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ABSTRACT

When glass surfaces are bombarded by energetic charged particles, radiation-induced
density changes happen within the damaged surface layer. As a result of the lateral
constraints imposed by the undamaged substrate material, stresses are also
generated within the damaged layer. A detailed analysis of the stress evolution is
given together with an analysis of the surface displacement and the bending of plate-
like specimens bombarded from one side. The damaged material is assumed to deform
as a viscoelastic material with a power-law stress dependence. The results of this
analysis are applied to earlier experimental results in order to extract creep
parameters which describe this viscoelastic and radiation-induced deformation in

hydrogen-free vitreous silica.
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I. INTRODUCTION

Radiation damage in solids frequently produces density changes with
increasing dose. In crystalline metals, the phenomenon of radiation-induced swelling
has been extensively studied over the last two decades, and it has been found that it
is caused by the agglomeration of point defects, namely self-interstitials and
vacancies, which are created by displacement damage. The agglomeration involves the
diffusion of these point defects to larger defects such as dislocation loops and voids. In
the case of metals, the density decreases with increasing dose. However, in graphite
the initial density change is compaction, followed later by a density decrease. This
more complicated behavior can be explained with the anisotropic radiation-induced
shape change of the graphite crystallites which make up a graphite composite.
Nevertheless, the fundamental primary defects produced by the radiation are again
self-interstitials and vacancies which agglomerate by diffusion to form larger defects.
Radiation damage in ceramic and ionic solids is even more difficult to understand in
terms of elementary defects because of the charge state of the latter. However,
density changes are again a general observation rather than an exception. The
common denominator of all radiation-induced density changes is simply the
rearrangement of atoms and chemical bonds which make up the solid.

This rearrangement of atoms and bonds can also be influenced by external and
internal stresses such that shape changes occur in addition to density changes. These
stress-biased and radiation-induced shape changes can in fact be viewed as
radiation-induced creep, and this phenomenon has also been extensively studied over
the last decade in both metallic and ceramic crystalline solids. In metals, theoretical
predictions [1] compare favorably with experimental results, indicating that a good
understanding has been reached of this phenomenon in crystalline solids. For these
materials, radiation-induced creep is as pervasive a phenomenon as is radiation-
induced swelling and compaction, and the two have, in fact, a common origin.
Nevertheless, radiation-induced creep can happen even without swelling or
compaction, and must therefore be considered as an additional radiation-induced
phenomenon.

Based on these general observations, it is then reasonable to assume that
radiation-induced creep is also occurring in glasses, and that it accompanies the
radiation-induced density changes. Even though there exists no direct experimental
evidence for this proposition, some circumstantial evidence has been provided by the



work of Primak [2] and Dellin, Tichenor, and Barsis [3]. Primak [2] measured the step
height between a surface region bombarded with low energy protons or helium ions
and an adjacent region not subject to irradiation. He found that for quartz, the step
height corresponded to swelling of the irradiated surface region, whereas a depression
or compaction was found for vitreous silica. The step height correlated with the total
density change even though it occurred apparently only in the direction perpendicular
to the surface. He concluded therefore that radiation-induced plastic flow must direct
the density change into the unrestrained direction. Dellin, Tichenor, and Barsis [3]
measured both the density change and the stresses associated with them in the
surface layer of vitreous silica bombarded by 18-kev electrons. They found that the
stresses generated at low doses are entirely because of the isotropic density changes
in the radiation-damaged layer, but at higher doses they become less than inferred
from the larger density changes. They interpreted these findings in terms of two
components for the density change; an isotropic part giving rise to stresses, and an
anisotropic one generating no stresses. The first component saturates at a low dose,
where the second component begins to evolve and becomes predominant at higher
doses. It will be shown in the present paper that radiation-induced creep provides an
alternate, and perhaps more natural, explanation for these findings. In the next
section, we develop the mathematical formalism for the stresses produced in the
irradiated layer. Section Il implements the measurements of Dellin et al. [3] on
hydrogen-free vitreous silica into this formalism; the last section summarizes our
results.



II. STRESSES GENERATED IN THE BOMBARDED LAYER

The specimens used in the above mentioned experiments have the geometry of
thin plates of thickness, h, as illustrated in Fig.1. The range, 8, of the energetic
charged particles employed is approximately a few pm, and therefore much smaller
than the plate thickness and the lateral extension or width of the bombarded surface
~ layer. Since any plane cross section perpendicular to the plate surface can be assumed
to remain plane and perpendicular, the total strains, €11 and €37, in the directions

parallel to the specimen surface are given by

£,=€,=K+Lz (1)

where K is the average lateral strain and L the curvature of the plate. The state of
stress formed in the plate as a result of density changes in the surface layer is one of
plane, biaxial stress, i.e.,

6,=0,=0,=0,=0 2)
0, =0, =0(2) (3)
Z or x3
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Fig. 1. Specimen geometry with coordinates and bombarded surface layer.



