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ABSTRACT

The basic sets of MHD equations for the description of a plasma in
various limits are derived and their usefulness and limits of validity are
discussed. These limits are: the one fluid collisional plasma, the two
fluid collisional plasma, the Chew-Goldberger Low formulation of the guiding
center limit of a collisionless plasma and the double-adiabatic limit.
Conservation relations are derived from these sets and the mathematics of
the concept of flux freezing is given. An example is given illustrating

the differences between guiding center theory and double adiabatic theory.
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1. MODES OF DESCRIPTION OF A PLASMA

A plasma is a collection of charged particles, ' These
charged particles denerate electromagnetic fields through their
elementary charges and currents. In order to evaluate these
fields it would be necessary to know the position and velocity of
every particle at all times, The motions of tne charges
themselves must be followed in the fields they generate and those
externally imposed. This program 1is beyond what 1is possible
except in the simplest pessible situations.

Fortunately there 1is a cruder description of the plasma
that is often sufficiently accurate to give gross behavior to the
extent desired.

Instead of specifying the plasma in terms ef each of its
particles one can pursue a more macroscopic description of the
plasma in which the emphasis is on its fluid nature. Depending
on circumstances that we discuss below this fluid description may
be a one fluid, a two fluid, or a many fluid approach.

Let us first consider the one fluid approach. We know that
every cubic centimeter of plasma must contain a definite number
p grams of plasma. The rate of change of this density is
controlled by mass flow U out of the walls of this cubic
centimeter. The momentum pﬁ in any cubic centimeter is itself
controlled by the forces acting on it. These are normally
" electrical, magnetic, and gravitational forces acting on its
volume, and pressure forces acting on its walls. Because the

plasma is a conducting fluid its current can be found from Ohm's
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law in some form, while the direct electrical forces are usually
small. The current can be used to find the magnetic field by the
Biot-Savert law and the changing magnetic field gives the induced
part of the electric field, while the remainder, the
electrostatic part, follews from the condition that the current
driven by the electric field be divergence free. The
determination of the pressure forces is often the weakest part of
this one fluid description since the pressure is not usually a
scalar, particularly if the plasma is collisionless. In addition
the heat flow is often quite large., (Microscopically, particles
together in a small cube remain together for only a short time,)
However, many plasma phenomena of interest do not depend on the
pressure in any essential way so that even an inappropriate
treatment by an assumed equation of state for a scalar pressure
can give a reasonable description of the phenomena in its grosser
aspects. (The more basic properties of the plasma are governed
by its electrical nature.)

For a more detailed description of plasmas in which
interest is centered on plasma temperatures and enerqgy densities,
the two-fluid description is more appropriate. In this
description the electron and ion fluids are treated separately.
Although the mean velocities are nearly equal the electron and
ion temperatures are often quite different due to the weak energy
exchange rates between ions and electrons. The two fluid
approach 1is also appropriate for a weakly ionized plasma. Here
the ion cyclotron frequency may be 1less than the ion neutral

frequency, while the electron cyclotron frequency is greater than
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the electron neutral collision frequency. The resulting electron
and ion flows can be quite different under these circumstances.

Finally, when the plasma is nearly collisionless but the
pressure terms play a central role, an even more detailed, but
still appreximate, description becomes appropriate, the guiding
center descriptioin. In this description the magnetic field is
strong enough that the plasma is still hydromagnetic in a
direction perpendicular to the magnetic field, since the gyration
frequency is large for both species, Howe¢/er, the particle flows
along the lines need not be fluid-like, so it is necessary to
keep track of the distribution of velocities parallel to the line
by a one-dimensional kinetic equation. Even in this case the
description may be simplified to a fluid description that
preserves the independent plasma behavior along and across the
lines. Two equations of state for the two independent components
of the pressure tensor are needed, and this is supplied by the
Chew-Goldberger-Low or double adiabatic equations.

In summary, although any real plasma is extremely
complicated, some of its main properties may often be captured by
simple macroscopic sets of equations. These can only describe
the slower more macroscopic properties of a plasma that occur on
long enocugh time and space scales that microscopic processes such
as collision and gyrations can establish sufficient consistency

in the plasma to enable it to be considered as a coherent fluid,
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2. COLLISIONAL PLASMA

As described in the introduction, the fluid picture of a
plasma is most appropriate when the plasma is at least somewhat
collisional. Then the electrons and ions separately relax to a
local thermodynamic equilibria on a time shert compared to that
on which substantial changes in plasma condition occur, and in
regions sma.l compared to the size of the plasma. Thus, we may
assign a density p, mean velocity E, and scalar pressure p to
each of the plasma components.

In the simplest description of the one fluid plasma we may
ignere the differences in the electron and ion properties and

simply lump them together., We consider this description first.

2.1 One fluigd description

On this ievel the plasma is in many ways 1like a highly
conducting molten metal. The fluid equations describing its

density, velocity an3d pressure are

L0l =0, (1)
20 > o + * -

pap +pUVU =73 xB~-Vp+opog , (2)

d (pl -

dt [py] =0 . (3)
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Equation (1) is the equation o¢f continuity. Equation (2) is
Euvler's equation for fluid motion, The left hand side represents
the mass of a cubic centimeter of material times its acceleration
at any instant. The acceleration is produced by the magnetic and
gravitational forces acting on the same cubic centimeter and the
surface force term represented by the pressure gradients, B is
the magnetic field, § the plasma current, and E a fixed
gravitational field. The pressure is the sum of the separate
partial pressures of the ions and electrons whose gradients are
assumed to act together on the plasma rather than on each species
separately.

In the third equation d/dt = (3/3t) + g-v is the
convective derivation and vy is the ratic of specific heats of the
plasma. This last equation is the equation of state for each
separate fluid element following the motion. It 1S only valid
under —conditions where the heat flow 1is small. Note p/pY is
related to the entropy per unit mass of a fluid element. If more
general conditions prevail, e.q., ionization, radiation pressure,
etc., are Iimportant, then Eqg. (3) should be replaced by the
condition of constant entropy following each £luid element.
However, in most cases where the one fluid theory is employed the
simple power law assumption is generally adequate. MNote further
that various limiting cases arise by taking y = 1, isothermal, or
Y = = incompressible. It can be easily worded as “p/DY is a
" constant following the motion, but in general is different for

different fluid elements.”

g
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It should be noted that we have dropped the electrical
force DEE, where Pgp is the electrical charge and E the electric
field, in £&q. (2). This is because, as will soon appear, these
forces are relativistically small compared to magnetic forces and
must be neglected for consistency, since our theory is
nonrelativistic.

We see that knowing B and E, Eqs. (1) - (3) form a
complete set giving the forward time eveolution of the fluid
quantities p, 3 and p. The velocity ﬁ nee.ed in Eq. (1) te
advance p in time is determined by Eq. (2). The pressure
needed in Bq. (2), to advance 4, is given by Eq. (3), etc.

The electromagnetic fields are controlled by Maxwell's

eqguations

a3y, (4)
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(6)

VB = 41rpE P (7N

where ¢ is the speed cf light. We have dropped the displacement

current in Eq. (4) since, as will appear, its effects are also
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relativistically small. Further, we have no need for Eq, (7)
since the charge density Pp appears nowhere else in the
equations.

The electraomagnetic and fluid equations are coupled by

ohm's law, which 1in its simplest form can be written (Spitzer

1962)
+ TUx3 =
E + L (8)
C
where n is the plasma resistivity. The combination
-+ -+ g gl . . . . -
E' = E + U x B/c 1is the electric field seen by the plasma in its

maving frame ﬁ. and Eq. ¢(8) states that in this €frame § is
parallel to and proportional to E'

Equation (8) 1is not strictly accurate for a plasma.
Because of the anisotropy of the £field there will be Hall
currents flowing perpendicular to E and B that may actually be
larger than that predicted by Eq. (8). However, the current in
Eq. (8) 1is parallel to E' and represents dissipation of energy
whereas the Hall currents do not. Thus the secular effects
produced by this term are generally more significant than those
due to the Hall terms. It is customary in the simplest form of
the one fluid MHD equations to employ Ohm's law in the form Eq.
(8.

