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Abstract

AMOS (Azimuthal MOde Simulator) is an electromagnetic sim-
ulation computer program that has been developed to study and
design accelerator cavities. AMOS simulates the temporal evolution
of fields in rotationally symmetric volumes, using a harmonic ex-
pansion in the azimuthal coordinate (#) to project the fields onto a
two-dimensional, r — z, finite-difference grid. An interactive prepro-
cessor has been developed which allows the user to easily construct
AMOS grids from geometric models. A wakefield postprocessor has
also been developed to compute wake potentials and impedances
from AMOS time-domain data. Graphical postprocessing software
is presently under development. AMOS has been used to study ac-
celerating modules in several linear accelerators, including the Ad-
vanced Test Accelerator (ATA), the Experimental Test Accelerator-
II (ETA-II), SNOMAD, Dual Access Radiographic Hydrodynamics
Test facility (DARHT), and others. Ongoing AMOS development
objectives include the installation of an “open” boundary condition
(Lindman), an rf tensor ferrite model, and the extension of AMOS
to irregular, boundary conforming grids.

1. Introduction

AMOS (Azimuthal MOde Simulator) [1] is a 23-D, finite-difference time-domain
(FDTD), electromagnetic simulation computer code used primarily in the design of in-
duction linear accelerator (linac) cavities. AMOS simulates the temporal evolution of
electromagnetic fields in rotationally symmetric volumes, commonly called “bodies of rev-
olution”, by using the FDTD algorithm on fields distributed on a 2-D (r - z) grid (Fig. 1).
The projection of the fields in the volume onto this 2-D grid is accomplished by expanding
the fields in a Fourier series in the third cylindrical coordinate (¢) (see Section 2). AMOS
solves for the temporal evolution of each mode, or term in the series, independently. For
this reason, AMOS is referred to as a “2-;—-D” simulation code. AMOS considers the sim-

ulation grid to be composed of a set of rectangular subgrids, each having a single set of

*  Work performed jointly under the auspices of the U. S. Department of Energy by Lawrence Livermore

National Laboratory under contract W-7405-ENG-48, for the Strategic Defense Initiative Organization and the
U. S. Army Strategic Defense Command in support of SDIO/SDC-ATC MIPR No. W43-GBL-0-5007.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



bt L)

Fig. 1. AMOS simulation volume and corresponding field grid. AMOS models the fields in
a cylindrical volume by distributing the field components (E,, Ey, E,, H,, Hy, and
H,) in each rectangular cell in an r - z grid, and assuming the fields have a harmonic
¢-variation.



electrical properties (€, o, and ) which apply to every cell within the subgrid. Radiation
or impedance boundary conditions can be applied on the boundaries of the simulation grid
as necessary. Both electric and magnetic currents (f and K) may be used as sources for
the electromagnetic fields, or the E and H fields may be driven directly. The user can
request output on any field component at any specified time interval at any position within
the simulation volume. Desired output positions that do not éorrespond to a node on the

grid or to a particular time step are interpolated from adjacent values.

An interactive, window-based preprocessor (called DRAGON) has been developed
to simplify the user definition of the simulation grid. It allows the user to define the
problem geometry by entering a series of points, either by moving a cursor around on
the graphics screen, or via an input file, or even directly from a CAD system (Fig. 2).
The program connects the points with line segments as they are entered. The user may
then edit the geometry through a variety of operations such as moving points, moving line
segments (collections of points), rotating line segments, adding and deleting points, etc.
The final model is composed of a set of closed polygons, each made up of three or more line
segments. Once the model geometry is complete, the user specifies the material type in each
polygon. The preprocessor then constructs a FDTD grid which closely approximates the
model geometry. This grid is subsequently divided into a set of subgrids, and the subgrid

definitions are written to a file which becomes part of the AMOS input specification.

