavior of the bulk. EuTe crystallizes in the rock-salt stracture. Its magne­

tism results from the strongly localized 4/-electrons of the Eu atoms; the net spin on 

each site is 7/2.

Since the spins are well localized, the Heisenberg Hamiltonian discussed in 

chapter I models the magnetism of this compound. There are three exchange interac­

tions which, when taken together, determine the stable magnetic phases of bulk EuTe. 

The exchange interactions described below can all be derived from a single Hamil­

tonian5, so the separation into three distinct types, although customary, is somewhat 

misleading. The three exchange interactions are actually special cases of the more 

general exchange process. (There are other interactions which may be important for 

the stability of certain magnetic structures; the dipole-dipole interaction6, which can be
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included in the effective exchange interactions, and the anisotropy energy, which is 

neglected in the following calculation.)

The first is the direct exchange between nearest-neighbor Eu spins. This 

interaction’s strength depends on the direct overlap of the wavefiinctions of two sites. 

Since the Eu 4-/ wavefiinctions are very localized, this overlap is quite small, as is 

the resulting exchange.

Superexchange, first described by Kramers7 and later by Anderson8, essentially

determines the magnetic properties of bulk EuTe. In the rock-salt structure of EuTe,

each Eu spin couples to its next-nearest-neighbor Eu spins through the p -orbitals of a

Te atom. The ions are arranged collinearly, Eu-Te-Eu. The superexchange is medi-
* -

ated by the filled p -shell of the Te anion as shown in figure 3.1. The first step in this 

process involves the hopping of one of the p -shelLelectrons onto a neighboring cation 

[figure 3.1(a)]. In the second step, a direct exchange between the remaining anion 

electron and an electron on the Other cation adjacent to that anion takes place [figure 

3.1(b)]. The final step is the return of an electron from the doubly occupied cation 

[figure 3.1(c)] to the anion. In the final state, the cation spins have been exchanged.

Superexchange only connects spins aligned antiferromagnetically, and, since the 

process appears in second-order perturbation theory, always results in a decrease in 

energy. The mediation of superexchange by the p -orbitals of the anion, implies sensi­

tivity to the arrangement of the cation-anion-cation system. Superexchange only con­

tributes significantly when the three ions are collinear and connected by a single p- 

orbital.9 Hence nearest-neighbor spins in EuTe do not interact via superexchange (here, 

nearest-neighbor refers to only the atomic sites with spins, the Eu atoms, and does not 

include the spinless sites, the Te atoms).

The stable magnetic structure resulting from this interaction is that shown in 

figure 3.2. In this arrangement, each spin aligns antiferromagnetically with its six 

next-nearest-neighbor spins, thus minimizing the superexchange energy. This is the
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observed magnetic structure10 of NiO, MnO, FeO, and EuTe.

Another exchange mechanism plays a role in determining the magnetic structure 

of EuTe. In order for the direct- and super-exchanges to take place, the Wannier states 

on the two sites must overlap directly, or with a common anion. In systems composed 

of localized spins embedded in a "sea" of conduction electrons, the magnetic interac­

tion can be mediated via the non-magnetic "sea." The conduction-band electrons "feel" 

the spin orientation of the 4/ -electrons at one site, and are in a configuration reflecting 

this orientation. The 4/ -electrons at another site can then sense the orientation of the 

original site’s spin through the configuration of the conduction electrons. This

mechanism, first suggested by Ruderman and Kittel11 as an explanation for the cou-
\ -

pling between nuclear moments in a metal, is referred to as the indirect exchange 

interaction. The Hamiltonian is still of the Heisenberg form but now, for a free- 

electron gas, the effective exchange constant appears as

sin 2kpRij ~ 2JcpRij cos 2kpR^j

. OkpRij)4 .

where Jgff is the exchange constant for the 4/-electron conduction-electron exchange, 

kF is the magnitude of the Fermi wavevector of the metal, and is the distance 

between the rare earth metal sites i and j. This long-ranged interaction, which can be 

ferromagnetic or antiferromagnetic, depending on , decreases only as 1//?^. It has 

been applied to the study of rare-earth magnetism12, nuclear magnetism11, and even 

spin glasses13.

As mentioned above, EuTe is a semiconductor which implies that there are only a 

small number of conduction electrons. The indirect exchange interaction can still be 

important; electrons, virtually excited into the conduction band, can mediate the 

indirect exchange. One expects this interaction to be very sensitive to the structure of 

the electronic states above the Fermi level.



64

The exchange interactions important in the bulk are also important near the sur­

face, and are probably related to the stabilization of the incommensurable magnetic 

structures. Other possibilities, however, do exist. For example, a rotational magnetic 

field or incommensurable potential would stabilize the incommensurable structures, but 

both of these options seem artificial. It is argued below that the incommensurable 

magnetic structures arise naturally from the competition between nearest-neighbor 

exchange and the antiferromagnetic next-nearest-neighbor exchange involving spins 

near the surface. (The anisotropy energy of the spins is neglected in this argument. 

While it is possible that this energy plays a role in stabilizing the incommensurable 

structures, it is shown below that this contribution is not necessary. It also seems 

unlikely that anisotropy would destabilize the incommensurable structures.)

Some evidence suggests that competing interactions may be responsible for the 

stability of the incommensurable structure. Table 3.1 contains the experimentally14 

derived exchange constants (for both nearest- and next-nearest-neighbor exchange 

interactions) and the critical temperatures for the europium monochalcogenides. In 

table 3.1, Jm is the net nearest-neighbor exchange and is the net next-nearest- 

neighbor exchange interaction. The critical temperature is either the Curie point or the 

Ndel temperature, depending on whether the system is ferromagnetic or antiferromag­

netic. The reported critical temperature for EuTe is only approximate.

Perhaps the most interesting feature of table 3.1 is the double entry for EuSe. 

This compound is ferromagnetic below 2.8 K and antiferromagnetic between 2.8 K and 

4.6 K. Thus the system undergoes a transition from a ferromagnetic state to an anti- 

fenomagnetic state. The only magnetic system, of which the author is aware, which 

displays the same type of behavior without the influence of an external field is the 

Axial-Next-Nearest-Neighbor-Ising (ANNNI)15 model, in which competing exchange 

interactions result in long-period magnetic structures with a temperature dependent 

periodicity. Table 3.1 also indicates a trend in the net exchange energies. As one
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moves down the periodic table from O to Te, the next-nearest-neighbor exchange in 

EuX (where X is O, S, Se or Te) grows and the nearest-neighbor exchange decreases. 

At the point where the two exchange constants are nearly equal, EuSe, the transition 

from a ferromagnetic state to the antiferromagnetic state is observed. (It should be 

noted that this argument is somewhat circular, the exchange integrals are calculated 

from experimental data within the Heisenberg theory and are not measured directly, 

indicating that this observation is merely self-consistent) EuTe is an antiferromagnet, 

as indicated in table 3.1, but subde electronic changes could shift it into the ferromag­

netic regime.

In addition to the thermodynamic effects of change in temperature, the exchange 

integrals themselves could be temperature dependent. For example, changes in tem­

perature will alter the occupation of the conduction band, thus affecting the exchange 

integrals. A small change in exchange integrals could result in a large change in 

periodicity. The presence of the surface is sure to alter the values of the exchange 

interactions involving spins near the surface, either directly through the change in sym­

metry and its effects on the electronic structure near the surface, or indirectly, through 

buckling, thermal expansion, or some other surface effect. Furthermore, these changes 

in the exchange interactions near the surface are likely to depend sensitively on the 

temperature, thus creating a temperature dependent periodicity.

It will be shown below that competing exchange interactions are capable of pro­

ducing complex, incommensurable magnetic structures on the surface of EuTe. The 

proposed model Hamiltonian is the simple Heisenberg Hamiltonian discussed in 

chapter I, suitably adapted for use near a surface. The incommensurable magnetic 

structures are demonstrated to be stable for a wide range of the exchange interactions, 

and are predicted to be clearly visible in low-energy-electron-diffraction experiments.

The surfaces of the europium monochalcogenides and similar compounds are 

expected to display anomalous magnetic properties.16 For example, Castiel17 calculated
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the surface magnons of the unreconstructed {001} and {111} surfaces of the EuX fer- 

romagnets. His calculation predicted soft magnons on both surfaces, demonstrating 

their tendency to reconstruct magnetically. The calculation involved only normal 

modes, however, and no attempt was made to calculate the actual ground-state spin 

structure.

Experimentally, techniques which probe the surface magnetic structure either 

directly, such as low-energy electron diffraction (LEED),16,18"20 and spin-polarized 

low-energy electron diffraction (SPLEED),16 or indirectly, for example spin-polarized 

photoemission,21”23 have provided valuable experimental results. Photoemission 

experiments on EuO suggest the presence of a paramagnetic sheet on its {001} sur­

faces.24,25 SPLEED studies of Gd give a surface Curie point a full 22 K above the 

bulk value.26 In the experiment which prompted this research,1 Grazhulis and colla­

borators report the appearance of symmetry-breaking incommensurable surface spin- 

structures with temperature dependent wavevectors in low-temperature (=10 K) low- 

energy electron diffraction studies of single-crystal EuTe {001} surfaces obtained by 

cleavage under ultrahigh vacuum conditions.

The calculation presented here demonstrates that the stability of the incommensur­

able magnetic structures on the {001} surfaces of EuTe, observed by Grazhulis and 

coworkers, most likely originates in the competition between relatively large surface 

nearest-neighbor exchanges and the second-nearest-neighbor superexchange interactions 

characteristic of the bulk. (This possibility has been clearly demonstrated in the 

ANNNI15,27 model.) The calculation, based on a classical Heisenberg Hamiltonian at 

zero temperature, including all possible commensurable structures plus one class of 

incommensurable surface spin arrangements, yields a complex phase-stability diagram 

(as a function of surface exchange integrals) with regions of commensurable and 

incommensurable ground-state-structures. There is no need to introduce potentials 

incommensurable with the lattice to stabilize the incommensurable structures.28,29
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Section B of this chapter deals with the details of the model and the calculation, 

section C contains the results and discussion, and section D presents the conclusions.

B. Calculations

The Eu atoms of the (001) surface of EuTe are sketched in figure 3.3. The orien­

tation shown for the spins are those chosen for the bulk antiferromagnet.30 Three 

exchange integrals enter the calculation: 7, the superexchange between second-nearest 

neighbors throughout the crystal; Ky the net exchange between nearest neighbors on 

the surface; and L, the net exchange between nearest neighbors where one atom is in

the surface layer, and the other is in the second layer. Because only the antiferromag-
»

nets are considered, J is restricted tp. be positive, but K and L are allowed to have 

either sign. (7, K and L include contributions from the dipole-dipole interaction and 

the direct, indirect and superexchange processes.) Nearest-neighbor exchange in the 

bulk is neglected and all layers, except the two surface layers, are assumed to have the 

bulk antiferromagnetic configuration, which amounts to a renormalization of the 

exchange interactions. The model neglects anisotropy energy and all further neighbor 

exchanges, but retains the minimum number of interactions needed for describing the 

physical mechanism. The total energy is written

E =7 £ SrSj +KZ SrSj +L£ SrSj , (3.1)
m <i)> m

where S; is a classical spin of unit magnitude fixed at site /, (ij) designates a second- 

nearest-neighbor pair, <ij> is a nearest-neighbor pair with both spins at the surface, 

and [/y] is a nearest-neighbor pair with one spin at the surface and one in the second 

layer, the sums run over an infinite half space.

Exchange interactions depend quite sensitively on a variety of parameters includ­

ing pressure, doping, temperature, and proximity to a surface.12,13,16,31 The properties 

of EuSe suggest that the exchange interactions in the europium monochalcogenides
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may be sensitive to changes in temperature. It is possible to model this temperature 

dependence by varying exchange interactions at zero temperature. Additionally, the 

nearest-neighbor surface exchange is more sensitive to the effects of the loss of three- 

dimensional symmetry at the surface, as reflected in the electronic structure and the 

buckling of the surface, than the second-nearest-neighbor superexchange. (Table 3.1 

indicates that the nearest-neighbor exchange is more sensitive to the changes in elec­

tronic structure and atomic size of the chalcogenides than the next-nearest-neighbor 

exchange.) This model, therefore, investigates a range of surface exchange interactions, 

measured relative to the bulk superexchange strength.

The two-dimensional unit cell chosen for the calculation contains four atoms from
\ -

each plane. The cell, with linear dimension b, and its Brillouin zone are shown in 

figure 3.4. (The spins are depicted in the chosen bulk configuration.) The points Y 

and Y' in the Brillouin zone are not equivalent because the spin domain structure of 

the bulk introduces a preferred direction on the surface.