Equations (4), (5), and (8) represent three vecgtor
equations for the three vectors g, E} and f. They may be
combined into two equations by solving Eqg. {8) for B and

>
substituting from (4) to eliminate j. We get
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>
3B _ > 2 c > 9
3% = V x (U x B) = v x (nV x B) , (9)

=vx (Gx B o+ % (9a)
The first term on the right gives the change in magnetic field
produced by convection of lines of force by the plasma. The
second term gives the magnetic diffusion term, which tends teo
smooth out irregularities in the plasma perhaps induced by the
first term. If there were no plasma motions, the diffuse term
would smooth out any irregularities, in a characteristic time of
order 4nL2/nc where L is the irreqularity size. (This is
essentially the "L/R time" for a plasma considered as a lumped
circuit.) This decay time is of order 10-773/2L2 sec where T is
the temperature of the plasma in electron volts. For high
temperatures or large plasmas this time may be very long. The
changes in g produced by the convective term often occur on a
time so short compared to this diffusive term that the magnetic
diffusion can be ignored altogether. That is we may replace Eq.

(9a) by the "infinite conductivity" equation

s
rf‘ltﬂ+

=V x (O xB) . (10)

The subset of the above Egs. (1), (2), (3), (4), and {10)
constitute the so-called ideal MHD equations. They are clearly

an approximation to the true plasma equations, but they have so
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many nice properties that they are the preferred set for
describing macroscopic plasma phenomena. Eq. (10) gives the
evolution of B as a result of plasma motions. Then making use of
Eq. {4) we can determine 3, and thus 3 x B to determine the
evolution of the fluid quantities under the action of the
electromagnetic forces.

We no longer need the electric field E in this description
but it may be obtained from the infinite conductivity 1limit of

Ohm's law

w14
+
(=42
X
1l
[=]

(11)

9}

Then the electric force on the plasma DEE can be estimated from
Eq. {(7) to be

- -+
EV'E _ _U% .2
am 41rLc2 !

oyt =
and it is seen, as mentioned earlier, that it is relativistically
small compared to the magnetic force ; X E s B2/47L., In the same
way we may show that inclusion of the displacement current
(l/c)(aEYBt has & relativistically small effect on the
equations. Adding it to Egq. (4) will alter 3 by the small
amount 65 and this will produce an additional contribution to the

electromagnetic force term in Eq. (2)

65 x B =

- -+ - 2
1 9B, 3 __ 3 (UxB) , 3 _ U8
4mc 3t ot 4wc2 4ntc2

where t is a macroscopic time. Comparing this witk the inertia

term on the left we see that it is smaller by B2/4vp ¢2. 1In
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fact,the addition c¢f this term can bhe thought of as adding the
"mass" of the magnetic field to the mass of the plasma.

The ideal equations of MHD are best thought of as exactly
describing an ideal infinitely conducting fluid with an adiabatic
equation of state whose properties are sufficiently close to a
plasma to be of interest, rather than an appropriate system of
equations for a real plasma. For he moment imagine that we have
such an ideal infinitely conducting fluid to study. It is
immersed in seome magnetic field. Then by the condition of flux
freezing the evolution of the field may be expressed in terms of
the distribution of magnetic lines of force bodily transmitted by
the velocity U. This means the field only depends on the net
displacement of each element of the fluid and not on the history
of the fluid displacements. The 5 x B force can readily be
thought of as the magnetic tension and pressure contained in
these lines of force. Similarly, p is given purely by the
displacement of the luid elements and further the pressure is
alse thus determined. This means that at least in principle the
force on a fluid element is determined holonomically by its
displacement and the displacement of its neighbors. It 1is this
fact, plus the fact that the system is dynamical (given by a
Lagrangian) that leads to the many very sacisfying properties of
this ideal system. In fact a considerable amount of macroscopic
plasma physics is devoted to determining to what extent a real
plasma can differ from its ideal counterpart. Some of these
questions, magnetic reconnectien for example, are among the most

important of modern day research problems (Petschek 1964).
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2.2 The two fluid description

An alternative and more precise treatment of a fully
ionized plasma is contained in the two~fluid description, The
two fluids are the electrons and ions, If there is a single
species of ions, we can assign a density, velocity and pressure
to the electrons and to the ions. Then the three equations for a
single fluid, Eqs. (1) - (3), rust be replaced by six equations,
three for each fluid, describing the six indepandent quantities
PyrPes Giv Ge, i, Pe. Now the cne fluid equations were written
down on phenomonclogical grounds and were not extremely accurate
except in the limit oo T VEry small where w,, s the electron
cyclotron frequency and T, the electron collision frequency. On
the other hand censiderable work has been devoted to deriving a
set of equations accurate for any collision rate faster than the
dynamic rates of change of Pi- B etc, The generally accepted set
of eyuatiens are those of Braginski (1965), that are now taken as
standard. We give them here for reference.

The two continuity egquations are

e e ) = 0 (12)
r t vV ngy) = ’ ’
-a-ll‘?-+v-(ni‘i)=o (13)
ot e e !

where n; and ng are the electron and ion particle densities.
Tiiese equations are 1linked by the charge neutrality condition,

Zn; = ng, where Z is the ion charge number.
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The two vector equations of motion are

.- - % -
aui+ﬁ 0. = ~Vp, - Vern, + Z E+Ui ° 14) -
ST FRRLET s 1 Ly *+Zeny ¢ ’ (11)
R, + 0.9
T el pi9
> > >
U f U x B
—C 4G .v0 | = - - Veq - & e
pe[ st + Ug VUe Vpe v T, n e + S R (15)
R. +pg
+ el P8 )

In these equations pj and pe are the ion and electron scalar
pressures, 1; and L, are the nonscalar parts of the stress
-+
tensors, Ryj is the rate of transfer cf momentum from ions to
electrons by collisions. They in turn are linked by the equation
s s + - - .

defining the current 3Jj = (Znje/c) (0; - Ug), where e 1is the
electronic charge. We assume that Zn; is much closer to ng than
-+ - -+

U; is to U,. Becauses, j cannot be too 1large without producing

- +

electromagnetic effects we can say that U; and U, are also close

together.

Th. two energy equations are:

(3T
3 i pa.od - _ -+ -
Z Mij5e T UytVTy| t RVt = oVegy - omgsVO; 40y (16)
3.4 ’339 + 0 ovT + Vel = -Peg - 90 + 17)
2 el 9t Pe e ~ 9e Te:V0e Qe - (
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where the temperatures are defined by pPj = niT;, Ppe = neTe and
the units of T ar® chosen to maxe Beltzman's constant unity, The
second term on the left of each equation is the p dV work done by
. - - -+ >
compression. dq; and ge are the heat flows, Lj:YU; and Lu.:VUe are
the frictional heating terms due te nonunifcrm velocities while

Q; and Q¢ represent energy exchange between the species and joule

heating.
Equations (14) - (17) become more accurate as the collisicon
time T gces to zero, They consist of "fluid"™ terms and

dissipative terms and the latter are smaller than the former
roughly by T/t. Thus, if T were zero, collisions would be
sufficient to maintain an isotropic velocity distribution in the
frame moving with the £fluid and the 7 terms would be small.
However, because 6 is inhomogeneous, an isotyopic distribution at
one point does not match the isotropic distribution a mean free
path away, and a certain mixing of these distributions leads to
anisotrepy of the distribution and to of. diagenal terms in the
stress tensor. The other dissipative term ﬁei is produced by
unlike particle collisions and is the friction force between
electrons and ions. Since the difference between the electron
and ion velocities is the current, this friction.includes the
resistivity as well as thermoelectric effects. In most cases in
practice U; is close to U, and can be identified with the mass
flow of the plasma. If Eq. (14) is added to Eq. (15), the
" electron ion friction force cancels out and the electron inertial
term and gravitational terms are negligible. Thus, except for

the viscosgity terms T; and n,, we recover the one fluid
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equation of motion, Eq. (2). On the other hand, if we express

- - > .
Ug in terms of U; and j by solving

> > i
= niZe(Ui -uy) , (18)

+
J e

we obtain a form of Ohm's law usually denoted as the generalized

Obw's law (Spitzer 1962)

el

+ = . (19)

