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ABSTRACT

When glass surfaces are bombarded by energetic charged particles, radiation-induced 
density changes happen within the damaged surface layer. As a result of the lateral 
constraints imposed by the undamaged substrate material, stresses are also 
generated within the damaged layer. A detailed analysis of the stress evolution is 
given together with an analysis of the surface displacement and the bending of plate­
like specimens bombarded from one side. The damaged material is assumed to deform 
as a viscoelastic material with a power-law stress dependence. The results of this 
analysis are applied to earlier experimental results in order to extract creep 
parameters which describe this viscoelastic and radiation-induced deformation in 
hydrogen-free vitreous silica.
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I. INTRODUCTION

Radiation damage in solids frequently produces density changes with 
increasing dose. In crystalline metals, the phenomenon of radiation-induced swelling 
has been extensively studied over the last two decades, and it has been found that it 
is caused by the agglomeration of point defects, namely self-interstitials and 
vacancies, which are created by displacement damage. The agglomeration involves the 
diffusion of these point defects to larger defects such as dislocation loops and voids. In 
the case of metals, the density decreases with increasing dose. However, in graphite 
the initial density change is compaction, followed later by a density decrease. This 
more complicated behavior can be explained with the anisotropic radiation-induced 
shape change of the graphite crystallites which make up a graphite composite. 
Nevertheless, the fundamental primary defects produced by the radiation are again 
self-interstitials and vacancies which agglomerate by diffusion to form larger defects. 
Radiation damage in ceramic and ionic solids is even more difficult to understand in 
terms of elementary defects because of the charge state of the latter. However, 
density changes are again a general observation rather than an exception. The 
common denominator of all radiation-induced density changes is simply the 
rearrangement of atoms and chemical bonds which make up the solid.

This rearrangement of atoms and bonds can also be influenced by external and 
internal stresses such that shape changes occur in addition to density changes. These 
stress-biased and radiation-induced shape changes can in fact be viewed as 
radiation-induced creep, and this phenomenon has also been extensively studied over 
the last decade in both metallic and ceramic crystalline solids. In metals, theoretical 
predictions [1] compare favorably with experimental results, indicating that a good 
understanding has been reached of this phenomenon in crystalline solids. For these 
materials, radiation-induced creep is as pervasive a phenomenon as is radiation- 
induced swelling and compaction, and the two have, in fact, a common origin. 
Nevertheless, radiation-induced creep can happen even without swelling or 
compaction, and must therefore be considered as an additional radiation-induced 
phenomenon.

Based on these general observations, it is then reasonable to assume that 
radiation-induced creep is also occurring in glasses, and that it accompanies the 
radiation-induced density changes. Even though there exists no direct experimental 
evidence for this proposition, some circumstantial evidence has been provided by the
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work of Primak [2] and Dellin, Tichenor, and Barsis [3]. Primak [2] measured the step 
height between a surface region bombarded with low energy protons or helium ions 
and an adjacent region not subject to irradiation. He found that for quartz, the step 
height corresponded to swelling of the irradiated surface region, whereas a depression 
or compaction was found for vitreous silica. The step height correlated with the total 
density change even though it occurred apparently only in the direction perpendicular 
to the surface. He concluded therefore that radiation-induced plastic flow must direct 
the density change into the unrestrained direction. Dellin, Tichenor, and Barsis [3] 
measured both the density change and the stresses associated with them in the 
surface layer of vitreous silica bombarded by 18-kev electrons. They found that the 
stresses generated at low doses are entirely because of the isotropic density changes 
in the radiation-damaged layer, but at higher doses they become less than inferred 
from the larger density changes. They interpreted these findings in terms of two 
components for the density change; an isotropic part giving rise to stresses, and an 
anisotropic one generating no stresses. The first component saturates at a low dose, 
where the second component begins to evolve and becomes predominant at higher 
doses. It will be shown in the present paper that radiation-induced creep provides an 
alternate, and perhaps more natural, explanation for these findings. In the next 
section, we develop the mathematical formalism for the stresses produced in the 
irradiated layer. Section ID implements the measurements of Dellin et al. [3] on 
hydrogen-free vitreous silica into this formalism; the last section summarizes our 
results.
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II. STRESSES GENERATED IN THE BOMBARDED LAYER