A computational postprocessor has also been developed, which allows the user to
carry out a variety of operations on the field data generated by AMOS. The purpose of
this program is to act as an interface between binary data file dumped by AMOS and a
graphical postprocessor still under development. One simple example of the operations
performed by the postprocessor is the extraction of a time history of a particular field
component from the AMOS output file, which may then be output in standard ASCII
to a file for plotting. A time series may also be manipulated before being output. The

stpported manipulations include Fourier transforms and algebraic operations. The latter
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Fig. 2. Model development example using AMOS preprocessor DRAGON. (a) Line segment
definition of the model boundaries. The points are entered via mouse, keyboard, or
input file. The resulting figure may be edited as necessary. (b) Material specification
is made by placing the graphics cursor in each region and entering the material type
for that region. (c) Finally, the finite-difference grid is generated to fill the simulation
arca. The grid is composed of rectangular subgrids, cach with a particular material
type (e, i, o). The specification for this grid is then written into a data file, and this
file is included as part of the AMQOS input file.



include multiplication by a constant or another series, addition and subtraction of series,
etc. More sophisticated operations may be performed involving several time series at once,
including the calculation of wake potentials and impedances (see Section 3), two quantities
that are important for understanding the interaction of a charged particle beam with a

structure such as an accelerator induction cell [2,3,4].

2. Field Equations

The following equations are solved in the time domain by AMOS:

VxH=J7+D+J, (1)
Vxﬁz—ﬁ—f{‘,, (2)
V-§=pm, (3)
V-ﬁzpe, (4)

where J, is the impressed electric source current, K, is the impressed magnetic source
current, p. is the electric charge density, and p,, is the (fictitious) magnetic charge density.

All units are MKSA. The linear, scalar, frequency independent constitutive relationships

are
B = .Uﬁa (5)
D = ¢E, (6)
J = oE, (7)

where p 1s the permeability, € is the permittivity, and o is the conductivity. The impressed
sources are prescribed by the user.

AMOS solves Maxwell’s equations in cylindrical coordinates for problems involving
rotationally invariant geometries. An explicit azimuthal (¢) dependence is assumed to
project the fields in the 3-D geometry onto the 2-D, r — z plane. Specifically, the ¢-

dependence of the fields is expanded in harmonic multipoles, and AMOS may be used



to simulate the temporal evolution of the particular multipole of interest. Let the field

components all have expansions of the form

oo

F=3 (F cos(mg) + i sin(mg)) (8)

m=0
where f represents any of the simulated fields, and the amplitudes j?,‘,’2 and f:‘{,, which are
both functions of r, 2z, and ¢, are real. To obtain the equations that AMOS solves, we

substitute (8) into (1) and (2), which yields four equations that must be satisfied for each

multipole number m:

R x By, +V x A, = 0Bl + Bl + b, (9)
:rﬂ$xﬁ£,+Vxﬁ3,:0E3,+€§zz+ﬁma (10)
?&xE’3,,+VxE‘,’;=—ﬂﬁ5t“mmv (11)
—_:n_q; X E_‘f;, + V x E';'n = —-;AI_{:{’n - I?gm- (12)

Writing out the individual components of Eqns. (9)-(12) yields twelve equations that must
be satisfied. However, for problems involving linear, scalar constitutive relations, these
twelve equations may be written as two independent sets of six equations each. The solu-
tions of each independent equation set are themselves separate components of a particular
azimuthal mode, in the same sense that each azimuthal mode may be decomposed into its
TE and TM components. However, these solutions are different from TE and TM modes

in that they each contain E, and H,, making them hybrid modes. The equations are

shown below:

6Hp:q .
I prae — 0 — o EPY 4 BP9 4 T2, (13)
2
OHIP HHIP )
T z — q’ b} q’p
e~ T = BT+ By 4 I, 0
1 .
=2 (rHp) F D H? = o 4 D0 4 02, (15)
a,p
:F_m P9 __ ¢ —_ ‘q)P__ 9P
. E? 5, = pH? KoP, (16)