=4
[1
=]
0
=]
1]

Equations (12) - (17) are the equations describing the
electron and 1ion fluids separately. To complete them, we must
add Maxwell's equations from Section 2.1, Egs. (4) - (6), where 3
is defined by Eq. (18). Again, we may consistently neglect the
displacement current term in Eq. (4) and take 2Zn; = n, so Eq.
(13) is not needed. (This is the case for 1low freguency
phenocmenon. Although it is the case that the two fluid equations
may be used to derive some high frequency wave phenomena provided
thermal effects are small, these derivations are not really
sound.) We also need the expressions for the various dissipation
terms. These are given in Braginski's article (1965). Let the

ion and electron collision times be defined as

3/, /2
T = (20a)
¢ A log A e4zzni !
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vm. T
e

Ty = —— = . (20b)
4721 log A e Zn

where log A is the Coulomb :ogarithm and m;,e the particle

masses. Let us further limit ourselves to the case Z = 1 and to

the limit w., Tg >> 1, where s indicates the particle species, i

or e. Then from Braginski's article we have

_ 0.+ > o> 1 -+ _
Ig = ng(b-VU b - 3 V.U (I, 2bb)
1l > > = 1 5
+ ng(bevU b + 3 V0 I,
1 Y > .1 _ 8P 1
+ (ns;1 ngbb) *VU_*I, + I1,-VUg (ngI, - n,ybb) (21)
e -+ 3 4> 4+ > 5
+ (kX VUS)%nsgi-nsbb) - (nsgl - nsbb)db x VUS)
3
ns &+ > >
+ TT'V‘Us(b X ;1 - ;; x b) ’
where
I, = I - bb nY = 0.96 n.T,T, n® = 0.73 nr1 <
1+ -2 ’ '3 - itiif e * ee e !
1 _ 2 e _ 2 2 _ 1 22
ny = 0.3 niTi/wCiti )Ny = 0.51 neTe/wceIe P Ng = QDS ’ (22)

= : = - / =
n; 0.5 nyT /0 T +» 1 0.5 n T /w. ng = 2ng .
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N
For R;, we have

>
+ > j n -
R,_ = b, 2 1 nbevr -3 —C  (Bx V), (23
Rie eng E¥ a, 0.7 Na e 2 ®.aTe el )
where o, = ez“eTe/me- o, = 1.96 o,, and the last two terms of Eq.
(23) represent thermal forces.
The heat flow terms Es are given by
a. = Bev vT 5% s ¢k yr
dg = “KRgy BrVTg - K ,1, 3 ™
cs s
3 (24)
n T
-+ > 3 e -> > -
+ (0.71 n T (0, - T + 3 Bx (@ Ue))Ges ,
ce e
where
Ko = 3.16 n T, e/me . Ki||= 3.9 niTiTi/mi ’
5 5 (25)
Ke* = 4.66 neTe/me oo Te * Ki* = 2niTi/mimeiTi ,

and the factor multiplying the bracket indicates that this term
(the thermoelectric term) is present only for Ee,

The internal heating terms Q are given by

> -> >
Qg = "Rg3*(U; = U) -0, (26)

where the first term is the joule heating term and the second
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Q. =0, =3 —— (T -T.) ’ (27)
1 A mi Te e 1
the energy exchange term.
Equations (12) - (17) are a complete set of equations for
PR nat >
the plasma quantities n; = ng, Uj, Ue, pi, and pPes all the

quantities on the right being defined in terms of them. They
allow a much richer set of plasma phenomena to be described than
the one fluid equations, particularly in the allowance for
different electron and temperatures a.d the inclusien of non
ideal effects such as thermal conductivity, viscosity and
resistivity and thermoelectric effects, Thus, they are mere
useful for describing 1long term phenomena in which nonideal
effects play a significant role. It is possible to include such
nonideal terms in the one fluid equation. However, because ions
and electrons transpert play different roles and because the
temperature sensitivity of these is important, the modified c¢ne
fluid approach 1is wusually highly inaccurate and misleading.
Thus, one could pessibly distinguish between the usefulness of
the one fluid and two fluid approaches as follows. The one fluid
approach is preferable for short time hydrodynamic effects in
which nonideal effects play a minor role. [Its great advantage is
that its equations are considerably simpler to handle than the
two fluid approeach. Finally, it can be used in longer time
problems to get an idea of at least some of the plasma behavior.
The two fluid equations are more accurate and necessary for
any precision in the discussion of phenomena where plasma

transport or dissipation is involved. They are toe complex to
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solve, however, for any problems except those with simple
geometries. They, of course, can be used to form a good idea as

to the accuracy of calculations based on the one fluid approach.

3. COLLISIONLESS PLASMA

In Section 2 we discussed plasmas in which the collision
time was the shortest time in the problem with the possible
exception of the gyration period. Thus, a small element of mass
of a plasma will relax quickly to a Maxwellian before it can
change its oroperties, and a local description in terms of the
parameters characterizing this Maxwellian is appropriate. This
consistency justifies a fluid description. But in many important
plasmas the collision time is so long that one should ignore
collisions. It would appear that for such ™"collisionless”
plasmas a fluid theory is not appropriate, However, even for
weak magnetic fields, the cyclotron period is still shorter than
any macroscopic period, and the plasma daes have a
two~dimensional consistency perpendicular to the magnetic field.
This restores the possibility of a fluid theory to a limited
extent and is the basis for the guiding center description of a

plasma.

3.1 The guiding center limit of the Vlasov equation

A collisionless plasma is completely described by giving its

s the

=g

velpcity distribution functions fg [fg(t, T, v)d3rd3x

n4

number of particles in an element d3rd3v at position and
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velocity v at time tJ. Its time behavior is governed by the

Vlasov equatiown

s L 2 ®s (» , v_x B
3 + veVE + o (E + c )'v+fs =0 (28)
S ! v

where E(?, t) and ﬁ(?, t) are the mean electric and magnetic

fields produced by the smoothed out plasma distributions £

T x B =4 e | £33 g3, 4 LoE 29
= m X '? “ SV d v + E SE ' { a)
S
VE=ar ] e J £, v, (29b)
3B >
3 = "V xE (29¢c)
v-B=0 . (294)

These egquations are more complicated than the fluid eguations
because they inveolve seven independent variables t, ;, v rather
than four, ¢, ?. However, by an asymptotic expansion in the
smallness of the gyration radiation p = mcv/eB compared to the
scale size of the plasma the effective number of variables in the
kinetic equation can be reduced by two, because the gyration

phase variable is irrelevant and the scalar perpendicular
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velocity is controlled by a constant of the motien, the adiabatic
invariant (Chew, Goldberger, and Low 1955; Kulsrud 1962).

Further, we know that to lowest order, the motion of the
particles consists of an E % g velocity perpendicular to the’
magnetic field common to all particles, regardless of their
peculiar velocities or species, and a parallel motion aleng the
field. If the parallel electric field E, = b-E, where b = B/B,

I
is small [cf., the discussion after Eg. (34)}, it is well known

that the magnetic lines of force can be assigned the same E X g
velocity perpendicular to themselves (Newcomb 1958). Thus, all
particles will stay on the same line and it should be possible to
concentrate our attention on a single line and derive a kinetic
equation inveolving only two particle variables, position along
the line and parallel velocity.

