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Magnetic Properties of Surfaces and Interfaces

Daryl C. Chrzan

Abstract

A survey of the magnetic properties of three types of planar defects is presented:
a model interface in an Ising antiferromagnet, a model of the surface of an antifer-
romagnet, and a realistic calculation of the magnetic properties of stacking defects in a
bulk ferromagnet. The simplest interface studied is the antiphase boundary in the
nearest-neighbor face-centered-cubic Ising antiferromag.et. The properties of this
defect are understood by means of the construction and solution of an exactly solvable
thermodynamic model which mimics the boundary’s properties. The implications for
further calculations using the nearest-neighbor face-centered-cubic Ising model are
explored. This thesis thcnexammes the effects of introducing a free surface in a real
antiferromagnetic semiconductor, EuTe., The complex magnetic structures of the
{001} faces of this material, which inclu& spin structures incommensurable with the
underlying lattice, are understood in terms of a classical Heisenberg Hamiltonian.
Finally, the magnetic properties of {111} stacking faults in nickel are investigated util-
izing a self-consistent, layered Korringa-Kohn-Rostoker formalism based on the local-
density approximation to density-functional theory. Very simple expressions for the
spin polarization and internal energy are developed. The range of behaviors displayed
by these three systems is remarkable in its diversity, and yet the underlying mechan-
isms are all similar. This similarity suggests that many of the tools necessary for

understanding the magnetic properties of surfaces and interfaces are readily available.
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Chapter I: Introduction
The properties of magnetic materials have been the subject of study and wonder

for over a thousand years.! The lodestone appeared in Greek writings about 800 B.C.,
and the compass was certainly introduced into Europe by the twelfth century A.D.
Magnetism was applied technologically long before its underlying mechanism was
understood as it took until the twentieth century and the advent of quantum mechanics
for the physics to begin to be unraveled. Even today, the complete characterization
and understanding of magnetism and related phenomena remains as one of the great

challenges to scientists.

The special class of systems studied here consists of planar defects: surfaces,
interfaces and antiphase boundaries. While it is important to understand the bulk pro-
perties of magnetic materials, it is equally important to understand the effects of planar
defects. Many important magnetic devices (e.g. computer disk drives) directly involve

surfaces and interfaces of magnetic materials.

The study of planar defects performs another vital function. If a theory, based on
experiments which measure bulk properties, accurately reproduces the experimentally
observed surface or interface‘ pro.pcrties, it is highly probable, that the theory is correct.
Alternatively, failure to reproduce the observed planar defect behavior suggests an
incorrect or inéompletc theory. The infor:mation gained from this failure generally

leads to improvements in the theory of the bulk properties.

Before delving into the details of these defects and their magnetic properties, it is
necessary to present a brief introduction to the field of magnetism. There are two
important aspects of the magnetism problem: the physical interaction which leads to
ferromagnetism or antiferromagnetism, and the thermodynamic properties of magnetic
systems. While these aspects are not truly separable, both are sufficiently complex that
studies of real systems are often simplified by handling each aspect separately. When

appropriate, this thesis will do so as well.




A. Physical Origins of Magnetism

Dirac? and Heisenbc:rg3 independently discovered exchange, the interaction lead-
ing to magnetism, in 1926. They argued that because the Pauli exclusion principle
keeps two electrons with the same spin spatially separated, the parallel-spin
configuration has a lower Coulomb energy than that of electrons in different spin
states. At the same time, however, the electrons must have a higher kinetic energy
(correlations between electrons must induce more nodes in the wavefunction). In most
cases, this increase in kinetic energy outweighs the decrease in Coulomb energy, and
the system does not become ferromagnetic. In special circumstances the reverse is
true, which results in ferromagnetism. Ferromagnetism originates in the Coulomb
force, not the much weaker magnetic dipole-dipole interaction of classical physics

and, being an inherently quantum mechanical phenomena, would vanish if 7 were zero.

The variation in observed magnetic behaviors is notewcrthy. The 3d transition
metals Ni, Co and Fe all display ferromagnetism. The ground state of Cr is an antifer-
romagnetic spin-density wave. The insulators NiO and MnO are antiferro'magncts. The
rare-earth metals and their alloys have even more complicated magnetic prépcrties.
For example, EuO and Eub are two of the very rare fnsulating ferromagnets, EuSe is
both a ferromagnet and an antiferromagnet (depending on the temperature), and EuTe
is antiferromagrfetic. '

One fundamental process underlies these phenomena, all of which can be under-
stood as manifestations of the various aspects of exchange. The simple model Hamil-
tonian described below, which explicitly includes exchange, demonstrates this fact. It
will allow for the description of magnetic phenomena in the transition metals, the
rransition-metal compounds and alloys, and the rare-earth metals, compounds and

alloys.

Consider a one-electron Hamiltonian defined on a Bravais lattice:



H° =333 tijncirnccjuo
ijon

where the operator c,-f,o (c;ng) creates (destroys) an electron with spin ¢ in the nth
Wannier orbital* at site i. The matrix element of the one-particle Hamiltonian, Lijns
includes the kinetic energy and the average effects of the nuclei and all the other elec-

trons. The inclusion of the average effects of all the other electrons results in a self-

consistently renormalized band structure.

To study magnetism, however, it is advantageous to calculate some of these aver-
aged terms explicitly, and not include their effects in the renormalized band structure.
Doing so may artificially enhance the magnetism of the Hamiltonian, but the Hamil-

tonian should be a good first approximation to the real system.

The first term singled out for explicit treatment is the direct Coulomb interaction

between ‘wo electrons, which has the following form:

HE=(1) Y ¥ X V& jn Bing Njn
ij nn’ o0

where n;, 4 is the number of electrons on site i in the nth Wannier orbital with spin o,

and V¢ is the Coulomb-interaction matrix element.

The exchange terms, also treated explicitly, act as a correction to the Coulomb
repulsion for m./o electrons in a triplet state and lowers their energy relative to the
singlet state. In this interaction, an electron at site one scatters, via the CoulomB
interaction, with an electron at site two, and in the final state the first electron is at site
two and the second electron is at site one. The spins do not flip in this process. The

Hamiltonian corresponding to this interaction is

HE =3 3 3 V& g Che Cny Cing

i.jnn' oo

where
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H® can be recast in terms of the number operators, n, and the spin operators, S, by

writing out the sum over the spins explicitly and noting that
Sip = 12 (N1 = ),

Sin = cx];zTcinJ.

and

Si-.u =°if.¢¢m

Then

HE =3 3 JI [,y Sip + 1/4 njymy, ]

ijnna’
(Hérg, the exchange interaction is J,’J"' =2 V§ ja’-) This form explicitly displays the
spin }-dependcnce of the Coulomb interaction. The m;, in the last term of this expres-
sion is the total occupation, for hoth up and down spins, of the nth Wannier orbital on

the ith site.

For insulators, with more than one o;'bital per site, the Coulomb term, H¢, and
the intra-site exchange (responsible, in atomic physics, for Hund’s rules) are the largest
terms in the Hamiltonian. Calculations, then, treat these terms exactly; the inter-site
exchange and the the hopping terms (H° minus the effects of the Coulomb term and
the exchange terms) are treated using perturbation theory. This approach yields the

simple Heisenberg Hamiltonian

R Heis. = _ )y J‘.;ff S; - S,
i,j

where J,-jf / is the effective exchange constant for the interaction between sites i and j



and can have cither sign: a positive sign gives a ferromagnetic interaction, a negative
sign results in antiferromagnetism. The S; are the site spin operators, not the spin of a

single electron, a feature arising directly from the intra-site Hund’s rule coupling.

The Heisenberg Hamiltonian forms the foundation of the modem theory of local-
moment magnetism. It has been used with remarkable success to study a variety of
systems. The range of behaviors described by this Hamiltonian includes ferromagne-

tism, antiferromagnetism, and helical or more complicated structures.

In the Heisenberg Hamiltonian, the magnetic electrons are all localized. A wealth
of evidence, however, indicates that itinerant, not localized, electrons are responsible
for magnetism in the 34 transition metals. Perhaps the strongest of the arguments is
that the number of Bohr magnetons observed in these systems is generally a non-
integer (e.g. Ni is observed to have a moment of 0.606 pug, Fe a moment of 2.22 pp,
and Co a moment of 1.71 up Y. The Heisenberg Hamiltonian does not Jescribe
itinerant magnetism.

As a first attempt at understanding itinerant ferromagnetism, one can imagine the
gradual delocalization of the localized magnetic electrons. It does not seem likely that
a small amount of delo;:aﬁiaﬁon would destroy the magnetism. The Hamiltonian,
H° + H° + H¥, where H° no longer oontains the averaged effects of the direct
Coulomb interaction or the exchange contai.ncd in H**, can still be used to understand
these materials, but some modifications must be made. This thesis, however,

approaches itinerant magnetism from a different viewpoint.

Since the magnetic electons are delocalized, the Bloch states of the crystal form
a better basis for understanding itinerant magnetism. The following analysis uses the
techniques of first quantization; in this form they are applied below to study stacking

faults in nickel.

The study of itinerant magnetism begins with the single particle Hamiltonian
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The first two terms are the kinetic energy of the electrons and the potential arising
from the ions, respectively. The last term is the pairwise Coulomb interaction (the
sum runs over all but the ith electron). Summing over all electrons gives the total

Hamiltonian:

e?

H=YH-(12) ¥ ——
i le;—r; |

Job )
(the second term corrects for the double counting of the Coulomb interaction).

In the Hartree-Fock® approach, a determinantal product of wavefunctions which
are the solution to self-consistent, one-particle-like eigenfunction eigenvalue equation
approximates the true solution. The determinantal form insures compatibility with the
Pauli exclusion principle. The resulting equations must be solved self-consistently; but
the solution includes two types of terms, generaily called the direct Coulomb interac-

tion and the exchange interaction.

Unfonﬁnately, the Hai-mée-Fgck solution does not represent the physical situation
very well. While explicidy including correlations between spin-aligned electrons by
means of the antisymmetrization of the t;ial wavefunction, the approximation com-
pletely neglects correlations between electrons of opposite spin. This neglect leads to
an overestimate of the energy of the system, because of the excess Coulomb energy of
the uncorrelated electrons. In general, correlating electrons with opposite spin
significantly decreases the potential energy of the system, which more than compen-
sates the induced increase in kinetic energy. The difference in energy between the
Hartree-Fock approximate energy and the true energy is referred to as the correlation

energy.

The shortcomings of the Hartree-Fock solution motivate improvements. Most



commonly, theorists add an extra term representing the exchange and correlation
energy to the single-particle Hamiltonian. Slater’ suggested a term proportional to
p(r)13, where p(r) is the density of electrons at the point r. In the Hartree-Fock
approximation, electrons of the same spin are more separated than electrons of oppo-
site spin, essentially enhancing the repulsion between electrons of the same spin. This
enhanced repulsion creates an "exchange-hole” in the density of electrons of the same
spin; the deficiency in charge amounts to exactly one electron. The radius of the
"exchange-hole" must be on the order of p(r)‘m, suggesting that the electrons on the

outer edge of the hole feel a potential proportional to p(r)1’3.

In 1964, Hohenberg and Kohn® developed density-functional theory, which
justified Slater’s methodology, but modified his exchange potential. Hohenberg and
Kohn established that the ground-state energy of an electronic system is a unique func-

tional of the electron density. The variational equation describing this dependence is

Elp(] =Tlp()] + e [pr) V(r) d°r

+ "22 [1 p,(:)_pif? @r'dr + ELlpe) .
where T [p(r)] is the kinetic energy assoqiatcd with the electrons, 'V (r) the external
potential (i.e. arising from the ions in the lattice), the third term represents the electros-
tatic energy of the electrons, and the fourth term is the exchange-correlation energy
functional. The true density of the system is obtained by varying the energy with

respect to the electron density with the number of electrons constrained to take the

proper value.

The non-local theory described above depends in a complicated way on the elec-

ron densities at points r and r’, making its application very difficult. The

9,10

simplification most often applied was developed by Kohn and Sham™" and is referred

to as the local-density approximation. In this approximation, the exchange-correlation




energy of free-clectron gas of density p(r) replaces the nonlocal exchange-correlation

energy functional. Furthermore, the density, p(r), is written as

N
P =3 W (M) W)

with N, the number of electrons in the system, and y;(r), a single-particle wavefunc-
tion.
These assumptions reduce the calculation to the self-consistent solution of a set of

one-particle equations:

=72+ V@) + e T2 4 v (0] i) = € w0

where V,.(r) is the exchange-correlation potential defined as the variational derivative,
OE, . 10p(r).

The original formulation of the local-density-approximation to density-functional
theory applied to spinless electrons. The formulation was later extended to electrons
with spin, which allowed the investigation of magnetic systems.!! The extension, how-
ever, .was a non-trivial task, cc;mplicatcd by the fact that a spin density does not
uniquely determine a spin-dependent patential. Hohenberg and Kohn’s density-
functional theor‘y insures, however, that th.erc is still a unique spin density for the
ground state. A parametrized form of the exchange-correlation energy facilitates self-
consistent band-structure calculations; the calculations below employ a spin-polarized

form of the parametrization developed by Hedin and Lundqvist.!?

In general, the results of local-spin-density-functional theory do not agree with
experiment as well as one would like. For example, the experimentally measured 3-d
bandwidth of nickel is one electron-Volt narrower than the calculated bandwidth.
Furthermore, self-consistent local-spin-density-functional methods predict too large an

exchange splitting.!?




The issue is, then, whether or not local-spin-density-functional theory can predict
the true behavior of the spin polarization of stacking faults in nickel. While a proof
that this may be the case is not available, there are some indications that the local
theory does work. For example, it predicts a spin polarization of 0.58 pg for nickel,
and a spin polarization of 2.15 pp for iron.13 The experimentally determined values
are 0.56 pup and 2.12 g, respectively. This agreement between the theory and the
experiments suggests that the local approximation adequately represents the physical
mechanism responsible for the magnitude of the spin polarization in nickel. Further-
more, the stacking-fault studies presented here are aimed at understanding trends of the
spin polarization near a stacking fault. In that respect, the absolute values of the spin
polarization are not very important, only variations in spin polarization matter. Sys-
tematic errors in the calculatons may cancel, and the trends may be accurately

predicted.

B. Thermodynamic Aspects of Magnetism

The most striking feature of the three-dimensional magnetic systems studied here
is that they undergo a phase.transition at a finite temperature, called the critical tem-
perature (in ferromagnets, the Curie point and in antiferromagnets, the Néel tempera-
ture). A complf,te theoretical understandidg of phase transitions still eludes theorists,

14,15

but many promising (relatively) new techniques are currently being explored.

Since the difficulty of the phase-transition problem often precludes an exact solu-
tion, approximate methods are sought. These approximate methods differ for the
itinerant and the localized cases. This thesis will concentrate on understanding the

thermodynamics of the localized picture.

As stated above, the Heisenberg Hamiltonian describes localized spins interacting
via exchange to a high degree of accuracy. When studying the thermodynamics of

spins on a lattice, a further simplification of this Hamiltonian, assuming that the spins
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can point only up or down, yields the famous Ising model:

Ising _
H™ = -3 J. o; o;
iJ

where o; =11 and J;; is the Ising exchange between sites i and j. The partition

function is then written:

Z=3 e BEW©
(o}

where = 1/kgT (kg is Boltzmann’s constant, T is the temperature), (o} denotes all
the possible configurations of the Ising spins, and £ (o) is the energy of the system in
a particular configuration.

The Ising model approximation reduces the thermodynamics of magnetism to its
simplest possible form. Even so, finding the solution to the problem can be very
difficult. In fact, exact solutions to the model are known only for one- and two-

dimensional systems.

The one-dimensional Ising model, which was actually suggested by Lenz!$, was
solved for the case of néa}eét-néighbor interactions by Ising!” in 1925. This model,

however, does not display a phase transition at a finite temperature.!®
]

Lars Onsager!® calculated the partition function of the two-dimensional Ising fer-
romagnet with only nearest-neighbor interactions in 1942, and published the result in
1944. Later, in 1948, while at a meeting, Onsager produced the formula for the spon-
taneous magnetization as a remark during a discussion, but he never published the

derivation. (The derivation was later published by Yang.20)

The importance of Onsager’s work can hardly be overstated. The two-
dimensional Ising model represented the first exactly solved non-trivial thermodynamic
model showing a phase transition. Perhaps the most important function of this solu-

tion, outside of its fundamental interest and relationship to "two-dimensional" magnetic
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systems, is its use as a test case for approximate methods. By comparing approximate

results with the exact solution, the nature of the approximation can be understood.

"Real-world" systems are inherently three-dimensional. There are many methods
for approximating the thermodynamic functions of three-dimensional Ising models;
each has its advantages and disadvantages. Taken together, they provide a reasonably
detailed picture of the exact properties of these systems. There are, however, many
fine points that must be understood. Some of these methods are investigated in

chapter IL

C. Overview

The systems studied below have one common feature: all involve two-
dimensional planar defects interacting with a three-dimensional bulk. Chapter I
discusses the properties of {001} antiphase boundaries in the nearest-neighbor face-
centered-cubic Ising antiferromagnet (or equivalently, the simple substitutional binary
alloy).2! Chapter III investigates the ground state propertics of the surface of a mag-
netic semiconductor, EuTe.2 The ground-state magnetic properties of {111} stacking

faults in nickel forms the subject.matter of chapter IV.2

There is another, common bond between these systems. The observed physical
phenomena arisg directly from competitionsbctwccn (at least) two effects. In the anti-
ferromagnetic Ising model a one-dimensional disorder competes with a two-
dimensional internal energy. The magnetic surface structure of EuTe perfectly demon-
strates the physics of competing exchange interactions (i.e. nearest-neighbor vs. next-
nearest-neighbor exchange). The magnetic properties of the {111} stacking faults are
understood in terms of the competition between band-like behavior and magnetic
interactions. The physical properties resulting from these various forms of competition

are certainly interesting, and often times surprising.
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Chapter II : Antiphase Boundaries in an Ising Antiferromagnet

A. Introduction

The true nature of the phase diagram of the face-centered-cubic antiferromagnetic
Ising model with only nearest-neighbor interactions, or equivalently the simple binary
ordering alloy, has recently been the subject of great debate. Three of the best avail-
able methods for calculating the diagram give either conflicting results or are simply
not directly applicable. This is particularly alarming as the results of all the methods
give good agreement when applied to other systems. The three methods under con-
sideration are 1) low-temperature expansions, 2) the cluster variation method, and 3)

Monte Carlo numerical simulations.

The discrepancy! centers on the exact location of the triple point (the point
defined by the temperature and the magnetic field at which the disordered phase and
the two types of ordered phases appearing in the diagram are in equilibrium), and is
related to the methods’ failure to treat antiphase bpundarics (defined below) in a con-
sistent manner. The adequate treatment of antiphase boundaries reconciles the predic-
tions of the three methods.. In order to understand how thcsé failures come abouE, it is
necessary to understand something about the three methods.

)
2 are extremely useful for obtaining exact information

Low-temperature expansions
about the low-temperature behavior of the system being studied (low-temperature is
defined in terms of the excitation spectrum of the model). The justification of this
expansion technique is straightforward. In general, the partition function of an Ising
system is given as the sum of e PE over all possiblc configurations ( = 1/kg T, where
kg is Boltzmann’s constant and T is the temperature; E is the energy of a
configuration -- see chapter I.B). At low temperatures, B becomes very large. There-

fore, only terms with very low energy (so that BE < 1) will contribute to the partition

function. The low temperature expansion includes only these terms.
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Writing down the expansion still requires some work. The derivation of the low
temperature expansion for the partition function for an Ising ferromagnet with only
nearest-neighbor interactions defined on a simple-cubic lattice of N sites (with periodic
boundary conditions) demonstrates the technique. In addition to the Ising interaction
described in chapter I, this calculation also includes an externally applied magnetic
field, . The total Hamiltonian is

H=—JEG,-O'j—hZGi ’

<ij> i
where <ij> indicates that the sum includes all nearest-neighbor pairs only.

At zero temperature, the system will have all of its spins pointing in the direction
of the magnetic field (the ground state). At a very low, but finite, temperature, some
~ of the spins are flipped. The lowest lying excited states of this model consist of those
states where only one spin is flipped and have an energy of (127 + 2A) [2/ for each
pair of spins aligned antiparallel in the flipped configuration and 2k for each spin
aligned - antiparallel with the magnetic field]. These N conﬁguratiéns contribute
Ne BI2/+2h) ¢ the partition function.

The next level of excited states consists of those in which two spins align
antiparallel to t!xe magnetic field; the spins can be nearest-neighbors or they can be
further apart. In flipping two nearest-neighbor spins, five of the six nearest-neighbor
bonds on each site connect a flipped spin to a spin aligned antiparallel to it. Each of
these bonds costs 2/ in energy for a total of 20/. The interaction with the magnetic
field then contributes an energy of 44. A total of 3N nearest-neighbor pairs in the lat-
tice gives a conuibution to the partition function from these excitations of
3Ne~B2W+4h)  Elipping two spins that are further apart than nearest-neighbors costs
double the energy of an isolated spin flip. The calculation of the number of
configurations in which two spins, not nearest-neighbors, are flipped proceeds as fol-

lows. There are N ways to choose the first site. After choosing the first site, there are
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only (N-7) sites left to choose from. The total number of ways to choose the two
sites is then N (N-T7)/2, where the factor of one-half accounts for the double counting
of each configuration. Note that the total number of two-site configurations is
N (@V-1)/2 as it should be.

