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ABSTRACT

The modeling of apertures that are narrow with respect to the spatial cell size is a
well-known problem for finite—difference time—domain (FDTD) electromagnetic
codes. Although the possibility of using "half—space" transient integral equations to
characterize narrow apertures in FDTD codes has been suggested and studied by
others, a solution to the fundamental problem of how the two techniques could be
combined so that full coupling to the aperture is accounted for was unknown. A
scheme which resolves this problem is presented here. To introduce the technique,
only linear apertures that are electrically narrow with regard to both their width and
depth are discussed, but extensions to more complex aperture configurations should
be possible. The method incorporates an independent "time—marching" solution for
the aperture problem into the FDTD code, and therefore, the burden of gridding the
aperture by a general—purpose FDTD code is avoided. A feedback scheme is used so
that full exterior and interior coupling is included in the aperture solution. This
"hybrid thin—slot algorithm" (HTSA) is quite easy to implement, yields high
accuracy, and gives rise to a "one—step" FDTD solution.
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I. INTRODUCTION

General—purpose finite—difference time—domain (FDTD) codes are widely used
for modeling the electromagnetic response of systems with low to moderate complexity.
The basic discretizing algorithm that these codes generally follow is due to Yee [1].
Although Yee’s work appeared in 1966, it has only been within the past decade that
FDTD codes have gained widespread popularity within the electromagnetics
community as a whole, even though within the EMP community the utility of FDTD
had been recognized since the early 1970’s [2]. The relatively slow widespread
utilization of FDTD is perhaps due to the fact that the development of general—
purpose codes required the resolution of many technical difficulties not addressed in
Yee’s original paper [3], and the computer resources required to run these codes can
often be excessive. The latter is especially true when one would like to use FDTD to
make calculations that are valid into the microwave frequency region.

| As an example of these computer requirements, consider the folldwing.
Suppose that one desired to model a hollow rectangular box that is only 20 cm on a
side. If one were to use a uniform spatial cell of, say, 1 mm, which would lead to a
solution spectrum that is valid up to 20-30 GHz, computer time axid/or memory
requirements for this seemingly simple problem could easily stress some of the largest
supercomputers. Increasing the spatial cell size to 1 c¢cm, for example, reduces the
resource requirements to tractable levels, but details that may require a 1-mm spatial
cell can no longer be resolved, and the spectrum of the solution will only to accurate to
2—3 GHz (or slightly higher if one is willing to accept less than 10 cells/wavelength).

Nowhere is the resolution problem more important than in the
characterization of apertures. If the physical size of the aperture is on the order of, or
larger than the spatial cell size, then modeling this aperture is generally not a problem

because it can be gridded. However, if the aperture is narrow with respect to
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the spatial cell, one must either reduce the cell size for the entire problem down to that
required to resolve the aperture, or adopt an alternative method to characterize the
aperture. As noted above, reducing the cell size is often not a feasible approach, and
therefore alternative methods must be investigated.

One of the earliest investigations into this problem was by Gilbert and
Holland [4]. Their algorithm, known as the "thin—slot formalism" (TSF), recognizes
that the capacitance of the slot varies strongly with width, and therefore knowledge of
the slot capacitance (and inductance) enables one to create modified field equations
local to the aperture without reducing the overall spatial cell size. An inherent
problem with this technique, of course, is the a priori description of the electrical
parameters of the slot. By assuming that the transverse electric field within the
aperture behaves as a constant, which is a reasonable assumption for electrically
narrow slots with depth, the Gilbert—Holland algorithm basically simplifies to that
described by Taﬂové, et al. [3]. Taflove, et al., applied their algorithm to
two—dimensional narrow aperture problems with depth. The results of this TSF
compared favorably with results obtained by modeling the slots using two—dimensional
moment—method techniques. It is noted that the TSF gives rise to a "one—step"
FDTD solution.