The specimens used in the above mentioned experiments have the geometry of 
thin plates of thickness, h, as illustrated in Fig.l. The range, 5, of the energetic 
charged particles employed is approximately a few pm, and therefore much smaller 
than the plate thickness and the lateral extension or width of the bombarded surface 
layer. Since any plane cross section perpendicular to the plate surface can be assumed 
to remain plane and perpendicular, the total strains, £11 and £22, in the directions 
parallel to the specimen surface are given by

£n = £22=K+Lz (1)

where K is the average lateral strain and L the curvature of the plate. The state of 
stress formed in the plate as a result of density changes in the surface layer is one of 
plane, biaxial stress, i.e.,

^33 ^32 °31 G12 ® (2)

0ll = a22=a(Z) (3)

z or x3

Fig. 1. Specimen geometry with coordinates and bombarded surface layer.
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The rate of change of the compaction and the creep strains in the bombarded 
layer are related by the constituitive law

ij 1 j. dS yuSt) ~ \dR “ 35iJdR +^R’ (4) -

where
s.. = o.. —ij ij 3 ^ kk (5) -

is the deviatoric stress tensor. In eqn. (4), eij are components of the inelastic strain 
tensor, dS/dR is the derivative of fractional volume change with respect to the dose R, 
8jj is the Kronecker delta tensor, and 'P is the creep compliance or the inverse of the 
viscosity. In general, we expect 'F to depend on the material, its density, and if the 
viscous flow of glass under irradiation is non-Newtonian, it will also depend on the 
equivalent stress aeq.

The first term in eqn. (4) is due to the density change assumed to be isotropic, 
and it represents the strains associated with compaction (negative S) or swelling 
(positive S). The second term represents the radiation-induced creep strain rate, and 
its dependence on the deviatoric stress tensor sjj ensures that no density changes are 
caused by creep deformation.

The elastic strains in the bombarded layer are equal to the difference in the 
total strains ejj and the inelastic strains eij, and they are related to the stresses by 
Hooke's law

e y - e y = E[(1+V)0‘i"v5‘i°“] (6)

where E is the Young's modulus and v the Poisson’s ratio. In addition, the lateral 
stress component a(z) must satisfy the equilibrium conditions

and

N = J
h/2

o(z)dz
-h/2

(7)

h/2

M = J a(z)zdz
-h/2

(8)
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where N and M is the applied membrane load and bending moment, respectively. 
Using the above results, it can be shown [4] that

(9)

(10)

and

a(z)= [K+Lz-en(z)] (ID

The compaction or swelling of the layer in the direction perpendicular to the 
surface can be obtained from the strain component

(12)£33(2) = e33(z) - -g" o(z)

For example, if one measures the step height between the bombarded region adjacent 
to a masked (and therefore undamaged) region, this is equal to the surface 
displacement or

(13)

The detailed lateral stress distribution as a function of depth, as given by eqn. 
(11), is not easily accessible to experimental verification. However, the average or 
integrated stress over the depth of the damaged layer can in fact be measured by 
determining the curling of a bombarded specimen. To demonstrate this we compute the 
following average:

h/2-S
(14)
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When performing this integration over the inelastic strain component en(z), one can 
in fact extend it over the entire plate thickness, because en(z) =0 outside the 
damaged layer. Therefore, the integral in eqn. (10) becomes

.h/2 h/2 , h/2

J z'en(z’)dz'= J z,e11(z,)dz,=f(h-8) J en(z’)dz'
-h/2 « 2 Ju , ^ .