QEPI  QEPS
9z  Or

(rEL?) + —:?Ef’q = —pHY? — K5P. (18)

= —pH)? — KP4, (17)

19

r Or
The new subscripts on the field quantities indicate which component is represented; r refers
to radial component, ¢ refers to azimuthal component, and z refers to axial component.
That the fields are actually modal coefficients is implicit in Eqns. (13) — (18), and for the
rest of this section. One set of equations is obtained by selecting the upper sign (where two
signs are present ), and also selecting the first superscript (p or ¢). The other set is obtained
with the lower sign and second superscript. Note that none of the field quantities appear
in both sets of equations. By restricting our attention, without loss of generality, to those
sources which may be represented purely in one set or the other, we may carry out the
simulation using only six equations, with the corresponding reduction in computer time.
Note also that if nonlinear constitutive relations were used, then the sets of equations may
be coupled through the material model.

The field components are distributed spatially in a computational cell as shown in
Fig. 3. Central differencing is used in both space and time to obtain the finite difference
equations, and these expressions are integrated explicitly. Because central time differencing
is used, the various fields must exist at different time points, just as they must exist at
different spatial locations. Specifically,

all components of E and K, — integer time steps, i.e., 0,1, 2,..., k, k+1,...,
all components of Hand J, — half-integer time steps, i.e., %, %,..., k— -;—, k+ -;-,
The given distribution of field components in time and space yields the following set of

field updating equations using the standard explicit leapfrog technique [5]:

+m k+1/2 1 k+1/2 k+1/2 k - k+1/2
b1 GoATaG,y) T Bs [H¢(i+1,j)‘H¢<i,j) | = BRi et = 1500 Lo
r(ig) = o) > (19)
1 [H"“/Z _Hk+1/2] _ 1 [Hk+1/2 _Hk+1/2] _ER . o(5) _ gkt1/2
k+1 Az 7‘(1+1,]) 1‘(1,]) Ar Z(i,j+l) Z(l,]) ] ¢(1’]) 3¢(1)])
¢(i,3) a®) ' ’

(20)



Fig. 3. Spatial distribution of field components in AMOS computational cell. Distribution
allows all spatial derivatives in curl equations to be central-differenced.
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z(ivj) - a(-{-) ’

(21)
+ k k By prk—1/2 -k
er1j2  iarBey t Az [E $(5.) E¢(i—1,j)] + oA Ho ) H K
Hyj) = D ;o (22)
At
L[Ek”_EkH ] [E Ek- .]_}_M‘H—k 1/2+K
k+1/2 _ Ar | 7z(i) z(i,j—1) r(,5) r(i—1,5) #(i,7) 36(i,5)
,7) (i ’
#(i,5) _(_LL).N
(23)
o [iB. s - G-LES ]:F n Bk, B gkl gk
Hk+l/2 _ (=3)ar T & 4(i,5) J= #(1,5—-1) (]—JL)Ar r(i,5) z(1,5) s2(1,5)
2z .,. = "ei s b
(+,5) JK}L)'
(24)

where o) = ZGi 4 X In Eqns. (19)-(24) we have replaced the superscripts p
and ¢ with superscripts k¥ — 1/2, k, k + 1/2, and k + 1 indicating the time step, and a
parenthetical pair of subscripts has been added to indicate the spatial positions of the
various field components on the finite difference grid. The first subscript indicates the
component, as before in Eqns. (13)-(18), except in the case of the sources, where the
first subscript is an s indicating that the field is a source field, and the second subscript
indicates the component. Whether one is solving for the p or ¢ part of a given component
is determined by which equation set is being simulated, and this in turn is determined by
which set of signs are used in Eqns. (19)-(24). The choice of coefficients used in (19)-(24)
follows from the cell positioning shown in Fig. 4.

Initially, all fields are set to zero, or possibly some user defined initial field configura-
tion, and the simulation clock is zeroed. Solution proceeds by first solving for the fields
that exist at time step 1/2, H (J_; is supplied by the user), then solving for the fields at

time step 1, E (I?s is supplied by the user), then time step 3/2, etc.

