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ABSTRACT 

The basic sets of MHD equations for the description of a plasma in 

various limits are derived and their usefulness and limits of validity are 

discussed. These limits are; the one fluid collisional plasma, the two 

fluid collisional plasma, the Chew-fioldberger Low formulation of t^e guiding 

center limit of a collisionless plasma and the double-adiabatic limit. 

Conservation relations are derived from these sets and the mathematics of 

the concept of flux freezing is given. An example is given illustrating 

the differences between guiding center theory and double adiabatic theory. 
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1. MODES OF DESCRIPTION OF A PLASMA 

A plasma is a collection of charged particles. These 
charged particles generate electromagnetic fields through their 
elementary charges and currents. In order to evaluate these 
fields it would be necessary to know the position and velocity of 
every particle at all times. The motions of tne charges 
themselves must be followed in the fields they generate and those 
externally imposed. This program is beyond what is possible 
except in the simplest possible situations. 

Fortunately there is a cruder description of the plasma 
that is often sufficiently accurate to give gross behavior to the 
extent desired. 

Instead of specifying the plasma in terms of each of its 
particles one can pursue a more macroscopic description of the 
plasma in which the emphasis is on its fluid nature. Depending 
on circumstances that we discuss below this fluid description may 
be a one fluid, a two fluid, or a many fluid approach. 

Let us first consider the one fluid approach. We know that 
every cubic centimeter of plasma must contain a definite number 
p grams of plasma. The rate of change of this density is 
controlled by mass flow U out of the walls of this cubic 
centimeter. The momentum pU in any cubic centimeter is itself 
controlled by the forces acting on it. These are normally 
electrical, magnetic, and gravitational forces acting on its 
volume, and pressure forces acting on its walls. Because the 
plasma is a conducting fluid its current can be found from Ohm's 
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law in some form, while the direct electrical forces are usually 
small. The current can be used to find the magnetic field by the 
Biot-Savert law and the changing magnetic field gives the induced 
part of the electric field, while the remainder, the 
electrostatic part, follows from the condition that the current 
driven by the electric field be divergence free. The 
determination of the pressure forces is often the weakest part of 
this one fluid description since the pressure is not usually a 
scalar, particularly if the plasma is collisionless. In addition 
the heat flow is often quite large. (Microscopically, particles 
together in a small cube remain together for only a short time.) 
However, many plasma phenomena of interest do not depend on the 
pressure in any essential way so that even an inappropriate 
treatment by an assumed equation of state for a scalar pressure 
can give a reasonable description of the phenomena in its grosser 
aspects. (The more basic properties of the plasma are governed 
by its electrical nature.) 

For a more detailed description of plasmas in which 
interest is centered on plasma temperatures and energy densities, 
the two-fluid description is more appropriate. In this 
description the electron and ion fluids are treated separately. 
Although the mean velocities are nearly equal the electron and 

ion temperatures are often quite different due to the weak energy 
exchange rates between ions and electrons. The two fluid 
approach is also appropriate for a weakly ionized plasma. Here 
the ion cyclotron frequency may be less than the ion neutral 
frequency, while the electron cyclotron frequency is greater than 
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the electron neutral collision frequency. The resulting electron 
and ion flows can be quite different under these circumstances. 

Finally, when the plasma is nearly collisionless but the 
pressure terms play a central role, an even more detailed, but 
still approximate, description becomes appropriate, the guiding 
center description, in this description the magnetic field is 
strong enough that the plasma is still hydromagnetic in a 
direction perpendicular to the magnetic field, since the gyration 
frequency is large for both species. Howt/er, the particle flows 
along the lines need not be fluid-like, so it is necessary to 
keep track of the distribution of velocities parallel to the line 
by a one-dimensional kinetic equation. Even in this case the 
description may be simplified to a fluid description that 
preserves the independent plasma behavior along and across the 
lines. Two equations of state for the two independent components 
of the pressure tensor are needed, and this is supplied by the 
Chew-Goldberger-Low or double adiabatic equations. 

In summary, although any real plasma is extremely 
complicated, some of its main properties may often be captured by 
simple macroscopic sets of equations. These can only describe 
the slower mora macroscopic properties of a plasma that occur on 
long enough time and space scales that microscopic processes such 
as collision and gyrations can establish sufficient consistency 
in the plasma to enable it to be considered as a coherent fluid. 
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2. COLLISIONAL PLASMA 

As described in the introduction, the fluid picture of a 
plasma is most appropriate when the plasma is at least somewhat 
collisional. Then the electrons and ions separately relax to a 
local thermodynamic equilibria on a time short compared to that 
on which substantial changes in plasma condition occur, and in 
regions sma.l compared to the size of the plasma. Thus, we may 
assign a density p, mean velocity U, and scalar pressure p to 
each of the plasma components. 

In the simplest description of the one fluid plasma we may 
ignore the differences in the electron and ion properties and 
simply lump them together. We consider this description first. 

2.1 One fluid description 
On this level the plasma is in many ways like a highly 

conducting molten metal. The fluid equations describing its 
density, velocity and pressure are 

§| + V-(pU) = 0 , (1) 

p WE + P"'v" = 1 x B - ?p + pg , (2) 
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Equation (1) is the equation of continuity. Equation (2) is 
Euler's equation for fluid motion. The left hand side represents 
the mass of a cubic centimeter of material times its acceleration 
at any instant. The acceleration is produced by the magnetic and 
gravitational forces acting on the same cubic centimeter and the 
surface force term represented by the pressure gradients. B is 

-t -+ 

the magnetic field, j the plasma current, and g a fixed 
gravitational field. The pressure is the sum of the separate 
partial pressures of the ions and electron^ whose gradients are 
assumed to act together on the plasma rather than on each species 
separately. 

in the third equation d/dt = (3/3t) + U-7 is the 
convective derivation and y is the ratio of specific heats of the 
plasma. This last equation is the equation of state for each 
separate fluid element following the motion. It is only valid 
under conditions where the heat flow is small. Note p/p^ is 
related to the entropy per unit mass of a fluid element. If more 
general conditions prevail, e.g., ionization, radiation pressure, 
etc., are important, then Eq. (3) should be replaced by the 
condition of constant entropy following each fluid element. 
However, in most cases where the one fluid theory is employed the 
simple power law assumption is generally adequate. Note further 
that various limiting cases arise by taking y = 1, isothermal, or 

v 

y = ™ incompressible. It can be easily worded as "p/p is a 
constant following the motion, but in general is different for 
different fluid elements." 
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It should be noted that we have dropped the electrical 

force P E£ f where P E is the electrical charge and E the electric 
field, in Eq. (2). This is because, as will soon appear, these 
forces are relativistically small compared to magnetic forces and 
must be neglected for consistency, since our theory is 
nonrelativistic. 

We see that knowing B and g, Eqs. (1) - (3) form a 
complete set giving the forward time evolution of the fluid 
quantities p, U and p. The velocity U nee ed in Eq. (1) to 
advance p in time is determined by Eq. (2). The pressure 
needed in Eq. (2), to advance U, is given by Eq. (3), etc. 

The electromagnetic fields are controlled by Maxwell's 
equations 

V x B = 4TIJ , (4) 

3B -> 
_ = _ cv * E , ( 5 ) 

V-B = 0 (6) 

V-E = 4irpE , (7) 

where c is the speed of light. We have dropped the displacement 
current in Eq. (4) since, as will appear, its effects are also 
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relativistically small. Further, we have no need for Eq. (7) 

since the charge density p„ appears nowhere else in the 
equations. 

The electromagnetic and fluid equations are coupled by 
Ohm's law, which in its simplest form can be written (Spitzer 

1962} 

where n is the plasma resistivity. The combination 
E' = E + U x B/C is the electric field seen by the plasma in its 
moving fcatae U, atvd. Eq,. (%\ states that in this £ras&« 3 is 
parallel to and proportional to £' 

Equation (8) is not strictly accurate for a plasma. 
Because of the anisotropy of the field there will be Hall 
currents flowing perpendicular to E and B that may actually be 
larger than that predicted by Eq. (8). However, the current in 
Eq. (8) is parallel to E" and represents dissipation of energy 
whereas the Hall currents do not. Thus the secular effects 
produced by this term are generally more significant than those 
due to the Hall terms. It is customary in the simplest form of 
the one fluid MHD equations to employ Ohm's law in the form Eq. 
(8). 