.h/2 

,'h / 2 - 8 h / 2-8 
h 12

= Y(h-S)J cn(z' )dz’ (15)
-h /2

and using eqns. (9) and (10), one finds

rh/2 2 rL/2e,|(z)dZ = O^sj'l.h3L _ (1 ~ v)M 
12 E

The integral in eqn. (14) can now be evaluated, and one obtains

, \ N 2M(a) = — +
Eh2L

h8 6(1-v)8

(16)

(17)

Thus, the average lateral stress in the damaged layer of an unconstrained specimen 
(i.e., N=0 and M=0) is seen to be related to the plate curvature L=l/r, where r is the 
radius of curvature, and this parameter can easily be measured.

To evaluate eqn. (13) for the step height, we take the derivative with respect 
to the dose R and use the constituitive relationship (4) to obtain

JL^± = 1+v /dS\_ 2(1-2V), ,
8 dR 3(1 - v)\dR / 3(l-v)' ' (18)

Whereas the step height change, the term on the left hand side, can be measured 
directly, the rate of density change, <dS/dR>, can not. Eliminating this quantity from 
eqn. (18) requires two steps. We first take the derivative of eqn. (11), insert the 
constituitive relationship (4) and take the average over the layer thickness. The result 
is
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(19)d(o) , E(l-y)f/ds\ _ /m_vl _ dN , 12 dM 
dR + 3(1 - v)l\dR / ' 'J dR h3 dR

where

(20)

Now solving eqn. (19) for <dS/dR> and substituting the result into eqn. (18) one 
obtains

ldu3

5 dR
1 + y d(o)

E(l-y) dR + (¥ct) = 1 — V
E(l-y) dR N + (21)

For a specimen constrained from expansion and bending, or for a very thick specimen 
such that h » 6, the right hand side of eqn. (21) vanishes and y becomes zero. Eqn. 
(21) can therefore be used to estimate radiation-induced creep from measured step 
heights, u3(R)/5, and average lateral stresses, <a>. However, the average of the 
quantity vFc must be factored into a product of two averages for 'R and o. To 
accomplish this it is necessary to assume a depth dependence for 'R(z) and a(z).

- 11 -



III. ANALYSIS OF EXPERIMENTAL RESULTS IN HYDROGEN- 
FREE VITREOUS SILICA

a) Energy Deposition Profile

The rate of density change and the radiation-induced creep rate are both 
proportional to the rate of energy deposition by the incident particles. For the case of 
18 keV electrons which were used in the experiments of Dellin et al. [3], the energy 
deposition profile in glass has been computed with the SANDYL code [5], and the 
results are as shown in Fig. 2. This profile can be approximated by a constant value up 
to a depth £ followed by an exponential decrease, as shown in the figure. Assuming 
the stress is also proportional to the energy deposition profile f(z), we have

c(z, R) = o0(R)f (z) (22)

and
¥(z, R, o^) = v0n(R)ane<i-1(z)f(z) = xi/0n(R)a0(R)fn(z) (23)

where o0 and vjin° are values in the region of nearly constant dose rate and

f(z) =
1
exp[- (h / 2 - £ - z) / rj]

for h/2-C<z<h/2 
for h/2-8<z<h/2-£

is a simple approximation to the energy deposition profile shape. The equivalent 
stress, ceq, is in the present case equal to the lateral stress, and this leads to the 
result given in eqn. (23).

According to the results shown in Fig. 2, the maximum range of the 18 keV 
electrons is about 8 = 3.6 fim, the extent of the nearly constant damage region is 
£ = 1.76 pm, and the exponential decay parameter is ri = 0.43 pm. With the above 
depth distributions for the stress and the creep compliance one obtains for the average 
of vFa the result

{'Fo)= vj/°n(R)(a)nFn = (<)(a)n (25)
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where

C/8+(Ti/8)[l-cxp{-(n +l)(8-p/n}]/(n+ 1) 
[C / 6 + (ri/8)[1-exp{-(5 - 0 / Tl}]]"

F n (26)

Monte Carlo Calculation 
(10000 histories)

•- ©

0 12 3 4

Depth (microns)

Fig. 2. Energy deposition depth profiles for 18 keV electrons impinging at 
normal incidence on a glass substrate. The solid line represents the 
exact profile and the dotted line an approximation used in the present 
analysis.

and where we have introduced an average creep constant <\j/n0> . This average value 
differs from the actual radiation-induced creep rate constant of the material, \|/n0. by 
the constant factor Fn. Table 1 lists this factor for different values of the stress 
exponent, n, and it is seen that they are all of order one for low stress exponents. As 
a result, the average creep constant <\|/n0> represents a reasonably good estimate of 
the true creep constant \j/n0 for n<3.
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Table 1. Ratio of average to true creep rate constants.