Letting x = e and y = e~ 2Pk the low temperature series nOw appears as

Z=1+N x3 +3N x°y2 + NN-T)2 x82

The expansion can be continued to higher order by considering higher energy excited
states (i.e. those with a larger number of flipped spins), although counting the number
of configurations soon becomes difficult. (Graphical mcthodsz"3, similar to those used
in the linked-cluster expansion are often used for this task. The difficulties stem from

constraints imposed by the topology of the lattice.)

Completion of the calculation requires that the thermodynamic limit be taken. In

this limit, one expects, on physical grounds, that

Z=@Z,N

where Z, = ¢ and f is the Helmholtz free energy per site. (This follows from the

extensive property of the Helmholtz free energy.) It is assumed that

Z,=1+y gl(x)+y2g2(x)+

where the g;(x) are to be determined by comparing the two expressions for Z given

above. The comparison gives

Z,=1+ yx3 + 3y2(x3-x5) + 0 (y3x®).

Z, can then be used to calculate the low-temperature thermodynamic properties of this

model.




17

The above derivation includes at least one implicit assumption: that the internal
energy of an excitation scales with the number of flipped spins. In the limit of vanish-
ing magnetic field (or low magnetic field), it is not, however, rigorously correct to
assume that all excited states with (n+1) flipped spins are at a higher energy than
those with » flipped spins. If no external field is present, the energy of excitation for
flipping a cluster of spins scales with its surface area and not its volume. The order of
the error in any given expansion can be determined, so this assumption does not pose

a fundamental problem.

The expansions do have limitations and difficulties associated with them. For
example, their analytic properties imply that the expansions a.loﬁé cannot make precise
predictions about thermodynamic properties near a phase transition. There have been
attempts to extend their range of validity to near the transition temperature through the
use of Padé approximants, which have met with some success. But overall, the
difficulties inherent in predicting the physical properties of a system, at a temperature
for which the free energy is non-analytic, from the properties at temperatures for

which the free energy is analytic, seem overwhelming.

A more serious problérri is that in certain systems (e.g. the nearest-neighbor Ising
antiferromagnet defined on a face-centered-cubic lattice field) the ground state is
infinitely degenérate. In these situations, it is not clear which of the ground states
should be used for the expansion. The seemingly obvious choice of averaging over all
ground state configurations is not always the correct approach, as will be discussed

below.

The cluster variation method’ (CVM) represents a variational approach to calcu-
lating the thermodynamic properties of a simple spin system. The number of
configurations of a system is approximated in terms of the probability of finding clus-
ters of a predetermined size and configuration in the lattice at a specific temperature.

The method proceeds through the calculation of a trial Helmholtz free energy (or in an
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equivalent but somewhat more useful formulation, a trial grand potential is calculated).
Minimization of the trial free energy with respect to the cluster probabilities calculates
the best estimate of the true free energy, within that level of approximation, at the
specified temperature and magnetic field.

It is a simple task to express the internal energy of an Ising system in terms of
cluster probabilities. It is not as simple to calculate the entropy associated with a
given set of probabilities. This task is accomplished systematically in CVM. The
hierarchical structure of CVM starts with the simple mean-field approximation®, moves
into the Bethe pair approximation’, and even further into more accurate approxima-
tions involving larger clusters, the topology of which depends on the lattice being con-

.

sidered.

As an example of the procedure used to calculate the entropy, the trial free
energy of the simple cubic lattice is derived using a nearest-neighbor pair as the largest
cluster.® There are two types of clusters which enter the calculation: the single-site
clusters, and the nearest-neighbor pairs. The single-site probabilities are denoted by
.. x,(x_), which refer to the probability of finding an up(down) spin at a site of the lat-

tice. These variables must satisfy the constraint:

‘+

. x,+x_=1

The pair probabilities are denoted by y(, 4}, ¥(+.-) = Y{-+)» and y[ ), and must be such

that

Yird) T V4] = %o

Y-t F V(-] = X
Here, y(,.] is the probability of finding a nearest-neighbor pair of spins both pointing

in the positive z -direction, etc.
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In the first step of the approximation, one calculates the number of ways of
arranging the nearest-neighbor pairs, without regard to whether or not the arrangement
is physically allowable (the bonds are assumed to be distributed completely at random
over the possible bonds in the lattice without concern whether or not all bonds ori-
ginating from a given site require the same atom to be at that site -- see figure 2.1). In
the second step, a correction is applied to the number calculated in the first step.
Using these ideas, the number of configurations for the Ising model on a simple-cubic

lattice is

# conf. = (NI
3Ny (31! BNy (5 ) BNy - LGNy !

§ { [N (e NN }
[(6N)(6x N)(6x N |
where N is the total number of sites in the lattice. The second factor on the right
(arising from the second step) represents the fraction of the number of configurations
of the pair variables [the first factor on the right] which are physically allowable
(figure 2.1). The correction factor is calculated simply as the fraction of the total
number of ways to arrange zN spins ove{ the N sites of the lattice (where z is the
coordination number -- for the simple cubic lattice z = 6), with z per site, which have

all z spins at each site pointing in the same direction.

Using Sterling’s approximation and a simple pairwise expression for the internal

energy of the Ising model, the trial free energy per site is written

F =3y Y e g e —hx. —x) = SkgT(x In x, + x_In x_)

+3kgT Qo0 Y ) + Y (rmflD Yoy + Ve Vo) + Yogin y )

Minimization with respect to the site and pair probabilities, subject to the constraints

given above, finds the best approximation to the true free energy, in the pair
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approximation, at the specified magnetic field and temperature. Information about
long-range order, short-range order and all the thermodynamic properties can be

obtained from this best estimate.

A similar analysis can be carried out using larger clusters, although the approxi-
mation becomes more difficult to perform with increasing cluster size. Unfortunately,
rigorous estimates of errors made in using only a finite number of cluster probabilities
are not available . In fact, for the face-centered-cubic Ising antiferromagnet with only
nearest-neighbor interactions the pair approximation fails completely, predicting that
the system will never become ordered. Even for the four-site approximation to this
system, the absolute CVM minimum underestimates the free energy of segregation’,
and a local minimum in the trial free energy must be used to obtain meaningful
results. The use of larger clusters eliminates this problem, but the calculation rapidly
becomes prohibitively expensive.

As in the low-temperature expansions, CVM includes implicit approximations and
assumptions. Most notably, all possible ordered phases are not investigated because
thc choice of the maxxmum-sxzed Cluster predetermines which ordered phases are pos-
sible. It is therefore ncccssary to know which phases appear in the phase dxagram
before the calculation is begun. In additign, there are certain types of disorder which
cannot be handled within the formalism of CVM. The antiphase boundaries discussed

below are one example. !

Monte Carlo numerical simulations are a third approach to solving the Ising
model in three dimensions. The properties of a large cluster of spins ( = 15000 with

periodic boundary conditions) are computed statistically.

These simulations begin with the choice of an initial configuration, usually either
a completely random or completely ordered state. A site (or group of sites) is chosen

at random and the spin (or spins) is (are) flipped with a probability defined by
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ePAE AE S0
p =
1 AE <0
where AE is the change in internal energy associated with flipping the spin (or cluster
of spins). The flipping process is continued until equilibrium is reached, and the ther-
modynamic properties of the system are then extracted from the final equilibrium

configuration.

In principle, this method should produce the exact thermodynamics of the
periodic cluster being investigated, although the computer time necessary to do so
grows rapidly with cluster size. }t is thought that the thermodynamics of the finite-
sized cluster adequately represents the thermodynamics of the infinite system. Therein
lies the fundamental difficulty of the Monte Carlo approach. It is well known that
finite-sized systems cin never show a phase transition; the free energy is always ana-
lytic. However, as the size of the cluster used in simulations increases, the tempera-
ture regions at which the non-analyticities appear in the infinite system will begin to
show a "tendency” towards non-analytic behavior. The observation of this "tendency”

is the foundation of the usefulness of the Monte Carlo approach.

Computers are now fast enough, and the methods efficient enough, to perform
calculations on very large systems for whicil the "tendency" towards non-analyticity is
clear. In addition, Monte Carlo studies do not require prior knowledge of the phase
diagram. In fact, the studies are believed to produce the most accurate calculations of

the thermodynamic properties of the three-dimensional Ising model.

Like the other methods, Monte Carlo techniques do have drawbacks. While it is
not necessary to have prior knowledge of the phase diagram, this lack of information
can make interpretation of the results difficult. In addition, a rigorous technique for
for correctly inferring the thermodynamics of infinite-sized systems from those calcu-

lated for finite-sized systems does not exist. In fact, finite-sized clusters allow excita-
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tions which are not present in the infinite-sized systems. These excitations have seri-
ous implications for how one calculates the true thermodynamic properties of the

infinite system, as demonstrated below.

A remarkable similarity exists between the simple ordering substitutional binary
alloy and the antiferromagnetic Ising model in the presence of a magnetic field. Hence
most of the literature on the antiferromagnetic Ising model defined on an fecc lattice
appears in the context of alloys. An A-B binary alloy can be mapped onto the Ising
model: an atom of type A (B) is equivalent to an up (down) spin. The chemical
potential difference between atoms of different types is equivalent to an external mag-

netic field. The energy is then written:

E =z.’ij C;0; -h ZO’,‘
ij i

where o; is an Ising spin at site i which can take on the values *1, J;; is the interac-
tion energy between spins at sites i and j, and h is the external magnetic field. (The
* particular model under consideration in the following is defined in an fec lattice and
such that J;; =J >0 (i.e. \ar;:ife;romagnetic exchange) for i and j nearest-neighbors,

and J;; = 0 for all other pairs).

Real alloy§ are significantly more complex than the simple Ising model anal-
ogy.!1"12 In particular, many body effects', atomic-size,'* and Fermi-surface!>!6 pro-
perties are all expected to play imporfant roles in determining the true phase stability.
It is unlikely that these effects can all be reduced to pairwise interactions. The Ising
- model, however, does provide a good starting point for understanding the thermo-
dynamic properties of alloys, and the model can be made more realistic by successive
inclusion of some of the neglected effects. A clear understanding of the Ising model’s

phase diagram will indicate which properties of the alloy are a direct result of

configurational terms, and which stem from electronic terms.




23

Thus far, approximate methods have resulted in a widely accepted topology!® for
the phase diagram of the nearest-neighbor fcc Ising antiferromagnet, but some
discrepancies still remain. There are three types of phases present in the phase
diagram: the disordered phase, the L1, (AB) phase, and the L1, (A;B) phase (sec
figure 2.2). The fcc lattice can be decomposed into four interpenetrating simple-cubic
sublattices. The three phases can then be understood in terms of the concentrations of
up and down spins on each sublattice. In the disordered phase, all of the sublattices
have equal concentrations of up spins. In the L 1, phase, there are two groups of two
sublattices which have different concentrations. In the L 1, phase, the sublattices are
divided so that three of them are equivalent to each other (i.e. have the same concen-

trations of up spins) and different from the fourth.

The thermodynamic calculatiéns reported in literature for this Ising system fall
inte three categories: small cluster variational techniques, numerical simulations, and
low- and high-temperature expansions. The results of the different methods are often
compared among thefnselves, for consistency, and also compared with experimental

results believed to reflect Ising-like behavior (e.g. the Cu-Au alloys).

One early small-cluételr éalcﬁlation on the fcc binary alloy was due to Shockley®,
who calculated the Cu-Au phase diagram using a mean-field approach. The agreement
with the experimentally known Cu-Au phas;e diagram was not satisfactory: the calcu-
lated phase diagram was topologically different from that of the experiments. The fol-
lowing years brought the development and application of the quasi-chemical method!’,
and later the cluster variation method>!#20 (CVM). The latter led to qualitatively
good agreement with the experimentally determined phase diagrams, and the agree-
ment with experiment was improved even further with the inclusion of "many-body"
effects?!. In addition, CVM results produced the currently accepted topology of the

nearest-neighbor fcc Ising antiferromagnet’s phase diagram.
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The initial Monte Carlo results of Binder”? and Phani er al.2 for the fcc Ising
antiferromagnet with only nearest-neighbor interactions disagreed with those of CVM,
which necessitated reexamination of both results.”*?’ As mentioned above, the conflict
centered on the exact location of the triple-point [the point where the disordered, the
L1y, and the L 1, phases are in equilibrium]. While the calculated transition tempera-
tures of the stoichiometric compounds were not too different (the Monte Carlo calcula-
tions gave slightly lower transition temperature for all compositions of the alloy),
Binder’s Monte Carlo results placed the triple-point at T =0, and CVM placed the

triple-point temperature at a nonzero value, of the order of the pair-interaction

cncx.gy.5.l7—l9

One source of this discrepancy arises from the frustration present in the fcc lat-
tice. The frustration may lead to the appearance of {001} antiphase boundaries, which
are explicitly excluded in CVM, and difficult to interpret in Monte Carlo studies. A
{001} antiphase boundary in the h-=0, T =0 case is depicted in figure 2.3, using a
description similar to Kikuchi and Sato’s.?® The configurations of the four possible
(001) planes for the perfectly ordered case are shown. Each dark symbol (either
square or circle) represcr'xt“s' an up spin (Cu atom), and the lighter symbols represent
down spins (Au atom). The L1, phase is sonsuucted by stacking the planes in one of
four configurations: (..AaAaAaAa..), (..AbAbAbAb..), (..BaBaBaBa..) or
(...BbBbBbBbD...). An antiphase boundary is introduced by a slip of one half of the lat-
tice by [a/2, a/2, 0] where a is the cubic lattice spacing. This is the equivalent of
going from (...AaAaAaAa...)-type stacking to (...AaAaBbBb...)-type stacking. (In the
definition of antiphase boundary used here, it extends throughout the entire crystal;
domains separated by antiphase boundaries are not considered). The dashed boxes in
the figure contain one nearest-neighbor tetrahedron of the face-centered-cubic lattice,
with two atoms from each of the planes. Each of these tetrahedra has two up spins

and two down spins, the minimal energy configuration, for both Ba and Bb stacking
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order. This is also true for Aa and Ab stacking. It therefore costs no energy to stack
the planes in a random order (...ZzZzZz7z...) where each Z (z) is a plane of type A (a)
or B (b). The system has an infinitely degenerate ground state. An infinitesimal next-

nearest-neighbor interaction, however, removes this degeneracy.

Antiphase boundaries are present in the Monte Carlo calculations®>27, as revealed
by studies of the triple point region. The presence of antiphase boundaries in the
Monte Carlo results raises important issues. In Binder’s calculations, one antiphase
boundary would result in a state with no long-range order, but, physically the system
still has a large degree of long-range order, at least in two dimensions, and is very
different from the random, disordered configuration. With a more precise definition of
order (which accounts for the long-range order still present in the antiphased state), the
Monte Carlo calculations yield a nonzero triple-point -temperature.2>~27 The puzzle is
not completely solved, however, for the triple-point temperature in the Monte Carlo
results is roughly two-thirds of the triple-point temperature predicted by the best avail-
able CVM results.! In addition,. the transition temperatures predicted by the Monte

Carlo methods are still consistently lower than those of CVM.

It is not yet clear Wl;etiler or not antiphase boundaries appear in the true phase
diagram of the nearest-neighbor fcc Ising antiferromagnet. There are reasons to expect
that the boundaties migi\t be present. Antif)hasc boundaries cost no energy, but there
is an entropy associated with their presence. In the thermodynamic limit, the free
energy is of order n3 [where n3 is the number of spins (atoms) in the system], and the

contribution from antiphase boundaries is of order », hence negligible.

This argument suggests that the antiphase boundaries are present even as T — 0,
but do not affect the thermodynamic properties of the system. Clearly, the system
with antiphase boundaries is considerably different from the system without them (e.g.
the x-ray diffraction pattern of the system with antiphase boundaries is considerably

different than that of the system without antiphase boundaries), regardless of their
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influence on the free energy, which makes it important to determine whether or not

antiphase boundaries exist at a given temperature. .

Slawny?’ made significant progress in this direction when he pointed out that the
one-dimensional structure of this system does directly influence its thermodynamics.
Slawny noted that the excitation spectrum of a particular ground state depends
extremely sensitively on its one-dimensional antiphase boundary structure. Since the
excitaton spectrum determines a particular ground state’s thermodynamic properties,
the one-dimensional disorder has a dramatic influence on the thermodynamics of the
system. Slawny’s exact arguments apply to a class of systems satisfying three criteria:
the system must have a (1) finite number of degenerate, (2) periodic states in the
ground-state manifold which all (3) meet the Peierls’ condition®®: that there be an
energy gap between the ground state and the first excited state. For these systems, the
"true” ground state is the state which admits the largest number of low-lying excita-

tions.

The nearest-neighbor fcc Ising antiferromagnet clearly violates the first two of
these conditions. The ground-state manifold contains an infinite number of not neces-
sarily periodic states. Sfa\;ny ‘introduces interactions into the model which insure
long-range order in three dimensions so that the conditions of his theorem are met, and
then considers the limit as these interactions go to zero. He concludes that antiphase
boundaries do not appear in the low-temperature expansion for the nearest-neighbor
fcc Ising antiferromagnet. Based on Slawny’s arguments, Mackenzie and Young?!,
and later, Lebowitz er al* calculated low-temperature expansions about the "true"
ground state: the ordered L 1, phase without antiphase boundaries. This is a somewhat
surprising result: the "true” ground state of the system is "selected" based solely on

entropic contributions, and the result of this "selection” is the completely ordered state.

Slawny’s conclusions most probably apply to the fcc Ising system under con-

sideration here, but there is some danger in his approach. The infinite one-dimensional
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degeneracy of the model only exists in one point of parameter space. The fact that an
infinitesimal next-nearest-neighbor interaction removes the infinite degeneracy suggests

that limiting processes may not be applicable. |

Assuming that Slawny’s conclusions are correct, there is still more work to be
done. It is of interest to understand the behavior of the Ising model at temperatures
for which low-temperature expansions are no longer valid. Slawny’s arguments do not

indicate whether or not antiphase boundaries appear at higher temperatures.

The purpose of this chapter is to investigate, in greater detail, whether or not anti-
phase boundaries appear in the equilibrium phase diagram of the nearest-neighbor fcc
Ising antiferromagnet (and by analogy, in the simple binary substitutional alloy). The
approach chosen is the construction and solution of an exactly soluble model for cubic
(001} antiphase boundaries which violates the first two Slawny criteria. This violation
is of the kind encountered in the nearest-neighbor fcc Ising antiferromagnet. The
insight gained by solution of this simple model can be applied to the more difficult
Ising problem, and to understand the role of antiphase-boundaries in more complex

real alloys.

Section B of this chapter develops the model, which is subsequently solved in"
section C. Analysis of the results comprises section D, and section E contains the con-

.

clusions.

B. The Model

The excitations of the Ising systems consist of spin flips in given configurations.
Each antiparallel spin pair that gets converted into a parallel spin pair requires a posi-
tive energy of 2J. Conversely, each parallel spin pair converted into an antiparallel

one yields a negative —2J energy. There is an additional * 22 extra energy arising

from the change of orientation of each spin with respect to the external field. The

energy spectra of the all states in the ground-state manifold of the nearest-neighbor fcc

O
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Ising antiferromagnet are characterized by a set of common low-lying excitations.
Since each spin has eight antiparallel and four parallel nearest neighbors, individual,
disconnected spin flips produce the lowest level excitations, equal to (8 * 24). The
first configuration-dependent differences in the spectra appear in the third level of exci-
tation.”2 The difference, related to the antiphase structure, arises from the simultaneous
flip of four closely situated spins>> ; they are shown in figure 2.4. They are in three
successive (001) planes, in the configuration 1-2-1. In this cluster each spin has two
of its twelve nearest neighbors within the cluster, and the other ten outside. If all
nearest-neighbor pairs connected to this cluster are included, there are altogether 44
pairs; four within the cluster, 40 outside it. The important difference, as shown in
figure 2.4, is that in the perfectly ordered L 1, structure the four internal bonds are all
antiparallel, whereas in the structure with an antiphase boundary two of the pairs are
antiparallel, and two parallel. Moreover the 44 total pairs related to the cluster are 28
parallel and 16 antiparallel pairs in the perfectly ordered L 1, structure, as opposed to
30 and 14, respectively, in the one containing the antiphase boundary. When those
four spins are simultaneously flipped the four internal "bonds" remain unchanged; the
40 "outside bonds" on the ‘other hand change character. As a conscquenéc the excita-
tion energy of that four-atom flip is 16/ in the perfect structure, and (32/ £ 44) in the
defective one.3,(The * 4A. term comspo;l‘cis to the fact that in the defective structure
there is a net change of two spin orientations; the sign is chosen to reflect the relative
orientation of these two spins with respect to the external magnetic field.)

The presence of one antiphase boundary shifts of the order of n? excitations of
this type to a higher, magnetic-field dependent energy. (The number of sites in the lat-
tice is n3.) For zero external field (chemical potental difference), the state with the
highest number of third-level excitations is the L 1 phase, and this number decreases

as the number of antiphase boundaries increases.