To derivz the equations for this reduced system we mway
carry out a formal expansion in the quantity m/e (Kruskal 196&0).
(If we regard macroscopic lengths and times to be fixed, then the
small gyration radius 1limit is reached by taking a sequence of
fictitious charged particles with different atomic properties m/e
appreoaching zero. In this 1imagined series of experiments one
expects results to be near their asymptotic value when the true
values of m/e are reached, if the ratio of gyration radius to
scale size is sufficiently small.) In point of fact, it turns out
to be slightly more convenient to expand all quantities E, E, £
in just the reciprocal charge, the quantity l/e (Rosenbluth and

Rostoker 1958).
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Consider first the Vlasov Eq. (28) and set f = f_ + £

where £, = 0(l/e) etc. From this point on we drop the subscript

s when no confusion results. Then to lowest order

.
(E+""B)-v £,=0 . (30)

-> -
Introduce the E x B velocity

N > >
UE=<:E ><2B ' (31)
B
and set v = ¥' + Up. Equation (28) then becomes
—r'x -+ N
VXB.g £ +E, BVE =0 . (32)
v' o 1l o

Next introduce cylindrical coordinates v,, ¢ and Vllin V' space,

by

- -+ -+
' ~ FS ~

V = xv, cos¢ + yv, sin¢ + vy, . (33)

Then Eqg. (32) becomes

af Bf
_B_9., 2.9 (34)
c 3¢ lle” "

1f Ell # 0, then Eg. (34) implies qgis constant along a helix
in velocity space extending to infinite velocities, which is

unphysical., Therefore, Eq. (30) has reasonable solutions only

if E, is expanded in 1/e also. That is E

1 O(I/E)E - (If this

no
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were not the case, the greatly more effective E‘lwould accelerate

particles on a cyclotron period time scale until El]is shorted

out to the lowest order.) The resulting greatly reduced E” can

then produce a force comparable with the other forces. ([See Eq.’
(19)}]. It is simpler not to expand E and B further, but simply

to regard E _ a5 smaller by one power of e.

Drepping the E” term in Eg. (24), we see that the lowest

order the Vlasov equation says that f, is independent of ¢ , but
gives no further informatien on its dependence on t, r v, and v
Proceeding to first order we have

=0 . (35)

+
<
3
<
h
+
1T
B
+
<
x
we
.
<]
rh
+
=11

Transforming to the cylindrical variables vy 1V, vyields

af af of
eB 1 _ o . e o
mc 3¢ ( 5t TV vfo) *oEBuav N (35)

'The terms in parenthesis are not yet so transformed but they
must be.) This transformation is somewhat conplex since at fixed
-+ - e

v, v,, and vllare dependent on r and t, because b and ﬁE are
through Eg. (31). It is easy to see that actually the
transformation of the guantities in parenthesis leads to a series
of terms that are sines and cosines in ¢. once this

transformation is accomplished it is easy to solve Eq. (36) for

£,. However, any constant term leads to an f£; linear in ¢ and

therefore not periodic with period 27, Thus, in order to have a

proper solution for £, a necessary and sufficient condition is
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that the average of the right-hand side of Eq. (36) vanish.
Imagine the right hand side transformed to v, , Vi variables and
averaged over ¢. The details of this calculation are
straightforward and the result is that Eq. (36) can be solved

for £,, if and only if

af v, 13
-2 il B9 - == (V+U_ - Bev{_+b By —2
7T + (UE + v”b)Vf0 5 (v UE b VUE b + V”V b) v,
(37)
2 2
"_DE+V—JL (v-b) + £ E )——af°~o
N BT 2 m BVII— '

> > . > -+ .

where DUp/Dt = 9JUg/dt + (Ug + bv,) VUg. This condition thus

gives the time evolution of f,. sStrictly speaking we should go
ahead and solve for f; once we are assured by Eq. (37) that this
can be done. But it will appear shortly that we do not need ]
for a lowest order description of a guiding center plasma.

To complete the system we must add the equations for E and
g, Maxwell's Egs. {29a) - (29d). They involve f so that they
also must be expanded in our small "parameter" 1/e. To lowest
order we have

e
= £ v ay, (38a)

0=41 ] e £__av . {38b)
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Equation (38b) is the charge neutrality condition which states
that to lowest order in 1/e the total charges of each species
must be equal., For a Z = 1 jon species this reduces to equality
of the species densities. (Any finite charge density is produced

by first order differences in charge density because of the
factor 1/e.) Similarly Eq. (38a) is the current neutrality
condition. If we transform the velocity integration to

cylindrical coordinates, we get for Eq. (38a)
r

s "so = s
0=47 J =220, + 47 J = J £v, 2mvy dv, dv,
and the first term vanishes by virtue of Eq. (38b) so we have

e
= 3 .7 = _s 3
0= 7 3 b D { £y, v . (39)

[Equations (38b) and (39) are related by the continuity equation

derivable from Eq. (37) or even from Egq. (28)],

an n_ (G _-B)
_ii__) (40)

z ey (__3%-‘- Bev 5
so that if Eg.' (39) is satisfied at some initial time t, and Eq.
(38b) is satisfied (and the other guiding center equations are
satisfied), then Eq. (39) will be satisfied for all t.
Alternatively, if the charge neutrality condition 1is satisfied
and Egq. (39) is satisfied at one point on each line at every

time it will be satisfied everywhere,
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Equations (38b) and (39) are extra conditiens imposed on fo
and do not serve to advance E and B in time. These conditions
are essentially thought to be a control on the magnitude of Bj] '
which 1is wusually chosen to ensure that they are satisfied. To
complete our equations we must include Egs. (29c) and (29d) and

proceed to one higher order in the expansion of Egs. (29a) and

{29b). Thus, Egqs. (2%a} and (29b) beccme

e ->
3 = _s > 1 3E
VxB=dr ] — J vE AV 4 S (41a)

V-E = dr [ e I £ av . (41b)

It would appear that it is necessary to evaluate f; from Eq.
(36) after all. However, full information en the dependence of
£, is not needed. Transformation of Eq. {4la) to cylindrical
coordinates shows we only need J £, d¢, I £, sin¢ d¢, and

J flcos¢ d}. These may be obtained by multiplying Eg. (36) by 1,
sin¢ and cos¢ and integrating over¢ . An equivalent set of
moments can be carried out on the -exact Vlasov Eq. {28) and
passing teo the zeroth order limit. But these are simply the MHD
equations of sections (1) and (2). Thus, 3 te zeroih order is

determined by

’ {42)

N
X

3 -> +

— - = =V +
) nsms(at + U vus) V-P

where the mass velocity ﬁs and the stress tcnsor P are defined by
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> .3
nU = { fvdv ' (43)

lirg
]

- -+ -

) m [ (v - 0 (v -0 .
s

Nocte that the component of ﬁs perpendicular to b is ﬁEr while by’

Eq. (39) the parallel mass velocities are the same for both

. > s . . .
species. Thus U = Ug, on transforming to cylindrical

coordinates the stress tensor may be written

P = py(I - 33) + pllEg , (44a)
where I is the unit dyadic and
Vo
b, = I m J £, - dadv (44b)
= _ ALy 2 43
Py = ) m [ f (v, -~ U-D)° v . (44¢)
As advertised, Eq. (42) determines the part aof 3

perr :ndicular to b. The parallel part of ; is a different moment
of f; but can also be found from Maxwell's equations. We may
continue this scheme but it is more efficacious at this point to
change the emphasis from E to 1, regarding U as the primary

5
variable and E as a secondary variable;

H

]

)
(=3
x
or13

, (45)

o]

from Eg. (31). This is particularly true since % is restricted
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to be perpendicular to B, while U is not and determines E
automatically to satisfy this condition,

. e
Solving Eq. (2%9a) for J},, substituting into Eq. (42) and

makirqg use of Eq. (45) we have

> >
93U R A S (Vv x B) x B L,?_ > > >
pﬁ-i'UVU)-—Vg'}- an +c23t(UXB)XB
(46)
+(U><B)V'(U>‘B)
2 1
[

where p = } ngng. Then substituting Eq. (45) into Egq.  (29c)

we have

[F]
ool

x (—ﬁ x ﬁ) . (47)

L
=l
if
<

Equations (45) and (47) are nearly self-contained excep: we need
fos to compute and i. p is given by the continuity eguation

20 L y.(plh) =0 (48)

but we cannot obtain P in any other way than from f£,. Thus, the
equation determining £, and thus P, Eq. (37), may be considered
to determine the "equation of state" of the plasma. Finally,

inspection of Eqg. {37), shows it brings in E that must be

'
determined by the charge neutrality condition Eq. {38a) vor
alternatively the parallel current condition of Eq. (39). It is

possible by combining the separate moment equations to show that
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-+
) (eg/m)D-V By

2
t (ngeg/mg)

(49)

Ey=

However, this is a little misleading since Eq. (49) arises from

the second term derivative of the charge neutrality condition Eqg. -

(38) and in fact if one seeks equilibria, E“ actually drops out
of Eg. (49).