The Eu face-centered-cubic lattice is divided into four interpenetrating simple- 

cubic lattices each of which is further divided into two interpenetrating face-centered- 

cubic lattices. Each simple-cubic sublattice is denoted by a subscript i which runs 

from A to D. Each face-centered-cubic sub-sublattice corresponding to a given 

simple-cubic sublattice is designated by the subscript (i, which is either a or p.

The trial spins have the form of a "frozen", finite-amplitude spin-wave:

SiH(R) = xiVL cos( k-R + $iil) it + yiVLsin( k-R + <|>IH ) ? + z,^ 2 , (3.2)

=: = 1 ” Zip, »

where 2 in a unit vector in the direction of the bulk spin quantization, R refers to the 

position of the unit cell, and k lies in the Brillouin zone of figure 3.4. The definition 

used here is such that states with k = 0 are referred to as commensurable, and states 

with k * 0 are called incommensurable. The trial spins have magnitude unity and
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expression (3.1) is easily summed to obtain a closed expression for the energy per unit 

cell for all k, including those k at the zone edge.

All spins in planes below the first two layers are kept fixed:

= 0 ’ (3-3a) 

and

zia = 1 > zi$ =-1 • (3.3b)

The ansatz (3.2) is substituted into expression (3.1), and the total energy for given

values of (AT//) and (LU) in the range -5 £ (KU) £ 5 and —5(LA/) ^ 5 is minim-
i -

ized with respect to , y,H, k, and 

C. Results and Discussion

The minimum-energy phase-stability diagram for commensurable structures 

(k = 0) is shown in figure 3.5. The contours are the energy per unit cell of the two 

surface layers measured in units of J. The dark lines represent phase boundaries of 

second or higher order: the orientations of the spins change continuously with (KU) 

and (LU).

The bulk phase (figure 3.3) is the lowest energy commensurable spin structure in 

region (I) of parameter space. The two surface layers of the this phase have energy 

per unit cell -24 J.

The minimum energy commensurable spin structure in region (II) can be 

described analytically in terms of the parameter (KU). The second-layer spins are in 

the bulk configuration [equations (3.3)], and the first layer spins are given by

Sao,(R) = [1-1/14 {KU) - 8 ]2 ]1/2 S + [ l/[ 4 {KU) - 8 ] ] 2 ,(3.4)
Sj„(R) = -[ 1 - l/[ 4 (KU) - 8 ]2 ]1/J * + [ l/[ 4 (KU) - 8 ] ] 2 ,
Sa9(R) = [ 1 - l/[ 4 (KU) - 8 ]2 l1* * - [ l/[ 4 (KU) - 8 ] ] 2 ,
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S„P(R) = -[ 1 - l/[ 4 (KU) - 8 ]2 ]la S - [ l/[ 4 (KU) - 8 ] ] * .

The expression for the energy per unit cell of the two surface layers is

£ = -8 {KU) - 4 -[ l/[2 {KU) - 4 ] ] (3.5)

The (I)-(n) boundary is at {KU) - 2.25. As {KU) is increased with {LU) held con­

stant, the spins tend more and more toward the nearest-neighbor square- 

antiferromagnet (NNSA) in which every surface spin is aligned exactly antiparallel to 

its four nearest-neighbor surface spins, and all surface spins lie in the (001) plane. 

The configuration of the surface spins for {KU) - 2.50 is shown in figure 3.6, and

table 3.2 displays the corresponding values of the variational parameters of equation
% -

(3.2). (The units and coordinate system used for k in this and all further tables is such 

that the points Y' and Y are given by [0.000,0.5001 and [0.500,0.000] respectively.)

The variational parameters for a spin configuration typical of region (HI) are 

given in table 3.3. In this region, the spins in each of the two surface planes have 

their z-components aligned in the bulk configuration, and their xy -components aligned 

ferromagnetically. The two surface planes then align with xy -components antiparallel 

[{LU) > 0], or parallel [{LU) < 0]. The canting of the spins in both the surface layer 

and the second layer depends on {LU) and {KU). A positive value for {KU) should 

result in partial NNSA alignment of the surface spins, except when the {LU) interac­

tion overwhelms the {KU) interaction, as it does in region (HI). For {KU) < 0, there 

is no competition between the two types of nearest-neighbor interactions; both interac­

tions favor a partially ferromagnetic alignment of the surface spins.

The regions labelled (TVa) and (TV*,) display the most complicated behavior of all 

the commensurable structures. Table 3.4 contains the parameters describing the stable 

structure at the point {KU) = 3.0 , {LU) = 4.0. The surface layer is in a spiral-type 

state and the second-layer spins are aligned in a fashion similar to die second-layer 

spins in region (IQ), i.e. mostly antiparallel to the surface layer for {LU) > 0 (IVa)
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and mostly parallel to the surface layer for {LU) <0 (JWb). This configuration is the 

result of the "frustration" arising from the competition between {KU) and {LU).

The ±{LU) symmetry of figure 3.5 is easily understood. As stated above, the 

nearest-neighbor interplane exchange tends to align the in-plane components of the 

spins in each of the two (001) planes nearest to the surface ferromagnetically. The 

symmetry in ±{LU) stems from the fact that the two partially ferromagnetic surface 

planes can align in either of two directions: ferromagnetically or antiferromagnetically, 

depending on the sign of {LU). Even though the configurations of the spins are drast­

ically different for ± {LU), the resulting minimum energies are identical. (This sym­

metry continues to hold when incommensurable structures are included in the calcula-
* -

don, although the configurations are considerably more complicated.)

Inclusion of incommensurable spin structures * 0 in equation (3.2)] yields the 

phase-stability diagram of figure 3.7. The most notable difference from figure 3.5 is 

the appearance of the two shaded regions in which the structures of minimum energy 

are incommensurable with the underlying lattice. Because all commensurable struc­

tures have been included and explicitly calculated, the ground state in the shaded 

regions is guaranteed to be incommensurable. Since the trial state equation (3.2) does 

not include all possible incommensurable structures, the true incommensurable 

ground states may be different from the ones reported here.

The structures labelled (i), (ii), and (iii) are equivalent to those labelled (I), (II), 

and (EH) in figure 3.5. The incommensurable structures are of two types labelled (iv) 

and (v). The stable structures in regions (iv) are the finite-amplitude "frozen" spin- 

waves, whose z-components are reminiscent of the bulk antiferromagnetic state. The 

structure appearing in regions (v) are also the "frozen" spin-waves, but their 

z-components are suggestive of a cross between the bulk-antiferromagnetic state and 

state similar to NNSA, but with the spins all pointing in the ±z direction instead of 

lying in the xy plane (z-NNSA). As in the commensurable case, the subscripts a and
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b refer to the manner in which the second layer spins align themselves with the sur­

face layer, i.e. generally antiparallel or parallel, respectively. Typical spin parameters 

for these two regions are given in tables 3.5, 3.6, and 3.7. Figures 3.8, 3.9, and 3.10 

are the incommensurable spin structures corresponding to the parameters of tables 3.5 

through 3.7 respectively. The structures in figures 3.8 and 3.9 have the same energy, 

even though their k-vectors are orthogonal to each other.

The k-vectors of the minimum-energy incommensurable states lie along either the 

line from F-to-Y or the line from F-to-Y' (figure 3.4). By symmetry, the minimum- 

energy states with wavevectors ±k are degenerate. The structures in regions (iv) have 

an additional degeneracy: the minimum-energy state with wavevector on the line from 

F-to-Y is degenerate with the state with wavevector of the same magnitude on the line 

from F-to-Y'. This degeneracy is somewhat surprising given the domain asymmetry of 

the bulk configuration, but it can be understood as follows. The Heisenberg interac­

tions only couple respective components of the two spins: the x -component of one 

spin is coupled to the x -component of another, and. so on. The asymmetry of the bulk 

lies entirely in the z-component of the spins. Since the z-components of the spins 

have no k dependence, one might expect the F-to-Y and F-to-Y' directions to be 

equivalent This is certainly true if the z-components of all the spins in a given layer 

have the same magnitude, as they do in regions (iv). If, however, the z -components of 

a given plane are not of uniform magnitude, as in regions (v), the asymmetry of the 

bulk is felt through the corresponding magnitudes of the xy -components of the spins, 

which are also no longer uniform. These xy -components do depend directly on k, and 

so the F-to-Y and F-to-Y' directions axe not equivalent Examination of tables 3.5 

through 3.7 and figures 3.8 through 3.10 reveal that the conditions for the additional 

degeneracy are fulfilled in regions (iv) but not in regions (v). The interaction responsi­

ble for lifting the degeneracy in regions (v) is AT, the nearest-neighbor surface interac­

tion. The observed z-NNSA-bulk mixed state is a configuration resulting from the
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compromise between a large antiferromagnetic {KU) and the constraints imposed by 

equation (3.2).

The (i)-(iv) and (ii)-(v) boundaries of figure 3.7 are, in k-space, discontinuous 

transitions: k goes discontinuously from zero to a finite value at the boundary. The 

xy -amplitudes of the "frozen" spin-waves increase continuously from zero to a finite 

value. The (iii)-(iv) boundaries represent higher order transitions. The (iv)-(v) boun­

daries are even more complicated: the xy -amplitudes change continuously across the 

boundary, as does the magnitude of k, but the degeneracy goes from fourfold to two­

fold when crossing from regions (iv) into regions (v).

The value of k for the minimum energy state can be very •sensitive to changes in
i -

the surface exchange integrals. Extreme sensitivity occurs in the region of parameter 

space thought to correspond to EuTe (i.e. antifeuomagnetic second-nearest-neighbor 

exchange and ferromagnetic nearest-neighbor exchanges). Hence the small changes in 

the nearest-neighbor surface exchange expected to arise from temperature variation 

could generate large, experimentally observable shifts in k.

A notable feature of the results presented here is that the nearest-neighbor cou­

pling between the surface and second layers is necessary for the stability of the incom­

mensurable "frozen" spin waves. The surface-only nearest-neighbor exchange, how­

ever, is not required for their stability. The region of stability of the incommensurable 

structures completely covers the regions (IV) of the commensurable phase-stability 

diagram, as one might expect, for these are exactly the regions of parameter space in 

which the spins are most "frustrated".

The magnetic structure of the surface should lead to Bragg diffraction peaks of 

low-energy election diffraction experiments.20,21 The intensity of the LEED beams at 

wavevector Q due to magnetic structure is proportional to the squared magnitude of 

the Fourier transform of the magnetization IS(Q)I2. Since some of the magnetic 

structure peaks do not correspond to chemical diffraction beams, they should be
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readily observed,32 even with unpolarized electrons.

The positions of the beams diffracted by magnetic structures are designated by 

the vector Q. The magnituces of the vectors are measured in units of [2it/b]. The 

diffracted beams at Q = [2n , 2m + 1] (n and m are integers) are those associated 

with the bulk-antiferromagnetic structure. The beams Q = [2n + 1,2m + 1] are asso­

ciated with NNSA surface structure. The beams at Q = [2n , 2m ] are those associated 

with the chemical periodicity of the surface, and the ferromagnetic-surface structures 

as well. The beams due to incommensurable magnetic structure are those described by 

nonintegral n or m. The structure factors calculated here are those of the surface 

layer only, and are calculated assuming only, a single "frozen" spin wave.
V -

Figure 3.11(a) is a plot of the structure factors for nonzero diffraction beams as a 

function of (L/J) for (K/J) = 0. The spin structures, used in constructing this plot all 

have k along the F-to-Y line, but the plot would be identical for k along the F-to-Y' 

line. The solid line is the structure factor for the bulk-antiferromagnetic beams, the 

chain-dot line is the structure factor for the ferromagnetic beams, and the dashed line 

is used for NNSA-like beams. The dotted line corresponds to the beams diffracted by 

the incommensurable magnetic structure, which, for the choice of k’s used here, are 

located at Q = [2n , 2m] ± k for 4.0 > (L/J) > 2.8 and at Q = [2n + 1 , 2m] ± k for 

1.414 < (LU) < 2.8. Figure 3.11(b) is a schematic diagram of the expected LEED 

pattern. Figure 3.12 plots the k-vectors of the incommensurable diffraction beams in 

figure 3.11(a). From (LU) = 0 to (LU) = 1.414 the surface structure is the bulk anti­

ferromagnet At (LU) = 1.414 the surface undergoes a transition to an incommensur­

able state clearly shown by the jump in k seen in figure 3.12. It is at this value of 

LU that the LEED beams arising from the incommensurable magnetic structure appear 

in the positions indicated in figure 3.11(b). As (LU) increases further, more of the 

scattering strength is at the incommensurable peaks. Simultaneously, however, k 

approaches the F-point. At (LU) - 4.0, the two incommensurable spots merge at the
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zone center. Although in figure 3.11(a) this merging appears to be a discontinuous 

transition, it is not. It is the usual factor of two encountered in incommensurable- 

commensurable transitions. The distinct jump at (LU) = 4.0 appears because for 

(LU) < 4.0 the electrons are scattered into two spots with equal intensity, whereas for 

(LU) > 4.0 the two peaks merge into one [figure 3.11(b)]. The graph in figure 

3.11(a) shows the structure factor for only one of the two equivalent spots.