Equations (4), (5), and (8) represent three vector 
equations for the three vectors S, B, and 3. They may be 
combined into two equations by solving Eq. (8) for E and 
substituting from (4) to eliminate j. We get 
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| | = V x (U x B) - ^ V x ( n v x B) . (9) 

I f n i s a c o n s t a n t , t h e l a s t term becomes s i m p l y ( T I C / 4 I T ) V 2 B SO 

i 5 = 7 x (U x B) + 2 £ 7 2 B . (9a) 

The first term on the right gives the change in magnetic field 
produced by convection of lines of force by the plasma. The 
second term gives the magnetic diffusion term, which tends to 
smooth out irregularities in the plasma perhaps induced by the 
first term. If there were no plasma motions, the diffuse term 
would smooth out any irregularities, in a characteristic time of 
order 4Trt.2/ric where L is the irregularity size. (This is 
essentially the "L/R time" for a plasma considered as a lumped 
circuit.) This decay time is of order 1 0 _ 7 T 3 / 2 L 2 sec where T is 
the temperature of the plasma in electron volts. For high 
temperatures or large plasmas this time may be very long. The 
changes in B produced by the convective term often occur on a 
time so short compared to this diffusive term that the magnetic 
diffusion can be ignored altogether. That is we may replace Eq. 
(9a) by the "infinite conductivity" equation 

|| = V x (U x B) . (10) 

The subset of the above Eqs. (1), (2), (3), (4), and (10) 
constitute the so-called ideal MHD equations. They are clearly 
an approximation to the true plasma equations, but they have so 
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many nice properties that they are the preferred set for 

describing macroscopic plasma phenomena. Eq. (10) gives the 
- * • 

evolution of B as a result of plasma motions. Then making use of 
-*• -»• - + 

Eq. (4) we can determine j , and thus j x B to determine the 

evolution of the fluid quantities under the action of the 

electromagnetic forces. 

We no longer need the electric field E in this description 

but it may be obtained from the infinite conductivity limit of 

Ohm's law 

E + a x B (11) 

Then the e l e c t r i c force on the plasma P E E can be estimated from 

Eq. (7) to be 

P E E = EV-E 
4TT 

U 
4TTLC 

and it is seen, as mentioned earlier, that it is relativistically 

small compared to the magnetic force j * B = B2/4ITL. In the same 

way we may show that inclusion of the displacement current 

(1/c)(3E/3t) has a relativistically small effect on the 

equations. Adding it to Eq. (4) will alter ] by the small 

amount <5j and this will produce an additional contribution to the 

electromagnetic force term in Eq. (2) 
,2 

6 3 * B 4TTC 9t B - 3t 

-*• -*-\ U x B 
4irc 

x B = UB 
4TltC 

where t is a macroscopic time. Comparing this with the inertia 

term on the left we see that it is smaller by B 2 / 4 F O C 2 . In 
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fact,the addition cf this term can be thought of as adding the 
"mass" of the magnetic field to the mass of the plasma. 

The ideal equations of MHD are best thought of as exactly 
describing an ideal infinitely conducting fluid with an adiabatic 
equation of state whose properties are sufficiently close to a 
plasma to be of interest, rather than an appropriate system of 
equations for a real plasma. For he moment imagine that we have 
such an ideal infinitely conducting fluid to study. It is 
immersed in some magnetic field. Then by the condition of flux 
freezing the evolution of the field may be expressed in terms of 
the distribution of magnetic lines of force bodily transmitted by 
the velocity U. This means the field only depends on the net 
displacement of each element of the fluid and not on the history 
of the fluid displacements. The j * B force can readily be 
thought of as the magnetic tension and pressure contained in 
these lines of force. Similarly, p is given purely by the 
displacement of the fluid elements and further the pressure is 
also thus determined. This means that at least in principle the 
force on a fluid element is determined holonomically by its 
displacement and the displacement of its neighbors. It is this 
fact, plus the fact that the system is dynamical (given by a 
Lag rangian) that leads to the many very satisfying properties of 
this ideal system. In fact a considerable amount of macroscopic 
plasma physics is devoted to determining to what extent a real 
plasma can differ from its ideal counterpart. Some of these 
questions, magnetic reconnection for example, are among the most 
important of modern day research problems (Petschek 1964). 
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2.2 The two fluid description 

An alternative and more precise treatment of a fully 
ionized plasma is contained in the two-fluid description. The 
two fluids are the electrons and ions. If there is a single 
species of ions, we can assign a density, velocity and pressure 
to the electrons and to the ions. Then the three equations for a 
single fluid, Eqs. (1) - (3), must be replaced by six equations, 
three for each flur.d, describing the six independent quantities 
p ., fje, Uj , U e, P j , p e. Now the cne fluid equations were written 
down on phenomonological grounds and were not extremely accurate 
except in the limit ui T very small where OJ :.s the electron 

cs e ' ce 
cyclotron frequency and T the electron collision frequency. On 
the other hand considerable work has been devoted to deriving a 
set of equation:? accurate for any collision rate faster than the 
dynamic rates of change of p. . P etc. The generally accepted set 
of equations are those of Braginski (1965) , that are now taken as 
standard. We give them here for reference. 

The two continuity equations are 
3n. 
-—•• + V- ( n ^ ) = 0 , (12) 

TT + v-< neV = ° ' ( 1 3 ) 

where n i and n e are the electron and ion particle densities. 
Tr.ese equations are linked by the charge neutrality condition, 
Z n i = ne» where Z is the ion charge number. 
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The two v e c t o r e q u a t i o n s of mot ion a r e 

-5-± + U.-VU. 
a t i i 

= -Vp. - V - K . + zen-
' U- x B 
T 1 -5-± + U.-VU. 

a t i i 
= -Vp. - V - K . + zen- E + c 

• + -*-- R . + p . g 

3 t e e = - 7 p _ - V-TT - n e r e =e e 

r 5 x $ 
•A , e 

3 t e e = - 7 p _ - V-TT - n e r e =e e • J + c 

(14) 

(15) 

+ R • + p g 

In these equations p^ and p e are the ion and electron scalar 
pressures, g i and 2Le are the nonscalar parts of the stress 
tensors, R e^ is the rate of transfer of momentum from ions to 
electrons by collisions. They in turn are linked by the equation 
defining the current j = (Zn i e/ C)(Ui - U e ) , where e is the 
electronic charge. We assume that Znj is much closer to n e than 
U^ is to U e. Because, j cannot be too large without producing 
electromagnetic effects we can say that Ui and U e are also close 
together. 

The two energy equations are: 

i « i 
3 T i -> 
mr + u i ' V T i + P i ' - U j . = - ' ^ i - 1±--™L + QL . (16) 

2 e ^ + Be.VTj + P e v u e = - ^ - g c 
IT :VU + Q =e e e (17) 
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where the temperatures are defined by p 4 = n ^ , p e = n e T e and 
the units of T ar« chosen to maxe Boltzman's constant unity. The 
second term on the left of each equation is the p dV work done by 
compression, q^ and q e are the heat flows, Ei:7Ui and 5 e:Vu e are 
the frictional heating terms due to nonuniform velocities while 
Qi and Q e represent energy exchange between the species and joule 
heating. 