The rate of change of the compaction and the creep strains in the bombarded
layer are related by the constituitive law

dey, ,_4ds
R —3%gr TYR Cu)S; (4)
where
1
$;,=0,~ 39,0, (5)

is the deviatoric stress tensor. In eqn. (4), ejj are components of the inelastic strain
tensor, dS/dR is the derivative of fractional volume change with respect to the dose R,
djj is the Kronecker delta tensor, and ¥ is the creep compliance or the inverse of the
viscosity. In general, we expect ¥ to depend on the material, its density, and if the
viscous flow of glass under irradiation is non-Newtonian, it will also depend on the
equivalent stress Ceg.

The first term in eqn. (4) is due to the density change assumed to be isotropic,
and it represents the strains associated with compaction (negative S) or swelling
(positive S). The second term represents the radiation-induced creep strain rate, and
its dependence on the deviatoric stress tensor sjj ensures that no density changes are
caused by creep deformation. -

The elastic strains in the bombarded layer are equal to the difference in the
total strains €jj and the inelastic strains eij, and they are related to the stresses by
Hooke's law

e,~e,= 5[ +V)0, -v8,0,] 6)

where E is the Young's modulus and v the Poisson's ratio. In addition, the lateral
stress component ©(z) must satisfy the equilibrium conditions

h/2
N=j o(2)dz @)
-h/2
and
h/2 ,
M=_{ 6(2)zdz @®)
-h/2



where N and M is the applied membrane load and bending moment, respectively.
Using the above results, it can be shown [4] that

K= vN+—j £, @dz )
120-v),, 12 *'?
L=—;£T4M+;3iwfn@ndz (10)
and
E
o(z) = T-v [K+Lz-e,(2)] (11)

The compaction or swelling of the layer in the direction perpendicular to the
surface can be obtained from the strain component

£(0) = ,@) - 2 o) (12)

For example, if one measures the step height between the bombarded region adjacent
to a masked (and therefore undamaged) region, this is equal to the surface

displacement or

h /2

w0 /2)=[ ey -3 ow)]dz 13)

~h /2

The detailed lateral stress distribution as a function of depth, as given by eqn.
(11), is not easily accessible to experimental verification. However, the average or
integrated stress over the depth of the damaged layer can in fact be measured by
determining the curling of a bombarded specimen. To demonstrate this we compute the

following average:

(®=—j o(z) dz (14)



When performing this integration over the inelastic strain component €1](z), one can
in fact extend it over the entire plate thickness, because €11(z) = O outside the
damaged layer. Therefore, the integral in eqn. (10) becomes

h/2 h/2 1 h/2
J Ze (z)z' = _[ Ze,(z)z = —2—(h -9) I e, (z')dz
-h/2 h/2-8 h/2-8
1 h /2 ' '
=20-8 [ e @xz a5

and using éqns. (9) and (10), one finds

h/2 3 1 -y
[ ente)z =52 [hlzL"( EV) ]

FAS th - 5) (16)

The integral in eqn. (14) can now be evaluated, and one obtains

o) % + 2h1\g - 6(113h—21\j)5 [1 - 3%(1 - %)] a7)

Thus, the average lateral stress in the damaged layer of an unconstrained specimen
(i.e., N=0 and M=0) is seen to be related to the plate curvature L=1/r, where r is the
radius of curvature, and this parameter can easily be measured.

To evaluate eqn. (13) for the step height, we take the derivative with respect
to the dose R and use the constituitive relationship (4) to obtain

d -
L0y ey sy 20omgg

3dR “30-v)\dR/ ™ 30-v)

Whereas the step height change, the term on the left hand side, can be measured
directly, the rate of density change, <dS/dR>, can not. Eliminating this quantity from
eqn. (18) requires two steps. We first take the derivative of eqn. (11), insert the
constituitive relationship (4) and take the average over the layer thickness. The result

is

- 10 -



dlo) , E(1- v)r<g§_> + (%)]= dN | E% (19)

dR 3(1-v)L\dR dR h3
where
2
6
=233 8)

Now solving eqn. (19) for <dS/dR> and substituting the result into eqn. (18) one
obtains

1du, 1+v dio)

1 + 1-v d 12
ddR * E(l1-7v) dR

= Bioy) &’ N+?M] 1)

+ {¥o)

For a specimen constrained from expansion and bending, or for a very thick specimen

such that h >> 9, the right hand side of eqn. (21) vanishes and Yy becomes zero. Eqn.