Our complete system of quiding center equations are Egs.
(45) - (48) with P defined by Egs. (44a) - (44c) and f, and E||
determined by Egs. (37) and (38a). Again as in the one fluid
theory we see that the last two terms of Eg. (45) may be dropped
as relativistically smali. The system then reduces to that of a
one fluid description with the main complication occurring
through the equation of state. This complication can only be
removed by solving an apparently five-dimensional equation for
fo. However, these five dimensions t, ?, Vi, V| can be reduced

to four by replacing v, by the new variable
w228, (50)

equal to the magnetic moment of the particle., Equation (37) then

reduces to

af DU
) b B - _Be_ B . e ~° =
e+ (U + v, B) Vf0+( be & + WBY-b + S E”) 0 (51)

and y does not enter into any derivative. It occurs merely as a
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parameter in Egq. (52) and vllis the only real variable in

addition to r and t. Note

c
I

o
111
a
1
5
=

(52)

The guiding center theory demonstrates how in the absence
of collisions the magnetic field acts to give the plasma almost
enough consistency for a hydrodynamic description. It interferes
strongly with motions across itself fercirg all particles to move
together so that all particles in one tube of force stay in that
one tube of force.

Equation (51) may be reduced by two more dimensions in line
with our remarks at the beginning of this section. To do this we
make use of the Clebsch form for any divergence free field as
shown in Section 4.2, for any vector field E such that vV+B = 0

one can find two scalars o and B such that

>
B =Vo x VB8 , (53)
n and B are not uniquely determined, but i1f they once give B at

some initial time t_, they will continue to represent B by Eq.

(53) for all time, provided they satisfy

Qo
=

+'VB

|
ole
+
(=0
.
<3
Q
i
[=2
|
+
[

(54)

@
o
]
(=}
~

or, in other words, provided they are ™frozen” in the fluid.

Since o and B are flux labels, a line of force is always given by
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o = const, B = const. This result is a

expression of the fact that 1lines of

plasma. If we replace the general position
coordinates o,
alongd a line of force, then Eq.

dimensional” kinetic eguation by transforming

a, B, £, u, v ¢. It becomes

+ uBY+b +

-
af of DU
[} Bﬂ\ Q +0g_ E

eE af
L+ oty __©o I
9t 11 \3s 2L Dt

-
provided only that £ satisfies (3£/93t + Ug-vE)

For completeness we collect together the

quiding center equations for the fundamental
£,, and E”.

] -

2+ V-0 =0 ,

precise

. ->
variable r

(52) can be reduced

mathematical

force are frozen in a

by new

B, and £, a parameter characterizing pesition-

to a "one

to these variables

=0 , (55)
=0 .
full systems of

tariables o, U. §.

(48)

(46)

(47)
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P =rp,L+ (B p)Bb (44a)
Vi 2 02 .3
3 - - B
Py = 1 Mg [ fos 74V iPYT E Mg J Eos (V= UtB) a”v
s
of Af
Qs i By e - T - Bevleb . - 0s
322 4 (B 4, BY e - vy (VeT, - BevBeB 4y 0eb) 5
-5 2
DU v of
> B i > e os _
* ('b”ﬁ gz Ubtg En) v, - ° (37
e J £ _alv-o0. (39a)
S os

3.3 The double adiabatic theory

As remarked in Section 3.2, a «c¢cllisionless plasma is
subject to description by £fluid equations with the single
difficulty invelving the determination of the evoluticn of the
two pressure components p, and p” . Chew, Goldberger, and Low
{1955) showed that these Quantities themselves can be expressed

in terms of two equations of state

p
a _i) = 56
ac ( =0 (36a)

p,B
i(_l_’__) -0 , (56b)




i
H
H

=33~
which apply under the same restrictions as the adiabatic theery
of Section 3.2 but with an important additional restriction. The
system must vary sufficiently slowly along the lines of force
that little communication of particles from points of different’
behavior aleng the lines occurs. More explicitly, see Fig. 1,
let points P; and P; be two points on a line of force at which
the plasma properties, ,, T, B, etc., are significantly
different. Then in a time t = £/v, particles from 1 and 2 will
mix together and they can no longer be considered separate units.
However, if significant changes eccur at Py in a time short
compared to t, the behavior at P, can exert no appreciable affect
on Py, Particles at P; can be considered to remain intact and
the two particle adiabatic invariants may be employed to
determine the behavior at Py. p, is proportional to Vi averaged
over all the particles and to the density p , while <vf>, by the

invariance of u, is proportional to B, So we have

pl&::(vi)oczps -

This, of course, is true following the motion since 1t is the
particles and not their location that is of importance.

The second invariant is not so familiar. It is vnﬂ where
£ is the “extension"” of a fluid element along the line. The
quantity £ has an amount of uncertainty in its definition since
the particles are dispersing at a considerable rate. However, it
is known that even in free expansion of a one dimensional gas the

mean square dispersion of velocities decreases as the density does
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and moreover goes as onhe over the length of the element of gas
squared. (This can be seen for a gas initially c¢f finite 1length.,
the particles of slowest velocity staying near the initial
position,) For our case the length (£ is proportional te B/
since the volume of a tube of force, is inversely proportional
to p, while the cross sectional area is inversely proportional to

B. Thus, the parallel pressure goes as
2 2 2
Py = pevip = p/L7 p3/B% .

A more formal derivation is as follows: The condition that
points Py and P, remain intact clearly means that there is no
significant heat exchange between points Pl and P,. Thus, in the

third imoment of the Vlasov equation we may neglect Q the heat

flow tensor. Multiply Eg. (28) by ms(c - ﬁs)(G - ﬁs), integrate
over all velocities at a fixed point Y. By charge and current

- i n - s
neutrality U 1is the same for ions and electrons if we assume a

single ion species. Then we obtain

a . . . Lygy T
3t Bg * V'Qg + P YU + B-VU + (B-VD)
(37)
e
+—S Bxp +P_xB) =0
m,C =5 =s ’

where the superscript tr indicates transpose of the diadic, Py is

defined as in Eg. {43), and Qg is the triad.



As before, we regard the last two terms
the factor e/rmc (the small gyration radius

lowest significant order, the pressure Pgo

The most general seclution of this eguation

P = Py (;——};—};) +p“sBB

S

£fdv . (58)

as dominant because of

expansion). Thus, to -

must satisfy

(59)

is

(60)

where the two scalars (so far) are arbitrary functions of time

and space.

Let us denote the left hand side of

Eq. (57) by L B°.

Then to next significant order in our expansion., Eq. (57) reads

P —es(P x B -8
=os ~ m_c '=sl * Bgq)

(61)

where Pgy is the first order pressure. The necessary sufficient

conditions that we can solve for P.| is that the trace of this

equation vanish and also that it vanish when dotted with b on the

right and left sides. Performing these operations, dropping Q

and summing over s, we obtain
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4 U .0 - Bevl-B (62a)
3c (ePs + Pyl *+ (284 *+ B 1V-U + 2p,(V-U - beVU-b)
+ ZpHB-vﬁ-B =0,
ad - > _> >
3t Pyt P, VU0 +2p, bvUD =0 . (62b)

>

We relate U to the rate of change of p and B by Egs.
(48) and (47).

do — oveb (63)
and
-
%% = B'§% =Be[v x (U x B) + G-vB] = B(B-VU-B - v-T) , (64)

so that E¢. (62) becomes

s (65)

This reduces immediately to Eg. (56b). Subtracting Eq. (62b)

from Egq. (62a) and using Egs. (63) and (64) again yields
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which reduces to Eq. (55a).

Thus, ..1e double adiabatic equations of state result from
the guiding center equations and the dropping of the heat flow.
We can reduce the expression for Q by making use of the special -
form of £, derived in the previous section from Eg. (34), that

is its independence of gyration phase ¢ . Q can be written

[ ]
0= 2q,(Ib + BL + tr) + 2q, bbb (66)
where
v2

[ i > > 3
Q, = I m [ = (vll- u-b) f d°v , (66a)

1
a, - ) m J (v, - g-%3 £ adv (66b)

and the symbol tr denotes the third possible transposition of the
triad ig. ql is the parallel heat flow of perpendicular energy
while q1lis the parallel flow of parallel energy. They are only
small if f 1is nearly symmetric, the situation arising when

-
macreoscopic plasma parameters vary slowly along B. Alseo

. ' ’ ' ' S‘VB
trace v'g = b'V(loqL + Zq”) = (quJ, + Zq”) —B_ ’
. (67a)
and
2 (eorit o ' J ' ' . bevB
be( g)lb = b-0(6g, + 2qll) - 2(q, + 9 ) - (67b)
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so the derivative reduces the heat flow term by an additional
factor proportional to the slowness of variation along E.