Equations (14) - (17) become more accurate as the collision 
time T goes to zero. They consist of "fluid" terms and 
dissipative terms and the latter are smaller than the former 
roughly by T/t. Thus, if T were zero, collisions would be 
sufficient to maintain an isotropic velocity distribution in the 
frame moving with the fluid and the TT terms would be small. 
However, because U is inhomogeneous, an isotropic distribution at 
one point does not match the isotropic distribution a mean free 
path away, and a certain mixing of these distributions leads to 
anisotropy of the distribution and to ofi diagonal terms in the 
stress tensor. The other dissipative term S e^ is produced by 
unlike particle collisions and is the friction force between 
electrons and ions. Since the difference between the electron 
and ion velocities is the current, this friction includes the 
resistivity as well as thermoelectric effects. In most cases in 
practice U i is close to U Q and can be identified with the mass 
flow of the plasma. If Eq. (14) is added to Eq. (15), the 
electron ion friction force cancels out and the electron inertial 
term and gravitational terms are negligible. Thus, except for 
the viscosity terms fi^ and H.p» w e recover the one fluid 
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equation of motion, Eq. (2). On the other hand, if we express 

- > • * • - * • 

U e in terms of Uj and j by s o l v i n g 

? = n i Z e (U i - U e) , (18) 

we obtain a form of Ohm's law usually denoted as the generalized 
Ohm's law (Spitzer 1962) 

+ s Vp V-ir R . 
S + HJLB = - 2 _ 5 x S - - L £ - ^ S + - S | . ( 1 9 ) c n e J n e n e n e l i 3 ' e e e e 

Equations (12) - (17) are the equations describing the 
electron and ion fluids separately. To complete them, we must 
add Maxwell's equations from Section 2.1, Eqs. (4) - (6), where j 
is defined by Eq. (18). Again, we may consistently neglect the 
displacement current term in Eq. (4) and take Zn^ = n e so Eq. 
(13) is not needed. (This is the case for low frequency 
phenomenon. Although it is the case that the two fluid equations 
may be used to derive some high frequency wave phenomena provided 
thermal effects are small, these derivations are not really 
sound.) We also need the expressions for the various dissipation 
terms. These are given in Braginski's article (1965). Let the 
ion and electron collision times be defined as 

3^T T 3' 2 

Te = _7 * 4 2 . (20a) 
4/ir log A e Z n. 
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3/nT T 3 / 2 

x e = —— e e , (20b) 
4/2TT l o g A e Zn e 

where log A i s t h e Coulomb l o g a r i t h m and mj t h e p a r t i c l e 

m a s s e s . Let us f u r t h e r l i m i t o u r s e l v e s t o t h e c a s e Z = 1 and to 

t h e l i m i t « c s T S >> i , where s i n d i c a t e s t h e p a r t i c l e s p e c i e s , i 

o r e . Then from B r a g i n s k i ' s a r t i c l e we have 

l s = n ° ( b - V U s - b - i V«U s) ( I j . - 2bb) 

+ r ig(S-VU s -b + | V-U s ) I x 

+ (n^Ij . - nfS£)-VU • ! , + I j ' V U • (n*I.i " n^Sb) (21) 

•' ( bx V U g l ' d i g J i - n*SS) - ( n s I j . - rigSS).(S x VU.J 

3 
r) 

+ -~ V ' U s ( S x l i - I ± x £) 

where 
I x = I - bb , r,° = 0.96 n i T i r i , n ° = 0 .73 n e < r e T e , 

r]} = 0 .3 n . T . / o ) 2 - T . , nf = 0 . 5 1 n T /co 2 x Q , n 2 = 4n^ , < 2 2 ) 
l l i c x i i e e c e e ' s s 

n? = 0 .5 n . T . / w „ . T . , n 3 = - 0 . 5 n T /a> , nf = 2n l i i c i I e e e ce s s 
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F o r Rie w e have 

*ie = e n e ^ + ^ " °- 7 1 ne £' 7 Te " ! 5 ^ ( £ * V V ' < 2 3> 

where a x = e2n ex e/m e, a.. = 1.9S a x, and the last t./o terras of Eq. 
(23) represent thermal forces. 

The heat flow terms q s are given by 

n T q = -K ,, S'VT - K .I.-VT + ̂  — - 6 x VT s sll s ii-=± s 2 m m cs s 

(24) 

0.71 n T (U. - U ) + 4 — - — b x (U. - U )|6 , e e v l e' 2 w T I e'/ es 

where 

K .. = 3.16 n T /m , K . . . = 3 . 9 n . T . T . / m . , ell e e e ' e i l l 1 1 1 1 

K , = 4 .66 n T /m « T , K. . = 2n.T./m-oi . T . , e-1- e e e ce e i x I I I e i I 

(25) 

and the factor multiplying the bracket indicates that this term 
(the thermoelectric term) is present only for q e. 

The internal heating terms Q are given by 

°e = -Rei'(Ui " V - QA ' (26) 

where the first term is the joule heating term and the second 
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m n 

Q i = Q A = 3 sr r- ( T

e " T ± ) - < 2 7 > 
1 e 

the energy exchange term. 
Equations (12) - (17) are a complete set of equations for 

the plasma quantities nt = n e, Ui, u e. Pi, and P e , all the 
quantities on the right being defined in terms of them. They 
allow a much richer set of plasma phenomena to be described than 
the one fluid equations, particularly in the allowance for 
different electron and temperatures a.:d the inclusion erf non 
ideal effects such as thermal conductivity, viscosity and 
resistivity and thermoelectric effects. Thus, they are more 
useful for describing long term phenomena in which nonideal 
effects play a significant role. It is possible to include such 
nonideal terms in the one fluid equation. However, because ions 
and electrons transport play different roles and because the 
temperature sensitivity of these is important, the modified one 
fluid approach is usually highly inaccurate and misleading. 
Thus, one could possibly distinguish between the usefulness of 
the one fluid and two fluid approaches as follows. The one fluid 
approach is preferable for short time hydrodynamic effects in 
which nonideal effects play a minor role. Its great advantage is 
that its equations are considerably simpler to handle than the 
two fluid approach. Finally, it can be used in longer time 
problems to get an idea of at least some of the plasma behavior. 

The two fluid equations are more accurate and necessary for 
any precision in the discussion of phenomena where plasma 
transport or dissipation is involved. They are too complex to 
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solve, however, for any problems except those with simple 
geometries. They, of course, can be used to form a good idea as 
to the accuracy of calculations based on the one fluid approach. 

3. COLLISIONLESS PLASMA 

In Section 2 we discussed plasmas in which the collision 
time was the shortest time in the problem with the possible 
exception of the gyration period. Thus, a small element of mass 
of a plasma will relax quickly to a Maxwellian before it can 
change its oroperties, and a local description in terms of the 
parameters characterizing this Maxwellian is appropriate. This 
consistency justifies a fluid description. But in many important 
plasmas the collision time is so long that one should ignore 
collisions. It would appear that for such "collisionlest" 
plasmas a fluid theory is not appropriate. However, even for 
weak magnetic fields, the cyclotron period is still shorter than 
any macroscopic period, and the plasma does have a 
two-dimensional consistency perpendicular to the magnetic field. 
This restores the possibility of a fluid theory to a limited 
extent and is the basis for the guiding center description of a 
plasma. 

3.1 The guiding center limit of the Vlasov equation 
A collisionless plasma is completely described by giving its 

velocity distribution functions f s [fs(t, r, v)d 3rd 3x is the 
number of particles in an element d 3rd 3v at position r and 
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velocity v at time t]. Its time behavior is governed by the 
Vlasov equation 

V? * *•« * k (J * H 4 v » • °- • (28) 

where E(r, t) and 1i<r, t) are the mean electric and magnetic 
fields produced by the smoothed out plasma distributions f s 

' c s c 3t s J 
(29a) 

V-E = 4TT I e e f d v s (29b) 

9B + 
at = _t'v x E ' (29c) 

V-B = 0 (29d) 

These equations are more complicated than the fluid equations 
-+ -j-because they involve seven independent variables t, r, v rather 

-»• than four, t, r. However, by an asymptotic expansion in the 
smallness of the gyration radiation p = mcv/eB compared to the 
scale size oi the plasma the effective number of variables in the 
kinetic equation can be reduced by two, because the gyration 
phase variable is irrelevant and the scalar perpendicular 
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velocity is controlled by a constant of the motion, the adiabatic 
invariant (Chew, Goldberger, and Low 1955; Kulsrud 1962). 

Further, we know that to lowest order, the motion of the 
particles consists of an E * B velocity perpendicular to the 
magnetic field common to all particles, regardless of their 
peculiar velocities or species, and a parallel motion along the 
field. If the parallel electric field E .. = b-E, where b E B/B, 
is small [cf., the discussion after Eq. (34)}, it is well known 
that the magnetic lines of force can be assigned the same E * B 
velocity perpendicular to themselves (Newcomb 1958). Thus, all 
particles will stay on the same line and it should be possible to 
concentrate our attention on a single line and derive a kinetic 
equation involving only two particle variables, position along 
the line and parallel velocity. 

To derive the equations for this reduced system we may 
carry out a formal expansion in the quantity m/e (Kruskal 1960). 
(If we regard macroscopic lengths and times to be fixed, then the 
small gyration radius limit is reached by taking a sequence of 
fictitious charged particles with different atomic properties m/e 
approaching zero. In this imagined series of experiments one 
expects results to be near their asymptotic value when the true 
values of m/e are reached, if the ratio of gyration radius to 
scale size is sufficiently small.) In point of fact, it turns out 
to be slightly more convenient to expand all quantities E, B, f 
in just the reciprocal charge, the quantity 1/e (Rosenbluth and 
Rostoker 1958) . 