The model constructed in this chapter mimics these properties as closely as possi-
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ble while still allowing a simple, exact solution for the thermodynamic properties.
Similarly to the nearest-neighbor fcc Ising antiferromagnet, the model below has an
infinite ground state degeneracy in which the states are not necessarily periodic. The
antiphase dependence of the excitation spectra is very similar in the two systems.
Each state in the ground-state manifold of the constructed model admits a common set
of lowest-lying excitations, but the number of second-level excitations is determined
by the antiphase structure of the state: a state with more antiphase boundaries has
fewer second-level excitations because the presence of an antiphase boundary shifts
some second-level cxcita‘tions to higher energy.>® However, the model does not

account for in-plane correlations among the spins.

The model system is composed of n planes, each of which contains N sites. The
planes are indexed by the subscript £, and each site within a plane is indexed by the
subscripts i and j. The thermodynamic variables are defined to be G;; and Z,, both
of which can assume the values +1. The variable o;; corresponds to individual
spins; on the other hand X, is the anfiphase-boundary variable. The spins on plane k
interact directly with the spins immediately adjacent on planes £ — 1 and £ + 1, but do
not directly interact with the othér gpins on plane k. The perfect structure corresponds
to X, which are all of the same sign. An imtiphase boundary in the model occurs at a
plane k such the X, Z, .,y =-1, and changes the interaction energy between spins on
adjacent planes. A configuration is designated by {6, X}. The internal energy is

E({o,Z}) =€ {Zg (1 + oy) + (1/4) Zk (1 +0i3) (1 + G k1)) Yo - szz(km)}
ij ij
where the indices run over the entire system, and periodic boundary conditions are not
assumed. The first term accounts for the elementary excitations of the sites; they have
energy 2¢€ and correspond to flipping a spin in an external field. (The energy scale is
set by the value of £.) The second sum represents an antiphase-structure dependent

interaction between excitations on adjacent planes. The states of two adjacent planes,
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reflected in the values of their Z,’s, determine the excitation spectrum of the sites in
those planes. If both sites i, j, k£ and i, j, (k+1) are excited (the factors containing
the ¢’s impose this restriction) there is an additional excitation energy associated with
their juxtaposition. This additional energy is [Yp — Y] for the normal [Z,Z,,,= 1]
state and [Yp + 7] for the antiphased (Z,Z,,, = ~1] state. (The parameters Y, and 7y
are positive dimensionless constants such that ¥ < y,.) The local excitations involving
two correlated sites have energies of (4 + Y5 —Y)e and (4 + ¥, + Y)&. The energy
difference between excitations correlated across and antiphase boundary and those
correlated away from an antiphase boundary is the antiphase excitation gap, 2ye. For
¥ =0, the energy of the éorrelated excitations is no longer antiphase structure depen-
dent. In this limit, (and, as is shown below, for the case where n goes to infinity and
N =n?) the model becomes a collection of N one-dimensional Ising chains, each with
n sites; the external magnetic field is given by 2 = —€[1 + (Y5 — ¥)/2] ard the nearest-
neighbor spin coupling is J = &(yy — v)/4.

The partition function of the model system containing nV sites is written:

Zy= Y eBE(SI)
) _{O.I)
where B = 1/kg T, kg is Boltzmann’s constant, and T is the temperature.

]

C. The Solution of the Model

Let u, denote the number of sites in plane k which are excited, and v, the
number of these for which the equivalent site in plane (k+1) is also excited. The

number of configurations for a two plane system is
Cv' €y Oyt 2.1
where C#/ is the binomial coefficient:

oM = N!
N W -MI M
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The first coefficient in (2.1) is the number of ways to choose the W, sites on plane 1,
the second, the number of ways to choose the vy sites on plane 2 which are juxtaposed
with an excitation on plane 1, and the last, the number of ways to place the remaining
excitations on plane 2. There are restrictions on the values for u,, v,, and y,. All
physically allowed configurations of the planes are included by summing over all terms
for which expression (2.1) is defined.

The analysis above is easily extended to the case of n planes. The energy in

terms of the i, and v, is

n n-1
= 2¢ Z Mg +E Z Vi ('Yo - ‘kaZ,‘H). (2.2)
k=1 k=1

The partition function is

an=ZZ Zz z {CN ncvgcuhx v.}{nxk }(W),‘z-ll*k (2.3)

(z’ 151 s ™y Vp -

where ) is a sum over all configurations of the antiphase boundaries, the remaining
(z}

sums run over all physical values of p; and v,, w = e ~2P€ and X, = e Pello — TETi)

The terms involving v,_; and |, redute to terms involving W, _,

3

T X CuniON ! Xant wht = (L w)Y T (L x, e,

Va-i Ha

This reduction of terms allows exact solution of the model, using techniques similar to
those employed in the transfer matrix method. If the variable y, is defined by the fol-

lowing (descending index) mapping:

(1 + X Ye41)

, =w, 24
T+ 50D Yn (2.4)

Ye =W

then the partition function is then given by
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Za = STT A +y) . (2.5)
{Z}k=1

The sum over all configurations of the antiphase boundaries, which is not performed
analytically, is complicated because each y, depends on the antiphase structure of all
the layers 2 k. (The sum has been calculated numerically for small »#.) The apparent
asymmetry of this solution is. caused by the method of solution; it can be demonstrated
(analytically for small n, numericaily for larger n) that the expression for a given

configuration is independent of the end from which the mapping (2.4) is begun.

D. Analysis

Expression (2.5) can be used to prove that in the thermodynamic limit (i.e.
infinite-sized system), the free energy. of the three-dimensional system is exactly the
free energy of one of the two states without antiphase boundaries. Slawny’s conclu-
sions that only one of the many states of the ground-state manifold should appear in
the low temperature expansions is indeed applicable to this system. Even more impor-
tantly, in the thermodynamic limit antiphase boundaries have zero concentration at any

finite temperature.

The free energy of the d-dimensional model system (i.e. a system where

N = n?71) is proportional to the natural logarithm of the partition function

{Z} k=1

F =—kzT In {2 1a +y,‘)"“‘}. (2.6)

The two states without antiphase boundaries conmibute the largest terms to the sum,
and the next largest terms are from configurations with just one antiphase boundary.
This makes physical sense, because each antiphase boundary replaces approximately
n4-1 second-lowest-lying excitations by slightly higher ones. The result of this
replacement is a reduction in the value of the product over k. The free energy can be

written
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F=—kgT InS_, — kT In {2+ US,. 3 I1a +yk)"H} . Q2.7
{Z'} k=1

where S,,, is the largest term in the sum over configurations in (2.6), i.e. that
corresponds to the two perfectly ordered states, and the sum over {Z’} includes all
configurations except those two corresponding to S.,,,. The first term in (2.7) is pro-
portional to n?. For the last term of expression (2.7) to contribute to the free energy,
it must also be proportional to n¢. The second largest terms in the sum over antiphase
configurations differ from the largest for some m < n of the y,. Define o to be the
geometric mean of the ratio of these altered terms to their corresponding values in the

product for the system with no antiphase boundaries:

1/m
m 1+y;
a=T] {—22—} <1
j=1 L1+ Ymax j

If the number of configurations with only one antiphase bdundary is taken to be 2" --
obvfously an overestimate since 2" is the foral number of configurations -- then the

last term in equation (2.7) is less than or equal to

~5T In {2 + 20" }= ~k5T In {2 + @MTm gynim } . (2.8)

The only way in which (2.8) can be of order n¢ is if (2* /™ &) > 1, which is possible
only if n2%/m > 0. Since 1 £m < n, antiphase boundaries do not appear’® in the

free energy for d > 2, and hence do not appear in the three-dimensional system.

For d > 2, it can be proven explicitly that the antiphase boundaries themselves do
not appear. Assume that the second largest terms in the sum arise from configurations
with approximately n antphase boundaries, and that there are 2" of these
configurations. With arguments similar to those developed above for the free energy,
the contribution from these terms to the concentration of antiphase boundaries is found

to be zero:
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lim (2*"/m pn'im gm0 452 . (2.9)

R e
This is physically reasonable since it has been argued that, if present, antiphase boun-
daries must affect the observable thermodynamic properties of the system. In this
situation, the absence of antiphase boundaries in the free energy is indicative of their

zZero concentration.

While antiphase boundaries cost no energy in the ground state, there is a free
energy associated with their creation at any nonzero temperature (this energy stems
from the coupling between the site spin-variables, O;;, and the antiphase variables,
Z:). The energy of one boundary is proportional to the "antiphase excitation gap",
2ye, multiplied by the necessarily finite number of juxtaposed single-site excitations

which scales with the area of the planes, 7%

. In the thermodynamic limit, the energy
cost becomes infinite (for d > 1). This argument suggests that antiphase boundaries
have zero concentration in any version of this system with dimension larger than one,
and that antiphase boundaries appear only for d = 1. [A seemingly unphysical one-
dimensional antiphase boundary is defined mathematically by setting d = 1 in expres-
sion (2.6).]

For d > 1 it is possible to write down the complete partition function of the
model in a compact form, which can then 'be used to calculate all the thermodynamic
functions. Since no antiphase boundaries appear, the partition function is determined
entirely by the period-one fixed point of the mapping (2.4). (For the case with no anti-

phase boundaries, the x;, of (2.4) becomes a constant, x, = e PEYT), independent of

k). The partition function is

Za=(+y» ,d=2 (2.10)

where y is the period-one fixed point of the mapping (2.5) with x, substituted for x;:

y =172 {x.. w=1+[xaw=1)2+4w]? } . (2.11)
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(Surface effects are neglected.)

The free energy is easily calculated from equations (2.10) and (2.11). In the limit
Yo=7=0, the free energy is that expected for an assembly of n¢ non-interacting
two-state systems. (Strictly speaking, in this limit antiphase boundaries appear, but
since they do not alter the excitation spectra of the various states, their contribution to
the free energy is strictly one dimensional and vanishes in the thermodynamic limit.
The concentration of antiphase boundaries is exactly one half for all temperatures.) For
Yo # Y = O, the boundaries (which are again decoupled from the system) appear but, the
two-state systems are now correlated. With ¥y # 0, ¥ # 0, the system has no antiphase
boundaries; the sites are, however, stll correlated. The heat capacity per site for
d = 3 (figure 2.5), which displays a Schottky anomaly, shows that the correlated sys-

tem is still very similar to a collection of isolated two-state systems.

In one dimension, the antiphase boundaries can be defined mathematically and are
expected to occur. The entire expression (2.5) must be used to calculate the thermo-
dynamic properties. The partition function is calculated for periodic one-dimensional
systems containing up to sixt;cn sites, and the concentration of antiphase boundaries is
computed. This concen&aﬁdn is plotted as a function of Be/(1 + Be) in figure 2.6 for
Y% =0.8, and (a) y=0.1, (b) y=03, and (¢) Yy=0.6. (The abscissaec are zero at
infinite temperature, and one at zero tcmpcr'aturc.) The results are not very sensitive to
the number of sites: there is no perceptible difference between the four- and sixteen-
site calculations. At very low temperatures (right side of figure 2.6), the concentration |
of antiphase boundaries is one half, exactly the value expected from averaging over all
of the ground states. The physical difference between the three curves is the antiphase
excitation gap, 2ye, which increases from curve (a) through curve (c). As the tempera-
ture increases from zero, the concentration of antiphase boundaries decreases; the sys-

tem becomes more ordered, with respect to antiphasing, as the temperature is

increased. (In this situation, "order" is proportional to the concentration of antiphase
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boundaries; the boundaries themselves do not form an ordered structure but are distri-
buted randomly over the sites of the system). The physics behind this unusual
behavior is quite clear. The system begins to order so that the number of excitations
available to it at lower temperatures actually increases, just as in the three-dimensional
case. The apparent ordering actually results in an increase in entropy. As the tem-
perature increases further, the concentration of antiphase boundaries increases towards

its infinite temperature value of one half.

Whereas antiphase boundaries have zero concentration in the infinite three-
dimensional model, they do appear with nonzero concentration at equilibrium in
finite-sized clust;:rs with periodic boundary conditions. These are precisely the type of
systems used in the Monte Carlo calculatons. It is therefore possible that these results
reflect the presence of antiphase boundaries which are unstable in the thermod&namic
limit. Figure 2.7 is a plot of the concentration of antiphase boundaries (for d = 3)
versus the saﬁc function of Be used in figure 2.6, for ¥, = 0.5 and vy = 0.2, for systems
with up to 16 = 4096 sites. (The Monte Carlo calculations are often performed on
systems containing on the order of 6000 sites.!?-2!) Figure 2.8 is the same type of plot

for the parameters Y, = 0.8 and ¥ = 0.6.

As in the one-dimensional case, the concentration of antiphase boundaries is one
half for very low temperatures. For a finite range of temperatures an increase in tem-
perature reduces the concentration of antiphase boundaries. Unlike the one-
dimensional case, these results depend on the size of the system. For larger systems,
the concentration of antiphase boundaries decreases more rapidly as the temperature
increases. This makes physical sense, since the energy cost of a nonzero temperature
antiphase boundary scales as n2. In the thermodynamic limit, the concentration of

antiphase boundaries is zero everywhere except at T =0 and T = eo. The actual value

of the minimum is also a function of the antiphase excitation gap.
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It is very likely that the nearest-neighbor fcc Ising antiferromagnet behaves simi-
larly. Further insight is gained by analyzing how Ising model maps onto the model
solved here. The most notable feature is that the effective value of the antiphase exci-
tation gap for the Ising model is magnetic field dependent. In the Ising model at zero
temperature, the antiphase excitation gap is given by 16/ * 4h. (The antiphase excita-
ton gap is always determined by the lowest energy excitations which distinguish
between the many ground states.) The gap actually decreases as the triple-point field is
approached, suggesting that antiphase boundaries are more likely to appear, as is

observed in the Monte Carlo studies. 252737

It seems unlikely, however, that the
effective value of y can ever be identically zero, which is a necessary condition to

have a nonzero concentration of antiphase boundaries in the thermodynamic limit.

The connection between complete disorder and and the appearance of antiphase
boundaries needs to be carefully examined. Clearly, an antiphase boundary is not
definable in the disordered state. If, however, there is any amount of long-range order,
the concept of an antiphase boundary is meaningful and it is then important to under-
stand the relationship between the three-dimensionally disordered state and the one-
dimensionally disordered ‘state. It is conceivable that, near the transition temperature,
three-dimensional disorder could couple t? (and reduce the value of) the antiphase

excitation gap, resulting in an increase of thé number of antiphase boundaries.

This analysis may explain the depression of the transition temperatures found in
Monte Carlo methods relative to CVM results. The appearance of antiphase boun-
daries near the order-disorder wansition may be interpreted as complete disorder,
resulting in the observed depression. Furthermore the relative depression of the transi-
tion temperature would be largest near the triple point because of the further reduction
in the effective value of y due to the magnetic-field dependence. This is the observed

behavior (figure 2.9).

The role of in-plane direct correlations in the Ising system, which are completely
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neglected in the model developed here, must be evaluated more carefully. In the Ising
model, a large number of excitations in a plane can result in a plane which is "anti-

phased". Hence, antiphase boundaries could arise from this mechanism.

E. Conclusion

The model developed and solved here is a considerably simplified version of the
nearest-neighbor fcc Ising antiferromagnet which mimics its ground state properties.
The model provides a unique insight into some of the characteristics of the more com-
plicated Ising system.

The simplified model is analyzed for consistency with the predictions of Slawny.
As Slawny conjectured, the "true” thermodynamic ground states of the three- and two-
dimensional versions of this system are in fact the states with the largest number of
low-lying excitations -- the ordered states without antiphase boundaries. Furthermore,
in the thermodynamic limit, antiphase boundaries have zero concentration at any finite
temperature, because, at finite temperatures, the excitation energy of an antiphase

boundary scales with n2, where 13 is the number of sites, and the entropy scales as n.

In the (mathematically defined) one-dimensional system, antiphase boundaries do
appear. Their concentration at zero and infinite temperatures is equal to one half, and
is less than one half at intermediate tcmpcr‘aturcs. There is a range of temperatures for
which increasing the temperature results in a more ordered antiphase structure. The
degree to which the system orders is determined by the antiphase excitation gap, 2ye.

Larger degrees of order correspond to larger values of v.

The behavior of the model for systems with sizes on the order of those used in
the Monte Carlo calculations was investigated. It was found that for all finite-sized
d-dimensional systems antiphase boundaries will appear at equilibrium with nonzero
concentration. The antiphase boundaries are more likely to appear in smaller systems,

and systems in which the antiphase excitation gap is small.
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The model can be used to infer properties of the more complicated nearest-
neighbor fcc Ising antiferromagnet and, additionally, suggests a possible resolution of
the djscfepancies between Monte Carlo and CVM results. In the nearest-neighbor fcc
Ising antiferromagnet, the effective antiphase excitation gap is magnetic-field depen-
dent. As the triple-point field is approached, the gap decreases, and antiphase boun-
daries appear in the Monte Carlo calculations. Furthermore, as the planes become
more and more disordered, the effective energy cost of a nonzero temperature anti-
phase boundary may decrease. It is then possible that near the transition temperature,
the concentration of antiphase boundaries might rapidly increase (for finite-sized sys-
tems). Since the order-disorder transition is known to be first order, it is unlikely that
the energy cost per unit area of an antiphase boundary can ever be identically zero for
the infinite system at finite temperature below the transition, and antiphase boundaries

most likely do not appear.

The role of in-plane direct correlations in the Ising model needs to be assessed
more carefully. The chance that a significant number of excitations can "create" an
antiphase boundary leaves open the possibility that the boundaries may be stable in the
infinite three-dimensional Tsi}xg system. The density of excitations required for the
"creation” of an antiphase boundary is qusitc high. This information, combined with
the knowledge that the phase transition is first-order, suggests that the nearest-neighbor
fece Ising model completely disorders before an antiphase boundary is "created”. It is
therefore plausible that complete {001} antiphase boundaries do not appear in the true

equilibrium phase diagram of the nearest-neighbor fcc Ising antiferromagnet.
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This increase in excitation energy does not go uncompensated. Clusters with a
higher excitation energy decrease it in the presence of an antiphase boundary.
The cluster of four atoms all of the same spin and in the same configuration as

that of figure 2 (1-2-1) has, in the perfect L 1, structure, an excitation energy of
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(48J * 8k); in the "faulted” structure, with three spins up and one spin down, the
excitation energy reduces to (327 *+ 4h). This excitation, however, is much
higher in energy than the one corresponding to the cluster considered in the text
and influences the thermodynamics at higher temperatures. The changes in

energy, on the other hand, exactly compensate each other.

Differences in the excitation spectra of the states of the model first appear at the
second level of excitation, not the third. The physics of the one-dimensional
aspect of the fcc Ising antiferromagnet is still accurately represented by the
model: it has an infinittc number of states in the ground-state manifold which

differ only in their excitation spectra.

Antiphase boundaries naturally appear for the case in which x, = 1. Physically,
this corresponds to all states in the ground-state manifold having identical excita-
tion spectra. Hence for this case, one clearly needs to include aﬁl possible
configurations in the low-temperature expansion for the partition function. The
contribution of the antiphase boundaries, however, is thermodynamically negligi-

ble, and the concentration of antiphase boundaries is one half for all temperatures.

From the calculation-s 'px‘escr.ltcd here, it seems plausible that antiphase boundaries
would appear in Monte Carlo systemgs even for systems with very small next-
nearest-neighbor interactions, and one ;vould not expect any kind of discontinuous
behavior in the Monte Carlo results as the next-nearest-neighbor interaction is
allowed to go to zero. There is also some question concerning the role of the
superdegenerate point in the phase diagram. There does not seem to be any evi-
dence for a disordered-type phase stemming from this point in the phase diagram.
Rather, the phase diagram seems to contain only the L 14, L 1,, and the disordered

phases. See reference 4 for more details.
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G. Figures for Chapter II

Figure 2.1

Two possible completely random configurations of four of the six
bonds at a site of the simple cubic lattice. The dark circles refer to
up spins and the light circles to down spins. The structure in (a) is
not physical as it requires the central site to be pointing both up and
down. The structure in (b) is physically consistent. The cluster
variation method proceeds by calculating all the possible arrange-
ments of bonds on the lattice, even the ones that are not physically
permissible [i.e. arrangements similar to that pictured in structure
(a)] and then corrects that number (which is too large) by multiply-
ing by the fraction of all those states that are physically allowed.
The fraction of allowed states is approximated by counting thé
number of ways to arrange zV spins over the N sites of the latticc
(where z is the coordination number) with z per site so that all z
spins at each site are pointing in the same direction, and dividing
that result by the total number of configurations of zN spins over the

N si_tes_‘o‘f the lattice, including those that are not phyéically allowed.

4
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The three ordered phases which appear in the phase diagram of the
nearest-neighbor face-centered-cubic Ising antiferromagnet. Each
cube shows a small section of three (001) planes. Dark symbols
represent lattice sites that have spins pointing mostly up, and the
lighter circles are lattice sites with spins that point mostly down.
The phase (a) is completely disordered; all sublattices are equivalent
and may have most of their spins pointing either up or down (in a
nonzero external magnetic field), or there may be equal numbers of
up and down spins. Phase (b) is the L 15 (AB) phase. This phase
has two sublattices in which the spins are pointing mostly down, and
two sublattices in which the spins are pointing mostly up. Structure-
(c) is the L1, (A3B) phase. In this phase, three sublattices have
their spins pointing mostly up and one sublattice has its spins point-

ing mostly down (up is in the direction of the external field).