To summarize the double adiabatic formalism, it is
identical with the single fluid theory, Eqs. (1)~(4) and Eg. (10),
with the single change that p is replaced by the divergence of
the tensor pressure g s with the two scalars p,: P, determined by
the double equations of state, Egs. (56a) and (56b). Again it
can be seen that the double adiabatic formalism is holanomic, all
guantities can be expressed in terms of the displacement
vector and can be reduced to a Lagrangian formalisa,

These nice properties plus the apparent generalization
allowed by a nonscalar pressure have made the double adiabatic
theory guite popular. Unfortunately, the stringent conditions of
very slow variation along magnetic lines of force imposed by the
neglect of Q, greatly limit its applicability, at least when
accurate results are desired. On the other hand the egquations
can be applied to solve problems beyond their limits of
applicability, and the answers obtained are gressly inaccurate.
This will be illustrated by an example in Section 5; namely, the
computation of the criteria for stability against the mirror
instability when a homogeneous magnetized plasma has unegqual
perpendicular and parallel pressures. This easy applicability
of the formalism beyond the range of its validity makes it

somewhat dangerous.
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4, CONSEQUENCES OF THE MHD DESCRIPTION

The ideal MHD equations and, te a lesser extent, the double
adiabatic equations and the gquiding center equations possess some
nice properties that often may be empleyed to draw some
intuitive conclusions concerning plasma behavior without solving
the equations in detail. They consist of socme general global
relations, conservation equations, and virial theorems, and also
of the flux and line conservation equations which may be thought

of as detailed conservation equations.

4.1 Conservation relations

The three guantities conserved by a plasma are linear
momentum, energy, and angular momentum. To write them down for
the ideal one fluid system 1let us first rewrite the force

equation:

- 9p - pV¢ (68a)
where we have made use of Eg. (4) to eliminate 3 and introduced
the gravitational potential 9 with ; = - V¢ ., Multiplying the
continuity equation by U and adding we get

3 > >
3glol) = -Vv-T - p%¢ , (68b)

where
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BB (69)
=) - pI -

T represents stresses exerted on any surface, the first terms are

x| x
A
[N=]
1

i3
n

o
-l 4+ (

Raleigh stresses, the second, magnetic stresses, magnetic
pressure and tension, while the third term is the pressure stress.
Integrating Eq. (69) over a fixed volume V, and employing

Gauss's theorem we have

-a—aEprde=-JT-ds+Jp§d-r. (70)
v 5 \Y

The term on the left is the rate of change of the plasma momentum
in the volume, the first term on the right represents changes in
this momentum due to forces exerted on the surfaces, and the
last, changes in this momentum due to gravitational forces. If
the system were isolated and J§ zevro, then the total linear
momentum would be conserved, [This is actually impossible (see
the virial theorem below) but if the gravitaticonal force is self
consistent, produced by the plasma, the gravitational force can
be written as a divergence and the linear momentum 1is actually
conserved, as for example in an isolated star.] In any event the
linear momentum density of a plasma is simply pG and includes no
magnetic field ceontribution. Its change may be estimated by the
forces on the surface. The electromagnetic contribution is
relativistically small and not included in our equation.

A more significant conservation relation is that of energy.
It is obtained by first multiplying Eq. (68a) by U and making

use of the continuity equation to obtain
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2 - - >
(p U_) = _g_-V_;?_B__‘X_E - Qevp - plievo - V'(p g ﬁ) . (71)

The 1left hand side represents the rate of change of kinetic
energy per unit volume. The kinetic energy is changed as a
result of corresponding changes of the magnetic energy (the first
term on the right), pressure energy (the second term) and
gravitational energy (the third term). 1In fact,multiplying Eg.

{10) by G we have

. (2 "
o(B)_ v x (§ x B) (72)
(2} =g X X B
[/] BTT 41T

From Egs. (3) and (1) we have

£l __GU-Vp _ ¥ . (73)
W(V&)‘ ol = AL

From Eq. (1) we have

= (06) = =+ (pDre (74)

( $is assumed independent of time). The quantities on the left
of Egs. (70) - (74) are the rates of change of the magnetic,
pressure and dgravitational energy densities respectively. Each
of these expressions is equal to a term that corresponds to one
of the terms on the right hand side of Eq., (71). 1In other words,
any change in these energies can preduce changes in the kinetic

energy density.
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Adding Egs. (71) through (74), integrating over a fixed

volume V, and making use of Gauss's theorem yields

aé r 2 2
v _ d oV B P
= * It J l—z + i 75T + po dt
U2 B x (ﬁ X E) >+ *
4] Y
= - ds —_— U + + — U + U .
J s ) = *t3=IP pUe (75)

Thus, we may safely identify the left hand side with the time
rate of change of Ev the total energy inside the volume V and
the integral on the right hand side with the loss of energy
through the surizce S. The energy consists of four types:
kinetic energy, magnetic energy, pressure energy, and
gravitational energy. Almost any macroscepic plasma process
consists of exchange of various forms of energy together with
loss of energy  through the surface. From Eq.

(75) this 1loss can be seen to consist of direct lass of kinetic

energy (first term), Poynting flux (second term since
>

U xB = —CE), thermal energy and P av work [since
pﬁ/( Y- 1) = pﬁ/( Y- 1) + pﬁ], and finally of gravitational work

represented by fluid entering at one potential and leaving at
another, (The Poynting flux can also be thought of as loss of
magnetic energy plus a magnetic P dV work.)

If the system is effectively isolated, say by rigid
infinitely conducting walls at which B-n = 0 at some time, then

>
B+n will continue to be zero at all times and ﬁ-n = 0 so the
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right hand side of Eq. (75) will vanish and the energy inside
the volume will be conserved.
Finally, a conservation relation can be derived for angular
momentum in complete analeogy to Eq. (70). Take any point O as’

>
the origin and let r be the radius vector from this point. Then

g% ¥ x pU dr = I (f x T) + [ ot x g dr . (76)
s

v v

The angular momentum again resid~s soley in plasma motions. This
relation is of considerable use in discussing outflow-of angular
momentumn from the sun via the solar wind.

Another important integral relation for a plasma is the
virial theorem. Deline with respect to an origin O the tensor

moment of inertia of a plasma inside a fixed volume V
= { prr dr . (77)

Differentiate twice with respect to time making use of the ideal

MHD equations and neglect surface terms and dgravity

= rr dt

dIV _ 3p +2
ot
v

- I Ve (pU) rr 4T (78)
v

[ p(Br + ¥ ar

(79)
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Then if the plasma remains in a finite region of space over a
long period of time, we may time average Eq. {(79) and drep the

left hand side. There results from Eg., (70C)

s B2 BB
pUU + s I-37 +pI dr) =0 . (80)

This is the vector virial theorem. < > denotes a time average.
Deviations frem this equation can result from surface terms so
this equation applies only to an isclated system. Taking the

trace of Eq. (80) yields

2
< [ [pU2 + g; + 391 dT> =0 . (81)

Since the integral 1is clearly positive this then shows the
impossibility of an isolated (without coils) force-free system.
On the other hand 1if a self-consistent gravitational term is

included we get

3%

<} [puz+%§+3p+p—2¢i at) =0, (82)

so gravitational energy which is always negative can balance tbhu
other three types of energy. [Note that the fiirst term is twice
the kinetic energy, the secend term is just the magnetic energy,
and the third term is 3(y - 1) times the thermal energy, equal to
two times for y= 5/3, while the last term is the gravitational

energy.]
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A final important theorem concerning ideal MHD systems is
that the system is derivable from a Lagrangian. In order to
understand this information most easily it is necessary to regard
each plasma fluid element as an entity, Any flow pattern between

times ty and t; should be viewed as a set of time dependent

1
displacements £(¥,, t) of each of the flnid elements Erom its

e sa s PR -+ . PR

initial position rj at t = ty to its final position ?1 = ?0 + £
at t,, A possible motion consists of a dependence of the
displacement E(?o,t) on t. Then Hamilton's principle for the

ideal MHD equations states that the motion that makes

€
L= [ Ldat , (83)

t
a

stationary, where

2 2
= U _ B _ B
L ] ( 7 " vt - g 9T (84)

is the true dynamical one that satisfies the ideal MHD eguations,
and conversely. It is to be understood that for any displacement
function E(?, t) , dynamical or not, the quantities p, p, and B
are to be determined by solving Egs. (1), (3), and (10)
respectively. We know that these quantities are determined
helonomically and deo not depend on the detailed time dependence
of Z(rg, ).