-22-
Consider first the Vlasov Eq. (28) and set f = fc + fj 

where f̂  = o(l/e) etc. From this point on we drop the subscript 
s when no confusion results. Then to lowest order 

introduce the E x B velocity 

U E = c ^ L l , ,31, 

and set v = v' + 3 £, Equation (28) then becomes 

^ * ° -V ,f + E „ b-Vf = 0 . (32) 
C V O II O 

Next introduce cylindrical coordinates v x , $ and v in v' space, 
by 

• + - * - * • 

v = xv 1 cos (Ji + yv a sin $ + zv . (3 3) 

Then Eq. (32) becomes 

- S —° + E — - = 0 < 3 4 > 
c 3<t> II 3 v M

 u • 

If E / 0, then Eq. (34) implies f is constant along a helix 
in velocity space extending to infinite velocities, which is 
unphysical. Therefore, Eq. (30) has reasonable solutions only 
if E is expanded in 1/e also. That is E.. = 0(l/e)E . (If this 
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were not the case, the greatly more effective Enwould accelerate 
particles on a cyclotron period time scale until E . is shorted 
out to the lowest order.) The resulting greatly reduced E. can 
then produce a force comparable with the other forces. [See Eq. 
(19)1. It is simpler not to expand E" and £ further, but simply 
to regard E as smaller by one power of e. 

Dropping the E term in Eq. (24), we see that the lowest 
order the Vlasov equation says that f Q i s independent of <£ , but 
gives no further information on its dependence on t, r vs and v.. 
Proceeding to first order we have 

3f 3f o , ̂ .n C , e ,£ , * i,„ c , e „ o 
3 " " '" " v " ""II 
-H + v V £ + - (E + v x B)-V f, + - E.. — - = 0 . (35) 
t o m v o ' -* 1 m I, ov„ 

Transforming to the cylindrical variables v̂  ,«,., yields 

'The terms in parenthesis are not yet so transformed but they 
must be.) This transformation is somewhat complex since at fixed 
v, v., and v,, are dependent on r and t, because b and U r are 

II t 

through Eq. (31). It is easy to see that actually the 
transformation of the quantities in parenthesis leads to a series 
of terms that are sines and cosines in <j>. Once this 
transformation is accomplished it is easy to solve Eq. (36) for 
f^. However, any constant term leads to an f̂  linear in <S> and 
therefore not periodic with period 2ir. Thus, in order to have a 
proper solution for l-^ a necessary and sufficient condition is 
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that the average of the right-hand s ide of Kq. (36) vanish. 

Imagine the r igh t hand side transformed to v± , v.. va r i ab le s and 

averaged over $. The d e t a i l s of t h i s ca l cu la t ion are 

straightforward and the r e s u l t i s tha t Eq. (36) can be solved 

for f l f if and only if 

at + (U„ + v,,b)"Vf - -=- (V-U_, - b-VU «b + v,,7-b) II II 

3f o 
3 V j . 

( - * .
 D ° E V x 

b . _ ^ + _ ( v . b ) + £ E | | 

(37) 

where DUE/Dt = 3U E /3 t + (UE + bv „) VUE. This condit ion thus 

gives the time evolution of fQ. s t r i c t l y speaking we should go 

ahead and solve for fj once we ar«' assured by Eq. (37) that t h i s 

can be done. But i t wi l l appear shor t ly tha t we do not need f| 

for a lowest order desc r ip t ion of a guiding center plasma. 

To complete the system we must add the equations for E and 

B, Maxwell's Eqs. (29a) - (29d). They involve f so that they 

a lso must be expanded in our small "parameter" 1/e. To lowest 

order we have 

0 = 4 T f v d v , so (38a) 

4* I f d 3 v so (38b) 
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Equation (38b) is the charge neutrality condition which states 

that to lowest order in 1/e the t'Jtal charges of each species 

must be equal. For a Z = 1 ion species this reduces to equality 

of the species densities. (Any finite charge density is produced 

by first order differences in charge density because of the 

factor 1/e.) Similarly Eq. (38a) is the current neutrality 

condition. If we transform the velocity integration to 

cylindrical coordinates, we get for Eq. (38a) 

e n ,. e 
0 = 4TT I s s o iL + 4TT I -S. 

L C E L C 
f o v l l 2 T F V i dV-<- d V l 

and the f i r s t term v a n i s h e s by v i r t u e of Eq. (38b) so we have 

I W S 
e 

l 4 f v,, a v o II (39) 

[Equations (38b) and (39) are related by the continuity equation 

derivable from Eq. (37) or even from Eq. (28)], 

/ 3n n (U -b) 
(40) 

so that if Eq.' {39) is satisfied at some initial time t, and Eq. 

(38b) is satisfied (and the other guiding center equations are 

satisfied), then Eq. (39) will be satisfied for all t. 

Alternatively, if the charge neutrality condition is satisfied 

and Eq. (39) is satisfied at one point on each line at every 

time it will be satisfied everywhere. 
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Equations (38b) and (39) are extra conditions imposed on f Q 

and do not serve to advance ~t and ~& in time. These conditions 
are essentially thought to be a control on the magnitude of E , 
which is usually chosen to ensure that they are satisfied. To 
complete our equations we must include Eqs. (29c) and (29d) and 
proceed to one higher order in the expansion of Eqs. (29a) and 
(29b). Thus, Eqs. (29a) and (29b) become 

V x B = 4TT J — •+_ ,3 J 1 dE vf, „ d v + — ir­is c 8t (41a) 

V«E = 4TT I fls d v (41b) 

It would appear that it is necessary to evaluate f^ from Eq. 
(36) after all. However, full information on the dependence of 
£± is not needed. Transformation of Eq. (41a) to cylindrical 
coordinates shows we only need f x $$, | fj_ sin(f, &$, and 
f, cos 4* dii. These may be obtained by multiplying Eq. (36) by 1, 

sin <J> and cos $ and integrating over $ . An equivalent set of 
moments can be carried out on the exact Vlasov Eq. (28) and 
passing to the zeroth order limit. But these are simply the MHD 
equations of sections (1) and (2). Thus, 3 to zeroth order is 
determined by 

I ns r as ( T F + V™s) = "V-l - * - * • + j x B (42) 

where the mass velocity U s and the stress tensor P are defined by 
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f 8 ( v - S a ) ^ - S s ) . 

(43) 

Note that the component of tis perpendicular to b is C E, while by 
Eq. (39) the parallel mass velocities are the same for both 

•* •* species. Thus U = U s. on transforming to cylindrical 
coordinates the stress tensor may be written 

5 = Pj.(l - bb) + P n bb , (44a) 

where I is the unit dyadic and 

I m e 
Ls T f -T- d Jv , (44b) 

Pn = I fs<Vll 5-S) 2 d \ (44c) 

As advertised, Eq. (42) determines the part of j 
perrindicular to b. The parallel part of j is a different moment 
of f̂  but can also be found from Maxwell's equations. We may 
continue this scheme but it is more efficacious at this point to 
change the emphasis from E to u, regarding u as the primary 
variable and E as a secondary variable; 

U x B (45) 

from Eq. (31) . This is particularly true since ? is restricted 
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•+ -*• -+ 

to be perpendicular to b, while U is not and determines E 
automatically to satisfy this condition. 

Solving Eq. (29a) for D Q, substituting into Eq. (42) and 
makir.g use of Eq. (45) we have 

(46) 
(U x B)7»(U * B) 

+ _ 
c 

where p = £ n

sms. Then substituting Eq. (45) into Eq. (29c) 
we have 

§f = V x (J x S) . (47) 

Equations (45) and (47) are nearly self-contained except we need 
f o s to compute and P. p is given by the continuity equation 

f| + V-(pU) = 0 , (48) 

but we cannot obtain P in any other way than from f Q. Thus, the 
equation determining f and thus P, Eq. (37), may be considered 
to determine the "equation of state" of the plasma. Finally, 
inspection of Eq. (37), shows it brings in E , that must be 
determined by the charge neutrality condition Eq. (38a) or 
alternatively the parallel current condition of Eq. (39). It is 
possible by combining the separate moment equations to show that 
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B,. = 
I (e s/m s)5-V.£ s ( 4 9 ) 

I ( ns es/ ms) 
However, this is a little niisleading since Eq. (49) arises from 
the second term derivative of the charge neutrality condition Eq. 
(38) and in fact if one seeks equilibria, E,, actually drops out 
of Eq. (49). 