3. Calculation of Wake Potentials and Impedances

Consider the geometry illustrated in Fig. 5. The geometry that we are interested in is

cylindrically symmetric, with the z-axis colinear with the axis of rotation. Let the source



T
‘ "Computational” cells
©02) °
o
©0,0) (1,0) 2,0 7 9

Fig. 4. Location and orientation of coordinate axes relative to the placement of 'thdi :i;féllt);;
tational cells that make up the finite difference grid. The numbered pairs in
(¢,7) indices for each cell.

=10~



44

A
Q ® —> v=C
b
Qe 5 v=
Q

........... rq

................... lz\l (;J

S >

Fig. 5. Geometry assumed in the derivation of Eqn. (26) from Eqn. (25). The structure is
assumned to be rotationally symmetric, and it is homogeneous (usually vacuum) in the
region r < b. The distance s is positive for the test charge trailing the source charge.
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of all fields in the problem be a charge @, which will be referred to as the source charge.
Assume that @ moves axially with a velocity of v = ¢ = 2.998 x 10® (m/s), and let Q

have coordinates (r, ¢,z) = (r@,0, zg), where zg = ct. The impulse wake potential is then
defined as

)
WJ(S;rQara ¢) = % / [E(T‘, $,2,1; TQ) + 770’:7 X ﬁ(r? ¢, 2,1; TQ)] l _;t_dz, (25)

__z+s
t_c

where 1, = 3774} is the free space impedance, and k is a unit vector in the axial direction.
Thus, qQWa is the integral of the Lorentz force that a charge ¢ would experience traveling
at a fixed position relative to the source charge, that position given by (r, ¢,z — s). It

can be shown that Eqn. (25) may be written as a sum over azimuthal modes of the form

Vo) = S ()" (22)" [ dem i ™wms 1
Ws(s) = ";) (b) ( 7 ) [k < cos(m¢) — ¢ —Wem sin({m¢) + 7 ~Wem cos(mqﬂ)} .
(26)
Wem 18 called the characteristic impulse wake potential of multipole m, and is defined by

the expression

oo
d—w%";(—“—) =612 /EP(b ot b)L_' dz, 27)
o0

where E2(b, z,1;b) is the axial multipole electric field that appears in Eqns. (13)-(18)
evaluated at r = b, and with the source charge Q at rq = b. Thus, the individual
multipole contributions to the total vector wake potential for any set of coordinates rg,
r, and ¢ satisfying rqg,r < b may be computed by evaluating w,,, and its derivative using
Eqn. (27), and then using Eqn. (26).

To compute the total potential at a particular point in a charge bunch, we introduce

the concept of a bunch wake potential, which is simply a convolution of the impulse wake

potential with the charge distribution, i.e.,

oo b 2T
Wa(s;r, ¢) = / /‘/Ww—ﬁﬂnww%wwwwwwmz (28)
r—_ =0 ¢'=0

8’ =

-12-



where p is the spatial charge density in the bunch, as measured in the beam frame. The
definition of the parameter s is identical to that used in the original definition of the
impulse wake potential, if one measures s from some fixed point in the bunch. Thus, the
impulse wake potential is used as a Green’s function to compute the bunch wake potential.
Taking the Fourier transform of Wpg over the variable s, and applying the convolution

theorem, yields

b 2«
WB(k) = / /Wg(k;r',r, é ~ &) p(k,r', ¢")r'dr'dd’, (29)
r'=0 ¢'

where the Fourier transform is denoted by the use of the frequency domain variable k in

place of s. Multiplying p by ¢, and dividing W by ¢, Eqn. (29) may be written in the

form
b 2n
Wa(k) = / / Z(k;r',r, ¢ — ¢k, r', ¢ ) dr'dg, (30)
r'=0 ¢'=0

where J, is the z-directed current density, with units of A/m because we have taken a
transform over the s variable, and Z is the vector impedance, with units of ohms. As

defined by Eqn. (30) the impedance is given by the relation

1

Z(w) = ZW5(w/c). (31)