Figure 3.13 is a plot of the magnetic structure factors for (LU) = 3.00 as a func­

tion of (KU) for the region near the (iva)-(va) boundary. Here the k-vectors of the 

incommensurable state were chosen to lie along the F-to-Y' line. The chain-dash line

is the magnetic structure factor of the incommensurable diffraction beams at the points
* -

Q = [2n + 1 , 2m + 1] ± k. The dotted line is the structure factor for incommensur­

able beams at Q = [2n ,2m + 1] ± k. The structural transition at (KU) = 2.56 is 

clearly evident and is continuous.

Figures 3.11, 3.12 and 3.13 indicate that the LEED patterns expected from the 

different structures should be very sensitive to relatively small changes in surface 

exchange integrals. LEED experiments performed on these materials, therefore, should 

be able to detect magnetic structural changes experimentally induced by small changes 

in the surface exchange integrals.

D. Conclusion

The phase-stability diagram of the simple classical Heisenberg Hamiltonian 

[expression (3.1)], found with trial states of the form given by expression (3.2), is 

remarkably complex. It shows entire regions of parameter space in which incommen­

surable spin structures are the stable ground state. Since all commensurable structures 

are included in this model, the incommensurable regions of the phase-stability diagram 

(figure 3.7) are certain to have incommensurable ground states, which may be the 

"frozen" spin waves of equation (3.2), or more complex incommensurable structures. 

These incommensurable surface structures are not stabilized by Fermi-surface effects
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or incommensurable potentials, but are the result of competing nearest- and second- 

nearest-neighbor exchange interactions. Nearest-neighbor coupling between the first 

and second layers seems to be necessary for the stability of the incommensurable 

structures.

The stable incommensurable "frozen" spin waves used in the calculation are of 

two basic types: one reminiscent of the bulk structure, type (iv), and one which is sug­

gestive of a mixture of the bulk and z-NNSA structures, type (v). The fourfold degen­

eracy of the (iv)-type phase and the twofold degeneracy of the (v)-type phase are 

understood in terms of the coupling to the bulk: the xy-components of the (iv)-type 

phase surface spins do not feel the . asymmetry of the bulk because the z-components 

of the spins in each layer are uniform. Differing from the properties of the (iv)-type 

phases, the (v)-type phases have nonuniform z -components of the surface spins and 

the transverse xy -components of the spins "feel" the asymmetry of the bulk (through 

their nonuniform magnitude) thereby lifting the degeneracy.

It is possible to choose the parameters (K/J) and (L/J) to stabilize the state of 

any k-vector along the F-to-Y or the F-to-Y' line. In some regions of parameter 

space, which may also coincide with the parameters corresponding to EuTe, the k- 

vector of the incommensurable stable state is very sensitive to small changes in the 

parameters.

Since the LEED patterns of these antiferromagnets are expected to display addi­

tional diffraction beams caused by magnetic structure at the surface, the magnetic 

structure factors for several interesting cases were calculated. They revealed that the 

LEED pattern should be very sensitive to changes in surface exchange integrals. This 

sensitivity, expected in both location and intensity of the diffraction beams, should be 

easily observed.

In conclusion, it has been demonstrated that competing nearest- and next-nearest- 

neighbor exchange interactions involving the surface spins could be the stabilization
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mechanism for the observed incommensurable structures. Difficulties inherent in the 

experiments and the theory, however, make direct application for the extraction of the 

surface exchange integrals difficult.
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F. Tables for Chapter ED

Table 3.1

Experimentally Determined Properties 

of the Europium Monochalcogenides

Compound Structure Critical Temperature (K) Jm (K) Jm* (K)

EuO ferro. 69.4 -0.75 0.06

EuS ferro. 16.5 -0.20 0.08

EuSe ferro. 2.8\ - -0.13 0.11

EuSe antiferro. 4.6 -0.13 0.11

EuTe antiferro. io • • - -0.03 0.17
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Table 3.2

Surface Spins Typical of Region (II)

{KU) = 2.5

k = [0,0]

Surface Energy per Unit Cell = --24.6145 J

Zi\L

Aa 0.8660 0.8660 0.5000 0.0000

Ap 0.8660 0.8660 -0.5000 0.0000

Ba -0.8660 0.8660 0.5000 0.0000

5p -0.8660 0.8660 -0.5000 0.0000

Ca 0.0000 '' 0.0000 1.0000 0.0000

cp 0.0000 o.oooo. ..... -1.0000 0.0000

Da 0.0000 0.0000 1.0000 0.0000

Dp 0.0000 0.0000 -1.0000 0.0000
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Surface Spins Typical of Region (ID) 

(KU) = -2.50 and (LU) =2.50 

k = [0,0]

Surface Energy per Unit Cell = -45.0090 J

Table 3.3

zi\L

Act. 0.9961 0.9961 0.0882 0.0409

Ap 0.9961 0.9961 -0.0882 0.0409

Bet 0.9961 0.9961 0.0882 0.0409

5p 0.9961 0.9961 -0.0882 0.0409

Ca -0.9993 -0.9993 0.0368 0.0409

cp -0.9993 -0.9993. -0.0368 0.0409

Da -0.9993 -0.9993 0.0368 0.0409

D8 -0.9993 -0.9993 -0.0368 0.0409



83

Table 3.4

Surface Spins Typical of Region (IV)

(KU) = 3.00 and (LU) =

k = [0,0]

Surface Energy per Unit Cell = -

4.00

-30.5833 J

xi\L yin 2 ip 4*1 n

Aa 0.9683 0.9683 0.2499 0.8872

AP 0.9683 0.9683 -0.2499 0.8872

Ba 0.9683 -0.9683 0.2499 0.8700

5P 0.9683 -0.9683 -0.2499 0.8700

Ca 0.9270 -0.9270 0.3751 0.0085

cp 0.9270 -0.9270 -0.3751 0.0085

Da 0.9270 -0.9270 0.3751 0.0085

DP 0.9270 -0.9270 -0.3751 0.0085
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Surface Spins Typical of Region (iv) 

(«■//) = 2.25 and (LU) = 2.25 

k = [0.0000,0.2445]

Surface Energy per Unit Cell = -25.0471 J

Table 3.5

zi\l

Aa -0.7321 -0.7321 0.6812 0.0000

Ap -0.7321 -0.7321 -0.6812 -2.3734

Ba -0.7321 -0.7321 0.6812 0.0000

2?p -0.7321 -0.7321 -0.6812 -2.3734

Ca 0.8369 0.8369 0.5474 -5.0965

cp 0.8369 0.8369 -0.5474 -1.1867

Da 0.8369 0.8369 0.5474 -5.0965

Dp 0.8369 0.8369 -0.5474 -1.1867
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Surface Spins of Region (iv)

Table 3.6

{KU) = 2.25 and {LU) = 2.25 

k = [0.2445,0.0000]

Surface Energy per Unit Cell = -25.0471 J

Aa -0.7321 -0.7321 0.6812 0.0000

AP -0.7321 -0.7321 -0.6812 -2.3734

Ba -0.7321 -0.7321 0.6812 -2.3734

5p -0.7321 . -0.7321 -0.6812 0.0000

Ca 0.8369 '' 0.8369 0.5474 -1.1867

cp 0.8369 0.8369. -0.5474 -3.5600

Da 0.8369 0.8369 0.5474 -3.5600

Dp 0.8369 0.8369 -0.5474 -1.1867
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Surface Spins Typical of Region (v)

Table 3.7

{KU) = 3.00 and {LU) = 3.00 

k = [0.0000 , -0.3078]

Surface Energy per Unit Cell = -29.3888 J

xi\i % <biii

Aa 0.3654 0.3654 0.9308 0.0000

AP 0.8842 0.8842 0.5360 -4.1085

Ba 0.8442 0.8442 -0.5360 0.0000

sp 0.3654 0.3654 -0.9308 -4.1085

Ca 0.8800 ' 0.8800 0.4750 2.0542

cp 0.8800 0.8800 -0.4750 -2.0542

Da 0.8800 0.8800 0.4750 2.0542

Dp 0.8800 0.8800 -0.4750 -2.0542
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G. Figures for Chapter HI

Figure 3.1 A schematic description of the superexchange interaction. The cen­

tral dark circle in each picture is the p -orbital of the anion; the light 

circles represent the / -orbitals of the cations. The "propeller-like" 

structures represent the spatial extent of the anion p -orbital. Figure 

3.1(a) is the initial configuration of spins. Figure 3.1(b) is the inter­

mediate state. In this state, one of the anion electrons hops to the 

left cation, and the remaining anion electron undergoes a direct 

exchange with the electron on the the right cation. The dashed 

arrows indicate .this exchange. Figure ’3.1(c) is the final
V -

configuration. One electron from the doubly occupied cation ion has 

returned to the central anion.. Note that the net result of this process 

is the exchange of the electrons on the cations. The interaction is 

inherently antiferromagnetic and cannot proceed if the spins on the 

cations are aligned. Furthermore, the axial nature of the p -orbitals 

ensures that this interaction only operates when the three orbitals are 

spatially collinear. This process enters in second order perturbation 

theory and always reduces the energy.



Figure 3.1
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Figure 3.2 The observed stable magnetic structure of EuTe. The cation spins,

which lie on an fee lattice are pictured. The central "dumb-bell" 

structure represents one p -orbital of the central anion. The axial 

nature of these orbitals ensures that the superexchange mechanism is 

only operative between second-neighbor Eu atoms. The stable mag­

netic structure has each Eu spin aligned antiferromagnetically with 

its six second-neighbors. In this configuration, the spins in each 

(111) plane are aligned ferromagnetically, and then each (111) plane 

is aligned antiferromagnetically with its nearest-neighbor (111) 

planes.
V -



Figure 3.2
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Figure 3.3 The Eu atoms of the (001) surface of EuTe. The spins of the euro­

pium atoms arc indicated in stereographic projections, with dots 

pointing upwards and crosses pointing downwards. The spins are 

depicted in the chosen bulk configuration. The line labelled J 

represents the second-nearest-neighbor superexchange interaction, 

and the line labelled K represents the nearest-neighbor interaction, 

effective among surface atoms only. The nearest-neighbor interac­

tion between a surface europium atom and its four nearest neighbors 

in the plane below (not shown) is represented by L.



Figure 3.3



93

Figure 3.4 The unit cell and the Brillouin zone used for the calculation with all 

spins (indicated in stereographic projections as in figure 3.3) in the 

chosen bulk configuration. The unit cell has linear dimension b as 

shown. The first label on each atom refers to the simple cubic sub­

lattice and the Greek label refers to the face-centered-cubic sub­

sublattice to which that atom belongs. The shaded atoms lie in the 

plane immediately below the surface, the remaining pictured spins 

are in the surface plane. The F-point corresponds t possible com­

mensurable structures. The points Y and Y' are not equivalent 

because of the asymmetry of the bulk spin dorpain structure.

*. '
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Unit Cell

Brillouin Zone

Figure 3.4
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Figure 3.5 The phase-stability diagram for commensurable structures. Region 

(I) is the unreconstructed, bulk-like surface. In regions (II) the vari­

ous spins acquire an xy -component and tilt away form their original 

±z orientation. In the limit {KU) —» «> the surface is a perfect 

nearest-neighbor square-antiferromagnet (NNSA), with surface spins 

aligned in the xy -plane and each surface spin aligned antiparallel to 

its four nearest neighbors in the surface layer. Region (HI) is simi­

lar, but with the surface spins tilting toward a ferromagnetic surface 

configuration. Regions (IVa) and (TVt) correspond to a more com­

plicated spiral-type arrangement of the spins.. The contours are the 

energies per unit cell of the two surface layers of the commensurable 

states in units of J.



Figure 3.5
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Figure 3.6 A stereographic projection of the surface spins for a structure typical 

of region (II) corresponding to the spin parameters in table 3.2. The 

dots denote spins pointing up and the crosses spins pointing down. 

The NNSA character of this state is clearly evident.
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Figure 3.6
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Figure 3.7 The phase-stability diagram for all examined structures. Regions (i), 

(ii), and (iii) are commensurable structures identical to the 

corresponding structures of figure 3.5. The shaded regions are 

incommensurable structures. The incommensurable structures all, as 

found, have a single k-vector. The regions (iv) have an extra degen­

eracy not present in regions (v).



Figure 3.7
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Figure 3.8 A stereographic projection of the surface spins for a structure typical 

of regions (iv) corresponding to the spin parameters in table 3.5. 

The dots denote spins pointing up and the crosses spins pointing 

down. The arrow indicates the direction of k for this state. This 

surface state has a character similar to the bulk configuration, and is 

degenerate with the state pictured in figure 3.9.
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Figure 3.8
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Figure 3.9 A stereographic projection of the surface spins for a structure typical 

of regions (iv) corresponding to the spin parameters in table 3.6. 