Stress exponent n <Vn0>/¥n° = Fn

1 0.9029
2 1.5950
3 2.8687
4 5.1980

b) Measurement of Step*Height

The experimental results of the investigation by Dellin, Tichenor, and Barsis 
[3] are shown in Figs. 3 and 4. In Fig. 3, the average and the upper and lower bounds 
to the measured step heights are fitted to a second order polynomial in dose, whereas 
a commonly used power-law fit is shown in Fig. 4 (see appendix). The former fit 
provides a better overall fit for the entire dose range, whereas the power-law fit is 
closer to the experimental data for doses below 2.0 • 10 12 rad. Either functional form 
allows direct evaluation of the derivative with respect to dose for the first term in eqn. 
(21).

The step height measurements of Dellin et al. were performed on samples with 
a thickness of h = 0.16 cm. Because h» 8, eqn. (21) can be simplified to

d
dR

l+vd<g>
E dR = 0 (27)

where the subscript "sh" on the average stress indicates that it applies to the step 
height samples which are different from the much thinner samples employed for the 
stress measurements.

c) Measurement of Average Lateral Stress

In order to measure the curvature produced by the average lateral stress, 
Dellin et al. uniformly irradiated a thin hydrogen-free vitreous silica plate of thickness
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h = 0.015 cm by a beam of 18 keV electrons. For the unconstrained specimen with no 
membrane load N or

Symbols - Dellin, Tichenor & Barsis data 
Lines - Quadratic Approximation

Dose (x 10A12 rad)

Fig. 3. Step height data (solid symbols are average values and upper and 
lower bounds are indicated by crosses) together with second order 
polynomial fits.
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Symbols - Dellin, Tichenor & Barsis data 
Lines - Power Law Approximation

Dose (x 10A12 rad)

Fig. 4. Same data as in Fig.3, but fitted to a power law for doses less than 
2 * 1012rad.

bending moment M applied, eqn. (17) gives

, . Eh2 D" 3K‘ - f)]
= --- (T^v)- - - - <28)

where the subscript "b" denotes the sample used for the bending measurements. 
Dellin et al. [3] used a relationship for the stress derived by Stoney [6] which differs 
from (28) by the second factor. Stoney's formula is, in fact, only valid for a thin strip 
rather than a plate and for the case when 8/h approaches zero. Using Poisson's ratio, v 
= 0.17 for vitreous silica, and electron range, 8 = 3.2 pm reported by Dellin et al., the 
second factor in eqn. (28) is equal to 1.129. We have incorporated this factor into the 
stress measurements given in Ref. [3], and these results are shown in Fig. 5 together 
with an analytical fit (see appendix) to the modified data. The derivative of the latter 
expression for the stress with respect to dose gives the second term in eqn. (21).
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■ Dellin, Tichenor & Barsis (DTB) data 
‘ DTB data modified for a plate 
“ Approximation

Dose (x 10A12 rad)

Fig. 5. Experimental results for the stress build-up in hydrogen-free 
vitreous silica irradiated with 18 kev electrons.

d) Determination of Radiation-Induced Creep

If the assumption is made that the average lateral stresses in the two different 
samples used for measuring step heights and for bending are the same for the same 
dose, i.e., if

(a) t = (a) = (a)
sh

(29)

we can determine the average creep constant <\)/n0> from eqn. (27) according to

(v°„) =
(o)

U 3 , 1 + V i-v
dR L 5 E ^b. (30)
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However, since the stress exponent n is unknown, eqn. (30) must be evaluated for 
different values of n until a nearly dose-independent creep constant is obtained. Since 
the stress build-up follows the densification at low doses and the two terms within 
the bracket of eqn. (30) nearly cancel, the values of <\|/n0> at doses below 0.51012 
rad are unreliable. The same is true for values obtained at doses above 2.0T012 rad, 
since the extrapolation for the density change is uncertain. Using this approach, the 
following results are obtained:

1) Assuming a linear stress dependence of radiation-induced creep, an 
average creep compliance <\yi°> is obtained which does not seem to exhibit 
any dose region where it is nearly constant. Fig. 6 shows this creep compliance 
using the second order polynomial approximation to the step height data shown 
in Fig. 3; Fig. 7 uses the power-law fit of Fig. 4.