(a)

(b)
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Figure 2.3
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The four possible (001) planes of the perfectly ordered h =0,
T =0, fcc Ising antiferromagnet. Each dark (light) symbol
represents an up (down) spin. The planes labelled Ba and Bb are
the configurations produced by placing planes a and b, respectively,
on top of plane B. The dashed boxes contain one of the nearest-
neighbor tetrahedra which compose the fcc lattice. Each of these
tetrahedra is in the minimal energy configuration, containing two up
spins and two down spins. The planes can be stacked in any order:
(...22Z2272732...), where each Z (z) is a plane of type A (a) or B (b),

and the.energy is still minimal.

’

‘-
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The four-site connected clusters which distin'guish between the states
in the ground-statc manifold of the fcc Ising antiferromagnet. The
lines represent nearest-neighbor bonds. The planes are labelled as in
figure 2.3. The cluster in (i) contains one site from the upper plane
which is type A, two sites from the central plane which is type a,
and one site from the lower plane, also of type A. The energy asso-
ciated with flipping all four spins in this cluster is 16J. The cluster
in (ii) contains one site from the upper plane which is type A, two
sites from the central plane which is type a, and one site from the
lower plane whic!x is type B. This type of cluster exists (at zero
temperature) only if an antiphase boundary The energy associ;ted
with flipping these spins is (32./(: 4h) where the sign is chosen to
reflect the orientation of the.ext.crz“l;l magnetic field. The result of
one antiphase boundary is to replace n2 clusters of type (i) with
clusters of type (ii) which clearly alters the excitation specttum of

the system.
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Figure 2.5

51

The dimensionless heat capacity per site, du/dt, where u is the
internal cnergy and © = B, for a three-dimensional system for both
correlated and uncorrelated systems plotted versus B. The correlated
system has parameters Yy, = 0.7 and y = 0.2 While the correlated sys-
tem is considerably more complex than the collection of non-
interacting two-state systems, the heat capacity still displays the

characterisidc Schottky anomaly.
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Figure 2.6
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The concentration of antiphase boundaries plotted as a function of
Be/(1 + Be) for the one-dimensional system for three values of the
parameters: (a) Yo = 0.8 and y=0.1; (b) v, =0.8 and y=0.3; and
(¢) Yo =0.8 and Y= 0.6. The abscissae are zero at B = 0 and one at
B = . [Antphase boundaries are defined mathematically in one
dimension by putting d = 1 in expression (2.6).] The curves display
a minimum in the concentration of antiphase boundaries at some
intermediate temperature. For some range of temperatures, the anti-
phase structure actually becomes more ordered as the temperature is
increased. The d;gpth of the minimum is strqngly dependent on the
antiphase excitation gap, 2ye, which determines the energy
difference between excitatioqs iqvcﬂying an antiphase boundary and

those which do not. The minim;xm is deeper for the larger values of

Y.
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Figure 2.7
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The concentration of antiphase boundaries plotted as a function of
Be/(1 + Be) for three-dimensional systems of finite size n> for
Yo = 0.5 and y=0.2. The abscissae are zero at B =0 and one at
B =ce. The curves all display a minimum in the concentration of
antiphase boundaries at some intermediate temperature. The depth
of the minimum is strongly dependent on the size of the sample and
is deeper for larger samples. The depth of the minimum also
depends on .
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Figure 2.8
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The concentration of antiphase boundaries plotted as a function of
Be/(1 + Be) for three-dimensional systems of finite size n3 for
Yo=10.8 and y=0.6. The abscissae are zero at B =0 and one at
B = . The curves display a minimum in the concentration of anti-
phase boundaries at some intermediate temperature. The depth of
the minimum is strongly dependent on the size of the sample. The
minima of the curves are deeper in this plot than they are for their
counterparts in figure 2.7 because of the larger value of y. The
n = 16 case displays a considerable range of temperature for which
the concentration A_of antiphése boundaries is pumerically negligible.
In the thcrmodynafriic limit, n — oo, the concentration of antiphase
boundaries is zero over the cntixp range of B (except the endpoints

B =0 and B = ).
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Figure 2.9
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The equilibrium phase diagrams of the nearest-neighbor fcc Ising
antiferromagnet predicted by the CVM?* (dashed line) and Monte
Carlo? (solid line) methods. The transition temperature predicted
by the Monte Carlo results is depressed relative to those predicted
by CVM. The model constructed here suggests that the Monte
Carlo results are influenced by the presence of antiphase boundaries

which do not appear in an infinite system.
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Chapter III : Magnetic Structure of the Surface of EuTe

A. Introduction

Recent low-energy-electron-diffraction experiments, performed by V. A. Grazhulis
et al.! revealed a complex magnetic structure for the (001) surface of EuTe, which
included periodic structures incommensurable with the underlying lattice. Furthermore,

the periodicity of the magnetic structure changed as the temperature varied.

This is a surprising result. Incommensurable structures are usually the result of
Fermi-surface effects>*; the incommensurable structure arises from a Fermi-surface
instability as in the case of a charge-density wave. The pcriodj'city of the structure is
related to the distance which spans .'the Fcrrhi surfacé (i.e. kg to kz) and there is no
a priori reason to expect this length scale to be commensurable with the underlying
lattice. (A distortion with a wavelength of 2k,.- opens a gap at the Fermi level, thus
lowering the energy.) EuTe, a semiconductor, has no Fermi surface. The stability of

incommensurable structures in this system appears somewhat puzzling.

Solving the puzzle requires an understanding of magnetic interactions responsible
for the behavior of the bulk. EuTe crystallizes in the rock-salt structure. Its magne-
tism results from the strongly localized 4f -electrons of the Eu atoms; the net spin on

each site is 7/2.

Since the spins are well localized, the Heisenberg Hamiltonian discussed in
chapter I models the magnetism of this compound. There are three exchange interac-
tions which, when taken together, determine the stable magnetic phases of bulk EuTe.
The exchange interactions described below can all be derived from a single Hamil-
tonian®, so the separation into three distinct types, although customary, is somewhat
misleading. The three exchange interactions are actually special cases of the more

general exchange process. (There are other interactions which may be important for

the stability of certain magnetic structures: the dipole-dipole interaction®, which can be
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included in the effective exchange interactions, and the anisotropy energy, which is

neglected in the following calculation.)

The first is the direct exchange between nearest-neighbor Eu spins. This
interaction’s strength depends on the direct overlap of the wavefunctions of two sites.
Since the Eu 4-f wavefunctions are very localized, this overlap is quite small, as is

the resulting exchange.

Superexchange, first described by Kramers’ and later by Anderson®, essentially
determines the magnetic properties of bulk EuTe. In the rock-salt structure of EuTe,
each Eu spin couples to its next-nearest-neighbor Eu spins through the p -orbitals of a
Te atom. The ions are arranged collinearly, Eu-Te-Eu. The superexchange is medi-
ated by the filled p -shell of the Te a;lion as shown in figure 3.1. The first step in this
process involves the hopping of one of the p-shell.electrons onto a neighboring cation
[figure 3.1(a)]. In the second step, a direct exchange between the remaining anion
electron and an electron on the other cation adjacent to that anion takes place [figure
3.1(b)]. The final step is the return of an electron from the doubly occupied cation

[figurc 3.1(c)] to the anion. In the final state, the cation spins have been exchanged.

Superexchange only connects spins aligned antiferromagnetically, and, since the
process appears in second-order perturbation theory, always results in a decrease in
energy. The mediation of superexchange by the p -orbitals of the anion, implies sensi-
tivity to the arrangement of the cation-anion-cation system. Superexchange only con-
tributes significantly when the three ions are collinear and connected by a single p-
orbital.’ Hence nearest-neighbor spins in EuTe do not interact via superexchange (here,
nearest-neighbor refers to only the atomic sites with spins, the Eu atoms, and does not
include the spinless sites, the Te atoms).

The stable magnetic structure resulting from this interaction is that shown in
figure 3.2. In this arrangement, each spin aligns antiferromagnetically with its six

next-nearest-neighbor spins, thus minimizing the superexchange energy. This is the




63

observed magnetic structure!? of NiO, MnO, FeO, and EuTe.

Another exchange mechanism plays a role in determining the magnetic structure
of EuTe. In order for the direct- and super-exchanges to take place, the Wannier states
on the two sites must overlap directly, or with a common anion. In systems composed
of localized spins embedded in a "sea" of conduction electrons, the magnetic interac-
tion can be mediated via the non-magnetic "sea." The conduction-band electrons "feel”
the spin orientation of the 4f -electrons at one site, and are in a configuration reflecting
this orientation. The 4f -electrons at another site can then sense the orientation of the
original site’s spin through the configuration of the conduction electrons. This
mechanism, first suggested by Ruderman and Kittel!! as an explanation for the cou-
pling between nuclear moments in ‘a. metal, is referred to as the indirect exchange
interaction. The Hamiltonian is still of the Heisenberg form but now, for a free-

electron gas, the effective exchange constant appears as

sin ZkFR,-j - ZkFRij COS ZkFR‘-j
(ke R;j)*

ek EREY

‘where J ¢, is the exchange constant for the 4f -electron conduction-electron exchange,
kg is the magnitude of the Fermi wavevector of the metal, and R;; is the distance
between the rare earth metal sites i and j. This long-ranged interaction, which can be

ferromagnetic or antiferromagnetic, depending on R;;, decreases only as 1/R;). It has

ij»
been applied to the study of rare-earth magnetism!?, nuclear magnetism!!, and even

spin glasses!3.

As mentioned above, EuTe is a semiconductor which implies that there are only a
small number of conduction electrons. The indirect exchange interaction can still be
important; electrons, virtually excited into the conduction band, can mediate the
indirect exchange. One expects this interaction to be very sensitive to the structure of

the electronic states above the Fermi level.
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The exchange interactions important in the bulk are also important near the sur-
face, and are probably related to the stabilization of the incommensurable magnetic
structures. Other possibilities, however, do exist. For example, a rotational magnetic
field or incommensurable potential would stabilize the incommensurable structures, but
both of these options seem artificial. It is argued below that the incommensurable
magnetic structures arise naturally from the competition between nearest-neighbor
exchange and the antiferromagnetic next-nearest-neighbor exchange involving spins
near the surface. (The anisotropy energy of the spins is neglected in this argument.
While it is possible that this energy plays a role in stabilizing the incommensurable
structures, it is shown below that tlus contribution is not negessary. It also seems

unlikely that anisotropy would destabllize the incommensurable structures.)

Some evidence suggests that competing iptcr‘ac“tipns may be responsible for the
stability of the incommensurable structure. Tabl;: 3.1 contains the experimentally!4
derived exchange constants (for both nearest- and next-nearest-neighbor exchange
interactions) and the critical temperatures for the europium monochalcogenides. In
table 3.1, J,, is the net nearest-neighbor exchange and J,,, is the net next-nearest-
neighbor exchange interaction. The critical temperature is either the Curie point or the
Néel temperature, depending on whether the system is ferromagnetic or antiferromag-

netic. The reported critical temperature for EuTe is only approximate.

Perhaps the most interesting feature of table 3.1 is the double entry for EuSe.
This compound is ferromagnetic below 2.8 K and antiferromagnetic between 2.8 K and
4.6 K. Thus the system undergoes a transition from a ferromagnetic state to an anti-
ferromagnetic state. The only magnetic system, of which the author is aware, which
displays the same type of behavior without the influence of an external field is the
Axial-Next-Nearest-Neighbor-Ising (ANNND!® model, in which competing exchange
interactions result in long-period magnetic structures with a temperature dependent

periodicity. Table 3.1 also indicates a trend in the net exchange energies. As one
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moves down the periodic table from O to Te, the next-nearest-neighbor exchange in
EuX (where X is O, S, Se or Té) grows and the nearest-neighbor exchange decreases.
At the point where the two exchange constants are nearly equal, EuSe, the transition
from 5 ferromagnetic state to the antiferromagnetic state is observed. (It should be
noted that this argument is somewhat circular; the exchange integrals are calculated
from experimental data within the Heisenberg theory and are not measured directly,
indicating that this observation is merely self-consistent.) EuTe is an antiferromagnet,
as indicated in table 3.1, but subtle electronic changes could shift it into the ferromag-
netic regime.

In addition to the thermodynamic effects of change in temperature, the exchange
integrals themselves could be tcmpci‘éﬂxre dependent. For example, changes in tem-
perature will alter the occupation of the conduction band, thus affecting the exchange
integrals. A small change in exchange integrals' could result in a large change in
periodicity. The presence of the surface' is sure to alter the values of the exchange
interactions involving spins near the surface, either directly through the change in sym-
metry and its effects on the electronic structure near the surface, or indirectly, through
buckling, thermal expansion, or some other surface effect. Furthermore, these changes
in the exchange interactions near the surface are likely to depend sensitively on the
temperature, thus creating a temperature dependent periodicity.

It will be shown below that competing exchange interactions are capable of pro-
ducing complex, incommensurable magnetic structures on the surface of EuTe. The
proposed model Hamiltonian is the simple Heisenberg Hamiltonian discussed in
chapter I, suitably adapted for use near a surface. The incommensurable magnetic
structures are demonstrated to be stable for a wide range of the exchange interactions,

and are predicted to be clearly visible in low-energy-electron-diffraction experiments.

The surfaces of the europium monochalcogenides and similar compounds are

expected to display anomalous magnetic properties.!6 For example, Castiel!’ calculated
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the surface magnons of the unreconstructed {001} and {111} surfaces of the EuX fer-
romagnets. His calculation predicted soft magnons on both surfaces, demonstrating
their tendency to reconstruct magnetically. The calculation involved only normal
modes, however, and no attempt was made to calculate the actual ground-state spin

structure.

Experimentally, techniques which probe the surface magnetic structure either
directly, such as low-energy electron diffraction (LEED),!61%20 and spin-polarized
low-energy electron diffraction (SPLEED),!® or indirectly, for example spin-polarized
photoemission,2!~? have provided valuable experimental results. Photoemission
experiments on EuO suggest the presence of a paramagnetic sheet on its {001} sur-
faces.2425 SPLEED studies of Gd give a surface Curie point a full 22 K above the
bulk value.?® In the experiment which prompted t\h_iAs‘rcsea‘rch,1 Grazhulis and colla-
borators report the appearance of symmeuy-brcaléiné incommensurable surface spin-
structures with temperature dependent wavevectors in low-temperature (=10 K) low-
energy electron diffraction studies of single-crystal EuTe {001} surfaces obtained by

cleavage under ultrahigh vacuum conditions.

‘The calculation presented here demonstrates that the stability of the incommensur-
able magnetic structures on the (001} surfaces of EuTe, observed by Grazhulis and
coworkers, most likely originates in the competition between relatively large surface
nearest-neighbor exchanges and the second-nearest-neighbor superexchange interactions
characteristic of the bulk. (This possibility has been clearly demonstrated in the
ANNNI!327 model.) The calculation, based on a classical Heisenberg Hamiltonian at
zero temperature, including all possible commensurable structures plus one class of
incommensurable surface spin arrangements, yields a complex phase-stability diagram
(as a function of surface exchange integrals) with regions of commensurable and
incommensurable ground-state-structures. There is no need to introduce potcnﬁals

incommensurable with the lattice to stabilize the incommensurable structures.28:29
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Section B of this chapter deals with the details of the model and the calculation,

section C contains the results and discussion, and section D presents the conclusions.

B. Calculations

The Eu atoms of the (001) surface of EuTe are sketched in figure 3.3. The orien-
tation shown for the spins are those chosen for the bulk antiferromagnet3® Three
exchange integrals enter the calculation: J, the superexchange between second-nearest
neighbors throughout the crystal; K, the net exchange between nearest neighbors on
the surface; and L, the net exchange between nearest neighbors where one atom is in
the surface layer, and the other is in the second layer. Because only the antiferromag-
nets are considered, J is restricted tp be pbsitive, but X and L are allowed to have
either sign. (J, K and L include contributions from the dipole-dipole interaction and
the direct, indirect and superexchange processes.) Nearest-neighbor exchange in the
bulk is neglected and all layers, except the two surface layers, are assumed to have the
bulk antiferromagnetic configuration, which amounts to a renormalization of the
exchange interactions. The model neglects anisotropy energy and all further neighf)or
exchanges, but retains the minimum number of interactions needed for describing the

physical mechanism. The total energy is written

E=J z S,SJ +KZ S,SJ +LZ S‘S] , (3.1
@ <> (i

where §; is a classical spin of unit magnitude fixed at site i, (ij) designates a second-
nearest-neighbor pair, <ij> is a nearest-neighbor pair with both spins at the surface,
and [ij] is a nearest-neighbor pair with one spin at the surface and one in the second
layer; the sums run over an infinite half space.

Exchange interactions depend quite sensitively on a variety of parameters includ-
ing pressure, doping, temperature, and proximity to a surface.!%13:163! The properties

of EuSe suggest that the exchange interactions in the europium monochalcogenides
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may be sensitive to changes in temperature. It is possible to model this temperature
dependence by varying exchange interactions at zero temperature. Additionally, the
nearest-neighbor surface exchange is more sensitive to the effects of the loss of three-
dimensional symmetry at the surface, as reflected in the electronic structure and the
buckling of the surface, than the second-nearest-neighbor superexchange. (Table 3.1
indicates that the nearest-neighbor exchange is more sensitive to the changes in elec-
tronic structure and atomic size of the chalcogenides than the next-nearest-neighbor
exchange.) This model, therefore, investigates a range of surface exchange interactions,

measured relative to the bulk superexchange strength.

The two-dimensional unit cell chosen for the calculation pdmains four atoms from
each plane. The cell, with linear di‘écnsion b, and its Brillouin zone are shown in
figure 3.4. (The spins are depicted in the chosen bulk configuration.) The points Y
and Y’ in the Brillouin zone are not equivalent b;causc the spin domain structure of

the bulk introduces a preferred direction on the surface.

The Eu face-centered-cubic lattice is divided into four interpenetrating simple-
cubic lattices each of which is further divided into two interpenetrating face-centered-
cubic lattices. Each simple-cubic sublattice is denoted by a subscript { which runs
from A to D. Each face-centered-cubic sub-sublattice corresponding to a given

simple-cubic sublattice is designated by the subscript y, which is either a or .

The trial spins have the form of a "frozen", finite-amplitude spin-wave:

SiuR) =x;, cos(KR+ ¢, )R +y;, sin(kR+;y) 9 +2,2 ., (32

2
m ’

xi=yl=1-z
where 2 in a unit vector in the direction of the bulk spin quantization, R refers to the
position of the unit cell, and k lies in the Brillouin zone of figure 3.4. The definition
used here is such that states with k = 0 are referred to as commensurable, and states

with k # 0 are called incommensurable. The trial spins have magnitude unity and
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expression (3.1) is easily summed to obtain a closed expression for the energy per unit

cell for all k, including those k at the zone edge.

All spins in planes below the first two layers are kept fixed:

Xin=Yiu=0 , (3.3a)

and

Zig=1, zig=-1 . (3.3b)

The ansatz (3.2) is substituted into expression (3.1), and the total energy for given
values of (K/J) and (L/J) in the range =5 S (K/J)<5 and =5 < (L/J) £ 5 is minim-

LN
ized with respect to x;, , ¥, k, and ¢;,.

C. Results and Discussion

"The minimum—qnergy phase-stability diagram for cor;lmensumblc structures
(k = 0) is shown in figure 3.5. The contours are the energy per unit cell of the two
surface layers measured in units of J. The dark lines represent phase boundaries of
second or higher order: the orientations of the spins change continuously with (K/J)

and (L/J).

The bulk phase (figure 3.3) is the lowest energy commensurable spin structure in
region (I) of parameter space. The two surface layers of the this phase have energy

per unit cell =24 J.

The minimum energy commensurable spin structure in region (II) can be
described analytically in terms of the parameter (K/J). The second-layer spins are in

the bulk configuration [equations (3.3)], and the first layer spins are given by

Sic®) = [1=-1[4&N)-8P12+[V[4K/IJ)-8]]12 .34
SpcR)==[1-1[4K/IN-8P 12 +[1[4K/IJ)-8]1]12 ,
SapR)= [1-V[4 K-8 2R-[1[4(KIJ)-8]]1% ,
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SppR)=-[1 - 1[4 (KJ)-812 12— [U[4(KIT)-8]]2

The expression for the energy per unit cell of the two surface layers is

E=-8KN)-4~-[[2(K/IJ)—-4]1] . 3.5)

The (I)-(II) boundary is at (K/J) = 2.25. As (K/J) is increased with (L/J) held con-
stant, the spins tend more and more toward the nearest-neighbor square-
antiferromagnet (NNSA) in which every surface spin is aligned exactly antiparallel to
its four nearest-neighbor surface spins, and all surface spins lie in the (001) plane.
The configuration of the surface spins for (K/J) = 2.50 is shown in figure 3.6, and
table 3.2 displays the corresponding values- of the variational parameters of equation
(3.2). (The units and coordinate syst;r;l used for k in this and all further tables is such
that the points Y  and Y are' given by [0.000, 0,5091 and [0.500 , 0.000] respectively.)