The dots denote spins pointing up and the crosses spins pointing 

down. The arrow indicates the direction of k for this state. This 

surface state has a character similar to the bulk configuration, and is 

degenerate with the state pictured in figure 3.8.
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Figure 3.9
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Figure 3.10 A stereographic projection of the surface spins for a structure typical 

of regions (v) corresponding to the spin parameters in table 3.7. The 

dots denote spins pointing up and the crosses spins pointing down. 

The arrow indicates the direction of k for this state. The nearest- 

neighbor square-antiferromagnetic (NNSA) character of this state is 

quite evident.
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Figure 3.10
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Figure 3.11 (a) The structure factor for the various diffraction beams as a func­

tion of (LU) for {KU) - 0. The solid line is the structure factor for 

one of the bulk-like antiferromagnetic spots, the chain-dot line is for 

the surface ferromagnetic structure, and the dotted line is the struc­

ture factor for the incommensurable spot. At {LU) - 4.00, two 

incommensurable spots merge at the zone center, (b) A schematic 

drawing of the LEED pattern expected from surface for the struc­

tures corresponding to the structure factors of figure 3.11(a). The 

structure responsible for each of the peaks is indicated in the box. 

The arrows indicate that those LEED spots move as the exchange 

interactions are varied. Eventually, the incommensurable spots 

merge at the zone center as is described in the text
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Figure 3.12 The k-vectors of the stable magnetic structures used to construct the 

plot in figure 3.11(a). The vectors originate at F and end at the indi­

cated point along the F-to-Y line.
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Figure 3.13 The magnetic structure factor for (LU) = 3.00 as a function of 

(KU) for the minimum energy state chosen to have k along the F- 

to-Y' direction. The solid line is the structure factor for the bulk­

like diffraction beams at Q = [2n , 2m + 1], the dashed line is the 

structure factor for the nearest-neighbor square-antiferromagnet-like 

(NNSA-like) beams at Q = [2/* + 1 , 2m + 1], the dotted line is the 

structure factor for incommensurable spots at 

Q = [2n , 2m + 1] ± k, and the chain-dash line is the structure fac­

tor for incommensurable spots at Q = [2n + 1 , 2m + 1] ± k. The 

structural transition upon crossing the (iva )-(va) boundary at 

(KU) - 2.56 is clearly evident
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Chapter IV: Magnetic Properties of {111} Stacking Faults in Nickel

A. Introduction

The study of systems with complete translational invariance is dramatically 

simplified by judicious application of Bloch’s theorem. Electronic structure calcula­

tions based on this theorem lead directly to accurate predictions of physical properties 

as diverse as the superconducting transition temperature or the expected spectrum of 

the electrons one should observe in a photoemission experiment

"Real-world" systems, however, do not possess the full translational periodicity 

required for the direct application of Bloch’s theorem. Even in a perfect crystal at 

zero temperature, there is no perfect periodicity; it is destroyed by zero-point motion. 

Nevertheless, Bloch’s theorem holds in an approximate sense; on the average the cry­

stal is periodic. The utility of Bloch’s theorem originates in this observation.

There are systems, however, which are not even approximately periodic (e.g. 

liquids, glasses, and amorphous materials). The calculational techniques used for these 

materials cannot rely on translational invariance. Progress in this direction has been 

made. In particular, the newly developed real-space methods1,2 for calculating elec­

tronic structure of solids and liquids are very promising.

This chapter is concerned with the electronic and magnetic structure of {111} 

stacking faults in nickel. For a {111} stacking fault, the periodicity within the (111) 

planes is unaltered, whereas the stacking fault eliminates translational invariance in the 

direction normal to the planes. Recent advances in electronic structure calculations 

permit the calculation of the physical properties of these defects, within the one- 

electron approximation, without imposing three-dimensional periodicity or the use of 

finite-sized slabs.

Considerable attention has been focused on the theoretical properties of 

transition-metal surfaces and interfaces.3-10 Much of the excitement stems from the
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prediction and observation of enhanced magnetic moments at surfaces4,7-9, as well as 

the possibility of surface ferromagnetism or antiferromagnetism.3,8

The availability and application of surface-sensitive spectroscopy techniques, cou­

pled with new techniques for producing high quality superlattices and interfaces,11 pro­

vides the strongest stimulus to this theoretical interest. Spin-polarized photoemis­

sion,12”14 inverse15 and angle-resolved16 photoemission, both spin-polarized17 and 

unpolarized18 low-energy-electron-diffraction, and spin-polarized electron energy-loss 

spectroscopy19 have provided very interesting results which are not yet completely 

understood. In addition, these experimental methods are also used to study the ther­

modynamic properties of two-dimensional magnetic systems20,21, which are of funda­

mental interest, through the experimental investigation of thin transition-metal films on 

nonmagnetic substrates.

The complete understanding of all these systems, however, requires a thorough 

understanding of the transition metals themselves, and the factors that influence their 

magnetic properties. For example, it is clear that in order fully to understand a "two- 

dimensional" transition-metal film, one must have some understanding of how the elec­

tronic states of the transition metal interact with states of the nonmagnetic substrate, 

which in turn, requires detailed knowledge of the transition-metal states. Additionally, 

the properties of structural defects in the pure materials must be fully understood so 

that one may distinguish between the effects of alloying and those of structural 

differences.

It is well known that near-neighbor coordination number affects the observed 

magnetic moments of transition metals. In general, a decrease in coordination number 

results in an increase in magnetic moment. This can be loosely understood in terms of 

the Stoner model in which a decrease in the ratio of bandwidth to electron-electron 

interaction results in an increase in magnetic moment. A decrease in coordination 

number results in a narrowing of the local density of states, thus enhancing the spin
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polarization. The effect is most pronounced in magnetic systems such as chromium or 

iron which are not saturated (i.e. do not have a tilled majority d -bands). Nickel is a 

saturated system, but its calculated total spin polarization is small [0.60 |ifl (calculated 

below)], which implies that any slight change in spin polarization represents a rela­

tively large percentage change. Tight-binding calculations7,8,22-24 predict a spin polari­

zation enhancement of sixteen percent for the {111} surfaces of nickel, an enhance­

ment from 2.12 \iB to 2.90 \lb at the {001} sufaces of iron, and an enhancement of 

the chromium spin polarization from 0.59 \iB in the antiferromagnetic bulk to 2.5 |ifl 

on the ferromagnetic (001) surface. These studies, however, do not directly address 

the magnetic properties of stacking faults in the pure transition-metal alloys. For 

instance, in the {111} stacking faults of the fee structure, the nearest- and next- 

nearest-neighbor coordination number of the atoms in the fault remain twelve and six, 

respectively, but the cubic symmetry of the environment is lost and the further- 

neighbor coordination numbers are altered.

There has been much less attention given to planar structural defects (other than 

surfaces) in pure transition metals. Yndurain and Falicoy studied the properties of 

{111} stacking faults in nickel using an unpolarized tight-binding method25 and found 

that localized electronic states appear at the interfaces, but did not consider their mag­

netic structure. Grise et al.26 performed tight-binding calculations utilizing large unit- 

cells containing stacking faults and found localized states and a three percent change in 

spin polarization on the central layer of an extrinsic fault. This calculation was not 

performed self-consistently, nor was any attempt made to understand the source of the 

changes in electronic and magnetic structure near the faults.

Given the existence of localized states, and the apparent sensitivity of the mag­

netic configuration to coordination number and loss of three-dimensional symmetry, 

one might expect the magnetic properties of stacking faults to display interesting, pos­

sibly technologically important, behavior. The aim of the present study is the charac-
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terizadon of {111} stacking faults in ferromagnetic nickel. The electronic and mag­

netic properties are calculated using a fully self-consistent, layered Korringa-Kohn- 

Rostoker (LKKR)27 technique based on a local spin-density approximation to density- 

functional theory. LKKR does not require three-dimensional symmetry or the use of 

finite-sized slabs.

The spin polarizations and total energies for face-centered-cubic (fee) nickel, 

hexagonal-close-packed (hep) nickel, double-hexagonal-close-packed (dhep) nickel, 

and several types of stacking defects are calculated and analyzed. The results are used 

to derive a very simple empirical expression for both the polarization and internal 

energy of any stacking configuration. It is argued that the small changes in spin polar­

ization are the result of two subtle effects: 1) a symmetry induced rearrangement of the 

majority-spin states near the Fermi level and, 2) a local broadening and change in 

structure of the states derived from the minority-spin band which crosses the Fermi 

level near L along the F to L direction of the fee Brillouin zone.

Part B of this chapter contains a brief description of the method of calculation. 

Section C presents the results of the calculations. Pan D contains the analysis of the 

results, and simple empirical relations for the spin polarization and internal energy of 

any stacking sequence are derived and analyzed in section E. The conclusions are 

presented in section F.

B. Method of Calculation

In LKKR, the properties of a three-dimensional periodic solid are calculated by 

building it from two-dimensional periodic planes. The method proceeds by first calcu­

lating the T-matrix of an entire plane. This, in turn, is used to calculate the T-matrix 

of a two-plane unit The T-matrix of the two-plane system is then used to generate the 

T-matrix of a four-plane unit. This process, referred to as layer-doubling27, is repeated 

until the T-matrix of the bulk is generated. Layer-doubling provides an extremely 

efficient method for building the complete three-dimensional solid; seventy-five
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doublings results in the T-matrix for a slab of nickel extending from the earth to the 

sun!

Once the T-matrix of the entire solid is known, the single particle Green’s func­

tion is calculated from the Dyson equation

G = G0 + G0 T G0 ,

where G0 is the free particle Green’s function and T is the T-matrix for the complete 

solid. The Green’s function can then be used to calculate the physical properties of 

the solid. For example, the spatial and energy-resolved density-of-states (DOS), 

p(r,£), is given by

p(r,£) = -l/jc Im G(r,r,£) ,

where r denotes the position and E denotes the energy. The spatial and energy- 

resolved DOS can then be used to calculate the charge density, Fermi energy, and 

electronic energy of the system, merely by integrating over the appropriate variable 

with the appropriate weighting factor.

In the self-consistent iterations, the charge density calculated from the Green’s 

function is used to generate a new potential which includes contributions from both the 

Coulomb interaction with the other electrons (found from the solution of Poisson’s 

equation using Weinert’s method28) and the exchange-correlation potential in the local 

spin-density approximation (by means of the expression of Gunnarsson and 

Lundqvist29 which is a spin-polarized version of that derived by Hedin and 

Lundqvist30). The generated potential is then converted to a muffin-tin form, which is 

known to produce good results for close-packed transition metals. The phase shifts of 

these potentials are calculated, including the semi-relativistic corrections of Koelling 

and Harmon,31 and a new T-matrix is calculated. The entire process is then iterated to 

self-consistency.
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The LKKR formalism easily adapts to a three-dimensional system containing a 

stacking defect In calculating the properties of a stacking defect the first step com­

pletely characterizes the bulk material. The second step is to embed N layers of 

material, containing the entire structure of the stacking fault within the bulk system 

(figure 4.1). The self-consistent formalism described above is then applied to the N- 

layer region; the potentials of the atoms in the N layers are allowed to change but the 

potentials in the bulk regions are fixed to have their bulk values, as is the Fermi level 

of the complete (stacking fault and bulk) system. The constraint that the potentials be 

bulk-like outside of the W-layer region provides the boundary condition for the 

adjusted region. The positions of the atoms within the layers are not allowed to relax.

This procedure allows an exact calculation of the single-particle electronic proper­

ties of the a stacking fault within the local-spin-density and muffin-tin approximations 

as the number of layers containing the fault can be made arbitrarily large. In practice, 

it is found that only a few layers, usually less than required in the finite-sized slab cal­

culation of the same system, are necessary to obtain convergence. This method does 

not suffer from the problems inherent in "supercell" or finite-sized slab calculations. 

The details of the calculational procedure can be found in the paper by MacLaren et 

al?1'

The calculations presented below do not include the effects of spin-orbit cou­

pling33, and thus do not make any predictions concerning the anisotropy energy at a 

stacking fault It is possible (although not likely) that the spin-orbit interaction could 

modify the results presented here, although it is difficult to assess spin-orbit coupling’s 

importance without an explicit calculation. However, it is the intention of this work to 

investigate the effects of the changes in crystal field near a fault. Spin-orbit effects, 

which are usually smaller than the crystal-field effects, are probably only important in 

regions of reciprocal space where bands cross near the Fermi level. The crystal field 

effects on the band-structure are quite large, and it is hoped that the calculations
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presented below provide a good idea of how the magnitude of the spin polarization 

varies throughout the stacking fault even though spin-orbit effects are not included in 

the self-consistency requirement. It is also certain that if spin-orbit effects were 

important, they would not completely cancel the effects of the changes in crystal field.