In the preceeding discussion, we have laid out the definitions of the wake potential
and impedance. In practice, the computation of these quantities is subject to a number of
difficulties which restrict the class of geometries for which they can be calculated accurately.
Although these difficulties will not be elaborated upon in this article, they will be discussed
in a later paper. In addition, although Eqns. (26) and (31) follow from the simple definition
in Eqn. (25), slightly different definitions of the impulse wake potential and impedance
may be found in the literature. In a concession to established convention, the impedance
that is computed by AMOS differs from Eqn. (31) in that the transverse components are

multiplied by —:. AMOS computes the spectral limits indicated by the mesh size and

-13-



the source bunch width, and applies the most restrictive to limit the highest frequency at

which values of Z are output.

4. AMOS Applications

AMOS has been applied to a variety of problems involving accelerator cavities. The
typical questions that AMOS is used to answer concern the frequencies of cavity resonances
and the design variations that would reduce beam-resonance coupling. We will discuss
work on induction cells from three different accelerators: (1) ATA, (2) SNOMAD, and (3)
DARHT.

The ATA induction cell [6] (Fig. 6) was one of the first cells studied using AMOS.
The primary thrust in this investigation was to determine which of the cavity dipole
(m = 1) resonances could be expected to couple strongly enough to the beam to cause
beam oscillations. These beam breakup (BBU) modes can lead to beam loss on the walls
of the accelerator beampipe. It was possible to determine which cavity modes would be
excited by an electron beam transiting the accelerating gap by driving a short pulse of
current across the gap at the beampipe radius (see Fig. 6) and then taking the Fourier
transform of the resulting axial electric fields in the gap. Also, by computing the wake
potential and the cavity impedance, we were able to determine the strength of this beam—
cavity coupling. This procedure yielded the discovery of two dipole modes, both quite
near in frequency to the TE;; cutoff frequency, which were not appreciably damped by
the ferrite in the cavity. In the absence of a high frequency ferrite model, the ferrite was

approximated by an impedance boundary condition.

The first mode may be expected in any perpendicular joint between a pipe and a radial
line, and it is located in the vicinity of the accelerating gap entrance into the beampipe.
A field plot for this mode is shown in Fig. 7a. Since this mode is localized near the joint,
and is evanescent into both the beampipe and the radial line, it follows that the placement

of ferrite pucks in the ATA cell shown in Fig. 6 will not damp this mode. Fortunately,

-14-
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Fig. 6. DRAGON rendering of azimuthal cross section of ATA cell (actual cell is rotationally
symmetric about the axis, except for the pulse power feed line). The electron beam
travels through the beampipe on axis, and experiences an accelerating voltage as it
traverses the gap. This voltage is induced on the gap by a pulse delivered by the pulse
power input cables. The large ferrite toroid acts as an inductive load to the pulse
power drive; it is required to match the cell impedance with the impedance of the
pulse power feed line. The ferrite pucks are placed in the cell at strategic points to
damp out undesirable rf resonances in the cavity.
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Fig. 7. Plots of two high-Q dipole modes produced by AMOS in simulations of an ATA induc-
tion cell: (a) mode localized near the joint between the beamline and the accelerating
gap, and (b) a mode evanescent in the oil behind the insulator. The plots sl}ow the
direction and magnitude (length of vector tail) of the electric field in an azimuthal
cross section of the cell. The symmetry axis is at the bottom of each plot. Note that
mode (a) does not couple strongly to a transiting electron beam, if the gap is narrow,
because the sign reversal of the axial electric field in the gap causes whatever energy
that is put into the mode while the beam is moving toward the gap to be removed
again as the beam passes and moves away from the gap. By the same argument mode
(b) should be strongly excited by the beam.
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because of the asymmetry in the axial field about the center of the gap, this mode does not
couple significantly to a transiting charged particle beam unless the gap is wide enough

that the transit time is significant as compared to the mode oscillation period.