The variational parameters for a spin configuration typical of region (III) are
given in table »3.3. In this region, the spins in each of the two surface planes have
their z-components aligned in the bulk configuration, and their xy -components aligned
ferromagnetically. The two surface planes then align with xy-components antiparallel
[(L/J) > 0], or parallel [(L/J) <0]. The canting of the spins in both the surface layer
and the second layer depends on (L/J) and (K/J). A positive value for (K/J) should
result in partial NNSA alignment of the surface spins, except when the (L/J) interac-
tion overwhelms the (K/J) interaction, as it does in region (II). For (K/J) < 0, there
is no competition between the two types of nearest-neighbor interactions; both interac-
tions favor a partially ferromagnetic alignment of the surface spins.

The regions labelled (IV,) and (IV,,) display the most complicated behavior of all
the commensurable structures. Table 3.4 contains the parameters describing the stable
structure at the point (K/J)=3.0, (L/J) = 4.0. The surface layer is in a spiral-type
state and the second-layer spins are aligned in a fashion similar to the second-layer

spins in region (II), i.e. mostly antiparallel to the surface layer for (L/J) > 0 (IV,)
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and mostly parallel to the surface layer for (L/J) <0 (IV,). This configuration is the

result of the "frustration” arising from the competition between (X/J) and (L/J).

The £ (L/J) symmetry of figure 3.5 is easily understood. As stated above, the
nearest-neighbor interplane exchange tends to align the in-plane components of the
spins in each of the two (001) planes nearest to the surface ferromagnetically. The
symmetry in £ (L/J) stems from the fact that the two partially ferromagnetic surface
planes can align in either of two directions: ferromagnetically or antiferromagnetically,
depending on the sign of (L/J). Even though the configurations of the spins are drast-
ically different for + (L/J), the resulting minimum energies are identical. (This sym-
metry continues to hold when incommensurable structures are included in the calcula-

tion, although the configurations are éénsiderably more complicated.)

Inclusion of incommensurable spin structures {k # 0 in equation (3.2)] yields the
phase-stability diagram of figure 3.7. The most notable difference from figure 3.5 is
the appearance of the two shaded regions in which the structures of minimum energy
are incommensurable with tixe underlying lattice. Because all commensurable struc-
tures have been included and explicitly calculated, the ground state in the shaded
regions is guaranteed to be incommensurable. Since the trial state equation (3.2) does
not include all possible incommensurable structures, the true incommensurable

ground states may be different from the ones reported here.

The structures labelled (i), (ii), and (iii) are equivalent to those labelled (I), (II),
and (III) in figure 3.5. The incommensurable structures are of two types labelled (iv)
and (v). The stable structures in regions (iv) are the finite-amplitude "frozen" spin-
waves, whose z—components are reminiscent of the bulk antiferromagnetic state. The
structure appearing in regions (v) are also the "frozen" spin-waves, but their
z—components are suggestive of a cross between the bulk-antiferromagnetic state and
state similar to NNSA, but with the spins all pointing in the +z direction instead of

lying in the xy plane (z-NNSA). As in the commensurable case, the subscripts a and
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b refer to the manner in which the second layer spins align themselves with the sur-
face layer, i.e. generally antiparallel or parallel, respectively. Typical spin parameters
for these two regions are given in tables 3.5, 3.6, and 3.7. Figures 3.8, 3.9, and 3.10
are the incommensurable spin structures corresponding to the parameters of tables 3.5
through 3.7 respectively. The structures in figures 3.8 and 3.9 have the same energy,

even though their k-vectors are orthogonal to each other.

The k-vectors of the minimum-energy incommensurable states lie along either the
line from I'-to-Y or the line from I'-to-Y’ (figure 3.4). By symmetry, the minimum-
energy states with wavevectors tk are degenerate. The structures in regions (iv) have
an additional degeneracy: the minimum-energy state with wavevector on the line from
I-to-Y is degenerate with the state W‘lth wavevector of the same magnitude on the line
from I'-to-Y’. This degeneracy is somewhat surprising given the domain asymmetry of
the bulk configuration, but it can be understood as t:ollows. The Heisenberg interac-
tions only couple respective components of the two spins: the x-component of one

spin is coupled to the x-component of another, and so on. The asymmetry of the bulk

 lies entirely in the z-component of the spins. Since the z-components of the spins

have no k dependence, one might expect the I'-to-Y and I'-to-Y’ directions to be
equivalent. This is certainly true if the z-components of all the spins in a given layer
have the same magnitude, as they do in regions (iv). If, however, the z-components of
a given plane are not of uniform magnitude, as in regions (v), the asymmetry of the
bulk is felt through the corresponding magnitudes of the xy-components of the spins,
which are also no longer uniform. These xy -components do depend directly on k, and
so the I'to-Y and I'-to-Y’ directions are not equivalent. Examination of tables 3.5
through 3.7 and figures 3.8 through 3.10 reveal that the conditions for the additional
degeneracy are fulfilled in regions (iv) but not in regions (v). The interaction responsi-

ble for lifting the degeneracy in regions (v) is K, the nearest-neighbor surface interac-

tion. The observed z-NNSA-bulk mixed state is a configuration resulting from the
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compromise between a large antiferromagnetic (K//) and the constraints imposed by

equation (3.2).

The (i)-(iv) and (ii)-(v) boundaries of figure 3.7 are, in k-space, discontinuous
transitions: k goes discontinuously from zero to a finite value at the boundary. The
xy -amplitudes of the "frozen" spin-waves increase continuously from zero to a finite
value. The (iii)-(iv) boundaries represent higher order transitions. The (iv)-(v) boun-
daries are even more complicated: the xy-amplitudes change continuously across the
boundary, as does the magnitude of k, but the degeneracy goes from fourfold to two-

fold when crossing from regions (iv) into regions (v).

The value of k for the minimum energy state can be very ‘sensitive to changes in
the surface exchange integrals. Exu;;rlc sensitivity occurs in the region of parameter
space thought to correspond to EuTe (i.e. antiferromagnetic second-nearest-neighbor
exchange and ferromagnetic nearest-neighbor exchanges). Hence the small changes in
the nearcst-ﬁcighbor surface exchange expected to arise from temperature variation

could generate large, experimentally observable shifts in k.

A notable feature of the results presented here is that the nearest-neighbor cou-
pling between the surface and second layers is necessary for the stability of the incom-
mensurable "frozen" spin waves. The surface-only nearest-neighbor exchange, how-
ever, is not required for their stability. The region of stability of the incommensurable
structures completely covers the regions (IV) of the commensurable phase-stability
diagram, as one might expect, for these are exactly the regions of parameter space in

which the spins are most "frustrated”.

The magnetic structure of the surface should lead to Bragg diffraction peaks of
low-energy electron diffraction experiments.22! The intensity of the LEED beams at
wavevector Q due to magnetic structure is proportional to the squared magnitude of
the Fourier transform of the magnetization IS(Q)12. Since some of the magnetic

structure peaks do not correspond to chemical diffraction beams, they should be
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readily observed,3? even with unpolarized electrons.

The positions of the beams diffracted by magnetic structures are designated by
the vector Q. The magnituces of the vectors are measured in units of [2n/b]. The
diffracted beams at Q =[2n ,2m + 1] (n and m are integers) are those associated
with the bulk-antiferromagnetic structure. The beams Q = [2n + 1, 2m + 1] are asso-
ciated with NNSA surface structure. The beams at Q = [2n , 2m] are those associated
with the chemical periodicity of the surface, and the ferromagnetic-surface structures
as well. The beams due to incommensurable magnetic structure are those described by
nonintegral n or m. The structure factors calculated here are those of the surface

layer only, and are calculated assuming only.a single "frozen" spin wave.

N -
Figure 3.11(a) is a plot of the structure factors for nonzero diffraction beams as a

function of (L/J) for (K/J) =0. The spin structures, ysed in constructing this plot all
have k along the I'-to-Y line, but the plot would be identical for k along the I'-to-Y’
line.: The solid line is the structure factor for the bulk-anﬁfcrromagnetic beams, the
chain-dot line is the structure factor for the ferromagnetic beams, and the dashed line
is used for NNSA-like beams. The dotted line corresponds to the beams diffracted by
the incommensurable magnetic structure, which, for the choice of k’s used here, are
located at Q=[2n ,2m]tk for 40> (L/J)>28and at Q=[2n +1,2m] £ k for
1414 < (L/J) < 2.8. Figure 3.11(b) is a schematic diagram of the expected LEED
pattern. Figure 3.12 plots the k-vectors of the incommensurable diffraction beams in
figure 3.11(a). From (L/J) =0 to (L/J) = 1.414 the surface structure is the bulk anti-
ferromagnet. At (L/J) = 1.414 the surface undergoes a transition to an incommensur-
able state clearly shown by the jump in k seen in figure 3.12. It is at this value of
L/J that the LEED beams arising from the incommensurable magnetic structure appear
in the positions indicated in figure 3.11(b). As (L/J) increases further, more of the
scattering strength is at the incommensurable peaks. Simultaneously, however, k

approaches the I"-point. At (L/J) = 4.0, the two incommensurable spots merge at the
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zone center. Although in figure 3.11(a) this merging appears to be a discontinuous
transition, it is not. It is the usual factor of two encountered in incommensurable-
commensurable transitions. The distinct jump at (L/J) = 4.0 appears because for
(L/J) < 4.0 the electrons are scattered into two spots with equal intensity, whereas for
(L/J)24.0 the two peaks merge into one [figure 3.11(b)]. The graph in figure

3.11(a) shows the structure factor for only one of the two equivalent spots.

Figure 3.13 is a plot of the magnetic structure factors for (L/J) = 3.00 as a func-
tion of (K/J) for the region near the (iv,)-(v,) boundary. Here the k-vectors of the
incommensurable state were chosen to lie along the I'-to-Y’ line. The chain-dash line
is the magnetic structure factor of the incommensurable diffraction beams at the points
Q=[2n+1,2m + 1] k. The do;t.cd line is the structure factor for incommensur-
able beams at Q=([2n ,2m + 11t k. The struqtural transition at (K/J) = 2.56 is
clearly evident and is continuous.

Figures 3.11, 3.12 and 3.13 indicate that the LEED patterns expected from the
different structures should be very sensitive to relatively small changes in surface
exchange integrals. LEED experiments performed on these materials, therefore, should
be able to detect magnetic structural changes experimentally induced by small changes

in the surface exchange integrals.

D. Conclusion

The phase-stability diagram of the simple classical Heisenberg Hamiltonian
[expression (3.1)], found with trial states of the form given by expression (3.2), is
remarkably complex. It shows entire regions of parameter space in which incommen-
surable spin structures are the stable ground state. Since all commensurable structures
are included in this model, the incommensurable regions of the phase-stability diagram
(figure 3.7) are certain to have incommensurable ground states, which may be the
"frozen"” spin waves of equation (3.2), or more complex incommensurable structures.

These incommensurable surface structures are not stabilized by Fermi-surface effects
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or incommensurable potentials, but are the result of competing nearest- and second-
nearest-neighbor exchange interactions. Nearest-neighbor coupling between the first

and second layers seems to be necessary for the stability of the incommensurable

structures.

The stable incommensurable "frozen" spin waves used in the calculation are of
two basic types: one reminiscent of the bulk structure, type (iv), and one which is sug-
gestive of a mixture of the bulk and z-NNSA structures, type (v). The fourfold degen-
eracy of the (iv)-type phase and the twofold degeneracy of the (v)-type phase are
understood in terms of the coupling to the bulk: the xy-components of the (iv)-type
phase surface spins do not feel the asymmetry of the bulk because the z-components
of the spins in each layer are uniforixi. Differing from the properties of the (iv)-type
phases, the (v)-type phases have nonuniform z-components of the surface spins and
the transverse xy -components of the spins "feel" thc asymmetry of the bulk (through
their nonuniform magnitude) thereby lifting the degeneracy.

It is possible to choose the parameters (K//) and (L/J) to stabilize the state of
any k-vector along the I-to-Y or the I-to-Y’ line. In some regions of parameter
space, which may also coincide with the parameters corresponding to EuTe, the k-

vector of the incommensurable stable state is very sensitive to small changes in the

parameters.

Since the LEED patterns of these antiferromagnets are expected to display addi-
tional diffraction beams caused by magnetic structure at the surface, the magnetic
structure factors for several interesting cases were calculated. They revealed that the
LEED pattern should be very sensitive to changes in surface exchange integrals. This
sensitivity, expected in both location and intensity of the diffraction beams, should be
easily observed.

In conclusion, it has been demonstrated that competing nearest- and next-nearest-

neighbor exchange interactions involving the surface spins could be the stabilization
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mechanism for the observed incommensurable structures. Difficulties inherent in the
experiments and the theory, however, make direct application for the extraction of the

surface exchange integrals difficult.
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F. Tables for Chapter III

Table 3.1

. 80

Experimentally Determined Properties

of the Europium Monochalcogenides

Compound | Structure | Critical Temperature (K) | J,, K) | Ju K)

EuO ferro. 69.4 -0.75 0.06 |
EuS ferro. 16.5 -0.20 0.08

EuSe ferro. 28 013 | o1

EuSe antiferro. 4.6 -0.13 0.11

EuTe antiferro. 10 - -0.03 0.17

b —— e ——————]
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Table 3.2

Surface Spins Typical of o)

KiJ)y=25
k=[0,0]
Surface Energy per Unit Cell = ~24.6145 J

ig Xiy Yiu Ziy dip
Ao 0.8660 0.8660 0.5000 0.0000
AB 0.8660 0.8660 -0.5000 0.0000
Ba -0.8660 0.8660 0.5000 0.0000

BB -0.8660 . 0.8660 - -0.5000 0.0000




Table 3.3

" Surface Spins Typical of Region (II)

(K/J)=-=2.50 and (L/J) =2.50
k=[0,0]
Surface Energy per Unit Cell = —45.0090 J

ip Xiy Yiu Ziy dip
Aa 0.9961 0.9961 0.0882 0.0409
AB 0.9961 0.9961 -0.0882 0.0409
Ba 0.9961 0.9961 0.0882 0.0409
BB 0.9961 . 0.9961 . -0.0882 0.0409
Ca -0.9993 " .0.9993 0.0368 0.0409
CB -0.9993 09993 ., -0.0368 0.0409
Da -0.9993 -0.9993 0.0368 ~0.0409
DB -0.9993 -0.9993 -0.0368 0.0409
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Table 3.4

"~ Surface Spins Typical of Region (IV)

(K/J)=3.00 and (L/J) =4.00
k=[0,0]
Surface Energy per Unit Cell = —-30.5833 J

ip Xiy Yiu Ziy Oip
Aa 0.9683 0.9683 0.2499 0.8872
AB 0.9683 0.9683 -0.2499 0.8872
Ba 0.9683 -0.9683 0.2499 0.8700
BB 0.9683 . -0.9683 . -0.2499 0.8700
Ca 0.9270 *.0.9270 0.3751 0.0085
CB 0.9270 09270 . -0.3751 0.0085
Da 0.9270 092710 0.3751 0.0085

DB 0.9270 -0.9270 -0.3751 0.0085
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Table 3.5

Surface Spins Typical (iv)

(KiJ)=225and (L/J) =225
k = [0.0000 , 0.2445]
Surface Energy per Unit Cell = -25.0471 J

ip Xin Yip Ziy by

Aa -0.7321 -0.7321 0.6812 0.0000
AP -0.7321 -0.7321 -0.6812 23734
Ba -0.7321 -0.7321 0.6812 0.0000
BB -0.7321 - 0721 -0.6812 23734
Co 0.8369 " 0.8369 0.5474 -5.0965
cB 0.8369 08369 . -05474 111867
Da 0.8369 08369 0.5474 -5.0965

DB 0.8369 0.8369 -0.5474 -1.1867 -
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Table 3.6

Surface Spins (iv)

(KWJ)=225and (L) =225
k = [0.2445 , 0.0000]
Surface Energy per Unit Cell = -25.0471 J

g Xip Yip Zip Py

Ac 0.7321 -0.7321 0.6812 0.0000
AB 0.7321 -0.7321 0.6812 2.3734
Ba 0.7321 07321 0.6812 2.3734
Bp 07321 . 07321 0.6812 0.0000
Co 0.8369 " 0.8369 0.5474 -1.1867
cP 0.8369 08369, . . 05474 -3.5600

Da 0.8369 0.8369 0.5474 -3.5600
DB 0.8369 0.8369 -0.5474 -1.1867
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Table 3.7

 Surface Spins Typical of Region (v)

(K/J)=3.00 and (L/J) = 3.00
k = [0.0000 , —0.3078]
Surface Energy per Unit Cell = =29.3888 J

ip Xiy Yip Ziy Gip

Ao 0.3654 0.3654 0.9308 0.0000-
AB 0.8842 0.8842 0.5360 -4.1085
Ba 0.8442 0.8442 -0.5360 0.0000
BB 0.3654 0.3654 -. -0.9308 -4.1085
Co 0.8800 **0.8800 0.4750 2.0542
CB 0.8800 0.8800 . . -0.4750 -2.0542
Da 0.8800 08800 0.4750 2.0542
DB 0.8800 0.8800 -0.4750 -2.0542
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G. Figures for Chapter III

Figure 3.1

A schematic description of the superexchange interaction. The cen-
tral dark circle in each picture is the p-orbital of the anion; the light
circles represent the f -orbitals of the cations. The "propeller-like"
structures represent the spatial extent of the anion p-orbital. Figure
3.1(a) is the initial configuration of spins. Figure 3.1(b) is the inter-
mediate state. In this state, one of the anion electrons hops to the
left cation, and the remaining anion electron undergoes a direct
exchange with the electron on the the right cation. The dashed
arrows indicate . this exchange. Figure *3.1(c) is the .final
configuration. One\ ;:lectron from the doubly occupied cation ion has
returned to the central anion.. Note, that the net result of this process
is the exchange of the electrons on the cations. The interaction is
inherently antiferromagnetic and cannot proceed if the spins on the
cations are aligned. Furthermore, the axial nature of the p -orbitals
ensures that this interaction only operates when the three orbitals are

spatially collinear. This process enters in second order perturbation

theory and always reduces the energy.



(a)

(b)

Figure 3.1
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Figure 3.2
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The observed stable magnetic structure of EuTe. The cation spins,
which lie on an fcc lattice are pictured. The central "dumb-bell”
structure represents one p -orbital of the central anion. The axial
nature of these orbitals ensures that the superexchange mechanism is
only operative between second-neighbor Eu atoms. The stable mag-
netic structure has each Eu spin aligned antiferromagnetcally with
its six second-neighbors. In this configuration, the spins in each
(111) plane are aligned ferromagnetically, and then each (111) plane
is aligned antiferromagnetically with its nearest-neighbor (111)

planes.
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Figure 3.3 The Eu atoms of the (001) surface of EuTe. The spins of the euro-
pium atoms are indicated in stereographic projections, with dots
pointing upwards and crosses pointing downwards. The spins are
depicted in the chosen bulk configuration. The line labelled J
represents the second-nearest-neighbor superexchange interaction,
and the line labelled X represents the nearest-neighbor interaction,
effective among surface atoms only. The nearest-neighbor interac-
tion between a surface europium atom and its four nearest neighbors

in the plane below (not shown) is represented by L.
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Figure 3.3




Figure 3.4
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The unit cell and the Brillouin zone used for the calculation with all
spins (indjcatéd in stereographic projections as in figure 3.3) in the
chosen bulk configuration. The unit cell has linear dimension b as
shown. The first label on each atom refers to the simple cubic sub-
lattice and the Greek label refers to the face-centered-cubic sub-
sublattice to which that atom belongs. The shaded atoms lie in the
plane immediately below the surface, the remaining pictured spins
are in the surface plane. The I'-point corresponds t possible com-
mensurable structures. The points Y and Y’ are not equivalent

because of the asymmetry of the bulk spin domain structure.

=



Unit Cell

Brillouin Zone

Figure 3.4
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Figure 3.5
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The phase-stability diagram for commensurable structures. Region
(D) is the unréconstructed, bulk-like surface. In regions (II) the vari-
ous spins acquire an xy-component and tilt away form their original
tz orientation. In the limit (K/J) — o the surface is a perfect
nearest-neighbor square-antiferromagnet (NNSA), with surface spins
aligned in the xy-plane and each surface spin aligned antiparallel to
its four nearest neighbors in the surface layer. Region (III) is simi-
lar, but with the surface spins tilting toward a ferromagnetic surface
configuration. Regions (IV,) and (IV,) correspond to a more com-
plicated spiral-typ_? arrangement of the spins., The contours are the
energies per unit cell of the two surface layers of the commensurable

states in units of J.
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Figure 3.6
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A stereographic projection of the surface spins for a structure typical
of region (II)rcon'espondmg to the spin parameters in table 3.2. The
dots denote spins pointing up and the crosses spins pointing down.