Our complete system of guiding center equations are Eqs. 
(45) - (48) with P defined by Eqs. (44a) - (44c) and f 0 and E|| 
determined by Eqs. (37) and (38a). Again is in the one fluid 
theory we see that the last two terms of Eq. (4 5) may be dropped 
as relativistically small. The system then reduces to that of a 
one fluid description with the main complication occurring 
through the equation of state. This complication can only be 
removed by solving an apparently five-dimensional equation for 
f Q. However, these five dimensions t, r, v±, v^ can be reduced 
to four by replacing v x by the new variable 

V = v*/2B , (50) 

equa 1 to the magnetic moment of the p a r t i c l e . Equation (37) then 

reduces to 

o 
3 t + <UB + v „ b ) . 7 f o + ( - b - ^ l + uBVb + | E„) ^ = 0 (51) 

and y does not enter into any derivative. It occurs merely as a 



-30-
parameter in Eq. (52) and v.. is the only real variable in 
addition to r and t. Note 

U £ = U x 5 U - bb-U . (52) 

The guiding center theory demonstrates how in the absence 
of collisions the magnetic field acts to give the plasma almost 
enough consistency for a hydrodynamic description. It interferes 
strongly with motions across itself Corcir.g all particles to move 
cogether so that all particles in one tube of force stay in that 
one tube of force. 

Equation (51) may be reduced by two more dimensions in line 
with our remarks at the beginning of this section. To do this we 
make use of the Clebsch form for any divergence free field as 
shown in Section 4.2, for any vector field S such that V-B = 0 
one can find two scalars a and B such that 

B = Vet x VB , (53) 

-> a and B are not uniquely determined, but if they once give B at 
some initial time t Q r they will continue to represent B by Eq. 
(53) for all time, provided they satisfy 

|£ + U-Va - 0 ; || + U-VB = 0 , (54) 
dt dt 

or, in other words, provided they are "frozen" in the fluid. 
Since a and B are flux labels, a line of force is always given by 
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a = const, B = const. This result is a precise mathematical 
expression of the fact that lines of force are frozen in a 
plasma. If we replace the general position variable r by new 
coordinates a, B , and t , a parameter characterizing position 
along a line of force, then Eq. (52) can be reduced to a "one 
dimensional" kinetic equation by transforming to these variables 
a, B, I, y, v .. , <j>. It becomes 

3 f „ , 3 n 3 f « ( ^ DU*. _. eE.A 3f 

provided only t ha t I s a t i s f i e s (3£/3t + UE"V£) = 0 . 

For completeness we c o l l e c t together the fu l l systems of 

guiding center equations for the fundamental var iables p, U, B, 

£ 0 , and E | ( . 

I f + V«(pU) = 0 , (48) 

P(H + 3.,a) . SUL^JLA _ v . g , 

3 B •* • > . 
H = V x (U x B) , (47) 
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1 = Pil + (P., " Pj.)bb (44a) 

Px= I os 2 d v ; p.. = I m c f o s ( v M - 3 - S ) 2 d 3v 

3f 3f OS ^ + (UE + v„b)-v-f o S- v±(V-UJ. - b-VU-b +v n7.b) - ~ 

(_ b._B +_V. b + - E | J _ - o (37) 

f d v = 0 
OS 

(39a) 

3.3 The double adiabatic theory 
As remarked in Section 3.2, a crllisionless plasma is 

subject to description by fluid equations with the single 
difficulty involving the determination of the evolution of the 
two pressure components p ± and p. . Chew, Goldberger, and Low 
(1956) showed that these quantities themselves can be expressed 
in terms of two equations of state 

& & ) • ' • 
(56a) 

'E„B' 
dt \ P3 j u ' (56b) 
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which apply under the same restrictions as the adiabatic theory 
of Section 3.2 but with an important additional restriction. The 
system must vary sufficiently slowly along the lines of force 
that little communication of particles from points of different 
behavior along the lines occurs. More explicitly, see Fig. 1, 
let points p^ a n tj p 2 t,e t w o points on a line of force at which 
the plasma properties, p , T, 5, etc., are significantly 
different. Then in a time t ~ £/v, particles from 1 and 2 will 
mix together and they can no longer be considered separate units. 
However, if significant changes occur at Pj in a time short 
compared to t, the behavior at P 2 can exert no appreciable affect 
on P^. Particles at pj can be considered to remain intact and 
the two particle adiabatic invariants may be employed to 
determine the behavior at Pj. p± i s proportional to v 2 averaged 
over all the particles and to the density p , while <v2>, by the 
invariance ofp, is proportional to B, so we have 

2 p A
 a <vx> p <* pB 

This, of course, is true following the motion since it is the 
particles and not their location that is of importance. 

The second invariant is not so familiar. It is v I where 
t is the "extension" of a fluid element along the line. The 
quantity I has an amount of uncertainty in its definition since 
the particles are dispersing at a considerable rate. However, it 
is known that even in free expansion of a one dimensional gas the 
mean square dispersion of velocities decreases as the density does 
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and moreover goes as one over the length of the element of gas 
squared. (This can be seen for a gas initially of finite length, 
the particles of slowest velocity staying near the initial 
position.) For our case the length I is proportional to 3/p 
since the volume of a tube of force, is inversely proportional 
to p, while the cross sectional area is inversely proportional to 
B. Thus, the parallel pressure goes as 

P M « P<V2

U> <* P/I2 u: p 3 / B 2 

A more formal derivation is as follows: The condition that 
points P^ and P 2 remain intact clearly means that there is no 
significant heat exchange between points P, and P 2. Thus, in the 
third moment of the Vlasov equation we may neglect 0 the heat 
flow tensor. Multiply Eq. (28) by m s(v - ijs) (v - U s) , integrate 
over all velocities at a fixed point r. By charge and current 
neutrality U s is the same for ions and electrons if we assume a 
single ion species. Then we obtain 

-vr- P + V»Q + P 7-U + P-VU + (P-VU) t r 

at =s -s s = — 

(57) 
e s * + — — ( B x P + p x B ) = 0 , m c =s =s ' s 

where the superscript tr indicates transpose of the diadic, P is 
defined as in Eq. (43), and Q s is the triad. 
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(V - U s) (v - U g) (v - U s) f d 3v . (58) 

As before, we regard the last two terras as dominant because of 
the factor e/irc (the small gyration radius expansion). Thus, to 
lowest significant order, the pressure P s o must satisfy 

S * iso = Iso x S • t") 

The most general solution of this equation is 

Pso = P^s'i - S S > + P,|s S S ' (60) 

where the two scalars (so far) are arbitrary functions of time 
and space. 

Let us denote the left hand side of Eq. (57) by L P° . 
Then to next significant order in our expansion, Eq. (57) reads 

LSos = ijc" <ES1 x S - S * Ssi' . < 6 1> 

where P s l js the first order pressure. The necessary sufficient 
conditions that we can solve for P s l is that the trace of this 
equation vanish and also that it vanish when dotted with b on the 
right and left sides. Performing these operations, dropping Q 
and summing over s, we obtain 
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(62a) (2px + p } + (2gx + p..)V-U + 2pA(7-U - b-VU-b) 

+ 2p b-VU-b = 0 , 

^ P n + P | | V-U + 2 P | | E-VU-S = 0 . (62b) 

We relate U to the rate of change of p and B by Eqs. 
(48) and (47). 

do „ + (63) 
dt = - p V ' U ' 

and 

|| = E'|| = b*[V * (U x 2) + U-VB] = B(b-VU-b - V-U) , (64) 

so that Eq. (62) becomes 

^ M _ _ l£ii dp . !£n d B ( 6 5 ) 

dt p dt B dt * 

This reduces immediately to Eq. (56b). Subtracting Eq. (62b) 
from Eq. (62a) and using Eqs. (63) and (64) again yields 

2 d P * ^ d p ^ i d B = . 
dt p dt B dt ' 
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which reduces to Eq. (55a) . 