An investigation by Turner and Bacon [5] into the accuracy of the TSF for
two— and three—dimensional slots in infinitely thin walls demonstrated that the
thin—slot formalism tends to increasingly underestimate the aperture electric field as
the width of the aperture decreases. An explanation for this was given as follows.
When the depth of the wall is taken to be zero there can only be one transverse
electric—field sample point through the aperture. The magnitude of this field, of
course, increases with decreasing aperture width. Because finite—difference codes give
average field values throughout a cell, and the cell of interest for this aperture can be

taken to extend from one—half cell in front of the wall to one—half cell behind the
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wall, the predicted average electric field will be lower than the true field directly in the
gap. The discrepancy will increase as the width of the aperture decreases, as observed.
This can be an important consideration if one defines conducting walls on electric—field
evaluation points. The study by Taflove [3] generally found superior accuracy of the
TSF. A possible explanation for this is that slots with depth were investigated in that
study, and no E—field evaluation points were in the entering or exiting planes of the
slot; in other words, averaging the gap E—field was restricted to averages taken within
the slot. It is noted that a fully gridded solution may suffer a similar problem, but
because one generally does not grid such narrow apertures the problem has not been
observed. |

Other techniques to model apertures in FDTD codes generally take advantage
of the well-known equivalence principle. A hybrid frequency—domain moment—
method/FDTD scheme was proposed by Taflove and Umashankar [6]. Their technique
uses the moment method to model the closed exterior region of the scatterer to obtain
a "short—circuit" term that is used to drive the interior region, which is modeled by
FDTD. The technique gives rise to a four—step solution process. A similar technique
by Merewether and Fisher [7] models both the exterior and interior using FDTD,
resulting in a two—step process. A benefit of this two—step technique is that when the
interior region is solved, one need only "loosely" grid the exterior region which can
result in considerable savings in computer resources. Although these multi—step
techniques can be of value, they are not suitable for narrow apertures unless one uses
the TSF as well, because the aperture must be left open when the interior problem is
solved by FDTD. However, by successively applying the equivalence principle,
Demarest [8] was able to perform an FDTD analysis of a narrow aperture coupling into
a cavity. This approach gave rise to a four—step solution process. Another technique
to model narrow apertures is the use of "sub—gridding" local to the aperture [9]. This

approach has been found to be difficult to code, and requires care in its implementation
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to avoid numerical reflections off the interface between the various meshes.

Although the possibility of using "half-space" transient integral equations to
characterize narrow apertures in FDTD codes has been suggested and studied by
others, a solution to the fundamental problem of how the two techniques could be
combined so that full coupling is accounted for was unknown. A scheme which resolves
this problem is presented here. To introduce the technique, linear apertures that are
electrically narrow with regard to both their width and depth are discussed. The dual
of the well-known Pocklington equation is solved using an explicit (time—marching)
finite—difference solution. The solution is used as a magnetic current element in
appropriate curl-E equations in the FDTD code. The inclusion of depth is possible by
using an equivalent antenna radius recently derived for deep slots [10].

One may argue that solving the Pocklington equation is appropriate provided
one will be satisfied with an aperture distribution associated with radiation into an
empty half space. However, by judiciously using the FDTD code for field predictions
local to the aperture, it is possible to create a feedback technique that includes all
interior and exterior coupling to the aperture. This is useful because it permits one to
incorporate half-space integral-equation formulations into FDTD codes, without
requiring specific Green’s functions to be known. Thus, extension of the basic hybrid
technique to more complex narrow apertures should indeed be possiblé.