A mixed basis is used in LKKR. The multiple scattering equations in each plane 

are solved in a spherical-wave basis. The spherical-wave basis is then transformed 

into a plane-wave basis which is used to connect the separate planes. Many of the cal­

culations are performed off the real axis in the upper-half complex plane; physical pro­

perties are then obtained using the analytic properties of G. For these calculations, 

only a small number of bask functions is needed. The spherical basis includes the 

/ = 0 to / = 2 waves, and the connecting basis consists of thirteen plane-waves. The 

integrations in reciprocal space are carried out using six points in the irreducible two- 

dimensional Brillioun zone. The chosen lattice constant, 6.55 au, is the value used by 

Moruzzi, Janak and Williams.34 For the bulk calculations (the fee, hep and dhep 

structures), the potentials were iterated until the Fermi energy was stable to 10 

microHartrees (pHa). The potentials of the interface calculations were iterated to 

obtain a similar accuracy. At this level of self-consistency, the spin polarizations are 

stable to at least ± 0.002 jig.

C. Results

The muffin-tin density-of-states (MTDOS), i.e. the DOS resulting from integrating 

p(r,£) over the muffin-tin, for fee nickel is displayed in figure 4.2. The calculated 

Fermi energy is 0.35198 Ha above muffin-tin zero (all remaining energies are quoted 

relative to muffin-tin zero) and the muffin-tin spin polarization, which is the polariza­

tion of the charge within the muffin-tin radius, is 0.614 \lb, where \iB is the Bohr 

magneton. The spin polarization of the Wigner-Seitz sphere is 0.597 \iB, indicating 

that the charge in the interstitial region is polarized antiferromagnetically relative to the 

charge in the muffin-tin, a feature common to all the calculations below. A self-
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consistent calculation utilizing twenty-five plane waves and eighteen k-points in the 

irreducible two-dimensional zone yielded a muffin-tin moment of 0.61 \lb and a Fermi 

energy of 0.3525 Ha. Since the purpose of this study is to analyze trends, these minor 

differences were deemed unimportant, and the remaining calculations were carried out 

using the smaller basis set. While the calculations have not completely converged 

(with regards to the number of k-points) the quoted trends are most likely present in 

the completely converged calculations, although the magnitudes may change slightly. 

The exchange splitting, as measured by the peak in the MTDOS nearest the Fermi 

level, is 0.025 ± 0.001 Ha (0.68 eV), which agrees well with the value obtained by 

and Wang and Callaway,35 0.63 eV.

Figure 4.3 is the MTDOS of (hypothetical) bulk hep nickel. (The nearest- 

neighbor distance is kept equal to that for the fee calculation, and c/a is chosen to be 

ideal.) While this structure is not thermodynamically stable (in fact, hypothetical hep 

nickel is unstable to local perturbations and would spontaneously form fee -like stack­

ing defects), the results of this calculation are very useful for analyzing stacking-fault 

results. Figure 4.3 shows a significant rearrangement (when compared to the fee case) 

of the states near 0.3 Ha. Also, the MTDOS peak nearest the Fermi level is 

broadened. There is, in the hep structure, a five-percent decrease, relative to the fee 

structure, in the spin polarization. The polarization is 0.583 within the muffin-tin 

and 0.567 p.# within the Wigner-Seitz sphere. The calculated Fermi energy of hep 

nickel, 0.35294 Ha, is slightly higher than the fee counterpart. The exchange splitting 

observed in the hep structure, 0.024 ± 0.001 Ha (0.65 eV), is nearly identical to that 

in the fee system. The total energy is 101 mJ/m2 per (lll)-plane larger in the hep 

phase than in the fee structure, which is consistent with the fact that the structure of 

nickel is observed to be fee.

The "ABC" notation36 is used to describe the stacking of the (111) planes (figure 

4.4). Each (111) plane forms a triangular lattice as shown by the sites labelled A in
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figure 4.4. There are two distinct sites on which the next (111) plane can be stacked; 

these are labelled B and C. The fee structure is built by stacking the planes in the 

sequence ABCABC and the hep structure is constructed by stacking the planes in the 

sequence ABABAB. In the notation used below, the fee structure is denoted by 

(...<ABG>...) where the angular brackets indicate that the structure within them is 

repeated to infinity in the direction indicated by the bracket immediately adjacent to 

the Hence the hep structure is denoted by (...<AB>...). The five types of stack­

ing faults investigated are shown in figure 4.5 and are referred to as (a) a twin boun­

dary fault (...<BCA>B<ACB>...), (b) an intrinsic fault (...cCABxABO...), (c) an 

extrinsic fault (...<CAB>A<CAB>...), and, for lack of established names, (d) the 

super-extrinsic fault (...<BCA>CB<ABC>...), and (e) the hyper-extrinsic fault 

(...<BCA>CBA<CAB>...). In addition, the spin polarization and the total energy of (f) 

dhep (...<ABAG>...) nickel are calculated. (The letters in figure 4.5 are staggered to 

help in visualizing the structure of the stacking faults.) The number of layers allowed 

to readjust in each calculation is the number of pictured layers less two (the two end 

layers were constrained to be bulk-like).

The muffin-tin spin polarization of the layers for each of the stacking-fault struc­

tures are presented in table 4.1. The muffin-tin spin polarization of the A layers of 

dhep nickel [figure 4.5(f)] is 0.592 \iB and that of the B and C layers is 0.612 .

Muffin-tin spin polarizations are the only ones quoted in this thesis (unless otherwise 

indicated) since full-cell polarizations are unavailable. Approximations to the full-cell 

spin polarization, in the form of the polarization of the Wigner-Seitz sphere charge, 

indicate trends identical to those in the muffin-tin spin polarizations. The labelling of 

the layers in table 4.1 corresponds to the labelling of figure 4.5, where the first entry 

under each structure is the uppermost layer in figure 4.5. Since the polarization is 

symmetric about the midpoint of the fault (indicated by arrows in table 4.1), the table 

contains the results for only the upper half of each fault. For the interface calcula-
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dons, the first entry in the table represents the layer constrained to be bulk-like. The 

values of the spin polarization for the layer immediately adjacent to the bulk suggest 

that the redjusted regions are sufficiently large. As expected, there are small changes 

in spin polarization caused by the presence of the stacking faults.

Table 4.2 contains the energies of the various configurations measured relative to 

the fee structure. The energies of the hep and dhep systems are quoted in mJ/m2 per 

(111) atomic plane, and the quoted stacking-fault energies are the total energy, in 

mJ/m2, for the entire stacking-fault region.

The energy of a single twin boundary is 105 mJ/m2 The calculation gives the 

same energy by allowing the readjustment of the potentials for six and for eight layers, 

which indicates convergence with respect to the number of layers in the readjusted 

region. The energies of the other investigated stacking faults are roughly twice the 

twin-boundary energy. There are two types of layers which appear in the stacking 

sequences. One type, which has the local symmetry (i.e. nearest- and next-nearest- 

neighbors) of the hep lattice, trigonal prismatic, is referred to as a P-layer (e.g. the 

apex layer of a twin boundary fault). The other type, whose sites have the local sym­

metry of the fee lattice, octahedral, is referred to as an O-layer. In addition to the 

stacking-fault energies, table 4.2 also contains the values of the function A(n):

A(n) = 2£^ - En

where is the energy of an isolated twin boundary fault, and En is the energy of a 

stacking fault composed of two P-layers separated by n planes (e.g. £ j is the energy 

of the extrinsic fault, £2 the energy of the super-extrinsic fault, and £3 the energy of 

the hyper-extrinsic fault). This function measures the energy gained through the 

"interaction” between two P-layers. When separated by three planes, the P-layers 

behave nearly as if isolated, as can be seen from the fact that A(3) = 10 (mJ/m2), and 

that the spin polarization on the middle layer of the hyper-extrinsic fault is only
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slightly reduced relative to the bulk.

Figure 4.6(a) pictures the hexagonal two-dimensional Brillouin zone used for the 

calculation. The dashed line demarcates the irreducible wedge over which the integra­

tions are performed. It is instructive to locate the points in the two-dimensional zone 

onto which the symmetry points L, K and X of the full three-dimensional zone are 

projected. The projection points in the irreducible zone are shown in figure 4.6(b) 

where they are labelled by their corresponding three-dimensional labels. The F-point 

and one of the four L -points project onto F. The three remaining L -points and the 

three X -points project onto M. The K -points project onto two points in the irreduci­

ble wedge of the zone: one on the line joining F to M at a point three-quarters of the 

way to M, and the other at a point of the M to K line, three-quarters of the way 

towards K. Hence the AT-points do not fall on any of the symmetry points of the 

two-dimensional zone. The Fermi surface of nickel33 has a minority hole pocket near 

the X -point of the Brillouin zone. The distorted spherical surface of the minority-spin 

d-states intersects the F-L line roughly three-quarters of the way to L, and also 

passes near the K -point

Figure 4.7 is the two-dimensional projection of the three-dimensional band struc­

ture of fee nickel, plotted along the two-dimensional symmetry directions. The shaded 

regions of this figure correspond to points (E , k) for which band states exist (k is the 

two-dimensional wavevector). The white regions are gaps in (£ , k) space for which 

there are no band-like states. (A band-like state is said to exist if, after twenty layer 

doublings, the calculation of the T-matrix has not converged.) Truly localized states 

could appear only in these gaps. Evidently, there is the possibility of finding localized 

states in the immediate vicinities of F and K, but not about M. The symmetry points 

F and K were scanned for localized states in the energy range 0.1 Ha to 0.4 Ha.

The layer-projected MTDOS for the stacking-fault configurations were calculated 

and plotted for both F and K of the two-dimensional Brillouin zone. Figure 4.8 con­
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tains the results for F of the twin boundary fault. The layers are labelled as in figure 

4.5(a), with the uppermost curve being the F-projected MTDOS of fee nickel. The 

dotted line represents the Fermi energy. It is evident that there are no localized states. 

There is, however, a resonant state which appears at 0.299 (0.322) Ha in the majority 

(minority) spin. The exchange splitting for that state is 0.023 Ha. The spectral weight 

of this resonance is largest on the planes adjacent to the P-layer of the fault, which are 

also the planes with the smallest spin polarization. Note that there is some rearrange­

ment of the minority-states near the Fermi level, but there is no obvious explanation of 

the decrease in the moment.

Figure 4.9 is the layer-projected MTDOS at K of the twin boundary fault, and is 

labelled in the same manner as figure 4.8. In contrast to figure 4.8, three localized 

states appear; one at 0.204 (0.221) Ha, one at 0.287 (0.309) Ha, and the other at 

0.306 (0.329) Ha in the majority (minority) spin. These states have their maximum 

spectral strength at the P-layer of the fault, which is the layer with the bulk magnetic 

moment.

Figures 4.10 and 4.11 are the MTDOS at F and K of the extrinsic fault, labelled 

according to figure 4.5(c). The resonant state at F is present as are the localized states 

at K. The resonance at F, which appears at 0.297 (0.320) Ha in the majority (minor­

ity) spin, has its maximum spectral strength on the central O-layer of the fault; this O- 

layer exhibits the smallest spin polarization. The states localized at K appear at 0.204 

(0.221) Ha, at 0.287 (0.309) Ha and at 0.305 (0.329) Ha in the majority (minority) 

spin. The exchange splitting for the states is similar to that in the twin boundary fault.

Table 4.3 depicts the energies and exchange splittings for the F resonance and the 

K localized states for the twin boundary, intrinsic, extrinsic, super-extrinsic and 

hyper-extrinsic faults. In the intrinsic and hyper-extrinsic faults there are actually four 

states localized at K. Since all of the stacking faults except the twin boundary fault 

contain two P-layers, one might expect to find six states localized at the faults (at AT,
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only two localized states at F); each P-layer (twin boundary fault) should result in 

three states localized at K. Interference between the states localized near different P- 

layers should introduce splittings into the states, resulting in six distinct energies. The 

majority-spin states at 0.307 and 0.304 Ha in the hyper-extrinsic fault (figure 4.12) are 

the result of interference between states localized on different P-layers. There are 

many possible reasons that six localized states are not observed at any of the stacking 

faults. One explanation is that the two states do in fact split, but that the companion 

state to the observed localized state is pushed into the continuum. Another alternative 

is that the some of the states are strongly localized and do not interact with the states 

localized on the other P-layer. This is certainly the case for the hyoer-extrinsic 

majority-spin (minority-spin) states at K at energies of 0.204 (0.221) and 0.287 (0.309) 

Ha. In contrast the majority-spin (minority-spin) states at K which lie at an energy of 

0.306 (0.329) Ha in the twin boundary fault, are more extended; figure 4.9 indicates 

that, in the twin boundary fault, these states have a finite spectral strength as far as 

three (lil) planes away. One might therefore expect that the two states, correspond­

ing to those at 0.306 Ha in the twin boundary fault, localized on different P-layers, 

should mix and result in a double peak structure. Symmetry dictates that the peak 

arising from the antisymmetric state should have zero spectral strength on the central 

layer of the fault, which is the observed behavior (figure 4.12).