Thus, ..ie double adiabatic equations of state result from 
the guiding center equations and the dropping of the heat flow. 
We can reduce the expression for Q by making use of the special 
form of f Q f derived in the previous section from Eq. (34), that 
is its independence o* gyration phase Q . Q can be written 

2q±(Ib + bj + tr) + 2q)t bbb (66) 

where 

=U -=- (v„ - U-b) f d Jv (66a) 

« * i l = I (v, -*• -* 3 3 U-b) J f d v (66b) 

and the symbol tr denotes the third possible transposition of the 
triad lb. q' is the parallel heat flow of perpendicular energy 
while q' is the parallel flow of parallel energy. They are only 
small if f is nearly symmetric, the situation arising when 
macroscopic plasma parameters vary slowly along B. Also 

trace V-Q = b-VdOqj. + 2qt|) - (lOqj, + 2q M) b-VB B 

and (67a) 

b-(V-Q)ib = b-tf(6qa + 2q ) - 2(q^ + q ) b'VB B (67b) 
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so the derivative reduces the heat flow term by an additional 
factor proportional to the slowness of variation along B. 

To summarize the double adiabatic formalism, it is 
identical with the single fluid theory, Eqs. (l)-(4) and Eg. (10), 
with the single change that p is replaced by the divergence of 
the tensor pressure P , with the two scalars p ± • Pu determined by 
the double equations of state, Eqs. (56a) and (56b). Again it 
can be seen that the double adiabatic formalism is holonomic, all 
quantities can be expressed in terms of the displacement 
vector and can bo reduced to a Lagrangian formalism. 

These nice properties plus the apparent generalization 
allowed by a nonscalar pressure have made the double adiabatic 
theory quite popular. Unfortunately, the stringent conditions of 
very slow variation along magnetic lines of force imposed by the 
neglect of Q, greatly limit its applicability, at least when 
accurate results are desired. On the other hand the equations 
can be applied to solve problems beyond their limits of 
applicability, and the answers obtained are grossly inaccurate. 
This will be illustrated by an example in Section 5; namely, the 
computation of the criteria for stability against the mirror 
instability when a homogeneous magnetized plasma has unequal 
perpendicular and parallel pressures. This easy applicability 
of the formalistp, beyond the range of its validity makes it 
somewhat dangerous. 



-39-
4. CONSEQUENCES OF THE MHD DESCRIPTION 

The ideal MHD equations and, to a lesser extent, the double 
adiabatic equations and the guiding center equations possess some 
nice properties that often may be employed to draw some 
intuitive conclusions concerning plasma behavior without solving 
the equations in detail. They consist of some general global 
relations, conservation equations, and virial theorems, and also 
of the flux and line conservation equations which may be thought 
of as detailed conservation equations. 

4.1 Conservation relations 
The three quantities conserved by a plasma 

momentum, energy, and angular momentum. To write them 
the ideal one fluid system let us first rewrite 
equation: 

p J| = -pu.™ +
 ( 7 x g ) x S - VP - Pv* , 

4ir 

where we have made use of Eq. (4) to eliminate j and 
the gravitational potential <J with g = - V$ . Mult 
continuity equation by U and adding we get 

g|-(pU) = -V-T - pV<fr , (68b) 

are l i n e a r 

down for 

the force 

(68a) 

introduced 
iplying the 

where 
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p l 
(69) 

T represents stresses exerted on any surface, the first terms are 
Raleigh stresses, the second, magnetic stresses, magnetic 
pressure and tension, while the third-terra is the pressure stress. 
Integrating Eq. (69) over a fixed volume V, and employing 
Gauss's theorem we have 

^ J v
P ° d * T-ds + 

V 
pg dT • (70) 

The term on the left is the rate of change of the plasma momentum 
in the volume, the first term on the right represents changes in 
this momentum due to forces exerted on the surfaces, and the 
last, changes in this momentum due to gravitational forces. If 
the system were isolated and g zero, then the total linear 
momentum would be conserved. [This is actually impossible (see 
the virial theorem below) but if the gravitational force is self 
consistent, produced by the plasma, the gravitational force can 
be written as a divergence and the linear momentum is actually 
conserved, as for example in an isolated star.] In any event the 
linear momentum density of a plasma is simply PU and includes no 
magnetic field contribution. Its change may be estimated by the 
forces on the surface. The electromagnetic contribution is 
relativistically small and not included in our equation. 

A more significant conservation relation is that of energy. 
It is obtained by first multiplying Eq. (68a) by U and making 
use of the continuity equation to obtain 
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£ (P 4) - -^tM1 - ^ - **•'• - *-(P £ e) . ( 7 1 ) 

The left hand side represents the rate of change of kinetic 
energy per unit volume. The kinetic energy is changed as a 
result of corresponding changes of the magnetic energy (the first 
term on the right), pressure energy (the second term) and 
gravitational energy (the third term). In fact,multiplying Eg. 
(10) by U we have 

St \BTJ J 
„ V x (U x B) (72) 
B 4i • 

From Eqs. (3) and (1) we have 

( A ) - ^ - ^ -JL [_E_\ = - "-?P. - JCE. w.n (73) 
3t 

From Eq. (1) we have 

~ M) = -v-(pu)<j> , ( 7 4 ) 

( 4>is assumed independent of time). The quantities on the left 
of Eqs. (70) - (74) are the rates of change of the magnetic, 
pressure and gravitational energy densities respectively. Each 
of these expressions is equal to a terra that corresponds to one 
of the terms on the right hand side of Eq. (71). In other words, 
any change in these energies can produce changes in the kinetic 
energy density. 
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Adding Eqs. (71) through (74) , i n t eg ra t i ng over a fixed 

volume V, and making use of Gauss 's theorem y i e ld s 

"at"" at J °4 + £ + ^r + p* 

ds- pU U + 
B x (U x B) 

4TT 
+ - JL- pU + pU* 

( 7 5 ) 

Thus, we may safely identify the left hand side with the time 
r^te of change of £ the total energy inside the volume V and 
the integral on the right hand side with the loss of energy 
through the surface S. The energy consists of four types: 
kinetic energy, magnetic energy, pressure energy, and 
gravitational energy. Almost any macroscopic plasma process 
consists of exchange of various forms of energy together with 
loss of energy through the surface. Prom Eq. 
(75) this loss can be seen to consist of direct loss of kinetic 
energy (first term), Poynting flux (second term since 
-* -+ -+ 
U x B = -cE), thermal energy and p dV work [since 
pU/( y- 1) = pU/( Y - 1) + pU]f and finally of gravitational work 
represented by fluid entering at one potential and leaving at 
another. (The Poynting flux can also be thought of as loss of 
magnetic energy plus a magnetic P dV work.) 

If the system is effectively isolated, say by rigid 
infinitely conducting walls at which B*n = 0 at some time, then 
B*n will continue to be zero at all times and U-n = 0 so the 
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right hand side of Eq. (75) will vanish and the energy inside 
the volume will be conserved. 

Finally, a conservation relation can be derived for angular 
momentum in complete analogy to Eq. (70). Take any point 0 as 
the origin and let r be the radius vector from this point. Then 

6_ 
dt r x pU dx (r * T) + pr x g dt (76) 

The angular momentum again residos soley in plasma motions. This 
relation is of considerable use in discussing outflow-of angular 
momentum from the sun via the solar wind. 

Another important integral relation for a plasma is the 
virial theorem. Define with respect to an origin 0 the tensor 
moment of inertia of a plasma inside a fixed volume V 

T = =v prr dx (77) 

Differentiate twice with respect to time making use of the ideal 
MHD equations and neglect surface terms and gravity 

dl 
v 

dt 
3p ++ , 
9"E r r d T V*(pu) rr dT (78) 

d 2I 

at 

p(Ur + rU) dT 

[(V-T) r + r7-T] dr = 2 
Jv 

T dT (79) 
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Then if the plasma remains in a finite region of space over a 
long period of time, we may time average Eq. (79) and drop the 
left hand side. There results from Eq. (70) 

pUU + 
2 •*-»• 

SZ T 55-
8ir 4TT 

+ pi dx) = 0 . (80) 

This is the vector virial theorem. < > denotes a time average. 
Deviations from this equation can result from surface terms so 
this equation applies only to an isolated system. Taking the 
trace of Eq. (80) yields 

p° 2 + h + 3 p d-r) = 0 (81) 