2) For a quadratic stress dependence (n=2) and the step height correlation of 
Fig. 3, the resulting creep constant <\y2°> shown in Fig. 8 displays a nearly 
constant value over the dose range where eqn. (30) can be expected to be 
valid. Using the correlation of Fig. 4, however, does not give a satisfactory 
result.

3) When assuming a third power stress dependence (n=3), a nearly constant 
creep parameter <\\it)0> can again be obtained over the relevant dose range and 
using the step height correlation of Fig. 3. The results for this case are shown 
in Fig. 9. As before, unsatisfactory results are obtained with the correlation of 
Fig. 4.
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horizontal line represents a mean value averaged over the indicated 
dose range.
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Fig. 7. Radiation-induced creep constant assuming linear stress
dependence and the step height correlation displayed in Fig. 4. The 
horizontal line represents a mean value averaged over the indicated 
dose range.
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2.653 * 10

Dose (x 10A12 rad)

Fig. 8. Radiation-induced creep constant assuming quadratic stress
dependence and the step height correlation displayed in Fig. 3. The 
horizontal line represents a mean value averaged over the indicated 
dose range.

In summary, nearly dose-independent irradiation creep parameters can be 
obtained when step height changes are assumed to vary with dose according to a 
second order polynomial, and when the radiation-induced creep rate obeys a power 
law relationship with a stress exponent n between two or three. The value of the 
radiation-induced creep constant averaged over the damaged layer is

<\j/2°> = 2.65 • 10'31 Pa*2 rad'1 for n = 2, (31)

<\j/3°> = 1.79 • 10 *39 Pa'3 rad'1 for n = 3. (32)
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Fig. 9. Radiation-induced creep constant assuming a third power stress 
dependence and the step height correlation displayed in Fig. 3. The 
horizontal line represents a mean value averaged over the indicated 
dose range.

In order to test how well these dose-independent creep parameters can 
reproduce the lateral stress evolution, we integrate eqn. (27) with respect to the dose 
R using eqn. (31) or (32). As seen from Fig. 10, the calculated stresses agree very 
well with the experimental results except for the one data point at the highest dose.
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• DTB modified for a plate
---- Calc, with 2nd power creep
......Calc, with 3rd power creep

Dose (x 10A12 rad)

Fig. 10. Comparison of calculated stress evolution with the experimental 
data.

e) Relation Between Changes in Density and Step Height

As pointed out earlier, the partially constrained density changes in a thin 
surface layer as reflected in step height changes are different from the unconstrained 
density changes <S> which can only be measured directly if the entire specimen is 
subject to a uniform irradiation. However, the step height and unconstrained density 
changes are related by eqn. (18). If we use the factorization in eqn. (25), the 
calculated stresses shown in Fig. 10, then the integration of eqn. (18) yields the 
unconstrained density change presented in Fig. 11. It is seen that <S> is significantly 
greater then the step height (ua/b)
data shown as the solid symbols since, from (18),

3 (1 -v) th
<S> = —----- — at low dose

(1+v) 6
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However, this difference diminishes at sufficiently high doses where step heights
become equal to the unconstrained density changes, i.e.,

u3
<S> = -g- at high dose

Symbols - Dellin, Tichenor & Barsis data 
Solid Line - Calc, with 2nd power creep 
Dashed Line - Calc, with 3rd power creep

Dose (x 10A12 rad)

Fig. 11. Comparison of computed unconstrained density changes and 
measured step heights.