Table 4.4 contains the angular-momentum resolved muffin-tin charges for fee, 

hep, and dhep nickel, and table 4.5 contains these charges for the layer in each stack­

ing fault with the smallest spin polarization (the layers are labelled as in figure 4.5). 

The tables also contain the total muffin-tin charges, and the quantity A^0/ which is 

defined to be the difference:

A<7o/ = <7o/ “

where q{fic is the muffin-tin charge with spin a and angular-momentum / for the fee
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lattice, and qcl is the corresponding quantity for the other lattices or stacking-fault 

structures. The next section of each table is the angular-momentum resolved contribu­

tion to the change in spin polarization

A™/ = Mmin. I ~ Mmaj. I

The last line of each of the tables displays the total change in muffin-tin charge. A 

+(-) sign indicates that charge has gone in (out) of the muffin-tin compared to the 

muffin-tin charge in fee nickel.

D. Analysis

It is important to determine the mechanism by which the stacking faults alter the 

spin polarization. Without an adequate explanation for the results it is difficult to 

determine whether or not the observed differences are indicative of real trends or 

merely a consequence of the numerical method used to obtain them. Moreover, a 

complete physical picture of stacking faults in nickel can be used to assess the impor­

tance of stacking faults in other systems.

It is argued below that the observed changes in spin polarization are physical. 

The calculated magnitudes of the changes, based on spin-density-functional theory, are 

not guaranteed to be given correctly, but the trends are most likely real.

The argument rests on three points. First, the change in spin polarization stems 

directly from a transfer of charge from the majority d-states to the minority d-states 

within the muffin tin. Second, the minority states at the fault partially responsible for 

the shifts in spin polarization are derived from band states with k directed along the F 

to L line of the three-dimensional fee Brillouin zone, and are locally broadened and 

shifted by the close proximity of neighboring atoms in the [111] direction at the faults. 

And third, there is a symmetry induced rearrangement of the majority states nearest the 

Fermi level, whose changed filling, when combined with the changes that take place in 

the minority states, accounts for the decrease in spin polarization.
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The first point of the argument can be established by inspection of tables 4.4 and 

4.5. The angular-momentum resolved changes in spin polarization indicate that a 

major portion of the shift in polarization arises from the shift in occupation of the d- 

states. Furthermore, this shift in occupation far outweighs the total change in muffin- 

tin charge, Mrmiff in tin ’ indicating that the shift in polarization is not the result of a 

change in the amount of charge within the muffin-tin. For example, in going from the 

fee to the hep structure, the total change in spin polarization is 0.031 (iB, while the 

change in the polarization of the d-states is 0.032 pB. (The combined change in 

polarization of the r- and p -states is -0.001 \iB.) In contrast, the change in muffin-tin 

charge can only account for a change in spin polarization of 0.001 |iB. Even in the 

intrinsic stacking-fault, which shows the largest change in muffin-tin charge, 

muff in tin can only account for one-third of the shift in the reported muffin-tin spin 

polarization. Further comparisons of tables 4.4 and 4.5 show that in all cases the 

change in spin polarization arises almost entirely from shifts in d -electron occupation.

Careful inspection of table 4.1 reveals an important fact The symmetry of the 

potential from the nearest- and next-nearest neighbors has little influence on the spin 

polarization. For example, the nearest- and next-nearest neighbors of atoms in the P- 

layer of the twin boundary fault [i.e. layer B in the stacking (...<BCA>B<ACB>...)] all 

occupy the positions they would occupy in the hep lattice but the atoms on this layer 

all have the spin polarization of the fee bulk. The atoms on the layers immediately 

adjacent to the the P-layer [i.e. the O-layer A in the stacking (...<BCA>B<ACB>...)] 

have their first- and second-neighbors in the positions they would occupy in the fee 

lattice, but the spin polarization on these layers is reduced relative to the bulk fee 

value. Hence the spin polarization behaves in a fashion exactly the opposite of what 

one would naively expect from local-structure arguments.

A dependence of the spin polarization on the disorder in the [111] direction is 

expected. It is not, however, obvious that the positions of the nearest- and next-
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nearest-neighbor atoms would play no role in determining the magnitude of the polari­

zation. The physical interpretation of this result is that in this close-packed 

configuration, the potential from these neighbors is so nearly spherical that their exact 

positions do not matter. It may be argued that, because spherical potentials form the 

very premise of the muffin-tin approach, the calculations are merely internally con­

sistent While a full potential calculation may slightly alter the results presented here, 

it seems unlikely that inclusion of non-spherical terms in the potentials would 

significantly change the observed trends.

Table 4.1 contains further clues to the origins of the changes in spin polarization. 

Consider the orientations of the third-neighbor sites of an atom near the stacking-fault. 

In the fee lattice, the third-neighbors arc located at the twenty-four sites equivalent to 

a 1^2 [211], where a is the nearest-neighbor spacing. (None of these sites lie in the 

[111] direction.) In the hep lattice, there are only two third-nearest neighbors: one at 

aV(8/3) [0001] and the other at aV(8/3) [0001]. Both of these sites lie in the direction 

equivalent to the [111] direction of the fee lattice.

The polarization of a layer is strongly correlated with the distance to the nearest- 

neighbors in the [111] direction. Consider the structure of the nearest-neighbors, in the 

[111] direction, of the twin boundary fault (...<BCA>B<ACB>...). For the central B 

layer, the P-layer with the bulk fee spin polarization, the nearest-neighbors in the [111] 

direction are at a distance of <zV6, the distance at which they would be found in the 

fee lattice. For the adjacent O-layers labelled A, one of the neighbors in the [111] 

direction lies at a distance of aV6, but the other is thirty-three percent closer, lying at 

a distance of only aV(8/3). The spin polarization on this layer is smaller than the fee 

bulk value. In the stacking sequence of the extrinsic fault, the central A layer has its 

two nearest-neighbors in the [111] direction in the positions they would occupy in hep 

lattice [at a distance a V(8/3)], and the spin polarization of this layer is essentially that 

found for the bulk hep calculation.
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The dependence on the distance to the nearest neighbor in the [111] direction can 

be understood physically using the following arguments. In general, keeping all other 

factors constant, a decrease in lattice spacing results in an increase in bandwidth. 

While the nearest-neighbor lattice spacing is unchanged when going from the fee to 

the hep lattice, the spacing of atoms in the [111] direction ([000i]-direction of the hep 

lattice) decreases. One might therefore expect that the band formed of states with k 

along the F to L direction of the fee Brillouin zone should be broadened by the 

effective increase in density of cores in this direction. (The corresponding decrease in 

effective density in other directions should also lead to band narrowing, but unless the 

bands near the Fermi level are altered, the spin polarization would not be affected.) 

The Stoner model, in which magnetism arises from the competition between electron- 

electron interactions and single-particle bandwidths, and the simple rules suggested in 

reference 20, imply that this broadening would be accompanied by a smaller spin 

polarization.

Figure 4.13(a) is the MTDOS at F for the/cc (dashed line) structure and the hep 

(solid line) structure. The vertical dotted line represents the Fermi level of hep nickel; 

the Fermi level of fee nickel is almost indistinguishable at this scale. There are two 

important observations to be made. First, the minority-spin peak nearest the Fermi 

level lies above the Fermi level in the fee structure and completely below the Fermi 

level for the hep case. This rearrangement of states would certainly contribute to the 

calculated decrease in spin polarization in hep nickel, although there must be a 

corresponding rearrangement of majority-spin states. The second observation, that the 

band nearest the Fermi level is broadened in the hep structure, is consistent with the 

simple discussion above. This broadening suggests that the new equilibrium point in 

the trade off between electron-electron interactions and bandwidth has a smaller spin 

polarization.

Since the spin polarization decreases in the hep structure, majority-spin states
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must be pushed above the Fermi level. Figure 4.13(b) is the MTDOS at M for the/cc 

and hep systems. The most important feature of this figure is the strong peak in the 

majority-spin states of the hep structure which lies well above the Fermi level, and is 

absent in the MTDOS of the fee structure. In addition, a gap has opened in the 

majority-spin states at the Fermi level. As shown in figure 4.6, the points X and L of 

the three-dimensional fee Brillouin zone project onto M.

It is useful to understand the symmetries of the states responsible for the 

majority-spin peak above the Fermi level. Figure 4.14 is a plot of the band structure 

of fee nickel plotted along a line parallel to the [111] direction and passing through 

M. The majority-spin bands are indicated by a solid line and the minority-spin bands 

indicated by a dashed line. The X and L symmetry points are clearly visible. The 

source of the minority-spin Fermi surface hole pockets near X are also visible. The 

majority d -states nearest the Fermi level lie along the X to W line. The small group37 

of the X-point is D4A; three of the d-states transform according to one-dimensional 

representations, and the remaining d -states transform according to the only two- 

dimensional representation of this group. The small group of the L -point is D^d\ 

there are two sets of doubly degenerate d-bands, and one nondegenerate d-band.

The band structure of hep nickel plotted along the line L-M-L of the three- 

dimensional hep Brillouin zone is shown in figure 4.15. The majority-spin band 

responsible for the peak above the Fermi level in the hep MTDOS at M is clearly 

visible. The small group of the states along the L-M direction (not at the symmetry 

points) is C2V; all the representations of this group are one-dimensional.

While it is not possible to make a precise comparison between the two band 

structures, it is possible to do a rough analysis of the effects of change in symmetry on 

going from the fee to the hep lattice. Since the span of the hep Brillouin zone in the 

[0001] direction is exaedy one-half the span of the fee zone in the [111] direction, the 

band structures can be "compared". The majority states above the Fermi level at M
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are derived from the mixing of states at L and X of the fee Brillouin zone, a mixing 

which is induced by the change in symmetry on going from the fee structure to the 

hep structure.

Group theoretical arguments can be used to understand further the changes taking 

place. Consider the two majority-spin bands nearest the Fermi level. When the struc­

ture goes from fee to hep, these two bands become four, because the size of the unit 

cell doubles. At the same time, however, the degeneracies imposed by the symmetry 

of the fee structure are lifted; the formerly doubly-degenerate states are now split. 

Three of the four majority bands now lie completely below the Fermi level, but the 

fourth has moved completely above it. This is the source of the decreased occupation 

of the majority d -states.

Hence the difference in spin polarization between/cc and hep nickel results from 

complex changes in symmetry and the proximity of atoms in the [111] direction (of 

the fee crystal). Since stacking faults are essentially hep -like structures embedded in 

an fee medium, it is possible to extend the above arguments to the stacking fault 

configurations.

The spin polarization on any layer of a stacking fault is influenced by the same 

environmental factors that drive the decrease in spin polarization on going from fee to 

hep nickel. The proximity of atoms in the [111] direction results in a local broaden­

ing of the states (derived from the band states of the perfect crystal with k along the F 

to L directions) and a corresponding decrease in the spin polarization. The local 

broadening of the states nearest the Fermi level at F is clearly shown in both figures 

4.8 and 4.10 (the F-rcsonancc adds considerably to the width). The increased occupa­

tion of the minority states is also clearly visible in the lowest panel of figure 4.10, 

which corresponds to the central layer of the extrinsic fault (the layer with a spin 

polarization very close to that of the hep calculation). This increase is not as visible 

in the remaining layers of the fault, nor is it as visible in the twin boundary fault.
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probably because the changes are very small.

Figure 4.16 is the layer-projected MTDOS at M for the extrinsic fault. It is 

clear that there is a significant rearrangement of the states near the fault over the 

displayed range of energy. Of particular interest is the rearrangement of the majority- 

spin states above and near the Fermi level. The lowest panel of this figure, which 

show the MTDOS for the central layer of the extrinsic fault, contains a pronounced 

"bump" in the majority states which corresponds to the peak above the Fermi level in 

the hep case (figure 4.13). The fact that this "bump" is more sharply defined on this 

layer than on any other suggests that, for the states which compose this peak, the 

structure in the [111] direction is important, particularly the proximity of other atoms. 

The enhancement of the "bump" on the layers of type A, which have one neighbor in 

the [111] direction at the hep distance, is consistent with this conclusion.

The calculated effects are very small, pardy because the defect itself represents a 

subde change in local structure and symmetry, and not a chemical change. The small 

size of the effects requires examination of the approximations entering the calculation. 