The second mode of interest is possibly unique to the ATA cell geometry, and a field
plot of this mode is shown in Fig. 7b. This mode is also not damped by the ferrite in the
cell, as it is evanescent beyond the insulator. In principle this mode should couple strongly
to the beam because the axial field is of one sign (symmetric) in the gap; however, the
experimental evidence for this mode is inconclusive. It may be that the proximity of the
mode to the beampipe cutoff is allowing some of the mode energy to be carried out of
the cavity in the form of traveling waves in the pipe so that the mode amplitude cannot
reach an appreciable level. AMOS has been used to suggest modifications to the ATA
cell geometry and changes in the ferrite position which will reduce the effects of all modes

which may interact with the beam.

Another application that has yielded interesting results is the SNOMAD accelerator
cell [7] (Fig. 8). This cell is significantly smaller than the ATA cell. Since there was an
isolated cell available for testing, we have been able to compare AMOS predictions of mode
locations directly with experimental measurements. Modes up to m=4 (modes that have
a ¢-dependence of the form cos(4¢) or sin(4¢)) have been computed and compared with
measurements, and these results are shown in Table 1. Agreement with experiment for
this case is excellent. When the ferrite is unmasked, agreement with measurement is more
qualitative. This is due to the use of an impedance boundary condition to simulate the
effects of the ferrite. Results of this type are important benchmarks for AMOS; they have
provided some of the earliest tests of the code against experimental measurements on a

complex geometry.

The last application that we will discuss is the DARHT induction cell [8]. The DARHT
accelerator is being built at LANL. It produces an electron beam that will be focussed on

a tantalum target to produce x-rays for photography of extremely dense materials. AMOS
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Freon

Impedance
boundary condi-
tion to simulate
ferrite load

Insulator

Vacuum

Accelerating gap

Fig. 8. DRAGON rendering of azimuthal cross section of SNOMAD induction cell. Experi-
mental measurements of the resonant mode frequencies were made for this cell, and
these values were compared to AMOS simulations. For the data shown in Table 1 the
ferrite was masked by a perfect conductor, and the oil and insulator were removed.
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Calculated Resonant Measured Resonant

Mode Frequency Frequency

TMO10 .66 (GHz) 674 (GHz)
TM020 I 2.52 2.539
TMO030 | 3.72 3.736
TM110 I 1.35 1341
TM120 “ 2.66 2.696
2.721
TM210 | 2.20 2.185
TM220 | 3.10 3.130
TM310 | 2.82 2.833
TM320 | 3.73 3.756
TM410 I 3.35 3.36

Table 1. Comparison of experimental measurements and AMOS simulation results for the lo-
cation of resonant modes in the SNOMAD induction cell. For these comparisons, the
ferrite was masked with a perfect conductor, and the insulator and oil were removed.
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was used to assist in the design of the prototype DARHT induction cavity. The prelim-
inary DARHT induction cell design is shown in Fig. 9a. Several of the resonant modes
exhibited unacceptably high coupling impedances with the electron beam, and AMOS was
used to study the effects that geometric and material modifications would have on these
resonances. The optimal design as determined using AMOS is shown in Fig. 9b. The
final design differs slightly from the AMOS design because of pulse power and other con-
siderations. For instance, sharp corners were rounded off to optimize the cell performance
at high drive voltages. The corresponding longitudinal and transverse impedances for the
preliminary and AMOS designs are compared in Fig. 10. The impedance of a cell is
related to the strength of the interaction between the electron beam and the cell. The
longitudinal impedance measures the coupling of the axial motion of the beam to cavity
modes; the transverse impedance measures the coupling of beam motion transverse to the
beampipe axis with cavity modes. In general, one would like the coupling impedances in
both directions to be as small as possible to minimize the effects of cavity resonances on
the beam. During the process of optimizing the cavity design using AMOS, it was discov-
ered that the coupling impedances, especially for the high frequency modes, were affected
strongly by both the positioning and the dielectric constant of the insulator, as well as the
shape of the angular reflector at the top of the cell. Several parameters were varied over

a range constrained by the fabrication requirements until the corresponding impedances

were minimized.