For the proof of this result let us consider a given motion
E(?O, t) and determine a neighboring motion by specifying the

Eulerian function g2 (¥, t) which is defined to be the difference
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between the position of the fluid element at time t that would
have been at ? under the unperturbed motion, and ?. Then it 1is
easy to see that the perturbations in the quantities p, p, B at

position r under the influence of the perturbation of motion are

py = -V-(p8D) (85a)
p; = -vpv+ (s8) - sE.vp , (85b)
B, =vx (68 xB) . (85¢)

i1t remains to determine 61. The perturbation in the £luid

element velocity is

v

38
t

|

+ U986 ,

=5

> 5 S
by definition of §£ . But this perturbation is at r + 8& and is

> > >
therefore also equal to Uy +« 68£+Vy. Hence

R
- 2L, vt - sEevD . (85a)

o

1

Substituting these perturbations into the corresponding

perturbations of Egs. (83) and (84) we cbtain
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.
L J sL at = { at [ ar [Eu-(i% Ty sg-vﬁ)

- Ve (psE) u? + YPY-5E + 5E‘VE] (86)
P 2 Yy -1 Ty -1 :

Then integration by parts shows that SL = 0 for all GE
vanishing at t,, t;, and spatial boundaries, if and only if Eq.
(2) is satisfied.

The existence of this Hamilton's principle for the MHD
equations is extremely important. It can be shown to underlie
most of the general results on MHD such as self-adjointness,
energy principles for stability of static equilibrium, and energy
conservation, Further, it has been shown that small scale
hydromagnetic waves preserve wave action, that 1is they can be
thought of as quantized, and this also is a direct consegquence of
this Lagrangian approach (Dewar 1970).

We have so far exclusively discussed the properties of the
one fluid ideal MHD equations in this section. All of these
properties are also possessed by the double adiabatic formalism
if we replace p and Yy by the apprepriate generation. For example
p/(y - 1) should be replaced by p, + pH /2 in Egs. (75). (80),
and (84) while 3p should be replaced by 2p, + P, in Eq. (82).
Similar results appear to hold for the guiding center theory,
although they have so far only been effectively determined in
certain limiting situations. We refer the reader to the

literature for detalils.
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4.2 Flux frozen in plasma

Probably the most useful of the intuitive concepts implied
by the ideal MHD equations, as well as the guiding center theory
and the double adiabatic theosy, is that concerning the magnetic
flux lines frozen in the plasma. Precisely =stated the flux
conserving theorem is as follows:

Assume that at some initial time t_ magnetic lines of force
are drawn throughout the plasma volume in such a way that their
density is proportional to the field strength B, and they are
everywhere tangent to §, (For simplicity we take a finite but
very large number of such lines so their density is not precisely
determined at each point but can be defined to any desired
precision by taking a sufficiently large number of such lines.)
Thzn at time t, the magnetic field B is completely represented by
these lines. Let the plasma flow with velocity U and let the
magnetic field evolve according to Eq. (10). At the same time
let the 1lines of force be bodily transported by this velocity [
to some new configuration, just as though they were "frozen" in
the plasma. Then at any later time t, the configuration of the
lines at that time will represent the magnetic field at that time
both as to field strength  given by line density, and direction
given by the tangents to the lines.

This theorem holds true to the extent that Eg. (10) does.
That is, if B deviates from the field given by Eg. (10) due to
finite resistivity, it will deviate from the field given by the
line configuration to exactly the same extent. Since the

displacement of the lines evolves in a continueus manner, their
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topology must be preserved. Closed lines remain closed, ergodic
lines remain ergodic, magnetic surfaces existing at time ¢t
continue to exist, etc. This flux freezing concept is often a
very critical one and it is important to Kknow under what’
conditions it can be broken. The plasma can occasionally be kept
frem reaching a state of much lower magnetic energy by this
constraint alore. A change in topology which may be produced by
a breakdown in tg. (10) over a very small region, say near an X
peint, could conceivably lead to a large conversion of magnetic
energy to kinetic energy in a plasma. This pessibility is
usually termed the reconnection problem and it is a problem of
great interest since its resolution could conceivably lead to an
explanation for certain observed violent plasma behavior such as
disruption in tekomaks, solar flares, etc.

There are two mathematical ways to express the theorem of
flux freezing. The first is the Lundgvist identity, while the
second makes use of the Clebsch formula (Lundgvist 1951).

The Lundqvist identity expresses the magnetic field at time
t and position T in terms of its value at time t, and a different

a a >
positlon rg

(=311

(x_, to)-voif(?o. t) . (87)

3 - s >
In this formula r is understood to be a function of fre, and t
which represents the position of the fluid element at time t that
. < s >
occupied the position r, at initial time t,. The subscript o e¢n

. = = & r3 >
V, indicates that derivatives are to be taken with respect to t,
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at fixed t. Let B, and Py reprasent flr,, to} and op(rg, tp)
respectively. To establish the validity of Eq. (87) we first

show that it satisfies Eq. (10). Making use of (8?/9t);° = a we

have
>
> B
d B [e) >
S (2)==2-v 3D
at (p) by o ' (88)
> -
where d/dt = 3/3t + UV = (3/3t)p,. Also
-> > - e . -r -F -
¥ x (U % B) = BVU - JeVB - BY-U ,
s0
QE - > dﬁ -+ > - -
3T ¥ x (U x B) = ac = B-vU + BV+U

o
Q-dlﬂa
o

(89)

dok
o
0

> -
=2 [Eo-vou - (Bo-voi)-vﬁj ,

where the first 1line follows from the definition of d4/dt, the
second line from Egs. (88) and (1) and the third from
substitution of Eq. (87) for B. The bracket in the third line
of Eg. (89) vanishes because of the chain rule for
differentiation. Thus, Eq. (€7) satisfies Eq. (10) for the
evolution of the magnetic field and is wvalid initially, so it
remains valid for all t. 1Its relation to flux freezing can be

+ -~
seen geometrically. (Bo-VorL/Bo is the shearirg of a unit 1line
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element along the initial line of force by the flow, so Eq. (87)
states that B continues to be parallel to the sheared line
element. Also the 1line has been lengthened by the same shear
flow, but factor p/p, represents the decrease in velume. This
combined with the lengthening of the 1line element gives the
shrinking of the cross~sectional area which thus represents the
amplification of the density of the lines of force.

The other alternative mathematical method for describing
flux conservation invelves the Clebsch formula for expressing an
arbitrary dijvergence-free vector field such as B in terms of two

scalar functions
B=vax9R . (90)
If sucii a and B scalars exist, B given by Eg. (90) clearly is

divergence free. Further, dotting Eqg. (90) with Va and

with V8 gives

04

Vo =0 ,

(91)

so & and B are constants along lines of force, and indeed a

general line of force can be determined by ¢ = a B =8

or o

where @  ang B, are constants. Lastly because
-—->

J = (B'Va x VB/B) = B is the Jacobian for a transformatien

xS
from caardinates r to caordinates o, 8/, £, where £ is arc



-52—-

length along the 1lines, we can see that do dB represents the
element of flux. That is, if we parameterize a surface S cutting
the 1lines by o and £ then da df is the £flux through the
corresponding element of area (Fig. 2). Thus, if we select the
lines of force by a uniform distribution of values of o and g ,
their density will be proportional to the magnetic field strength
B.