Since the integral is clearly positive this then shows the 
impossibility of an isolated (without coils) force-free system. 
On the other hand if a self-consistent gravitational term is 
included we get 

pU + £ + 3p + ^ U T > - 0 . 8TI (82) 

so gravitational energy which is always negative can balance thL* 
other three types of energy. [Note that the fivst term is twice 
the kinetic energy, the second term is just the magnetic energy, 
and the third term is 3(Y~ 1) times the thermal energy, equal to 
two times for y = 5/3, while the last term is the gravitational 
energy.] 
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A final important theorem concerning ideal MHD systems is 

that the system is derivable from a Lagrangian. In order to 
understand this information most easily it is necessary to regard 
each plasma fluid element as an entity. Any flow pattern between 
times t Q and tĵ  should be viewed as a set of time dependent 
displacements f(? o l t) of each of the fluid elements from its 
initial position rQ at t - tQ to its final position r^ = rQ + t 

at t^. A possible motion consists of a dependence of the 
displacement f(rQ,t) on t. Then Hamilton's principle for the 
ideal MHD equations states that the motion that makes 

L dt (83) 

stationary, where 

L = 
2 2 

pU p IT 
2 Y ~ 1 ~ 8n 

dt , (84) 

is the true dynamical one that satisfies the ideal MHD equations, 
and conversely, it is to be understood that for any displacement 
function 5(r, t), dynamical or not, the quantities p, p, and B 
are to be determined by solving Eqs. (1), (3), and (10) 
respectively. We know that these quantities are determined 
holonomically and do not depend on the detailed time dependence 
of f(r 0, t) . 

For the proof of this result let us consider a given motion 
£ (rQ, t) and determine a neighboring motion by specifying the 
Eulerian function fif (?, t) which is defined to be the difference 
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between the position of the fluid element at time t that would 
have been at r under the unperturbed motion, and r. Then it is 
easy to see that the perturbations in the quantities p, p, B at 
position r under the influence of the perturbation of motion are 

Px ~ -V- (pfi?) , (85a) 

? i = -vpV-(5?) - 55'Vp , (85b) 

^ = ? n (5| x i) . (85c) 

It remains to determine Uj. The perturbation in the fluid 
element velocity is 

by definition of 6£ . But this perturbation is at r + 5? and is 

therefore also equal to U-̂  + 6t*VU. Hence 

3 X = M + S.vs| - 6|.75 . (85d) 

Substituting these perturbations into the corresponding 
perturbations of Eqs. (83) and (84) we obtain 
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SL = 61 d t = d t dx [*>•($ + U-Vfi? - S^-VU 

-v-(p«t) £ + 2 2 4 + ^ ] (86) 

Then integration by parts shows that 6L = 0 for all S£ 
vanishing at t Q, t^, and spatial boundaries, if and only if Eq. 
(2) is satisfied. 

The existence of this Hamilton's principle for the MHD 
equations is extremely important. It can be shown to underlie 
most of the general results on MHD such as self-adjointness, 
energy principles for stability of static equilibrium, and energy 
conservation. Further, it has been shown that small scale 
hydromagnetic waves preserve wave action, that is they can be 
thought of as quantized, and this also is a direct consequence of 
this Lag rangian approach (Dewar 1970). 

We have so far exclusively discussed the properties of the 
one fluid ideal MHD equations in this section. All of these 
properties are also possessed by the double acJiabatic formalism 
if we replace p and y by the appropriate generation. For example 
p/(Y - 1) should be replaced by p x + p /2 in Eqs. (75), (80), 
and (84) while 3p should be replaced by 2p A + p.. in Eq. (82). 
Similar results appear to hold for the guiding center theory, 
although they have so far only been effectively determined in 
certain limiting situations. We refer the reader to the 
literature for details. 
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4.2 Flux frozen in plasma 

Probably the most useful of the intuitive concepts implied 
by the icieal MHD equations, as- well as the guiding center theory 
and the double adiabatic theory, is that concerning the magnetic 
flux lines frozen in the plasma. Precisely stated the flux 
conserving theorem is as follows: 

Assume that at sos:e initial time t Q magnetic lines of force 
are drawn throughout the plasma volume in such a way that their 
density is proportional to the field strength B, and they are 
everywhere tangent to B. (For simplicity we take a finite but 
very large number of such lines so their density is not precisely 
determined at each point but can be defined to any desired 
precision by taking a sufficiently large number of such lines.) 
Then at time t Q the magnetic field B is completely represented by 
these lines. Let the plasma flow with velocity u and let the 
magnetic field evolve according to Eq. (10). At the same time 
let the lines of force be bodily transported by this velocity U 
to some new configuration, just as though they were "frozen" in 
the plasma. Then at any later time t, the configuration of the 
lines at that time will represent the magnetic field at that time 
both as to field strength given by line density, and direction 
given by the tangents to the lines. 

This theorem holds true to the extent that Eq. (10) does. 
That is, if B deviates from the field given by Eg. (10) due to 
finite resistivity, it will deviate from the field given by the 
line configuration to exactly the same extent. Since the 
displacement of the lines evolves in a continuous manner, their 
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topoloqy must be preserved. Closed lines remain closed, ergodic 
lines remain ergodic, magnetic surfaces existing at time t Q 

continue to exist, etc. This flux freezing concept is often a 
very critical one and it is important to know under what 
conditions it can be broken. The plasma can occasionally be kept 
from reaching a state of much lower magnetic energy by this 
constraint alone. A change in topology which may be produced by 
a breakdown in l'q. (10) over a very small region, say near an X 
point, could conceivably lead to a large conversion of magnetic 
energy to kinetic energy in a plasma. This possibility is 
usually termed the reconnection problem and it is a problem of 
great interest since its resolution could conceivably lead to an 
explanation for certain observed violent plasma behavior such as 
disruption in tokomaks, solar flares, etc. 

There are two mathematical ways to express the theorem of 
flux freezing. The first is the Lundqvist identity, while the 
second makes use of the Clebsch formula (Lundqvist 1951) . 

The Lundqvist identity expresses the magnetic field at time 
t and position r in terms of its value at time t Q a n d a different 
position r 0 

f (?' v =f <V V v o ? ( V fc) • (87) 

In this formula r is understood to be a function of r Q, and t 
which represents the position of the fluid element at time t that 
occupied the position r Q at initial time t 0. The subscript o on 

-5-
V 0 indicates that derivatives are to be taken with respect to r Q 
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at fixed t. Let B 0 and P Q represent ii'.r0, t D) and p(r D, t D) 
respectively. To establish the validity of Eq. (37) we first 
show that it satisfies Eq. (10). Making use o£ (3r/9t)-*0 = u we 
have 

d •- B -

where d/dt = 5/3t + U'V 5 O / 3 t ) ? 0 . Also 

V x (u x B) = B-Va - tf'VB - B7-U 

|| - v x (5 x 5) = « - S-VU + SVU dt at 

p o o p dt p dt \°*> 

= — TB -V U - (B -V r -VUl , p u o o o o o 

where the first line follows from the definition of d/dt, the 
second line from Eqs. (83) and (1) and the third from 
substitution of Eq. (87) for B. The bracket in the third line 
of Eq. (89) vanishes because of the chain rule for 
differentiation. Thus, Eq. (C7) satisfies Eq. (10) for the 
evolution of the magnetic field and is valid initially, so it 
remains valid for all t. Its relation to flux freezing can be 
seen geometrically. (BQ»V r)/B D is the shearing of a unit line 
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eleinent along the initial line of force by the flow, so Eq. (87) 
states that $ continues to be parallel to the sheared line 
element. Also the line has been lengthened by the same shear 
flow, but factor p/p0 represents the decrease in volume. This 
combined with the lengthening of the line element gives the 
shrinking of the cross-sectional area which thus represents the 
amplification of the density of the lines of force. 

The other alternative mathematical method for describing 
flux conservation involves the Clebsch formula for expressing an 
arbitrary divergence-free vector field such as B in terms of two 
scalar functions 

B = Va x VB . (90) 

If sucii a and B scalars exist, B given by Eq. (90) clearly is 
divergence free. Further, dotting Eq. (90) with Va and 
with V8 gives 

B-Va = 0 , 

(91) 
B'VB = 0 , 

so oi and B are constants along lines of force, and indeed a 
general line of force can be determined by a = a B = & 

' o» o 

where a Q a n d B Q a r e constants. Lastly because 
J = (B*Va x VB/B) = B is the Jacobian for a transformation 
from coordinates r to coordinates a., 6, t, where L is arc 
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length along the lines, we can see that da dB represents the 
element of flux. That is, if we parameterize a surface S cutting 
the lines by a and B then da dB is the flux through the 
corresponding element of area (Fig. 2). Thus, if we select the 
lines of force by a uniform distribution of values of a and B , 
their density will be proportional to the magnetic field strength 
B. 