In addition to the applications detailed above, AMOS has also been used to study
various aspects of other accelerators. These include SLIA (Spiral Line Induction Accelera-
tor), ETA-II, the relativistic klystron and HGA (High Gradient Accelerator), the dielectric

wakefield accelerator concept, and study of a proposed linac for heavy ion fusion. work.

5. Ongoing Development

In modeling objects with complex geometries, it may be important to represent the
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Fig. 9. Diagram of (a) preliminary design of DARHT induction cell, and gb) design after opti-
mization using AMOS. Design parameters such as shape of the reflector and the shape
and material properties of the insulator were varied to optimize the rf characteristics
of the cell for accelerator applications.
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Fig. 10. (a) Longitudinal, monopole (m = 0) and (b) transverse, dipole (m = 1) coupling
impedances are compared for the original and optimized DARHT induction cells. The
impedance is a measure of the coupling between modes in the cell and the electron
beam. It is desirable to have all components of the impedance as low as possible over
a broad frequency range.
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boundaries of simulation space more accurately with the elements of an irregular grid. We
are currently upgrading AMOS so that one may, if necessary, capture the essence of these

details.

The thrust of the development work is in directly implementing an update scheme to
an irregular grid using the integral form of Maxwell’s time dependent curl equations. This
involves the placement of field components on a body fitting non-orthogonal grid and on
a dual grid, orthogonal to the first grid. This appears to be an efficient method since one
may localize the irregular portion of the grid to the boundaries, allowing one to vectorize
significant subregions of the body and to update on finite difference cells. This procedure,
in effect, retains all of the computational advantages of the present code. Further, since
absorbing boundary conditions (Mur [9]) work well for df near normal incidence to a cell
face, the elements of the irregular grid are a more natural choice than finite difference cells

for modeling radiation conditions on an oblique surface boundary.

The authors are also involved in the development of ferrite models that are suitable for
time-domain simulation. Most of the current effort is focussed on a Jinear, high frequency,
tensor permeability model. An experimental program has been undertaken to measure
the frequency dependent coefficients of the tensor for various soft ferrites under a variety
of bias conditions. These expermental data are being used to determine parameters in
a theoretical model, and this model is being implemented as a module in AMOS. A low
frequency, nonlinear, ferrite switching model has also been installed in AMOS. This model
will be used to study the pulse power response of accelerator induction cavities, and it
is currently undergoing extensive testing against experimental data taken on small cores
of ATA and ETA-II ferrite. Both of these models will be in module form and will be
removable from the code. This will ensure that problems which do not involve ferrite will

not be slowed down by the additional calculations that are required by the ferrite models.

Various support software is being developed for AMOS, including output graphics and

a more complete front end, or preprocessor. The completed user interface to AMOS will
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simplify the generation of the entire input file (not just the geometry section as is currently
the case), and will also automate the concatenation of the necessary AMOS modules to

construct an executable version of AMOS which is suitable for any given problem.

6. Conclusions

AMOS is a FDTD electromagnetic simulation computer code for use in designing and
studying accelerator cavities and other rotationally symmetric structures in beamlines.
The code has a preprocessor for generating simulation grids from model geometries, and a
computational postprocessor that computes wake potentials and cavity impedances from
the AMOS field time histories. A graphical postprocessor that will plot time histories
and vector field data is under development. AMOS has been applied to a variety of test
problems involving simple canonical structures as well as to design problems with very
complex geometries. As of the date of this conference the code had not yet been released
into the public domain. However, we are interested in seeing the code used in a variety of

accelerator applications, and interested persons are invited to contact the authors.
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