(21) can therefore be used to estimate radiation-induced creep from measured step
heights, u3(R)/d, and average lateral stresses, <6>. However, the average of the

quantity o must be factored into a product of two averages for ¥ and . To
accomplish this it is necessary to assume a depth dependence for ¥(z) and o(z).

- 11 -



III. ANALYSIS OF EXPERIMENTAL RESULTS IN HYDROGEN-
FREE VITREOUS SILICA

a) Energy Deposition Profile

The rate of density change and the radiation-induced creep rate are both
proportional to the rate of energy deposition by the incident particles. For the case of
18 keV electrons which were used in the experiments of Dellin et al. [3], the energy
deposition profile in glass has been computed with the SANDYL code [5], and the
results are as shown in Fig. 2. This profile can be approximated by a constant value up
to a depth { followed by an exponential decrease, as shown in the figure. Assuming
the stress is also proportional to the energy deposition profile f(z), we have

o(z, R) =0 (R)f(2) (22)

and
¥(z R, 0,) = ¥,(R)0. ' @f(2) = y,R)0,R)"()  (23)

where 0, and y,,© are values in the region of nearly constant dose rate and

f(z)={1 for h/2~{<z<h/2 1)

exp[-(h/2-(-2)/n] for h/2-8<z<h/2-(

is a simple approximation to the energy deposition profile shape. The equivalent
stress, Oegq, is in the present case equal to the lateral stress, and this leads to the
result given in eqn. (23).

According to the results shown in Fig. 2, the maximum range of the 18 keV
electrons is about & = 3.6 um, the extent of the nearly constant damage region is
{ = 1.76 um, and the exponential decay parameter is 1| = 0.43 pm. With the above
depth distributions for the stress and the creep compliance one obtains for the average
of Wo the result

(¥o) = v, (R)(0)"F, = (v)(a)" (25)

12 -



where

_&/ 8+ M/ )[1l-exp{-+HG-O/n}]/(n+1)

F n
[£/8+Mm/8)[1—exp{- (@B ~L)/n}]]

n

(26)

e e

Monte Carlo Calculation
(10000 histories)

10 |

Energy / Mass Deposited
(keV/g/source electron)

Depth (microns)

Fig. 2. Energy deposition depth profiles for 18 keV electrons impinging at
normal incidence on a glass substrate. The solid line represents the
exact profile and the dotted line an approximation used in the present
analysis.

and where we have introduced an average creep constant <yn®> . This average value
differs from the actual radiation-induced creep rate constant of the material, yn°, by
the constant factor Fp. Table 1 lists this factor for different values of the stress
exponent, n, and it is seen that they are all of order one for low stress exponents. As
a result, the average creep constant <yp°> represents a reasonably good estimate of
the true creep constant yp° for n<3.

- 13 -



Table 1. Ratio of average to true creep rate constants.

Stress exponent n <Ynl >/ yp® =Fy
1 0.9029
2 1.5950
3 2.8687
4 5.1980

b) Measurement of Step-Height

The experimental results of the investigation by Dellin, Tichenor, and Barsis
[3] are shown in Figs. 3 and 4. In Fig. 3, the average and the upper and lower bounds
to the measured step heights are fitted to a second order polynomial in dose, whereas
a commonly used power-law fit is shown in Fig. 4 (see appendix). The former fit
provides a better overall fit for the entire dose range, whereas the power-law fit is
closer to the experimental data for doses below 2.0 - 10 12rad. Either functional form
allows direct evaluation of the derivative with respect to dose for the first term in eqn.
(21).

The step height measurements of Dellin et al. were performed on samples with
a thickness of h = 0.16 cm. Because h>> 3, eqn. (21) can be simplified to

u d{c) n
O

where the subscript "sh" on the average stress indicates that it applies to the step
height samples which are different from the much thinner samples employed for the
stress measurements.