The NNSA character of this state is clearly evident.
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Figure 3.7
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The phase-stability diagram for all examined structures. Regions (i),
(ii), and (iii) are commensurable structures identical to the
corresponding structures of figure 3.5. The shaded regions are
incommensurable structures. The incommensurable structures all, as
found, have a single k-vector. The regions (iv) have an extra degen-

eracy not present in regions (v).
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Figure 3.7




Figure 3.8
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A stereographic projection of the surface spins for a structure typical
of regions (iv) corresponding to the spin parameters in table 3.5.
The dots denote spins pointing up and the crosses spins pointing
down. The arrow indicates the direction of k for this state. This
surface state has a character similar to the bulk configuration, and is

degenerate with the state pictured in figure 3.9.
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Figure 3.9
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A stereographic projection of the surface spins for a structure typical
of regions (iv) corresponding to the spin parameters in table 3.6.
The dots denote spins pointing up and the crosses spins pointing
down. The arrow indicates the direction of k for this state. This
surface state has a character similar to the bulk configuration, and is

degenerate with the state pictured in figure 3.8.
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Figure 3.10
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A stereographic projection of the surface spins for a structure typical
of regions (v) corresponding to the spin parameters in table 3.7. The
dots denote spins pointing up and the crosses spins pointing down.
The arrow indicates the direction of k for this state. The nearest-
neighbor square-antiferromagnetic (NNSA) character of this state is

quite evident.



0 00000




Figure 3.11
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(a) The structure factor for the various diffraction beams as a func-
tion of (L/J) for (K/J) = 0. The solid line is the structure factor for
one of the bulk-like antiferromagnetic spots, the chain-dot line is for
the surface ferromagnetic structure, and the dotted line is the struc-
ture factor for the incommensurable spot. At (L/J) = 4.00, two
incommensurable spots merge at the zone center. (b) A schematic
drawing of the LEED pattern expected from surface for the struc-
tures corresponding to the structure factors of figure 3.11(a). The
structure responsible for each of the peaks is indicated in thev box.
The arrows indicate that those LEED spots move as the exchange
interactions are varied. Eventually, the incommensurable spots

merge at the zone center as is described in the text.
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Figure 3.12 The k-vectors of the stable magnetic structures used to construct the

plot in figure 3.11(a). The vectors originate at I" and end at the indi-

cated point along the I'-to-Y line.
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Figure 3.12




Figure 3.13
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The magnetic structure factor for (L/J) = 3.00 as a function of
(KNJ) for the minimum energy state chosen to have k along the I'-
to-Y’ direction. The solid line is the structure factor for the bulk-
like diffraction beams at Q = [2n , 2m + 1], the dashed line is the
structure factor for the nearest-neighbor square-antiferromagnet-like
(NNSA-like) beams at Q = [2n + 1, 2m + 1], the dotted line is the
structure factor for incommensurable spots at
Q=1[2n,2m + 1] £k, and the chain-dash line is the structure fac-
tor for incommensurable spots at Q=[272 +1,2m + 1] k. The
structural transition upon crossing the (iv,)-(v,) boundary at

(K1J) = 2.56 is clearly evident.
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Chapter IV: Magnetic Properties of {111} Stacking Faults in Nickel

A. Introduction

The study of systems with complete translational invariance is dramatically
simplified by judicious application of Bloch’s theorem. Electronic structure calcula-
tions based on this theorem lead directly to accurate predictions of physical properties
as diverse as the superconducting transition temperature or the expected spectrum of

the electrons one should observe in a photoemission experiment.

"Real-world" systems, however, do not possess the full translational periodicity
required for the direct application of Bloch’s theorem. Even in a perfect crystal at
zero temperature, there is no perfect periodicity; it is destroyed by zero-point motion.
Nevertheless, Bloch’s theorem holds in an approximate sense; on the average the cry-

stal is periodic. The utility of Bloch’s theorem originates in this observation.

There are systems, however, which are not even approximately periodic (e.g.
liquids, glasses, and amorphous materials). The calculational techniques used for these
materials cannot rely on translational invariance. Progress in this direction has been
made. In particular, the newly developed real-space methods!? for calculating elec-

tronic structure of solids and liquids are very promising.

This chapter is concerned with the electronic and magnetic structure of {111}
stacking faults in nickel. For a {111} stacking fault, the periodicity within the (111)
planes is unaltered, whereas the stacking fault eliminates translational invariance in the
direcﬁon normal to the planes. Recent advances in electronic stucture calculations
permit the calculation of the physical properties of these defects, within the one-
electron approximation, without imposing three-dimensional periodicity or the use of
finite-sized slabs.

Considerable attention has been focused on the theoretical properties of

transition-metal surfaces and interfaces.>~!® Much of the excitement stems from the
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7-9

prediction and observation of enhanced magnetic moments at surfaces*’, as well as

the possibility of surface ferromagnetism or antiferromagnetism. >

The availability and application of surface-sensitive spectroscopy techniques, cou-
pled with new techniques for producing high quality superlattices and interfaces,! pro-
vides the strongest stimulus to this theoretical interest. Spin-polarized photoemis-

sion,12-14

inverse!’® and angle-resolved'® photoemission, both spin-polarized'” and
unpolarized!® low-energy-electron-diffraction, and spin-polarized electron energy-loss
spectroscopy’® have provided very interesting results which are not yet completely
understood. In addition, these experimental methods are also used to study the ther-
modynamic properties of two-dimensional magnetic systems?%2!, which are of funda-
mental interest, through the experimental investigation of thin transition-metal films on

nonmagnetic substrates.

The complete understanding of all these systems, however, requires a thorough
understanding of the transition metals themselves, and the factors that influence their
magnetic properties. For example, it is clear that in order fully to understand a "two-
dimensional” transition-metal film, one must have some understandingiof how the elec-
tronic states of the transition metal interact with states of the nonmagnetic substrate,
which in turn, requires detailed knowledge of the transition-metal states. Additionally,
the properties of structural defects in the pure materials must be fully understood so
that one may distinguish between the effects of alloying and those of structural

differences.

It is well known that near-neighbor coordination number affects the observed
magnetic moments of transition metals. In general, a decrease in coordination number
results in an increase in magnetic moment. This can be loosely understood in terms of
the Stoner model in which a decrease in the ratio of bandwidth to electron-electron
interaction results in an increase in magnetic moment. A decrease in coordination

number results in a narrowing of the local density of states, thus enhancing the spin
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polarization. The effect is most pronounced in magnetic systems such as chromium or
iron which are not saturated (i.e; do not have a filled majority d-bands). Nickel is a
saturated system, but its calculated total spin polarization is small [0.60 gz (calculated
below)], which implies that any slight change in spin polarization represents a rela-
tively large percentage change. Tight-binding calculations’-822-24 predict a spin polari-
zation enhancement of sixteen percent for the {111} surfaces of nickel, an enhance-
ment from 2.12 pp to 2.90 up at the {001} sufaces of iron, and an enhancement of
the chromium spin polarization from 0.59 ys in the antiferromagnetic bulk to 2.5 g
on the ferromagnetic (001) surface. These studies, however, do not directly address
the magnetic properties of stacking faults in the pure transition-metal alloys. For
instance, in the {111} stacking faults of the fcc structure, the nearest- and next-
nearest-neighbor coordination number of the atoms in the fault remain twelve and six,
respectively, but the cubic symmewy of the environment is lost and.the further-

neighbor coordination numbers are altered.

There has been much less attention given to planar structural defects (other than
surfaces) in pure transition metals. Yndurain and Falicov studied the properties of
{111} stacking faults in nickel using an unpolarized tight-binding method? and found
that localized electronic states appear at the interfaces, but did not consider their mag-
netic structure. Grise et al.?8 performed tight-binding calculations utilizing large unit-
cells containing stacking faults and found localized states and a three percent change in
spin polarization on the central layer of an extrinsic fauit. This calculation was not
pcrforméd self-consistently, nor was any attempt made to understand the source of the

changes in electronic and magnetic structure near the faults.

Given the existence of localized states, and the apparent sensitivity of the mag-
netic configuration to coordination number and loss of three-dimensional symmetry,
one might expect the magnetic properties of stacking faults to display interesting, pos-

sibly technologically important, behavior. The aim of the present study is the charac-
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terization of {111} stacking faults in ferromagnetic nickel. The electronic and mag-
netic properties are calculated using a fully self-éonsistent, layered Korringa-Kohn-
Rostoker (LKKR)?’ technique based on a local spin-density approximation to density-
functional theory. LKKR does not require three-dimensional symmetry or the use of
finite-sized slabs.

The spin polarizations and total energies for face-centered-cubic (fcc) nickel,
hexagonal-close-packed (hcp) nickel, double-hexagonal-close-packed (dhcp) nickel,
and several types of stacking defects are calculated and analyzed. The results are used
to derive a very simple empirical expression for both the polarization and internal
energy of any stacking configuration. It is argued that the small changes in spin polar-
ization are the result of two subtle effects: 1) a symmetry induced rearrangement of the
majority-spin states near the Fermi level and, 2) a local broadening and change in
structure of the states derived from the minority-spin band which crosses the Fermi

level near L along the I to L direction of the fcc Brillouin zone.

Part B of this chapter contains a brief description of -the method of calculation.
Section C presents the results of the calculations. Part D contains the analysis of the
results, and simple empirical relations for the spin polarization and internal energy of
any stacking sequence are derived and analyzed in section E. The conclusions are

presented in section F.

B. Method of Calcﬁlation

In LKKR, the properties of a three-dimensional periodic solid are calculated by
building it from two-dimensional periodic planes. The method proceeds by first calcu-
lating the T-matrix of an entire plane. This, in turn, is used to calculate the T-matrix
of a two-plane unit. The T-matrix of the two-plane system is then used to generate the
T-matrix of a four-plane unit. This process, referred to as layer-doubling?’, is repeated
until the T-matrix of the bulk is generated. Layer-doubling provides an extremely

efficient method for building the complete three-dimensional solid; seventy-five



117

doublings results in the T-matrix for a slab of nickel extending from the earth to the
sun!
Once the T-matrix of the entire solid is known, the single particle Green’s func-

tion is calculated from the Dyson equation

G=GO+GOTGO ?

where G, is the free particle Green’s function and T is the T-matrix for the complete
solid. The Green’s function can then be used to calculate the physical properties of
the solid. For example, the spatial and energy-resolved density-of-states (DOS),
p(r,E), is given by

p(r.E)=-l/rImG(rr.E) ,

where r denotes t..he position and E denotes the energy. The spatial and energy-
resolved DOS can then be used to calculate the charge density, Fermi energy, and
electronic energy of the system, merely by integrating over the appropriate variable
with the appropriate weighting factor.

In the self-consistent iterations, the charge density calculated from the Green’s
function is used to generate a new potential which includes contributions from both the
Coulomb interaction with the other electrons (found from the solution of Poisson’s
equation using Weinert’s method?®) and the exchange-correlation potential in the local
spin-density approximation (by means of the expression of Gunnarsson and
Lundqvist®® which is a spin-polarized version of that derived by Hedin and
Lundqvis©®). The generated potential is then converted to a muffin-tin form, which is
known to produce good results for close-packed transition metals. The phase shifts of
these potentials are calculated, including the semi-relativistic corrections of Koelling
and Harmon,*! and a new T-matrix is calculated. The entire process is then iterated to

self-consistency.
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The LKKR formalism easily adapts to a three-dimensional system containing a
stacking defect. In calculating the properties of a stacking defect, the first step com-
pletely characterizes the bulk material. The second step is to embed N layers of
material, containing the entire structure of the stacking fault, within the bulk system
(figure 4.1). The self-consistent formalism described above is then applied to the N-
layer region; the potentials of the atoms in the N layers are allowed to change but the
potentials in the bulk regions are fixed to have their bulk values, as is the Fermi level
of the complete (stacking fault and bulk) system. The constraint that the potentials be
bulk-like outside of the N-layer region provides the boundary condition for the

adjusted region. The positions of the atoms within the layers are not allowed to relax.

This procedure allows an exact calculation of the single-particle electronic proper-
ties of the a stacking fault within the local-spin-density and muffin-tin approximations
as the number of layers containing the fault can be made arbitrarily large. In practice,
it is found that only a few layers, usually less than required in the finite-sized slab cal-
culation of the same system, are necessary to obtain convergence. This method does
not suffer from the problems inherent in "supercell” or finite-sized slab calculations.
The details of the calculational procedure can be found in the paper by MacLaren et

01.32 .

The calculations presented below do not include the effects of spin-orbit cou-
pling®3, and thus do not make any predictions concerning the anisotropy energy at a
stacking fault. It is possible (although not likely) that the spin-orbit interaction could
modify the results presented here, although it is difficult to assess spin-orbit coupling’s
importance without an explicit calculation. However, it is the intention of this work to
investigate the effects of the changes in crystal field near a fault. Spin-orbit effects,
which are usually smaller than the crystal-field effects, are probably only important in
regions of reciprocal space where bands cross near the Fermi level. The crystal field

effects on the band-structure are quite large, and it is hoped that the calculations
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presented below provide a good idea of how the magnitude of the spin polarization
varies throughout the stacking fault even though spin-orbit effects are not included in
the self-consistency requirement. It is also certain that if spin-orbit effects were

important, they would not completely cancel the effects of the changes in crystal field.

A mixed basis is used in LKKR. The multiple scattering equations in each plane
are solved in a spherical-wave basis. The spherical-wave basis is then transformed
into a plane-wave basis which is used to connect the separate planes. Many of the cal-
culations are performed off the real axis in the upper-half complex plane; physical pro-
perties are then obtained using the analytic properties of G. For these calculations,
only a small number of basis functions is needed. The spherical basis includes the
I=0to!l =2 wavcs; and the connecting basis consists of thirteen plane-waves. The
integrations in reciprocal space are carried out using six points in the irreducible two-
dimensional Brillioun zone. The chosen lattice constant, 6.55 au, is the value used by
Moruzzi, Janak and Williams.3* For the bulk calculations (the fee, hep and dhcp
structures), the potentials were iterated until the Fermi energy was stable to 10
microHartrees (uHa). The potentials of the interface calculations were iterated to
obtain a similar accuracy. At this level of self-consistency, the spin polari;ations are

stable to at least + 0.002 pp.

C. Results

The muffin-tin density-of-states (MTDOS), i.e. the DOS resulting from integrating
p(r,E) over the muffin-tin, for fcc nickel is displayed in figure 4.2. The calculated
Fermi energy isv 0.35198 Ha above muffin-tin zero (all remaining energies are quoted
relative to muffin-tin zero) and the muffin-tin spin polarization, which is the polariza-
tion of the charge within the muffin-tin radius, is 0.614 pg, where g is the Bohr
magneton. The spin polarization of the Wigner-Seitz sphere is 0.597 pp, indicating
that the charge in the interstitial region is polarized antiferromagnetically relative to the

chargc in the muffin-tin, a feature common to all the calculations below. A self-
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consistent calculation utilizing twenty-five plane waves and eighteen k-points in the
irreducible two-dimensional zone yielded a muffin-tin moment of 0.61 pup and a Fermi
energy of 0.3525 Ha. Since the purpose of this stddy is to analyze trends, these minor
differences were deemed unimportant, and the remaining calculations were carried out
using the smallef basis set. While the calculations have not completely converged
(with regards to the number of k-points) the quoted trends are most likely present in
the completely converged calc.ulations, although the magnitudes may change slightly.
The exchange splitting, as measured by the peak in the MTDOS nearest the Fermi
level, is 0.025 + 0.001 Ha (0.68 eV), which agrees well with the value obtained by
and Wang and Callaway,35 0.63 eV.

Figure 4.3 is the MTDOS of (hypothetical) bulk hcp nickel. (The nearest-
neighbor distance is kept equal to that for the fcc calculation, and c/a is chosen to be
ideal.) While this structure is not thermodynamically stable (in fact, hypothetical Acp
nickel is unsrable to local perturbations and would spontaneously form fcc -like stack-
ing defects), the results of this calculation are very useful for analyzing stacking-fault
results. Figure 4.3 shows a significant rearrangement (when compared to the fcc case)
of the _statcs. near 0.3 Ha. Also, the MTDOS peak nearest the Fermi level is
broadened. There is, in the hcp structure, a five-percent decrease, relative to the fec
structure, in the spin polarization. The polarization is 0.583 pp within the muffin-tin
and 0.567 pg within the Wigner-Seitz sphere. The calculated Fermi energy of hcp
nickel, 0.35294 Ha, is slightly higher than the fcc counterpart. The exchange splitting
observed in the hAcp structure, 0.024 £ 0.001 Ha (0.65 eV), is nearly identical to that
in the fcc system. The total energy is 101 mJ/m? per (111)-plane larger in the hcp
phase than in the fcc structure, which is consistent with the fact that the structure of

nickel is observed to be fec.

The "ABC" notation® is used to describe the stacking of the (111) planes (figure

4.4). Each (111) plane forms a triangular lattice as shown by the sites labelled A in
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figure 4.4. There are two distinct sites on which the next (111) plane can be stacked;
these are labelled B and C. The fcc structure is built by stacking the planes in the
sequence ABCABC and the hcp structure is constructed by stacking the planes in the
sequence ABABAB. In the notation used below, the fcc structure is denoted by
(...<ABC>...) where the angular brackets indicate that the structure within them is
repeated to infinity in the direction indicated by the bracket immediately adjacent to
the "...". Hence the hcp structure is denoted by (..<AB>...). The five types of stack-
ing faults investigated are shown in figure 4.5 and are referred to as (a) a twin boun-
dary fault (...<BCA>B<ACB>...), (b) an intrinsic fault (..<CAB><ABC>...), (c) an
extrinsic fault (..<CAB>A<CAB>...), and, for lack of established names, (d) the
super-extrinsic fault (..<BCA>CB<ABC>..), and (e) the hyper-extrinsic fauit
(..<BCA>CBA<CAB>...). In addition, the spin polarization and the total energy of (f)
dhep (..<ABAGS...) nickel are calculated. (The letters in figure 4.5 are staggered to
help in visualizing the structure of the stacking faults.) The number of layers allowed
to readjust in each calculation is the number of pictured layers less two (the two end

layers were constrained to be bulk-like).

The muffin-tin spin polarization of the layers for each of the stacking-fault struc-
tures are presented in table 4.1. The muffin-tin spin polarization of the A layers of
dhcp nickel [figure 4.5(f)] is 0.592 pp and that of the B and C layers is 0.612 pp.
Muffin-tin spin polarizations are the only ones quoted in this thesis (unless otherwise
indicated) since full-cell polarizations are unavailable. Approximations to the full-cell
spin polarization, in the form of the polarization of the Wigner-Seitz sphere charge,
indicate trends identical to those in the muffin-tin spin polarizations. The labelling of
the layers in table 4.1 corresponds to the labelling of figure 4.5, where the first entry
under each structure is the uppermost layer in figure 4.5. Since the polarization is
symmetric about the midpoint of the fault (indicated by arrows in table 4.1), the table

contains the results for only the upper half of each fault. For the interface calcula-
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tions, the first entry in the table represents the layer constrained to be bulk-like. The
values of the spin polarization for the layer immediately adjacent to the bulk suggest
that the redjusted regions are sufficiently large. As expected, there are small changes
in spin polarization caused by the presence of the stacking faults.

Table 4.2 contains the energies of the various configurations measured relative to
the fcc structure. The energies of the hcp and dhcp systems are quoted in mJ/m? per
(111) atomic plane, and the quoted stacking-fauit energies are the total energy, in

mJ/m?, for the entire stacking-fault region.

The energy of a single twin boundary is 105 mJ/m2. The calculation gives the
same energy by allowing the readjustment of the potentials for six and for eight layers,
which indicates convergence with respect to the number of layers in the réadjustcd
region. The energies of the other investigated stacking faults are roughly twice the
twin-boundary energy. There are two types of layers which appear in the stacking
sequences. One type, which has the local symmetry (i.e. nearest- and next-nearest-
neighbors) of the hcp lattice, trigonal prismatic, is referred to as a P-layer (e.g. the
apex layer of a twin boundary fault). The other type, whose sites have the local sym-
metry of the fcc lattice, octahedral, is referred to as an O-layer. In addition to the

stacking-fault energies, table 4.2 also contains the values of the function A(n):

A(n) =2 E,;,, - E,

where E, ., is the energy of an isolated twin boundary fault, and E,; is the energy of a
stacking fault composed of two P-layers separated by » planes (e.g. E, is the energy
of the extrinsic fault, £, the energy of the super-extrinsic fault, and E5 the energy of
the hyper-extinsic fault). This function measures the energy gained through the
“interaction” between two P-layers. When separated by three planes, the P-layers

behave nearly as if isolated, as can be seen from the fact that A(3) = 10 (mJ/mz), and

that the spin polarization on the middle layer of the hyper-extrinsic fault is only
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slightly reduced relative to the bulk.

Figure 4.6(a) pictures the hexagonal two-dimensional Brillouin zone used for the
calculation. The dashed line demarcates the irreducible wedge over which the integra-
tions are performed. It is instructive to locate the points in the two-dimensional zone
onto which the symmetry points L, K and X of the full three-dimensional zone are
projected. The projection points in the irreducible zone are shown in figure 4.6(b)
where they are labelled by their corresponding three-dimensional labels. The I'-point
and one of the four L -points project onto I. The three remaining L -points and the
three X -points project onto M. The K -points project onto two points in the irreduci-
ble wedge of the zone: one on the line joining T to M at a point three-quarters of the
way to M, and the other at a point of the M to K line, three-quarters of the way
towards K. Hence the K -points do not fall on any of the symmetry points of the
two-dimensional zone. The Fermi surface of nickel?® has 'a minority hole pocket near
the X -point of the Brillouin zone. The distorted spherical surface of the nﬁnority-spin )
d-states intersects the I'-L line roughly three-quarters of the way to L, and also

passes near the X -point.