f) Residual Stress Relaxation

Joints between different glasses or glass and other materials often contain residual 
stresses as a result of differential thermal expansion. Assume such a residual stress 
state is biaxial and that the two principal stress components are equal. Then, eqn. 
(11) with K=L=0 describes the evolution of this stress with dose. If we further 
assume, for the purpose of illustration, that radiation produces no differential swelling 
in this joint, then eqn. (11) leads
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to
da
dR

+
Ey°n 

3(1-v)
a" = 0

The solution to this equation is given by

o(R) = —

1 +
(n-DEv^a^R 

3(1-v)

1
n - 1

where R is the dose in rads.

(33)

(34)

*5

cn
v

tr>

a
3
'V
*5

Third Power Creep

Second Power Creep

Dose (x 10A12 rad)

Fig. 12. Relaxation of a Residual Stress with Initial Value of 10 ksi.

If one uses eqn. (34) and the creep constants in eqns. (31) and (32) to 
estimate the relaxation of residual stresses with an initial value of Go = 5 ksi, it is 
seen from Fig. 12 that they relax only by a few per cent over doses of practical interest
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for the higher stress exponent of n=3, but for a stress exponent of n=2 significant 
stress relaxation is predicted.
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III. CONCLUSIONS

The experimental observations on compaction and associated stresses 
produced in vitreous silica during electron irradiation can be rationalized in terms of a 
radiation-induced creep process. Such a process leads naturally to a saturation of the 
stresses produced by differential compaction or swelling long before the density 
saturates. Based on the known existence of radiation-induced creep in both metallic 
and ceramic crystalline solids, it is very probable that this effect also occurs in 
amorphous solids and glasses.

A comprehensive viscoelastic stress analysis has been presented for a surface 
layer in a plate-like specimen, when this surface layer is subject to radiation-induced 
density changes and radiation-induced creep. The analysis is then applied to give a 
new interpretation of the experimental results obtained earlier by Dellin, Tichenor, and 
Barsis [3].

It is found that the radiation-induced creep in vitreous silica is dependent on 
the stress in a non-linear fashion which can be approximated by a power law with an 
exponent between 2 and 3. With the obtained radiation-induced creep parameters, the 
difference between constrained and unconstrained density changes is quantified for the 
first time.
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APPENDIX
The fitting functions used to represent the measured data of Dellin et al. [3] 

are described in this appendix. The step height compaction data are fit both to a 
quadratic polynomial and, analogous to other work, a power law function. 
Corresponding to Fig. 3, we have for doses ranging from 2.5 * 1010 to 2.5 * 1012 rad

-g^ao+ajR+^R2 (Al)

where the coefficients aj, i = 0, 1, 2 are listed in the table below. Similarly, for the

power law fits used in Fig. 4, we have 
u3T = aR (A2)

and the values of a and P given in Table 2 are determined for the range 2.5 * 1010 < R
< 2.0 * 1012.

The modified stress data (see Fig. 5) is approximated by the function 
4

In a = ^ Ci a)1-1 (A3)

i = 1
over the dose range 2 * 1010 < R < 4 * 1012 where g> = In R and Cj = 323.72, c2 = 

-40.148, c3 = 1.7142, and c4 = -0.0239. To perform the numerical integration of the

unconstrained density change shown in Fig. 11, linear extrapolations from the above 
fits are made to zero dose. In particular, we use U3/8 = 3.736 * 10'17 R for 0 < R < 9 *

108 and a = 1.1393 * 10'3 R for 0 < R < 2 * 1010.

Table. 2 Coefficients used in quadratic and power law fits to the step height data.

Quadratic Fits

a0 al a2
Upper Bound -7.8930e-05 1.2602e-14 -2.3892e-27

u3/5 -8.9377e-06 9.9697e-15 -1.7360e-27

Lower Bound -8.7569e-06 8.7300e-15 -1.5729e-27

Power Law Fits

a P
Upper Bound 1.4823e-13 0.90181

u3/8 1.5583e-13 0.89217

Lower Bound 4.3894e-14 0.93401
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