¢) Measurement of Average Lateral Stress

In order to measure the curvature produced by the average lateral stress,
Dellin et al. uniformly irradiated a thin hydrogen-free vitreous silica plate of thickness

- 14 -



h =0.015 cm by a beam of 18 keV electrons. For the unconstrained specimen with no

membrane load N or

0.020 = T T T v

0.015 | Pt

0.010

0.005 -

Symbols - Dellin, Tichenor & Barsis data
Lines - Quadratic Approximation

Step Height / Electron Range

0 ' n ' 2 ' 2
Dose (x 10712 rad)

0.000

Fig. 3. Step height data (solid symbols are average values and upper and
lower bounds are indicated by crosses) together with second order
polynomial fits.
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Fig. 4. Same data as in Fig.3, but fitted to a power law for doses less than
2% 10" rad.

bending moment M applied, eqn. (17) gives

gn’ [1-33(1-3)] |
6rd (1-v) (28)

(o), =~

where the subscript "b" denotes the sample used for the bending measurements.
Dellin et al. [3] used a relationship for the stress derived by Stoney [6] which differs
from (28) by the second factor. Stoney's formula is, in fact, only valid for a thin strip
rather than a plate and for the case when &/h approaches zero. Using Poisson's ratio, v
= (.17 for vitreous silica, and electron range, d = 3.2 um reported by Dellin et al., the
second factor in egn. (28) is equal to 1.129. We have incorporated this factor into the
stress measurements given in Ref. [3], and these results are shown in Fig. 5 together
with an analytical fit (see appendix) to the modified data. The derivative of the latter
expression for the stress with respect to dose gives the second term in egn. (21).

- 16 -
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Fig. 5. Experimental results for the stress build-up in hydrogen-free
vitreous silica irradiated with 18 kev electrons.

d) Determination of Radiation-Induced Creep

If the assumption is made that the average lateral stresses in the two different
samples used for measuring step heights and for bending are the same for the same
dose, i.e., if

(o) =lo] = o) 29)

we can determine the average creep constant <yp®> from eqn. (27) according to

u
i)=-—L 2,1 | (30)

- 17 -



However, since the stress exponent n is unknown, eqn. (30) must be evaluated for
different values of n until a nearly dose-independent creep constant is obtained. Since
the stress build-up follows the densification at low doses and the two terms within
the bracket of eqn. (30) nearly cancel, the values of <y,0> at doses below 0.5-1012
rad are unreliable. The same is true for values obtained at doses above 2.0-1012 rad,
since the extrapolation for the density change is uncertain. Using this approach, the
following results are obtained:

1) Assuming a linear stress dependence of radiation-induced creep, an
average creep compliance <y19> is obtained which does not seem to exhibit
any dose region where it is nearly constant. Fig. 6 shows this creep compliance
using the second order polynomial approximation to the step height data shown
in Fig. 3; Fig. 7 uses the power-law fit of Fig. 4.

2) For a quadratic stress dependence (n=2) and the step height correlation of
Fig. 3, the resulting creep constant <y7°> shown in Fig. 8 displays a nearly

constant value over the dose range where eqn. (30) can be expected to be
valid. Using the correlation of Fig. 4, however, does not give a satisfactory
result.

3) When assuming a third power stress dependence (n=3), a nearly constant
creep parameter <y3°> can again be obtained over the relevant dose range and
using the step height correlation of Fig. 3. The results for this case are shown
in Fig. 9. As before, unsatisfactory results are obtained with the correlation of
Fig. 4.

- 18 -
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Fig. 6. Radiation-induced creep constant assuming linear stress
dependence and the step height correlation displayed in Fig. 3. The
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In summary, nearly dose-independent irradiation creep parameters can be
obtained when step height changes are assumed to vary with dose according to a
second order polynomial, and when the radiation-induced creep rate obeys a power
law relationship with a stress exponent n between two or three. The value of the
radiation-induced creep constant averaged over the damaged layer is

<y20> = 2.65-10-31Pa2rad! forn=2, (31)

or
1.79 - 10-39 Pa-3rad’l forn=3. (32)

<y3°>

-20 -
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In order to test how well these dose-independent creep parameters can
reproduce the lateral stress evolution, we integrate eqn. (27) with respect to the dose
R using eqn. (31) or (32). As seen from Fig. 10, the calculated stresses agree very
well with the experimental results except for the one data point at the highest dose.
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Fig. 10. Comparison of calculated stress evolution with the experimental

data.
e) Relation Between Changes in Density and Step Height

As pointed out earlier, the partially constrained density changes in a thin
surface layer as reflected in step height changes are different from the unconstrained
density changes <S> which can only be measured directly if the entire specimen is
subject to a uniform irradiation. However, the step height and unconstrained density
changes are related by eqn. (18). If we use the factorization in eqn. (25), the
calculated stresses shown in Fig. 10, then the integration of eqn. (18) yields the
unconstrained density change presented in Fig. 11. It is seen that <S> is significantly
greater then the step height (u3/d)

data shown as the solid symbols since, from (18),
3(1-v) u3
<S>

=—('l-m-g- at low dose

-22 -



However, this difference diminishes at sufficiently high doses where step heights
become equal to the unconstrained density changes, i.e.,

u3 .
<S$>= 3 at high dose

0.020 - r , . v

A 0015}
7,)
v
=
o
= oot}
34
S
=3
£
o
o
0.005 ) -
Symbols - Dellin, Tichenor & Barsis data
¢ Solid Line - Calc. with 2nd power creep