A brief discussion of the effects of the muffin-tin approximation and of the neglect of 

the spin-orbit interaction has already been given above. There is another source of 

uncertainty; the positions of the sites in the interface were not allowed to relax to 

minimize the internal energy. Since the arguments above are based on the fact that a 

stacking fault brings the atoms situated along the [111] direction closer, and that this 

results in the change in spin polarization, a relaxation of the lattice could be effective 

in reducing the calculated effects. However, it is unlikely that relaxation can com­

pletely cancel the thirty-three percent change in spacing, and the calculated trends most 

likely indicate the physical reality. On the other hand, the decrease in moment at a 

stacking-fault represents a shift towards a "wider bandwidth" at the expense of 

exchange-correlation energy; relaxation should shift the system back towards a "nar­

rower bandwidth" (i.e. the relaxation should result in an expansion, along the [111]
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direction, of the solid near the stacking fault). This relaxation, if real, could be 

observed by diffraction methods.

The argument presented above makes, qualitative, definite predictions for other 

stacking sequences. The electronic structures of the stacking sequences shown in 

figure 4.17 were calculated as a test for the analysis. [The potentials of all the pic­

tured layers were allowed to readjust (not relax) for the presence of the fault.] Both of 

these structures are based on hypothetical hep nickel. These structures have been cal­

culated only for comparison of the spin polarizations the atomic positions have been 

fixed. (The hep system is highly unstable and will spontaneously form the types of 

defects shown here; hep nickel is not a metastable state.) Each of these stacking 

sequences contains a layer of atoms that do not have any neighbors, at any distance, 

along the [111] and [111] directions, the layers labelled C in the figure. The previous 

discussion indicates that the states on these layers should be very narrow, and that the 

spin polarizations should be enhanced. These results are indeed borne out by the cal­

culations. The muffin-tin spin polarization of the layer C of the structure 4.17(a) is 

0.622 |i0 and that of layer C of the structure 4.17(b) is 0.635 .

Figure 4.18 is the layer-projected MTDOS at T of the structure shown in figure 

4.17(b). There is a state, localized at the defect, split off from the top of the 

minority-band states that appears above the Fermi level. The apparent width of the 

states is noticeably narrower on the singular layer C. This is physically reasonable 

since there are no states in the [111] direction which can couple to the states on the 

central layer (C).

Figure 4.19 is the layer-projected MTDOS at M for the same structure as in 

figure 4.18. The pronounced peak above the Fermi level in the majority-spin states of 

bulk hep nickel (a smaller peak does appear at the fault) is substantially reduced on 

the central layer (the peak in the minority-spin states is also markedly reduced). The 

absence of the majority-spin peak, coupled with the appearance of a localized
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minority-spin state above the Fermi level at F, suggests that the spin polarization on 

layer C should be noticeably enhanced. In fact, the calculated spin polarization is 

enhanced by eight percent over the value calculated for hep nickel.

The mechanism described above depends sensitively on the details of the elec­

tronic structure of nickel For example, if the minority-spin band broadened by the 

proximity of atoms in the [111] direction did not cross the Fermi level, the stacking 

fault may not influence the magnetic properties of the fault However, the band struc­

ture of cobalt has some of the features responsible for the shifts in spin polarization 

predicted in nickel. Figure 4.20 is the band structure of cobalt, taken from Papacon- 

stantopoulos’ book,38 plotted along the M-L and the F-A directions of the hep Bril­

louin zone. The band structure of the majority spin along M -L is very similar to that 

of hep nickel. The band structure of the minority spin along F-A differs slightly from 

that of nickel: there is an almost completely empty band. It is not clear how stacking 

faults would affect the spin polarization in this system, but if the result of the stacking 

fault is to narrow the local bandwidth of the states along the F-A direction, and to 

shift the average energy to a higher value (these are the effects expected from the 

nickel calculation), the changes in spin-polarization could be similar in absolute magni­

tude to those calculated for nickel. These changes, however, represent a small percen­

tage change, and would probably be more difficult to detect experimentally.

The decrease in spin polarization of the layers near a stacking fault implies that 

stacking faults interact with magnetic domain boundaries, since the energy of these 

domain boundaries depends directly on the magnitude of the spins.39 The calculations 

presented here give little information about the details of this interaction, because the 

anisotropy energy is not included.

E. Simple Empirical Relations

As discussed in section D, the spin polarization density of a stacking fault is most 

sensitive to the distribution of atoms along the preferred [111] direction, and is not
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very sensitive to the orientation of nearest- and next-nearcst-neighbor pairs. This 

dependence can be described quantitatively. The spin polarization of any layer can be 

fitted to an expression of the form:

3
H + Z

i=2

where \l is the spin polarization on the layer under consideration, T|t- is the number of 

layers, i layers away, which are identical to the layer under consideration (e.g. for the 

fee structure, T|2 = 0 and = 2 while for the hep case, H2 = 2 anti 113 = 0). From 

structural considerations rij = 0 always. The parameters M0, and a3 are fitted to 

the results of all calculations based on the fee bulk structures [figures 4.5(a)-(e)] and 

their values are contained in table 4.6. The results of this formula are compared with 

the LKKR values in figures 4.21 and 4.22. The fit accurately reproduces the trend in 

spin polarization for all the faults. The fit places the moment for fee nickel at 0.610 

V-B-
The energy of the stacking faults can also be modelled by a simple linear fitting 

scheme. The energy of the stacking faults is fitted to the following expression

* *_4 *
£ = £ * £l + Z 5. Y/ '

layers »=2

where EL takes the value E0 = 0 for an octahedral layer, and EP for a trigonal 

prismatic layer, £,• is the number of planes located at a distance of i planes away 

which are different from what they would be in the fee case (e.g. = 2, ^3 = 2, and

£4 = 2 for the hep lattice). The parameters EP and the various y,- are energies to be 

fitted to the complete calculation. The values of the fitting parameters, calculated by 

fitting to the energies of the/cc based structures in figure 4.5(a)-4.5(e) are contained in 

table 4.7. Table 4.8 shows the results of the fit. The fits are reasonable approxima­

tions to the energies of the respective faults. This simple expression for the energy
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may be useful for quick, "back-of-the-envelope" thermodynamic calculations.

F. Conclusion

The electronic and magnetic properties of [111] stacking faults in nickel arc cal­

culated utilizing a fully self-consistent LKKR formalism which does not require finite­

sized slabs or periodic boundary conditions. Localized states are found at all the faults 

studied.

The spin polarization depends on the structure of the fault and shows roughly a 

five percent change in going from fee stacking to hep stacking. The exact positions 

of the nearest- and next-nearest neighbors is not important for determining the spin 

polarization on a site; the near spherical structure of the close-packed configuration 

assures that this is the case. Rather, the spin polarization depends most strongly on the 

distance to the nearest atom in the [111] direction, and decreases as this distance is 

decreased.

The dependence of the spin polarization is analyzed through a comparison 

between the electronic and magnetic structures of fee nickel and (hypothetical, 

unstable) hep nickel (with the identical nearest-neighbor spacing). The difference in 

spin polarization between these two structures is the result of two major effects. The 

first is a broadening of the band formed of states with k along the T to L line of the 

fee Brillouin zone on transforming form the fee to the hep structure. This broadening 

is linked to the higher density of atoms in the [0001]-dircction (equivalent to the [111] 

direction of the fee system). The second effect is the loss of cubic symmetry which 

results in the splitting of formerly degenerate bands. The resulting rearrangement of 

the states results in the movement of a portion of the majority spin band to above the 

Fermi level, while the broadened minority band moves completely below. The net 

effect of this rearrangement of states is to shift electrons from d-like majority states to 

d-like minority states.
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It is further argued that the spin polarization of the stacking faults can be under­

stood by analogy with the results of the fee and hep calculations. The presence of 

neighbors in the [111] direction results in a local broadening of the density of states, 

which is accompanied by a local decrease in spin polarization. Even though the 

effects are small, the trends are believed to be real and will remain even after the lat­

tice is allowed to relax.

It is also suggested that the same type of phenomena might be present in cobalt 

stacking faults. This system represents a significantly different physical situation 

because the ground state of cobalt is the hep structure. Nevertheless, the band stme- 

ture of cobalt, as calculated by Papaconstantopoulos, shows features similar to those 

which determine the spin polarization of hypothetical hep nickel.

Since the energy of a Bloch wall depends on the magnitude of the spins, it is 

likely that magnetic domain walls will couple to stacking defects. However, since the 

anisotropy energy of the faults is not included, no attempt has been made to analyze 

this interaction.

Finally, simple empirical formulas are developed to describe both the spin polari­

zation and the internal energy of any stacking configuration. The very simple formula 

for the spin polarization gives quantitatively reasonable results. A similar formula 

applied to the internal energy yields a reasonable fit for all structures tested. It should 

provide a simple means for doing thermodynamic calculations of the concentrations of 

various stacking configurations.
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H. Tables for Chapter IV

Table 4.1

Muffin-Tin Spin-Polarization (|ifl)

twin int. ext sup. ext. hyp. ext.

lay. pol. lay. pol. lay. pol. lay. pol. lay. pol.

A 0.614 A 0.614 A 0.614 A 0.614 A 0.614

B 0.611 B 0.609 B 0.610 B 0.609 B 0.607

C 0.611 C 0.609 C 0.607 C 0.596 C 0.599

A 0.603 A 0.597 A 0.595 A 0.606 A 0.608

0.614 B 0.594 B 0.598 C 0.595 C 0.600

—» —»A 0.582 —» ->B 0.604



Table 4.2

system energy (mJ/mz) n A(n) (mJ/mz)

hep 101

dhep 54

twin 105

intrinsic 176 0 34

extrinsic 161 1 49

super-extrinsic 160 2 50

hyper-extrinsic 200 3 10



Table 4.3

Energies and Exchange Splitting of Interface States 

all energies are in Ha and are accurate to ±0.001 Ha

r K

fault maj. min. split maj. min. split.

twin 0.299 0.322 0.023 0.204 0.221 0.017

0.287 0.309 0.022

0.306 0.329 0.023

intrinsic 0.296 0.320 0.024 0.202 0.219 0.017

0.285 0.306 0.021

0.292 0.315 0.022

0.311 0.335 0.024

extrinsic 0.297 0.321 0.024 0.204 0.221 0.017

0.287 0.309 0.022

0.305 0.329 0.024

super-extrinsic 0.299 0.322 0.023 0.204 0.221 0.017

0.287 0.309 0.022

0.306 0.329 0.023

hyper-extrinsic 0.299 0.322 0.023 0.204 0.221 0.017

0.287 0.309 0.022

0.304 0.328 0.024

0.307 0.330 0.023



Table 4.4

Muffin-Tin Charges (electrons)

l fee hep dhep

layer A B

majority s 0.2401 0.2403 0.2398 0.2405

spin p 0.2369 0.2353 0.2355 0.2381

d 4.4735 4.4601 4.4635 4.4719

minority s 0.2447 0.2433 0.2442 0.2440

spin p 0.2533 0.2521 0.2516 0.2549

d 3.8387 3.8572 3.8514 3.8393

total s 0.4848 0.4836 0.4840 0.4845

P 0.4902 0.4874 0.4871 0.4930

d 8.3122 8.3173 8.3149 8.3112

total 9.2872 9.2883 9.2860 9.2887

/ s 0.0000 0.0002 -0.0003 0.0004

P 0.0000 -0.0016 -0.0014 0.0012

d 0.0000 -0.0134 -0.0100 -0.0016

tymin. 1 s 0.0000 -0.0014 -0.0005 -0.0007

P 0.0000 -0.0012 -0.0017 0.0016

d 0.0000 0.0185 0.0127 0.0006

Am/ s 0.0000 -0.0016 -0.0002 -0.0011

P 0.0000 0.0004 -0.0003 0.0004

d 0.0000 0.0319 0.0227 0.0022

muff in tin 0.0000 0.0011 -0.0012 0.0015
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Table 4.5

Muffin-Tin Charges (electrons)

/ twin int. ext. sup. ext. hyp. ext.

layer A B A C C

majority s 0.2400 0.2340 0.2398 0.2400 0.2400

spin p 0.2358 0.2358 0.2338 0.2352 0.2359

d 4.4689 4.4647 4.4595 4.4657 4.4662

minority s 0.2444 0.2438 0.2440 0.2443 0.2443

spin p 0.2528 0.2532 0.2522 0.2534 0.2525

d 3.8445 3.8493 3.8547 3.8477 3.8466

total s 0.4844 0.4778 0.4838 0.4843 0.4843

P 0.4886 0.4890 0.4860 0.4886 0.4884

d 8.3134 8.3140 8.3142 8.3134 8.3128

total 9.2864 9.2808 9.2840 9.2863 9.2855

&Qmaj. 1 s -0.0001 -0.0061 -0.0003 -0.0001 -0.0001

P -0.0011 -0.0011 -0.0031 -0.0017 -0.0010

d -0.0046 -0.0088 -0.0140 -0.0078 -0.0073

/ S -0.0003 -0.0009 -0.0007 -0.0004 -0.0004

P -0.0005 -0.0001 -0.0011 0.0001 -0.0008

d 0.0058 0.0106 0.0160 0.0090 0.0079

Anti s -0.0002 0.0052 -0.0004 -0.0003 -0.0003

P 0.0006 0.0010 0.0020 0.0018 0.0002

d 0.0104 0.0194 0.0300 0.0168 0.0152

muff in tin -0.0008 -0.0064 -0.0032 -0.0009 -0.0017



Table 4.6

spin polarization Fitting Parameters 

based on the fee structures (in {I#)

M0 0.604

02 -0.010

03 0.003
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Table 4.7

Energy Fitting Parameters 

(mJ/m2)



Table 4.8

system LKKR energy (mJ/mz) fitted energy (mJ/mz)

twin 105 101

intrinsic 176 180

extrinsic 161 180

super-extrinsic 160 158

hyper-extrinsic 200 202
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I. Figures for Chapter IV

Figure 4.1 A schematic diagram depicting the embedding procedure used in cal­

culating the electronic structure of stacking faults. The lines 

represent planes of atoms. The light grey areas represent the bulk, 

which extends to infinity both above and below the stacking fault. 