Figure 4.7 is the two-dimensional projection of the three-dimensional band struc-
ture of fcc nickel, plotted along the two-dimensional symmetry directions. The shaded
regions of this figure correspond to points (£ , x) for .which band states exist (k is the
two-dimensional wavevector). The white regions are gaps in (E , ) space for which
there are no band-like states. (A band-like state is said to exist if, after twenty layer
doublings, the calculation of the T-matrix has not converged.) Truly localized states
could appear only in these gaps. Evidently, there is the possibility of finding localized
states in the immediate vicinities of T and K, but not about M. The symmetry points

T and K were scanned for localized states in the energy range 0.1 Ha to 0.4 Ha.

The layer-projected MTDOS for the stacking-fault configurations were calculated
and plotted for both T and K of the two-dimensional Brillouin zone. Figure 4.8 con-
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tains the results for " of the twin boundary fault. The layers are labelled as in figure
4.5(a), with the uppermost curve being the T-projected MTDOS of fcc nickel. The

" dotted line represents the Fermi energy. It is evident that there are no localized states.

There is, however, a resonant state which appears at 0.299 (0.322) Ha in the majority
(minority) spin. The exchange splitting for that state is 0.023 Ha. The spectral weight
of this resonance is largest on the planes adjacent to the P-layer of the fault, which are
also the planes with the smallest spin polarization. Note that there is some rearrange-
ment of the minority-states near the Fermi level, but there is no obvious explanation of

the decrease in the moment.

Figure 4.9 is the layer-projected MTDOS at K of the twin boundary fault, and is
labelled in the same manner as figure 4.8. In contrast to figure 4.8, three localized
states appear; one at 0.204 (0.221) Ha, one at 0.287 (0.309) Ha, and the other at
0.306 (0.329) Ha in the majority' (minority) spin. These states have their maximum
spectral strength at the P-layer of the fault, whichlis the layer with the bulk magnetic

moment.

Figures 4.10 and 4.11 are the MTDOS at T and K of the extrinsic fault, labelled
according to figure 4.5(c). The resonant state at I is present as are the localized states
at K. The resonance at T, which appears at 0.297 (0.320) Ha in the majority (minor-
ity) spin, has its maximum spectral strength on the central O-layer of the fault; this O-
layer exhibits the smallest spin polarization. The states localized at X appear at 0.204
(0.221) Ha, at 0.287 (0.309) Ha and at 0.305 (0.329) Ha in the majority (minority)

spin. The exchange splitting for the states is similar to that in the twin boundary fault.

Table 4.3 depicts the energies and exchange splittings for the T resonance and the
K localized states for the twin boundary, intrinsic, extrinsic, super-extrinsic and
hyper-extrinsic faults. In the intrinsic and hyper-extrinsic faults there are actually four |
states localized at K. Since all of the stacking faults except the twin boundary fault

contain two P-layers, one might expect to find six states localized at the faults (at K,
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only two localized states at I); each P-layer (twin boundary fault) should result in
three states localized at K. Interference between the states localized near different P-
layers should introduce splittings into the states, resulting in six distinct energies. "The
majority-spin states at 0.307 and 0.304 Ha in the hyper-extrinsic fault (figure 4.12) are
the result of interference between states localized on different P-layers. There are
many possible reasons that six localized states are not observed at any of the stacking
faults. One explanation is that the two states do in fact split, but that the companion
state to the observed localized state is pushed into the continuum. Another alternative
is that the some of the states are strongly localized and do not interact with the states
localized on the other P-layer. This is certainly the case for the hyoer-extrinsic
majority-spin (minority-spin) states at K at energies of 0.204 (0.221) and 0.287 (0.309)
Ha. In contrast the majority-spin (minority-spin) states at X which lie at’ an energy of
0.306 (0.329) Ha in the twin boundary fault, are more extended; ﬁgmjc 4.9 indicates
thai, in the twin boundary fault, these states have a finite spectral strength as far as
three (111) planes away. One might therefore expect that the two states, correspond-
ing to those at 0.306 Ha in the twin boundary fault, localized on different P-layers,
should mix and result in a double peak structure. Symmetry dictates that the peak
arising from the antisymmetric state should have zero spectral strength on the central

layer of the fault, which is the observed behavior (figure 4.12).

Table 4.4 contains the angular-momentum resolved muffin-tin charges for fcc,
hcp, and dhcp nickel, and table 4.5 contains these charges for the layer in each stack-
ing fault with the smallest spin polarization (the layers are labelled as in figure 4.5).
The tables also contain the total muffin-tin charges, and the quantity Aq, which is

defined to be the difference:

AQy =qq — 95

where qéf"' is the muffin-tin charge with spin ¢ and angular-momentum / for the fcc
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lattice, and g4 is the corresponding quantity for the other lattices or stacking-fault
structures. The next section of each table is the angular-momentum resolved contribu-

tion to the change in spin polarization

Amy = Adpmin. | = AGimaj. 1
The last line of each of the tables displays the total change in muffin-tin charge. A

+(-) sign indicates that charge has gone in (out) of the muffin-tin compared to the

muffin-tin charge in fcc nickel.

D. Analysis

It is important to determine the mechanism by which the stacking faults alter the
spin polarization. Without an adequate explanation for the results it is difficult to
determine whether or not the observed differences are indicative of real trends or
merely a consequence of the numerical method used to obtain them. Moreover, a
complete physical picture of stacking faults in nickel can be used to assess the impor-

tance of stacking faults in other systems.

It is argued below that the observed changes in spin polarization are physical.
The calculated magnitudes of the changes, based on spin-density-functional theory, are

not guaranteed to be given correctly, but the trends are most likely real.

The argument rests on three points. First, the change in spin polarization stems
directly from a transfer of charge from the majority d-states to the minority d -states
within the muffin tin. Second, the minority states at the fault partially responsible for
the shifts in spin polarization are derived from band states thh k directed along the I
to L line of the three-dimensional fcc Brillouin zone, and are locally broadened and
shifted by the close proximity of neighboring atoms in the {111] direction at the faults.
And third, there is a symmetry induced rearrangement of the majority states nearest the
Fermi level, whose changed filling, when combined with the changes that take place in

the minority states, accounts for the decrease in spin polarization.
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The first point of the argument can be established by inspection of tables 4.4 and
4.5. The angular-momentum resolved changes in spin polarization indicate that a
major portion of the shift in polarization arises from the shift in occupation of the d-
states. Furthefmore, this shift in occupation far outweighs the total change in muffin-
tin charge, Aguffin rin» indicating that the shift in polarization is not the result of a
change in the amount of charge within the muffin-tin. For example, in going from the
fee to the hcp structure, the total change in spin polarization is 0.031 pg, while the
change in the polarization of the d-states is 0.032 pg. (The combined change in
polarization of the s- and p-states is -0.001 pg.) In contrast, the change in muffin-tin
charge can only account for a change in spin polarization of 0.001 pg. Even in the
intrinsic  stacking-fault, which shows the largest change in muffin-tin charge,
AGmuffin 1in €an only account for one-third of the shift in the reported muffin-tin spin
polarization. Further comparisons of tables 4.4 and 4.5 show that in all cases the

change in spin polarization arises almost entirely from shifts in d-electron occupation.

Careful inspection of table 4.1 reveals an important fact. The symmetry of the
potential from the nearest- and next-nearest neighbors has little influence on the spin
polarization. For example, the nearest- and next-nearest neighbors of atoms in the P-
layer of the twin boundary fault [i.e. layer B in the stacking (...<BCA>B<ACB>...)] all
occupy the positions they would occupy in the hcp lattice but the atoms on this layer
all have the spin polarization of the fcc bulk. The atoms on the layers immediately
adjacent to the the P-layer [i.e. the O-layer A in the stacking (...<BCA>B<ACB>...)]
have their first- and second-neighbors in the positions they would occupy in the fcc
lattice, but the spin polarization on these layers is reduced relative to the bulk fcc
value. Hence the spin polarization behaves in a fashion exactly the opposite of what

one would naively expect from local-structure arguments.

A dependence of the spin polarization on the disorder in the [111] direction is

expected. It is not, however, obvious that the positions of the nearest- and next-
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nearest-neighbor atoms would play no role in determining the magnitude of the polari-
zation. The physical interpretaton of this result is that in this close-packed
configuration, the potential from these neighbors is so nearly spherical that their exact
positions do not matter. It may be argued that, because spherical potentials form the
very premise of the muffin-tin approach, the calculations are merely internally con-
sistent. While a full potential calculation may slightly alter the results presented here,
it seems unlikely that inclusion of non-spherical terms in the potentials would

significantly change the observed trends.

Table 4.1 contains further clues to the origins of the changes in spin polarization.
Consider the orientations of the third-neighbor sites of an atom near the stacking-fault.
In the fcc lattice, the third-neighbors are located at the twenty-four sites cquivalent to
a/N2 [211), where a is the nearest-neighbor spacing. (None of these sites lie in the
[111] direction.) In the hcb lattice, there are only two third-nearest neighbors: one at
a(8/3) [0001] and the other at aV(8/3) [0001]. Both of these sites lic in the direction
equivalent to the [111] direction of the fcc lattice.

The polarization of a layer is strongly correlated with the distance to the nearest-
neighbors in the [111] direction. Consider the structure of the nearest-neighbors, in the
[111] direction, of the twin boundary fault (...<BCA>B<ACB>...). For the central B
layer, the P-layer with the bulk fec spin polarization, the nearest-neighbors in the [111]
direction are at a distance of aV6, the distance at which they would be found in the
fec lattice. For the adjacent O-layers labelled A, one of the neighbors in the [111]
direction lies at a distance of aV6, but the other is thirty-three percent closer, lying at
a distance of only aV(8/3). The spin polarization on this layer is smaller than the fcc
bulk value. In the stacking sequence of the extrinsic fault, the central A layer has its
two nearest-neighbors in the [111] direction in the positions they would occupy in hcp
lattice [at a distance aV(8/3)], and the spin polarization of this layer is essentially that

found for the bulk Acp calculaton.
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The dependence on the distance to the nearest neighbor in the [111] direction can
be understood physically using the following arguments. In general, keeping all other
factors constant, a decrease in lattice spacing results in an increase in bandwidth.
While the nearest-neighbor lattice spacing is unchanged when going from the fcc to
the hcp lattice, the spacing of atoms in the [111] direction ([0001]-direction of the hcp
lattice) decreases. One might therefore expect that the band formed of states with k
along the I" to L direction of the fcc Brillouin zone should be broadened by the
effective increase in density of cores in this direction. (The corresponding decrease in
effective density in other directions should also lead to band narrowing, but unless the
b;mds near the Fermi level are altered, the spin polarization would not be affected.)
The Stoner model, in which magnetism arises from the competition between electron-
electron interactions and single-particle bandwidths, and the simple rules suggested in
reference 20, imply that this broadening would be accompanied by a smaller spin
polarization. ‘

Figure 4.13(a) is the MTDOS at T for the fcc (dashed line) structure and the hcp
(solid line) structure. The vertical dotted line represents the Fermi level of Acp nickel;
the Fermi level of fcc nickel is almost indistinguishable at this scale. There are two
important observations to be made. First, the minority-spin peak nearest the Fermi
level lies above the Fermi level in the fccstructure and completely below the Fermi
level for the hcp case. This rearrangement of states would certainly contribute to the
calculated decrease in spin polarizaton in hcp nickel, although there must be a
corresponding rearrangement of majority-spin states. The second observation, that the
band nearest the Fermi level is broadened in the hcp structure, is consistent with the
simple discussion above. This broadening suggests that the new equilibrium point in
the trade off between electron-clectron interactions and bandwidth has a smaller spin

polarization.

Since the spin polarization decreases in the hcp structure, majority-spin states
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must be pushed above the Fermi level. Figure 4.13(b) is the MTDOS at M for the fcc
and hcp systems. The most important feature of this figure is the strong peak in the
majority-spin states of the hcp structure which lies well above the Fermi level, and is
absent in the MTDOS of the fcc structure. In addition, a gap has opened in the
majority-spin states at the Fermi level. As shown in figure 4.6, the points X and L of

the three-dimensional fcc Brillouin zone project onto M.

It is useful to understand the symmetries of the states responsible for the
majority-spin peak above the Fermi level. Figure 4.14 is a plot of the band structure
of fcc nickel plotted along a line parallel to the [111] direction and passing through
M. The majority-spin bands are indicated by a solid line and the minority-spin bands
indicated by a dashed line. The X and L symmetry points are clearly visible. The
source of the minority-spin Fermi surface hole pockets near X are also visible. The
majority d-states nearest the Fermi level lie along the X to W line. The small group37
of the X -point is Dg4; three of the d-states transform according to one-dimensional
representations, and the remaining d-states transform according to the only two-
dimensional representation of ‘ this group. The small group of the L-point is Ds,;

there are two sets of doubly degenerate d-bands, and one nondegenerate d -band.

The band structure of hcp nickel plotted along the line L-M-L of the three-
dimensional hcp Brillouin zone is shown in figure 4.15. The majority-spin band
- responsible for the peak above the Fermi level in the ~cp MTDOS at M is clearly
visible. The small group of the states along the L-M direction (not at the symmetry
points) is C,; all the representations of this group are one-dimensional.

While it is not possible to make a precise comparison between the two band
structures, it is possible to do a rough analysis of the effects of change in symmetry on
going from the fcc to the hcp lattice. Since the span of the hcp Brillouin zone in the
[0001] direction is exactly one-half the span of the fcc zone in the [111] direction, the

band structures can be "compared”. The majority states above the Fermi level at M
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are derived from the mixing of states at L and X of the fcc Brillouin zone, a mixing
which is induced by the change in symmetry on going from the fcc structure to the

hcp structure.

Group theoretical arguments can be used to understand further the changes taking
place. Consider the two majority-spin bands nearest the Fermi level. When the struc-
ture goes from fcc to hcp, these two bands become four, because the size of the unit
cellA doubles. At the same time, however, the degeneracies imposed by the symmetry
of the fecc structure are lifted; the formerly doubly-degenerate states are now split.
Three of the four majority bands now lie completely below the Fermi level, but the
fourth has moved completely above it. This is the source of the decreased occupation

of the majority d -states.

Hence the difference in spin polarization between fccand hcp nickel results from
complex changes in symmetry and the proximity of atoms in the {111] direction (of
the fcc crystal). Since stacking faults are essentially hcp -like structures embedded in
an fcc medium, it is possible to extend the above arguments to the stacking fault

configurations.

The spin polarization on any layer of a stacking fault is influenced by the same
environmental factors that drive the decrease in spin polarization on going from fcc to
hcp nickel. The proximity of atoms in the [111] direction results in a local broaden-
ing of the states (derived from the band states of the perfect crystal with k along the I
to L directions) and a corresponding decrease in the spin polarization. The local
broadening of the states nearest the Fermi level at T is clearly shown in both figures
4.8 and 4.10 (the T-resonance adds considerably to the width). The increased occupa-
tion of the minority states is also clearly visible in the lowest panel of figure 4.10,
which corresponds to the central layer of the extrinsic fault (the layer with a spin
polarization very close to that of the hcp calculation). This increase is not as visible

in the remaining layers of the fault, nor is it as visible in the twin boundary fault,
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probably because the changes are very small.

Figure 4.16 is the layer-projected MTDOS at M for the extrinsic fault. It is
clear that there is a significant rearrangement of the states near the fault over the
displayed range of energy. Of particular interest is the rearrangement of the majority-
spin states above and near the Fermi level. The lowest panel of this figure, which
show the MTDOS for the central layer of the extrinsic fault, contains a pronounced
"bump” in the majority states which corresponds to the peak above the Fermi level in
the hcp case (figure 4.13). The fact that this "bump" is more sharply defined on this
layer than on any other suggests that, for the states which compose this peak, the
structure in the [111] direction is important, particularly the proximity of other atoms.
The enhancement of the "bump" on the layers of type A, which have one neighbor in

the [111] direction at the Acp distance, is consistent with this conclusion.

The calculated effects are very small, partly because the defect itself represents a
subtle change in local structure and symmetry, and not a chemical change. The s;nall
size of the effects requires examination of the approximations entering the calculation.
A brief discussion of the effects of the muffin-tin approximation and of the neglect of
the spin-orbit interaction has already been given above. There is another source of
uncertainty; the positions of the sites in the interface were not allowed to relax to
minimize the internal energy. Since the arguments above are based on the fact that a
stacking fault brings the atoms situated along the [111] direction closer, and that this
results in the change in spin polarization, a relaxation of the lattice could be effective
in reducing the calculated effects. However, it is unlikely that relaxation can com-
pletely cancel the thirty-three percent change in spacing, and the calculated trends most
likely indicate the physical reality. On the other hand, the decrease in moment at a
stacking-fault represents a shift towards a "wider bandwidth" at the expense of

exchange-correlation energy; relaxation should shift the system back towards a "nar-

rower bandwidth” (i.e. the relaxation should result in an expansion, along the [111]
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direction, of the solid near the stacking fault). This relaxation, if real, could be
observed by diffraction methods.

The argument presented above makes, qualitative, definite predictions for other
stacking sequences. The electronic structures of the stacking sequences shown in
figure 4.17 were calculated as a test for the analysis. [The potentials of all the pic-
tured layers were allowed to readjust (not relax) for the presence of the fault.] Both of
these structures are based on hypothetical hcp nickel. These structures have been cal-
culated only for comparison of the spin polarizations the atomic positions have been
fixed. (The hcp system is highly unstable and will spontaneously form the types of
defects shown here; hcp nickel is not a metastable state.) Each of these stacking
sequences contains a layer of atoms that do not have any neighbors, at any distance,
along the [111] and [111] directions, the layers labelled C in the figure. The previous
discussion indicates that the states on these layers should be very narrow, and that the
spin polarizations should be enhanced. These results are indeed borne out by the cal-
culations. The muffin-tin spin polarization of the layer C of the structure 4.17(a) is

0.622 pp and that of layer C of the structure 4.17(b) is 0.635 pg.

Figure 4.18 is the layer-projected MTDOS at T of the structure shown in figure
4.17(b). There is a state, localized at the defect, split off from the top of the
minority-band states that appears gbove the Fermi level. The apparent width of the
states is noticeably narrower on the singular layer C. This is physically reasonable
since there are no states in the [111] direction which can couple to the states on the

central layer (C).

Figure 4.19 is the layer-projected MTDOS at M for the same structure as in
figure 4.18. The pronounced peak above the Fermi level in the majority-spin states of
bulk hcp nickel (a smaller peak does appear at the fault) is substantially reduced on
the central layer (the peak in the minority-spin states is also markedly reduced). The
absence of the majority-spin peak, coupled with the appearance of a localized
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minority-spin state above the Fermi level at T, suggests that the spin polarization on
layer C should be noticeably enhanced. In fact, the calculated spin polarization is
enhanced by eight percent over the value calculated for Acp nickel.

The mechanism described above depends sensitively on the details of the elec-
tronic structure of nickel. For example, if the minority-spin band broadened by the
proximity of atoms in the [111] direction did not cross the Fermi level, the stacking
fault may not inﬂucncé the magnetic properties of the fault. However, the band struc-
ture of cobalt has some of the features responsible for the shifts in spin polarization
predicted in nickel. Figure 4.20 is the band structure of cobalt, taken from Papacon-
stantopoulos’ book,?® plotted along the M-L and the I-A directions of the hcp Bril-
louin zone. The band structure of the majority spin along M -L is very similar to that
of hcp nickel. The band structure of the minority spin along I'-A differs slightly from
that of nickel: there is an almost completely empty band. It is not clear how stacking
faults would affect the spin polarization in this system, but if the result of the stacking
fault is to narrow the local bandwidth of the states along the I'-A direction, and to
shift the ‘averagc energy to a higher value (these are the effects expected from the
nickel calculation), the changes in spin-polarization could be similar in absolute magni-
tude to those calculated for nickel. These changes, however, represent a small percen-

tage change, and would probably be more difficult to detect experimentally.

The decrease in spin polarization of the layers near a stacking fault implies that
stacking faults interact with magnetic domain boundaries, since the energy of these
domain boundaries depends directly on the magnitude of the spins.>® The calculations
presented here give little information about the details of this interaction, because the

anisotropy energy is not included.

E. Simple Empirical Relations

As discussed in section D, the spin polarization density of a stacking fault is most

sensitive to the distribution of atoms along the preferred [111] direction, and is not
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very sensitive to the orientation of nearest- and next-nearest-neighbor pairs. This
dependence can be described quantitatively. The spin polarization of any layer can be

fitted to an expression of the form:

where p is the spin polarization on the layer under consideration, m; is the number of
layers, i layers away, which are identical to the layer under consideration (e.g. for the
fee structure, N9 = 0 and M3 = 2 while for the Acp case, My =2 and N3 = 0). From
structural considerations 7; = 0 always. The parameters M,, a, and a4 are fitted to
the results of all calculations based on the fcc bulk structures [figures 4.5(a)-(e)] and
their values are contained in table 4.6. The results of this formula are compared with
the LKKR values in figures 4.21 and 4.22. The fit accurately reproduces the trend in
spin polarization for all the faults. The fit placcs the moment for fcc nickel at 0.610
Hg.