Dashed Line - Calc. with 3rd power creep

0.000 v : ' - ' —
0

1 2 3

Dose (x 10712 rad)

Fig. 11. Comparison of computed unconstrained density changes and
measured step heights.

f) Residual Stress Relaxation

Joints between different glasses or glass and other materials often contain residual
stresses as a result of differential thermal expansion. Assume such a residual stress
state is biaxial and that the two principal stress components are equal. Then, eqn.
(11) with K=L=0 describes the evolution of this stress with dose. If we further
assume, for the purpose of illustration, that radiation produces no differential swelling
in this joint, then eqn. (11) leads

- 23 -
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do Ey, |

dR+3(1—v)6=0 (33
The solution to this equation is given by
c
o(R) = : 1 (34)
n-1
[ (n- 1)Ew*;o';,-‘R]
* 3(1-v)
where R is the dose in rads.
6 y T T
5 Third Power Creep .

Second Power Creep

Residual Stress (ksi)

2F -
1 o -
0 A 1 i 1 A

0 1 2 3

Dose (x 10212 rad)

Fig. 12. Relaxation of a Residual Stress with Initial Value of 10 ksi.
If one uses eqn. (34) and the creep constants in eqns. (31) and (32) to

estimate the relaxation of residual stresses with an initial value of g = 5 ksi, it is

seen from Fig. 12 that they relax only by a few per cent over doses of practical interest
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for the higher stress exponent of n=3, but for a stress exponent of n=2 significant
stress relaxation is predicted.
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III. CONCLUSIONS

The experimental observations on compaction and associated stresses
produced in vitreous silica during electron irradiation can be rationalized in terms of a
radiation-induced creep process. Such a process leads naturally to a saturation of the
stresses produced by differential compaction or swelling long before the density
saturates. Based on the known existence of radiation-induced creep in both metallic
and ceramic crystalline solids, it is very probable that this effect also occurs in
amorphous solids and glasses. _

A comprehensive viscoelastic stress analysis has been presented for a surface
layer in a plate-like specimen, when this surface layer is subject to radiation-induced
density changes and radiation-induced creep. The analysis is then applied to give a
new interpretation of the experimental results obtained earlier by Dellin, Tichenor, and
Barsis [3].

It is found that the radiation-induced creep in vitreous silica is dependent on
the stress in a non-linear fashion which can be approximated by a power law with an
exponent between 2 and 3. With the obtained radiation-induced creep parameters, the
difference between constrained and unconstrained density changes is quantified for the
first time.
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APPENDIX

The fitting functions used to represent the measured data of Dellin et al. [3]
are described in this appendix. The step height compaction data are fit both to a
quadratic polynomial and, analogous to other work, a power law function.
Corresponding to Fig. 3, we have for doses ranging from 2.5 * 10910 2.5 * 10'% rad

%3-=ao+a1R+a2R2 (A1)

where the coefficients a;, i = 0, 1, 2 are listed in the table below. Similarly, for the
power law fits used in Fig. 4, we have

%=01R'Es (A2)

and the values of o and f given in Table 2 are determined for the range 2.5 * 1010<R
<2.0* 10%2.
The modified stress data (see Fig. 5) is approximated by the function

4
Ino= z ¢! (A3)
i=1
over the dose range 2 * 1019 <R <4 * 10! where ® = In R and €1 =32372,¢)=
-40.148, c; = 1.7142, and ¢4 = -0.0239. To perform the numerical integration of the

unconstrained density change shown in Fig. 11, linear extrapolations from the above
fits are made to zero dose. In particular, we use u3/d = 3.736 * 1017 R for0<R<9*

108 and 6 = 1.1393 * 103 R for 0 <R <2 * 1010,

Table. 2 Coefficients used in quadratic and power law fits to the step height data.

Quadratic Fits

39 4 )
Upper Bound -7.8930e-05 1.2602¢-14 -2.3892e-27
u3 /8 -8.9377¢-06 9.9697e-15 -1.7360e-27
Lower Bound -8.7569¢-06 8.7300e-15 -1.5729e-27

Power Law Fits

o B
Upper Bound 1.4823e-13 0.90181
uy /8 1.5583¢-13 0.89217
Lower Bound 4.3894e-14 0.93401
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