The above properties of a and g show how they can 
actually be found to satisfy Eq. (90). As in Fig. 2, 
choose a and £' arbitrarily on S and extend them through all 
space so as to satisfy Eq. (91) and 3.VB' = 0; i.e., by keeping 
them constant on a lines. Then 

B x (Vex x ve ) = B'Vg Va - B'VaVB = 0 , 

so 

B = g(Va x VB ) 

-*-where g is a scalar. From V-B = 0 we have 

(Va x VB')'Vg = 2^2 = o , 

- > • 

so g is constant along B lines, and thus a function of a 
and B', g = g(a , B')- Now choose B to satisfy 

jp- = g ( c t' B'] (92) 
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Then for this a and B Eq. (90) is easily v&rified. 

Now a and & are clearly not unique. However, once they 
are chosen to represent B at some initial time t Q f they can be 
chosen at any later time by demanding they stay constant on any 
fluid element. That is, let them satisfy 

f£ + U-Va = 0 , (92a) 

|| + U-7& = 0 . (92b) 

Then B as given by Eq. (90) satifies Eq. (10) and thus 
continues to give the magnetic field. For 

j - t (Va x VB) - V x pJ x (Va x VB)3 

= V ~ x VB + Va x V If - V '-' ru«?8Va - U-VaVB] 
ot dt 

-V(U-Va) x VB - Va x V(u-VB) - V(U-VBVa) + V(U-VaVB) = 0 , 

where the second line follows from expanding out of the triple 
vector product in the bracket in the first line, while the third 
line follows from Eq. (92) and taking the curl of the bracket in 
the second line. 
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The properties of a and 0 clearly correspond to those of 

magnetic lines in the flux conservation theorem. 

5. AN EXAMPLE 

We should like to illustrate the guiding center formalism 
by an example which will also bring out the limitations of the 
double adiabatic formalism. 

Consider a homogeneous, magnetized, ion-electron plasma 
with unequal perpendicular and parallel temperatures. Take the 
uniform field 8 Q in the z direction. For simplicity we take the 
equilibrium distribution to be a bi-Maxweilian with unequal 
perpendicular and parallel temperatures 

2 2 
f = 5 exp/_ V ^ _ IVM \ C 9 3 ) 

Consider a sinusoidal perturbation of this plasma proportional to 
exp(-i t + ikxx + ikzz) . Under what conditions is this 
perturbation unstable? 

We start with the fluid Eqs. (45) and (47). If we 
-+ •+ -*• introduce the plasma displacement %, with U = -iw£ , then 

these become 

"?•*• ' l •+ •+ ^ n " ^ B T 

" ^ = "' El " IF * < W + ^W^ ' { 9 4 ) 

B. = ik ? B x - ik f E z , (95) 
1 z^x o x^x o ' 
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where the subscript or superscript 1 indicates perturbed 
quantities. From Eq. (44a) we have for the perturbed pressure 

g-L = p[l + (PJ, " Px)SS + [P|] - P i ) (SjS + SS 1) . (96) 

Now from Eq. (95) we have 

B l = - i W o , (97a, 

*1 = i k z ^ ' ( 9 ? b ) 

so we eas i ly find 

v-p 7 = [ i k p l - (p., - p±)kh 1 x = 1 L " ~ x ^ l**ll 

( 9 8 ) 

+ [ikzP„ - (P„ - Px)k xk zC x3 z 

Substituting Eq. (98) in the equation of motion, Eq. (94) and 
taking the x and z components we find two equations 

B 2 
- P * \ = -ikxP; + kJ( P ) | - p i ) 5 x - (kx + kj> ̂  C x , 09a) 

• P a \ = -ik z P;, + k x k z ( P ] 1 - P i ) ? x , (99b) 
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for C x and ? z. In order to complete the system we need 
equations of state for pi and pf|. 

Up to this point the double adiabatic theory and the 
guiding center theory coincide. They differ as to the 
determination of p| and pj,, however. First let us complete the 
equations by invoking the two equations of state, Eqs. (56a) and 
(56b) of the double adiabatic theory, to express pi and pj| in 
terms of £ x and £ z. Since from the continuity equation, Eq. 
(48), P-L = -i(k x£ x + k z? z) , we have from this and Eq. (97a) 

Px Pi Bi 
— = _i + _£ = -2ik 5 - ik L / (100a) 
p p B x^x zsz 

P., 3p, 2B, 
-L1 = — - - —• = -ik ? - 3ik £, . (100b) 
p p B x^x z z 

Substitution of Eqs. (100a) and (100b) in Eqs. (94) and (95) 
yields two equations for £ x and £ z alone. Setting the 
determinant of these equations to zero gives the eigenvalue 
equation for <a 

|iOJ 

k R \ 1 
~ ( l ^ + ̂ P * - - s ^ " kjp,,)] (P«2-3k*P|1>« k^pj . ( 1 0 1 ) 

It is easy to see that the roots of a? a r e real. We have 
instability if one of the roots for to2 is negative and the 
condition for this is 

2 k x [fe + Px (l " ̂ - ) ] + *\ (fe + P. " P„) < 0 -
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This is negative if k x = 0 and 

PII > P± + IZ 'II 4ir ' 
( 1 0 2 ) 

the "fire hose instability," or k •* 0 (it must not vanish) and 

Pj. B 2 

SP7, > 8? + p -
(103) 

the "mirror instability." Equations (102) and (103) are the 
stability results derived from double adiabatic theory. 

Let us now employ guiding center theory to find p* and p' 
i 

and to complete Eqs. (99a) and (99b) . Actually we can determine p± from 
£ x alone and we need consider only Eq. (99a). p x is found from 
f which is given by solving Eq. (52), for example. Let 
f = f 0 + fj. Then, since B is the Jacobian of the 
transformation to p, v variables. 

P± = I m= 

II 

f s UB (B dp) dv n d* 

and 

= I 3 2 B 1 
S o (104) 

Perturbing Eq. (52) and using Eq. (93) we have 

" I s 
[ - k x V x ( V * / 2 ) + ( e s / m s ) Ell ^ m s v l l f 

-id) + i k v. , z II 
m S 
1 l l s 

(105) 
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Near the marginal point for stability, we may neglect a in the 
denominator [if tu << k z(T /m) 1/ 2] and 

2 
m v x le E.. 

Now from charge neutrality we can determine E to be 

E = _ [k r ) U-i M e (107) 
bll e ( l c x V (lA'ni) " (1/T„e> " 

For simplicity, we take (T^/T )j = (TA/T ) e so that E = 0. 
Substituting Eq. (106) (with E = 0 ) into Eq. (104) and making 
use of Eq. (97a) we find 

„2 
p - - 2 i V * 5 (Jri) n ' 2 i V x ^ • (108) 

s ^ i I 's 

and if we further take T,. = T, 

p- = 2 i k A ( r - PJ 
2 

(109) 
pll 

Then for sufficiently small to (see above) we have from Eq. 
(99a) 

p-J - »2 (* • £ - ^ ) • > , V £ - *,,) • 

Again we have the fire hose instability if k x = o and Eq. (102) 
is satisfied. However, the condition for the mirror instability 
is changed to k -» o and 

(Pi/P[|) > PJ. + CB2/8ir) , 
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a criteria differing substantially from Eq. (103) (by a factor 
of 6). 

The reason for the different criteria for the guiding 
center theory of the mirror instability and the double adiabatic 
theory is that to must pass through zero so that particle 
communication sets in over a distance k~l along the lines in a 
time short compared to to-*, so the condition necessary for the 
validity of the latter theory fails. 

This example illustrates the dangers inherent in the double 
adiabatic theory, since the failure of the validity conditions to 
hold really only becomes evident after the more accurate guiding 
center theory is carried out. The fire hose instability theory 
remains valid since, as can be seen from intuitive picture of the 
instability, parallel heat flow plays no role. 

This work was supported by the U.S. Department of Energy Contract No. 

DE-AC02-76-CH0-3073. 
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Fig. 1. A l i n e of force , §. 
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dadj8=B-dS 

(PPPL-802272) 
F i g . 2 . Clebsch c o o r d i n a t e s a and B-