The energy of the stacking faults can also be modelled by a simple linear fitting

scheme. The energy of the stacking faults is fitted to the following expression

i=4
E= Z{EL"’ZE.«'Y;‘}
layers i=2

where E; takes the value Ep =0 for an octahedral layer, and Ep for a trigonal
prismatic layer; &, is the number of planes located at a distance of i planes away
which are different from what they would be in the fcc case (e.g. &; =2, &3 =2, and
&4 = 2 for the hcp lattice). The parameters Ep and the various y; are energies to be
fitted to the complete calculation. The values of the fitting parameters, calculated by
fitting to the energies of the fcc based structures in figure 4.5(a)-4.5(e) are contained in
table 4.7. Table 4.8 shows the results of the fit. The fits are reasonable approxima-

tions to the energies of the respective faults. This simple expression for the energy
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may be useful for quick, "back-of-the-envelope" thermodynamic calculations.

F. Conclusion

The electronic and magnetic properties of [111] stacking faults in nickel are cal-
culated utilizing a fully self-consistent LKKR formalism which does not require finite-
sized slabs or periodic boundary conditions. Localized states are found at all the faults
studied.

The spin polarization depends on the structure of the fault and shows roughly a
five percent change in going from fcc stacking to hcp stacking. The exact positions
of the nearest- and next-nearest neighbors is not important for deterzﬁining the spin
polarization on a site; the near spherical structure of the close-packed configuration
assures that this is the case. Rather, the spin polarization depends most strongly on the
distance to the nearest atom in the [111] direction, and decreases as this distance is

decreased.

The dependence of the spin polarization is analyzed through a comparison
between the electronic and magnetic structures of fcc nickel and (hypothetical,
unstable) hcp nickel (with the identical nearest-neighbor spacing). The difference in
spin polarization between these two structures is the result of two major effects. The
first is a broadening of the band formed of states with k along the I' to L line of the
fec Brillouin zone on transforming form the fcc to the hcp structure. This broadening
is linked to the higher density of atoms in the [0001]-direction (equivalent to the [111]
direction of the fcc system). The second effect is the loss of cubic symmetry which
results in the splitting of formerly degenerate bands. The resulting rearrangement of
the states results in the movement of a portion of the majority spin band to above the
Fermi level, while the broadened minority band moves completely below. The net
effect of this rearrangement of states is to shift electrons from d-like majority states to

d-like minority states.
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It is further argued that the spin polarization of the stacking faults can be under-
stood by analogy with the results of the fcc and hcp calculations. The presence of
neighbors in the [111] direction results in a local broadening of the density of states,
which is accompanied by a local decrease in spin polarization. Even though the
effects are small, the trends are believed to be real and will remain even after the lat-

tice is allowed to relax.

It is also suggested that the same type of phenomena might be present in cobalt
stacking faults. This system represents a significantly different physical situation
because the ground state of cobalt is the hcp structure. Nevertheless, the band struc-
ture of cobalt, as calculated by Papaconstantopoulos, shows features similar to those

which determine the spin polarization of hypothetical Acp nickel.

Since the energy of a Bloch wall depends on the magnitude of the spins, it is
likely that magnetic domain walls will couple to stacking defects. However, since the
anisotropy energy of the faults is not included, no attempt has been made to analyze
this interaction.

Finally, simple empirical formulas are developed to describe both the spin polari-
zation and the internal energy of any stacking configuration. The very simple formula
for the spin polarization gives quantitativ&y reasonable results. A similar formula
applied to the internal energy yields a reasonable fit for all structures tested. It should
provide a simple means for doing thermodynamic calculations of the concentrations of

various stacking configurations.
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H. Tables for Chapter IV

Table 4.1

Muffin-Tin Spin-Polarization (}iz)

twin int. ext. sup. ext. hyp. ext.

lay. pol. lay. pol. lay. pol. lay. pol. lay. pol.
0.614 A | 0614 A ] 0614 A | 0.614 A | 0.614

B | 0.611 B | 0.609 B | 0.610 B | 0.609 B | 0.607
0.611 C | 0.609 C | 0.607 C | 0.596 C | 0.599

A | 0.603 A | 0597 A | 0.595 A | 0.606 A | 0.608
—B | 0.614 B | 0.594 B | 0.598 C | 0.595 C | 0.600
- —A | 0582 | - —B | 0.604

—_— S
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Table 4.2

system energy (mJ/m?) | n | A(n) (mJ/m?)
hcp 101

dhcp 54

twin 105

intrinsic 176 0 34
extrinsic 161 1 49
super-extrinsic 160 2 50
hyper-extrinsic 200 3 10

]/ —— — ————+— e e —




Table 4.3

Energies and Exchange Splitting of Interface States

all energies are in Ha and are accurate to £0.001 Ha

r K

fault maj. min. split. maj. min. | split.
twin 0299 | 0.322 | 0.023 | 0.204 | 0.221 | 0.017
0.287 | 0.309 | 0.022

0.306 | 0.329 | 0.023

intrinsic 0.296 | 0.320 | 0.024 | 0.202 | 0.219 | 0.017
0.285 | 0.306 | 0.021

0.292 | 0.315 | 0.022

0.311 | 0.335 | 0.024

extrinsic 0.297 | 0.321 | 0.024 | 0.204 | 0.221 | 0.017
0.287 | 0.309 | 0.022

0.305 | 0.329 | 0.024

super-extrinsic | 0.299 | 0.322 | 0.023 | 0.204 | 0.221 | 0.017
0.287 | 0.309 | 0.022

0.306 | 0.329 | 0.023

hyper-exwrinsic | 0.299 | 0.322 | 0.023 | 0.204 | 0.221 | 0.017
| 0.287 | 0309 | 0.022
0.304 | 0.328 | 0.024

0.307 | 0.330 | 0.023
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Table 4.4

Muffin-Tin Charges (electrons)

I | fec hcp | dhep
layer A B
majority s | 0.2401 | 0.2403 | 0.2398 | 0.2405
spin p | 02369 | 0.2353 | 0.2355 | 0.2381
d | 44735 | 44601 | 4.4635 | 4.4719
minority s | 02447 | 0.2433 | 0.2442 | 0.2440
spin p | 02533 | 0.2521 | 0.2516 | 0.2549
d | 3.8387 | 3.8572 | 3.8514 | 3.8393
total s | 04848 | 04836 | 04840 | 0.4845
p | 04902 | 0.4874 | 04871 | 0.4930
83122 | 8.3173 | 83149 | 8.3112
total 9.2872 | 9.2883 | 9.2860 | 9.2887
AGpma;. | s | 0.0000 | 0.0002 | -0.0003 | 0.0004
p { 0.0000 | -0.0016 | -0.0014 | 0.0012
d | 0.0000 | -0.0134 | -0.0100 | -0.0016
AGmin. | s | 0.0000 | -0.0014 | -0.0005 | -0.0007
p | 0.0000 | -0.0012 | -0.0017 | 0.0016
0.0000 | 0.0185 | 0.0127 | 0.0006
Amy s | 0.0000 | -0.0016 | -0.0002 | -0.0011
0.0000 | 0.0004 | -0.0003 | 0.0004
d | 0.0000 § 0.0319 | 0.0227 | 0.0022
Admuffin tin 0.0000 | 0.0011 | -0.0012 | 0.0015
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Table 4.5

Muffin-Tin Charges (electrons)

© twin int. ext. sup. ext. | hyp. ext.
layer A B A C C

majority 0.2400 | 0.2340 | 0.2398 0.2400 0.2400
spin 0.2358 | 0.2358 | 0.2338 0.2352 0.2359
4.4689 | 4.4647 | 4.4595 4.4657 4.4662

minority 0.2444 | 0.2438 | 0.2440 0.2443 0.2443
spin 0.2528 | 0.2532 | 0.2522 0.2534 0.2525
3.8445 | 3.8493 | 3.8547 3.8477 3.8466

total 04844 | 04778 | 0.4838 0.4843 0.4843
0.4886 | 0.4890 | 0.4860 0.4886 0.4884

- 83134 | 83140 | 8.3142 8.3134 8.3128

~ total 9.2864 | 9.2808 | .9.2840 9.2863 9.2855
AGaj. 1 -0.0001 | -0.0061 | -0.0003 | -0.0001 -0.0001
-0.0011 ; -0.0011 | -0.0031 | -0.0017 | -0.0010

-0.0046 | -0.0088 | -0.0140 | -0.0078 | -0.0073

AGpin. 1 -0.0003 | -0.0009 | -0.0007 | -0.0004 | -0.0004
-0.0005 | -0.0001 | -0.0011 0.0001 -0.0008

0.0058 | 0.0106 | 0.0160 0.0090 0.0079

Amy -0.0002 | 0.0052 | -0.0004 | -0.0003 | -0.0003
0.0006 | 0.0010 | 0.0020 0.0018 0.0002

0.0104 | 0.0194 | 0.0300 0.0168 0.0152

AGmuf fin tin -0.0008 | -0.0064 | -0.0032 | -0.0009 | -0.0017
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Table 4.6
spin polarization Fitting Parameters
based on the fcc structures (in pp)
M, | 0604
o, -0.010
o3 0.003
i
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Table 4.7

Energy Fitting Parameters

(mJ/m?)
Ep 55
Y2 9
s -9
Ya 11
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Table 4.8
system LKKR energy (mJ/m?) | fitted energy (mJ/m?) ‘
twin 105 101
intrinsic 176 180
extrinsic 161 180
super-extrinsic 160 158
hyper-extrinsic 200 202

L ———
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L Figures for Chapter IV

Figure 4.1 A schematic diagram depicting the embedding procedure used in cal-
culating the electronic structure of stacking faults. The lines
represent planes of atoms. The light grey areas represent the bulk,
which extends to infinity both above and below the stacking fault.
The dark grey area is the region of space containing the stacking
defect in which the potentials are allowed to readjust. This region is
restricted by the boundary condition that it have the structure of the
bulk at the light-grey dark-grey interface. Although this restriction
represents an approximation, the approximation can be made as

accurate as one would like by merely allowing the dark region to

grow.
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Figure 4.2 The muffin-tin density of states (MTDOS) for bulk nickel for both
minority and majority states. The dashed vertical line represents the

Fermi energy.
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Figure 4.3
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The muffin-tin density of states (MTDOS) for hypothetical unszable
hcp nickel. The dashed vertical line represents the Fermi energy.
There are several differences between this MTDOS and that of
figure 4.2. There is a significant rearrangement of the state near 0.3
Hartrees and the peak nearest the Fermi level is broadened in the

hcp structure.
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Figure 4.4
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A diagram depicting the sites A, B, and C for the stacking notation.
In this figure, the grey circles are sites labelled A. They form the
simple triangular lattice of the {111} planes of the fcc structure.
When stacking another plane on this one (in the close-packed
configuration) there are two possible sites, represented by the grey
squares labelled B and the white triangles labelled C. The layers
can be stacked in any random order as long as they satisfy the con-
straint that no layer is stacked immediately above a layer of its own
type. The fcc lattice is created by stacking the layers ABCABC..,,
and the hcp lattice is created by stacking the layers ABABAB....
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Figure 4.5
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The stacking sequences investigated in this paper. The "..." in (a)-
(e) indicates that the fcc stacking sequence continues to infinity.
The ".." for (f) indicates that the- stacking sequence shown is
repeated to infinity. The structure in (a) is referred to as a twin
boundary fault; (b) an intrinsic fault; (¢) an extrinsic fault; and for
lack of established names, (d) a super-extrinsic fault, and (e) a
hyper-extrinsic fault. The structure (f) is the double-hexagonal-
close-packed (dhcp) structure. For the stacking faults, the number
of layers on which the potentials were allowed two relax is the

number of layers pictured less two.
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Figure 4.6
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(a) The two-dimensional Brillouin zone used for the calculation. (b)
The projection points of the three-dimensional fcc Brillouin zone
onto the two-dimensional zone used in the calculations. The points
are labelled by their corresponding three-dimensional labels. The I
and L points of the three-dimensional zone project onto the center of
the two-dimensional zone. The remaining L -points and the X -points

project onto M. The K -points project onto the nonsymmetry points

indicated in the figure.
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Figure 4.7
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The projection of the three-dimensional band structure of fcc nickel
onto the two-dimensional Brillouin zone of figure 4.6. The shaded
regions are these for which three-dimensional band states exist, the
white regions represent gaps in the spectrum. It is in the white
regions that one looks for localized states. From the figure it is
clear that there is a possibility of finding states localized in teh
vicinities of X and T, but not about M. The projected band struc-
tures for both spins are similar, suggesting that in an approximate

sense, the magnetism can be thought of in terms of a Stoner shift.
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Figure 4.8
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The k-resolved layer projected MTDOS for the I'-point of the twin
boundary fault (in arbitrary units). The solid lines are the majority-
spin states and the dashed lines are the minority-spin states. The
layers are labelled as in figure 4.5. The dotted vertical line
represents the Fermi level of fcc nickel. There is a resonant state, in
bothe spin polarizations, which splits off from the upper d-band (the

majority-spin localized states are indicated by the arrows). The

energies of the resonances are given in table 4.3.
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Figure 4.9
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The k-resolved layer projected MTDOS for the M -point of the twin
boundary fault (in arbitrary units). The solid lines are the majority-
spin states and the dashed lines are the minority-spin states. The
layers are labelled as in figure 4.5. The dotted vertical line
represents the Fermi level of fcc nickel. There are three localized
states for each spin polarization (the majority-spin localized states
are indicated by arrows). The energies of the states are given in

table 4.3.
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Figure 4.10
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The k-resolved layer projected MTDOS for the T-point of the extrin-
sic fault (in arbitrary units). The solid lines are the majority-spin
states and the dashed lines are the minority-spin states. The layers -
are labelled as in figure 4.5. The dotted vertical line represents the
Fermi level of fcc nickel. There are resonant states in both spin
polarizations which split off from the upper d-band and (the
majority-spin localized states are indicated by arrows). The energies
of the resonances are given in table 4.3. There is also a noticeable
shift of minority-spin states from above the Fermi level to below,
thus contributing to the decrease in spin polarization of the central

layer (lowest panel) of this fault.
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Figure 4.11
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The k-resolved layer projected MTDOS for the K-point of the
extrinsic fault (in arbitrary units). The layers are labelled as in
figure 4.5. The solid lines are the majority-spin states and the
dashed lines are the minority-spin states. The dotted vertical line
represents the Fermi level of fcc nickel. There aré three localized
states present in each spin polarization (the majority-spin states are
indicated by arrows). The energies of the states are given in table

4.3.
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Figure 4.12
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The k-resolved layer projected MTDOS for the K-point of the
hyper-extrinsic fault (in arbitrary units). The solid lines are the
majority-spin states and the dashed lines are the minority-spin states.
The layers are labelled as in figure 4.5. The dotted vertical line
represents the Fermi level of fcc nickel. There are four localized
states for each spin polarization (the majority-spin localized states
are indicated by arrows). The energies of the states are given in
table 4.3. The strongly localized states at lower energies do not mix
with their counterparts on the other P-layer of the fault. In contrast,
the two localized states at higher energy result from the mixing
between localized states centered on different P-layers. This mixing
results in a symmetric state and an antisymmetric peak. The spectral
strength of the peak from the antisymmetric state goes to zero on the

central layer of the fault.
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Figure 4.13
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A comparison of the k-resolved MTDOS for the fcc and hcp struc-
tures (in arbitrary units). The dashed lines are the fcc results, and
the solid lines are the result for the hAcp structure. The upper panel
in each frame is the minority-spin, the lower the majority-spin.
There are two features of the T-point MTDOS pictured in panel (a)
which are relevant to the the current arguments. First, the minority
spin peak at highest energy lies above the Fermi level in the fcc
case, and lies below it in the Acp result. The second feature is that
the bandwidth of the states nearest the Fermi level is broadened in
the hcp structure relatve to its width in the fcc system. The
MTDOS at M [panel (b)] also display important differences. The
most obvious is the presence of a peak in the majority-spin states of
bulk hcp nickel which lies completely above the Fermi level, and is
not present in the fcc MTDOS. Also, a gap in the majority-spin
MTDOS has opened at the Fermi level. It is also clear from this
panel that the hcp system is no longer adequately described by a
simple Stoner shift. The majority-spin peak above the Fermi level at
M and the minority spin states at I which move below the Fermi

level contribute to the decrease in spin polarization.
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Figure 4.14
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The band structure of fcc nickel plotted along a line parallel to the
[111] direction passing through M. The majority-spin bands are the
solid line and the minority-spin bands are given by the dashed line.
The line along which this band structure is calculated passes through
the X -point and the L -point of the three-dimensional Brillouin zone.
The source of the minority-spin hole-pocket at X is clearly visible.
(The second, experimentally unobserved, hole-pocket at X is also
present.) There is a minority-spin d-like band which lies almost
completely above the Fermi level, and a majority-spin s-like band

which crosses the Fermi level.
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Figure 4.15
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A plot of the band structure of hypothetical hcp nickel along the
line L-M-L, which is the direction equivalent to that plotted in
figure 4.14. The solid lines are the majority-spin bands, and the
dashed lines are the minority-spin bands. The states responsible for
the peak in MTDOS of the majority spin are clearly visible. There
is one majority-spin band which lies completely above the Fermi

level (in the pictured range of reciprocal space).
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Figure 4.16
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The k-resolved MTDOS for the M-point of the extrinsic fault,
labelled as in figure 4.5. The solid lines represent the majority-spin
states and the dashed lines represent the minority-spin states. The
dotted vertical line is the Fermi level. The most interesting feature
of this plot is the "bump" in the majority-spin MTDOS which
appears above the Fermi level on the layer in which the spin polari-

zation is most reduced (i.e. the central layer of the fault).
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Figure 4.17
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The stacking sequences for the stacking faults based on hypothetical
unstable hcp nickel. (These defects would form spontaneously.) The
potentials on all of the layers pictured were allowed to relax. The
interesting feature of these structures is that they both contain layers
(labelled C) which do not have neighbors at any distance along the
[111] direction. This isolation should lead to a narrowing in the
widths of the states on layers C, as well as an increase in spin polar-

ization. which is the calculated resuit.
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Figure 4.18
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The k-resolved layer projected MTDOS for the stacking sequence
pictured in figure 4.17(b) plotted at . The solid lines represent the
majority-spin states and the dashed lines represent the minority-spin
states. The dotted vertical line is the Fermi level of hcp nickel.
The most striking feature of this plot is the minority-spin localized
state which splits off from the top of the d-like band and moves
above the Fermi level. In addition, the apparent widths of the states
is significantly decreased on the isolated layer. This is consistent
with the expected behavior; the muffin-tin spin polarization on the
central layer is increased by eight percent over the bulk Acp value of
0.583 ug to 0.635 Hp.
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Figure 4.19
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The k-resolved layer projected MTDOS for the stacking sequence
pictured in figure 4.17(b) plotted at M. The solid lines represent the
majority-spin states and the dashed lines represent the minority-spin
states. The dotted vertical line is the Fermi level of Acp nickel.
The most striking feature of this plot is that the majority-spin peak
above the Fermi level completely disappears on the central layer of

the stacking defect.
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Figure 4.20
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The band structure of cobalt taken from Papaconstantopolous’ book,
plotted along three directions. While the exact details of the
changes in spin polarization of nickel reported here depend on the
specific properties of the band structure of nickel, there is reason to
believe that similar effects will occur in cobalt. The band structure
along I to A of cobalt is very similar to that of nickel plotted along
I" to L, except that the Fermi level crosses near the bottom of the
minority-spin band in cobalt, not the top as in nickel. The band
structure of cobalt plotted along the M to L direction is very simi-
lar to that of hcp nickel plotted along this same direction. It is not
clear how stacking faults will affect the spin polarization of this sys-
tem, but if the result of a fault is narrow the local "bandwidth" of
states along the I" to A "direction and to shift the average energy of
the states up, which are the effects observed in the nickel calcula-
tion, the change in spin polarization could be similar m magnitude to
that calculated for nickel. This change, however, would most likely
represent a small percentage changé in spin polarization and would

be difficult to detect experimentally.
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Figure 4.21
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A comparison of the spin polarizations calculated with the simple
fitting procedure outlined in the text and the LKKR values. The
lines are guides for the eye. The fitting parameters are those in table
4.6. The plot labelled (a) is for the twin boundary fault, (b) is for
the intrinsic fault, and (c) is for the extrinsic fault. The abcissae are
labelled as in figure 4.5. In all cases the trends in spin polarization
are adequately predicted by this simple fitting method.
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Figure 4.22
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A comparison of the spin polarizations calculated with the simple
fitting procedure outlined in the text and the LKKR values. The
lines are guides for the eye. The fitting parameters are those of
table 4.6. The plot labelled (e) is for the super-extrinsic fault and (f)
is for the hyper-extrinsic fault. The abcissae are labelled as in figure
4.5. In all cases the trends in spin polarization are adequately

predicted by this simple fitting method.
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