To implement the hybrid thin—slot algorithm (HTSA), one only needs to: (1)
keep track of the internal and external total H—fields local to the desired aperture
position, and (2) append a magnetic current element to the appropriate H-field
equations at each time step. This hybrid scheme gives rise to a one—step solution
process. Advantages of this approach include: (1) A very accurate description for the
slot physics because the slot is characterized by an integral—equation formulation; (2)
The ability to accommodate, to some extent, tortuous depth paths simply by changing

the depth parameter in the slot algorithm [10]; and (3) It is not susceptible to the
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"averaging problem" associated with the TSF that can result in the underestimation of
aperture fields noted above. A disadvantage of the scheme presented here is that one
is limited to linear apertures oriented along principal axes; however, as noted above,
because the method is based on incorporating transient half-space integral—equation
solutions, extensions to more complex aperture configurations should be possible.
Butler and Reed [11] have pursued using explicit finite—difference techniques to solve
the transient equations associated with multiple narrow apertures in infinitely thin
conducting planes. Solutions of this type are candidates for the hybrid algorithm.

The organization of the paper is as follows. In section II, an explicit, or
time—marching finite—difference scheme for the slot problem is presented, and the
feedback technique to include interior and exterior coupling to the aperture is
described. In section III, the HTSA is used to analyze coupling into rectangular
cavities that are loaded with wires and boxes. Comparisons are made with results
obtaiped by a fully gridded solution (where feasible) and results obtained by using the

TSF. Concluding remarks are made in section IV.

II. ANALYSIS

The geometry of a linear slot of length L and width w in an infinite plane is
shown in Figure 1. Observe that the aperture is assumed to lie along the x axis. For
sources on both sides of the plane, the well-known transient equation that describes

the dominant coupling for this problem is given by

L/2
d scl 2 1 & K, (x";t—|xx"| /c) 8§ 8c2
oy t2C——T3_) | & =ty ity (-L/2¢x¢L/2)
BT 4y 2T+ )

(1)

where
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Geometry for a three—dimensional slot in an infinitely thin
conducting wall.

Figure 1:
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c denotes the speed of light in vacuum,

K, denotes the permeability of free space,

H;CI denotes the short—circuit field in front of the slot (region 1),
H;cz denotes the short—circuit field behind the slot (region 2),
K, denotes the total magnetic current,

t denotes the time dependence,

a denotes the equivalent antenna radius for the slot.

Eq. (1) represents the dual equation to the Pocklington equation of antenna theory.

The total magnetic current in Eq. (1) and the magnetic current density, M,

are related by
w/2
K, (x,t) =J dz M_(z,x,t).
—w/2

Since y is assumed to be directed into region 2, M_ in region 1 is related to the

transverse electric field in the gap, E by x M, = ;r x (; E_. ). In region 2, the

ap’ a
magnetic current density changes sigf. pObserve that the averagg:) electric field across
the gap can be written as K_/w.

For slots with zero depth, Eq. (1) has been widely used with a = w/4. For
slots with depth d, the equivalent radius a = (w/4) exp(—7 d/2 w) is used [10]. The
validity of (1) with this radius requires the following: (1) L/w >> 1, and (2) w and d
are both electrically small. Observe that slot depth resonances are ignored by this
formulation and that Ega.p is assumed to be uniform throughout the gap depth. It is
noted that many practical narrow apertures are much longer than either their width or
depth; thus, ignoring depth resonances will only be a problem if the illumination has
significant very high frequency content (typically several gigahertz, and such high

frequencies may not even be resolvable in a general—purpose FDTD code because of

frequency limitations imposed by the largest cell size).
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To solve equation (1) using a finite—difference scheme, the following procedure

is performed. First, K < 18 expanded as

N )
K (x',1)= ) 2 Ky, 5o Pag(7p At PA(x'-074),

n’=1p'=—o

where A defines the spatial step along the axis of the slot equal to L/(N+1), and At
denotes the time step. It is noted that A will not, in general, be equal to the spatial
step used in the main FDTD code. Further comments on this will be made below.
P At and P A denote standard unit pulse functions with widths At and A, respectively.
Kn',p' denotes the unknown coefficients at spatial position n’A and time p’ At.