The dark grey area is the region of space containing the stacking 

defect in which the potentials are allowed to readjust This region is 

restricted by the boundary condition that it have the structure of the 

bulk at the light-grey dark-grey interface. Although this restriction 

represents an approximation, the approximation can be made as 

accurate as one would like by merely allowing the dark region to

grow.
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Figure 4.2 The muffin-tin density of states (MTDOS) for bulk nickel for both 

minority and majority states. The dashed vertical line represents the 

Fermi energy.
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Figure 4.3 The muffin-tin density of states (MTDOS) for hypothetical unstable 

hep nickel. The dashed vertical line represents the Fermi energy. 

There are several differences between this MTDOS and that of 

figure 4.2. There is a significant rearrangement of the state near 0.3 

Hartrees and the peak nearest the Fermi level is broadened in the 

hep structure.
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Figure 4.4 A diagram depicting the sites A, B, and C for the stacking notation. 

In this figure, the grey circles are sites labelled A. They form the 

simple triangular lattice of the {111} planes of the fee structure. 

When stacking another plane on this one (in the close-packed 

configuration) there are two possible sites, represented by the grey 

squares labelled B and the white triangles labelled C. The layers 

can be stacked in any random order as long as they satisfy the con­

straint that no layer is stacked immediately above a layer of its own 

type. The fee lattice is created by stacking the layers ABCABC..., 

and the hep lattice is created by stacking the layers ABABAB....
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Figure 4.4
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Figure 4.5 The stacking sequences investigated in this paper. The "..." in (a)- 

(e) indicates that the fee stacking sequence continues to infinity. 

The "..." for (f) indicates that the stacking sequence shown is 

repeated to infinity. The structure in (a) is referred to as a twin 

boundary fault; (b) an intrinsic fault; (c) an extrinsic fault; and for 

lack of established names, (d) a super-extrinsic fault, and (e) a 

hyper-extrinsic fault The structure (f) is the double-hexagonal- 

close-packed (dhep) stracture. For the stacking faults, the number 

of layers on which the potentials were allowed two relax is the 

number of layers pictured less two.



158

(•) (b)

B

(C) (d)

•

A
B

C
A

C
B

A
B

C
A

(e) (f)

B

B

Figure 4.5



159

Figure 4.6 (a) The two-dimensional Brillouin zone used for the calculation, (b) 

The projection points of the three-dimensional fee Brillouin zone 

onto the two-dimensional zone used in the calculations. The points 

are labelled by their corresponding three-dimensional labels. The F 

and L points of the three-dimensional zone project onto the center of 

the two-dimensional zone. The remaining L -points and the X -points 

project onto M. The K -points project onto the nonsymmetry points 

indicated in the figure.
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Figure 4.6
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Figure 4.7 The projection of the three-dimensional band stracture of fee nickel 

onto the two-dimensional Brillouin zone of figure 4.6. The shaded 

regions are those for which three-dimensional band states exist, the 

white regions represent gaps in the spectrum. It is in the white 

regions that one looks for localized states. From the figure it is 

clear that there is a possibility of finding states localized in teh 

vicinities of K and F, but not about M. The projected band struc­

tures for both spins are similar, suggesting that in an approximate 

sense, the magnetism can be thought of in terms of a Stoner shift.
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Figure 4.8 The k-resolved layer projected MTDOS for the F-point of the twin 

boundary fault (in arbitrary units). The solid lines are the majority- 

spin states and the dashed lines are the minority-spin states. The 

layers are labelled as in figure 4.5. The dotted vertical line 

represents the Fermi level of fee nickel. There is a resonant state, in 

bothe spin polarizations, which splits off from the upper d-band (the 

majority-spin localized states are indicated by the arrows). The 

energies of the resonances are given in table 4.3.
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Figure 4.9 The k-resolved layer projected MTDOS for the M -point of the twin 

boundary fault (in arbitrary units). The solid lines are the majority- 

spin states and the dashed lines are the minority-spin states. The 

layers are labelled as in figure 4.5. The dotted vertical line 

represents the Fermi level of fee nickel. There are three localized 

states for each spin polarization (the majority-spin localized states 

are indicated by arrows). The energies of the states are given in 

table 4.3.
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Figure 4.10 The k-resolved layer projected MTDOS for the F-point of the extrin­

sic fault (in arbitrary units). The solid lines are the majority-spin 

states and the dashed lines are the minority-spin states. The layers 

are labelled as in figure 4.5. The dotted vertical line represents the 

Fermi level of fee nickel. There are resonant states in both spin 

polarizations which split off from the upper d-band and (the 

majority-spin localized states are indicated by arrows). The energies 

of the resonances are given in table 4.3. There is also a noticeable 

shift of minority-spin states from above the Fermi level to below, 

thus contributing to the decrease in spin polarization of the central 

layer (lowest panel) of this fault.
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Figure 4.11 The k-resolved layer projected MTDOS for the K -point of the 

extrinsic fault (in arbitrary units). The layers are labelled as in 

figure 4.5. The solid lines are the majority-spin states and the 

dashed lines are the minority-spin states. The dotted vertical line 

represents the Fermi level of fee nickel. There art three localized 

states present in each spin polarization (the majority-spin states are 

indicated by arrows). The energies of the states are given in table 

4.3.
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Figure 4.12 The k-resolved layer projected MTDOS for the AT-point of the 

hyper-extrinsic fault (in arbitrary units). The solid lines are the 

majority-spin states and the dashed lines are the minority-spin states. 

The layers are labelled as in figure 4.5. The dotted vertical line 

represents the Fermi level of fee nickel. There are four localized 

states for each spin polarization (the majority-spin localized states 

are indicated by arrows). The energies of the states are given in 

table 4.3. The strongly localized states at lower energies do not mix 

with their counterparts on the other P-layer of the fault. In contrast, 

the two localized states at higher energy result from the mixing 

between localized states centered on different P-layers. This mixing 

results in a symmetric state and an antisymmetric peak. The spectral 

strength of the peak from the antisymmetric state goes to zero on the 

central layer of the fault.
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Figure 4.13 A comparison of the k-resolved MTDOS for the fee and hep struc­

tures (in arbitrary units). The dashed lines are the fee results, and 

the solid lines are the result for the hep structure. The upper panel 

in each frame is the minority-spin, the lower the majority-spin. 

There are two features of the F-point MTDOS pictured in panel (a) 

which are relevant to the the current arguments. First, the minority 

spin peak at highest energy lies above the Fermi level in the fee 

case, and lies below it in the hep result The second feature is that 

the bandwidth of the states nearest the Fermi level is broadened in 

the hep structure relative to its width in the fee system. The 

MTDOS at M [panel (b)] also display important differences. The 

most obvious is the presence of a peak in the majority-spin states of 

bulk hep nickel which lies completely above the Fermi level, and is 

not present in the fee MTDOS. Also, a gap in the majority-spin 

MTDOS has opened at the Fermi level. It is also clear from this 

panel that the hep system is no longer adequately described by a 

simple Stoner shift. The majority-spin peak above the Fermi level at 

M and the minority spin states at F which move below the Fermi 

level contribute to the decrease in spin polarization.
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Figure 4.14 The band structure of fee nickel plotted along a line parallel to the 

[111] direction passing through M. The majority-spin bands are the 

solid line and the minority-spin bands are given by the dashed line. 

The line along which this band structure is calculated passes through 

the X -point and the L -point of the three-dimensional Brillouin zone. 

The source of the minority-spin hole-pocket at X is clearly visible. 

(The second, experimentally unobserved, hole-pocket at X is also 

present.) There is a minority-spin d-like band which lies almost 

completely above the Fermi level, and a majority-spin 5-like band 

which crosses the Fermi level.
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Figure 4.15 A plot of the band structure of hypothetical hep nickel along the 

line L-M-L, which is the direction equivalent to that plotted in 

figure 4.14. The solid lines are the majority-spin bands, and the 

dashed lines are the minority-spin bands. The states responsible for 

the peak in MTDOS of the majority spin are clearly visible. There 

is one majority-spin band which lies completely above the Fermi 

level (in the pictured range of reciprocal space).
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Figure 4.16 The k-resolved MTDOS for the M-point of the extrinsic fault, 

labelled as in figure 4.5. The solid lines represent the majority-spin 

states and the dashed lines represent the minority-spin states. The 

dotted vertical line is the Fermi level. The most interesting feature 

of this plot is the "bump" in the majority-spin MTDOS which 

appears above the Fermi level on the layer in which the spin polari­

zation is most reduced (i.e. the central layer of the fault).
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Figure 4.17 The stacking sequences for the stacking faults based on hypothetical 

unstable hep nickel. (These defects would form spontaneously.) The 

potentials on all of the layers pictured were allowed to relax. The 

interesting feature of these structures is that they both contain layers 

(labelled C) which do not have neighbors at any distance along the 

[111] direction. This isolation should lead to a narrowing in the 

widths of the states on layers C, as well as an increase in spin polar­

ization. which is the calculated result
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Figure 4.18 The k-resolved layer projected MTDOS for the stacking sequence 

pictured in figure 4.17(b) plotted at F. The solid lines represent the 

majority-spin states and the dashed lines represent the minority-spin 

states. The dotted vertical line is the Fermi level of hep nickel. 

The most striking feature of this plot is the minority-spin localized 

state which splits off from the top of the d-like band and moves 

above the Fermi level. In addition, the apparent widths of the states 

is significandy decreased on the isolated layer. This is consistent 

with the expected behavior, the muffin-tin spin polarization on the 

central layer is increased by eight percent over the bulk hep value of 

0.583 to 0.635 .
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Figure 4.19 The k-resolved layer projected MTDOS for the stacking sequence 

pictured in figure 4.17(b) plotted at M. The solid lines represent the 

majority-spin states and the dashed lines represent the minority-spin 

states. The dotted vertical line is the Fermi level of hep nickel. 

The most striking feature of this plot is that the majority-spin peak 

above the Fermi level completely disappears on the central layer of 

the stacking defect.
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Figure 4.20 The band structure of cobalt taken from Papaconstantopolous’ book, 

plotted along three directions. While the exact details of the 

changes in spin polarization of nickel reported here depend on the 

specific properties of the band structure of nickel, there is reason to 

believe that similar effects will occur in cobalt. The band structure 

along F to A of cobalt is very similar to that of nickel plotted along 

F to L, except that the Fermi level crosses near the bottom of the 

minority-spin band in cobalt, not the top as in nickel. The band 

structure of cobalt plotted along the A/ to L direction is very simi­

lar to that of hep nickel plotted along this same direction. It is not 

clear how stacking faults will affect the spin polarization of this sys­

tem, but if the result of a fault is narrow the local "bandwidth" of 

states along the F to A direction and to shift the average energy of 

the states up, which are the effects observed in the nickel calcula­

tion, the change in spin polarization could be similar in magnitude to 

that calculated for nickel. This change, however, would most likely 

represent a small percentage change in spin polarization and would 

be difficult to detect experimentally.
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Figure 4.21 A comparison of the spin polarizations calculated with the simple 

fitting procedure outlined in the text and the LKKR values. The 

lines are guides for the eye. The fitting parameters are those in table 

4.6. The plot labelled (a) is for the twin boundary fault, (b) is for 

the intrinsic fault, and (c) is for the extrinsic fault. The abcissae are 

labelled as in figure 4.5. In all cases the trends in spin polarization 

are adequately predicted by this simple fitting method.
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Figure 4.22 A comparison of the spin polarizations calculated with the simple 

fitting procedure outlined in the text and the LKKR values. The 

lines are guides for the eye. The fitting parameters are those of 

table 4.6. The plot labelled (e) is for the super-extrinsic fault and (f) 

is for the hyper-extrinsic fault. The abcissae are labelled as in figure 

4.5. In all cases the trends in spin polarization are adequately 

predicted by this simple fitting method.
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