The above properties of a and B show how they can
actually be found to satisfy Eq. {(90). As in Figq. 2,
choose o and B8°' arbitrarily on S and extend them through all
space so as to satisfy Eq. (91) and B.Vgr = 0; i.e., by Kkeeping

>
them constant on 3 lines., Then

1 - ' >
(Vo x V8 ) = B*VRB Vu - B*VaVg =0 ,

w
X

g(Va x V8 )

(so12
]

-5
where g is a scalar. From V«B = 0 we have

.
(Vo x VB')-Vg = Ei;ﬂ =0

2

-
so g 1is constant along B lines, and thus a function of o

and B', g = g{a , B'). Now choose B to satisfy

ar = gla, B . (92)
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Then for this @ and B Eg. (90} is easily verified.
Now @ and B are clearly not unique. However, once they
are chesen to represent B at some initial time Yo, they can be

chosen at any later time by demanding they stay constant on any

fluid element. That is, let them satisfy

Ja * _
7T + UsVa = 0 , (92a)
38 . Pioa o
st YUV =0 . (32b)

Then B8 as given by Eq. (90) satifies Egq. (10) and thus

continues to give the magnetic field. For

2 (Va x 96) - ¥ x [T x (Va x v8)]

_ g Oa 3
=V gE X VB +Vax Vg

™

- v v [G.98Va -~ U-VaVR]

prs

-V (D-Va) x VB - Vo x V(J-78) - V(G-VBVa) +V(F-VavR) = 0

r

where the second line follows from expanding out of the triple
vector product in the bracket in the first line, while the third

line follows from Eq. (92) and taking the curl of the bracket in

the second line.
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The properties of o and 8 clearly correspond to those of

magnetic lines in the flux conservation theorem.

5. AN EXAMPLE

We should like to illustrate the guiding cent~r formalism
by an example which will also bring out the limitations of the
double adiabatic formalism.

Consider a homogeneous, magnetized, ion-electron plasmna
with wunequal perpendicular and parallel temperatures. Take the
uniform field 30 in the z direction. For simplicity we take the
equilibrium distribution to be a bi-Maxwellian with unequal

perpendicular and parallel temperatures

2 2

1
£ = L exp(- ; - ; ") (93)
oS (21:::\5)3/2 TLST}ﬂf 2Tsg 2 s

Consider a sinusoidal perturbation of this plasma proportional to
exp(-1 t + ik, x + ik,z). Under what conditions is this
perturbation unstable?

We start with the £luid Egs. (45) and (47). If we
introduce the plasma displacement E, with ﬁ = —in » then

these become

0 1 (94)

- = - 1
Pa"E = -y By 4w

> ->
~

ik_ &€ B x - ik ¢ E 2 . (95)
z°x 0o X®X 0

w4
i
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where the subscript or superscript 1 indicates perturbed

quantities, From Egq. (44a) we have for the perturbed pressure

[l

' ' Voo * > 2> .
1 = P:L + (py - Pu)bb + (p; - py)(byb + Dby) . (96)

Now from Eg. (95) we have

- i 97a)
Bl lkxExBo . (
s
£, = i 97b
bl 1szxx ’ { }
so we easily find
>
Copae L _ 2, 4 2
V-gl = [1kxpl (p” p*)kzng X
(98)

>

1] ~
+ Lik,p, - (P - Pk k E ]z

Substituting Eq. {98) in the equation of motion, Eg. (94) and

taking the x and z components we find two equations

~pw”Eg

2
B
: ! 2 _ _ o2 2, o
X _1kxp_|_ + kZ(P” P_L) Ex (kx + kz) ——4" £ ’ (99a)

2 _ s ' _
po7E, = -ik,py * kKo (P = Pud Ex ’ (99D)
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for Ex and Ez. In order to complete the system we need
equations of state for pi and ph.

Up to this point the double adiabatic theory and the
guiding center theory coincide. They differ as to the
determination of p] and ph, however. First let us complete the
equations by invoking the two equations of state, Egs. (56a) and
(56b) of the double adiabatic theory, to express pi{ and ph in

terms of £, and E£,. Since from the continuity equation, Eqg.

(48), o} = -i(kyEy + kz&,) , we have from this and Eg. (97a)
1
Py Py By : ,
mop tE T -2ik £ - ikE, (100a)

T
P 3p 2B
I _ i _ 1_ _. _ s
_ﬁ == ji; lkxgx 31kZ£z . (100b)
Substitution of Egs. (10Ca) and (l00b) in Egs. (94) and (95)
yields two equations for £, and &, alone. Setting the
determinant of these equations to zero gives the eigenvalue

equation for o

2.2
k"B 2

2 2 2 o 2 _ 5,2 _ 2,2 2
[[l(lj - ((2kx+kZ)P'l‘ + W - kZP”)] (D&J 3kzp“) = kxkzp* - (lol)
It is easy to see that the roots eof w2 are real. We have
instability if one of the roots for w2 is negative and the

condition for this is

2

2
B P B
2 o] 4 2 o
2kx [8_17 + Pa (l - _ﬁp”)] + kz (4_," + Py P”) < 0 .
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This is negative if k, = 0 and

B2
) 02
Py > Pu*gm (102)

the "fire hose instability,” or k, » 0 (it must not vanish) and

8]

2
fg; > g? + P, . (1G3)
the "mirror instability.®™ Equations (102) and (103) are the
stability results derived from double adiabatic theory.
Let us now employ guiding center theory to find R: and ph
and to complete Egs. (99a) and (99b) . Actually we can determine p_'L from
Ey alone and we need consider only Eq. (99a). pl is found from
'

f which is given by solving Eqg. {(52), for example. Let

£=1f,+ £, Then, since B is the Jacobian of the

transformation to 1y, vI| variables,
Py = L mg [ £, uB (B dw) dv, ds ,

and

) ' 3 2B,
Py = ] mg £, uB d'v + =P - (104)
o]

Perturbing Eq. (52) and using Eq. (93) we have

2
_ [—kkaEX (vi/2) + (e /m) Ellj msv”f

S
1 Tis

£ . (105)

1s -iam + ikzv
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Near the marginal point for stability, we may neglect « in the
deneminator [if @ << k(T /my1/27 ana
2 .
m_vy ie E

- £ . (108)
s S K Tyg 7S

Now from charge neutrality we can determine EI to be

k . -

By = o (keEy) (Ti/z”)ﬁ - (il/T")e . (107)
& xTxt (/T ) - /T )

For simplicity, we take (Tl/ih)i = (T_'_/T”)e so that E = 0.

Il
Substituting Egq. (106) {(with E” = 0) into Eq. (104) and making

use of Eq. ({97a) we find

2

' f Ty
= 2ik ot - 2 (108)
Py = 2ik £ é (Tll)s n - 2ik Ep,

and if we further take T*i = T*e

. (Px )
p. = 21k 8 (5 - e ) (109)

Then for sufficientl} small {see above) we have from Eq.

(99a}
2 2 2
i

. B2 p B
20 .2 _o__) 2 o _
po = 2k, (P* * By * kz(P-'- T Pn) .

Again we have the fire hose instability if ke = 0 and Eq. (102)
is satisfied. However, the condition for the mirror instability

is changed to kz -+ 0 and

(B2/p,) > b + (B2/BT)

g e
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a criteria di1ffering substantially from Eg. (103) (by a facter
of 6).

The reason for the different criteria for the guiding
center theory of the mirror instability and the double adiabatic’
theory is that ® must pass through =zero so that particle
communication sets in over a distance k~1 along the 1lines in a
time short compared to m‘l, so the condition necessary for the
validity of the latter theory fails.

This example illustrates the dangers inherent in the double
adiabatic theory, since the failure of the validity coenditions to
held really only becomes evident after the more accurate guiding
center theory 1is carried out. The fire hose instability theory
remains valid since, as can be seen from intuitive picture of the

instability, parallel heat flow plays no role.

This work was supported by the U.S. Department of Energy Contract No.

DE-AC02-76-CHC-3073.
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A 1line of force, B.
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Fig. 2. Clebsch coordinates a and B.