With this expansion, the integral in (1) can be written approximately as

L/2
i K (x;t—|x=x’|/c)
2 2 \2
g 2T+ )
x=nl
t=pAt
1l
(1527 ]+3)A
N o 1
L ) Ky p Pa((e-pr)eAt—|n-n]4) | dn
n’,p’ At
n/=1p’=—m 27 Ja + n

(Jn-n|—3)A

Extracting the time pulse from the integral is only valid for very thin, linear
structures. By defining p’ = p — |n—n’|, which assumes cAt=A for the slot—solution
algorithm, and using central differences for all differential operators appearing in (1),

the following explicit. difference scheme may be obtained for the coefficients K. . p’

)
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N+1
1 ) G K +K -
'GO |n—n- | n’+1,p—1-|n-n"| n’—1,p—1—|n-n"|
n’ =0
ntn’

K

n
n’,p—2-|n-n‘| |’ |p
where

(a+1/2)A + [(a+1/2)2A2 4+ a?
(a—=1/2)A + [(a—1/2)°A% + a?)

_1
Ga—ﬁln

End conditions require that KO, £ K—l, £ KN +1,8 and KN +2,¢ are defined to be zero
for every €. In addition, K " is defined to be zero for every v with £ < 0. By
time—marching (2), the slot magnetic current is obtained. An average value for the
electric field across the aperture is obtained by forming Kn,p/w, n=1,2,..N; p=1,2,....
Several comments are in order about the spatial step and time step used in the
slot solution and their relation to the values used in the main FDTD code. It is
convenient to define At used in the slot algorithm to be identical to that used in the
main FDTD code. To define the spatial step, it is necessary to consider the Courant
stability criterion required by each code. Three—dimensional FDTD codes based on
the Yee algorithm typically choose a uniform spatial step to be A_/2 = Ay/2 =4,/2
= cAt. This choice amply satisfies the maximum permitted spatial step required for
stability given by Ax=Ay=Az= cAt-3 [12]. Using the same At in the slot algorithm
implies that A = A_/2. Thus the spatial step in the slot algorithm is taken to be half
that used in the FDTD code, which in turn specifies N. This choice for A may be

taken because the slot algorithm involves a one—dimensional finite—difference solution,
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y

and therefore a possible Courant stability criterion is cAt < A for this case (for a
discussion on establishing stability criteria for transient integro—differential equation
formulations, see refs. [13,14]). As formulated above, the time—marching scheme for
the magnetic current takes advantage of the choice cAt = A.

Formally, the above solution for the average gap electric field is valid for
empty half-spaces existing to the left and right of the plane of the aperture. Different
illuminating sources, which generate the short—circuit fields, may exist in regions 1 and
2. Exploiting this fact is what enables the solution to be generalized to Arbitrary
structures existing to the left and right of the aperture.

Suppose that an object exists behind the aperture. At a given time step the
total H—field very close to the aperture consists of two parts: 1) A "half-space"
outgoing wave generated at the present time step; and 2) A scattered wave due to
aperture fields radiated at earlier times. The outgoing wave at a position y=y, from

the slot is determined from the (half—space) expression

L/2
o 12 _, 2 18 , K (xit—| x| /c)
“ogﬂx =*(§2—;2"5t'2) dx 5 "r,l T » (FL/2 < x < L/2).
_ /2 yo + {(x=x’

In time—marching form, the H—field at time—step p—1, n=1,2,...N, can be written as

Hi)2 o H}];)z +
n,p-1 n,p—2

A N+1

R .

" A2 2 G|n—n' | [Kn'+1,p—2—-|n—n'| + Kn'---1,p—2—|n—n' |~ Kn’,p—l—-|n—n'|
0 n’ =0

—Kn',p—3—|n—n'| ] ’ (3)

where,
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. 2,2 y2
G 1 10 (a+1/2)A + [(a+1/2)°A° + 7o)

@ 27 | (a-1/2)8 + [(a—1/2)%8% + ¥3|

In (3), the "plus" sign is used for region 1 and the "minus" sign is used for region 2.

To obtain the scattered—wave contribution, it is necessary to examine the
H-fields used in the main FDTD code that are local to the desired aperture position.
Figure 2 depicts the geometry of a thick wall that is defined by electric—field
evaluation points in the FDTD mesh. All field quantities generated within the main
FDTD code will be denoted by a superscript "FDTD." Observe that the slot does not
exist as far as the basic FDTD mesh is concerned; a magnetic current element is used
to represent the slot. Also note that the FDTD mesh places H—field evaluation points
at positions Y=Y, from the wall. Because the aperture is assumed to lie along the x
axis, the equation that is modified by the magnetic current element is only the Hx
equation in the main FDTD code. The typical modified FDTD equation is (FDTD
spatial subscripts omitted)

FDTD _ oFDTD At FDTD At 1 w 1
pr = pr—l ~ . (VxE —; )yt ("‘_o Kx) (Kx) (& Kp p) (4)

where, in this equation, the "plus" sign is for region 2 and the "minus" sign is for
region 1. The terms to the right of the "+" sign define the appropriate
magnetic—current element generated by the slot algorithm. The reason the (w/A.)
term appears is because the gap electric field must be defined as an average over the
entire wall region contained within the FDTD cells local to the aperture; a similar
scaling occurred with the TSF [3]. Observe that the modified H—field equation only
applies within the cells where the aperture is to exist, both in region 1 and region 2
with the appropriate sign chosen for each region. With (4), all terms required to

implement the hybrid thin—slot algorithm are defined.
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The Hybrid Thin—Slot Algorithm (HTSA)

A self—consistent feedback algorithm can now be established. Let the present
time step in the main FDTD code be p. Before the H—fields are advanced (to time—
step p) in the FDTD code, a call is made to the HTSA subroutine passing HI;DTD

p—1
local to the slot, both in region 1 and region 2. The first calculation in the HTSA
routine is to determine gl,2 , which represent the H—fields local to the slot based

n,p—-1

on "half—space" radiation (cf. Eq. 3). Once the half—space H-fields are found, the

short—circuit drive terms are calculated by forming, for region 1,

1 FDTD 1
H;" =H_ -H (5)

X ?
n,p—1 p—1 n,p-l1

with region 2 being similar. Recall that there are twice as many spatial sample points
used by the HTSA than in the main FDTD code due to the different spatial step used
by each algorithm. For the positions where HiD TD is not defined, an average value
for H;CI can be taken. Figure 3 shows the relationship between Hx evaluation points
for the two algorithms.

The operation defined by (5) generates the desired aperture short—circuit
excitation term due to reradiation that was induced by previous magnetic—current
elements. Once the short—circuit fields are determined, the magnetic current at
time—step p can be found from Eq. 2. Return is then made to the main FDTD code,
the H—fields are advanced, and the magnetic—current element is included in the
appropriate curl-E equation as in (4). In this way, full coupling to the aperture is
accomplished. Each time step proceeds similarly. Note that by augmenting the FDTD
equations outside the H—Advance subroutine, no "vectorizing" loops are disturbed.

One may argue that by forming the field subtraction given by (5), numerical

noise is introduced into the FDTD code. This has not been found to be a problem,
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Figure 3: FDTD and HTSA meshes local to the slot showing H-field

correspondence as well as differences in slot lengths that result from
each mesh.
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perhaps because the source terms used to generate the FDTD solution and the

half—space solution are of essentially the same form.
ITI. NUMERICAL RESULTS AND DISCUSSION

For example problems, the geometries shown in Figures 4 and 5 were
examined. The spatial cell size used for both problems was 1 cm. The walls of the
principal box have a thickness of 1 cm. All structures were made to be perfectly
conducting. The interior wire was 6 cm from the inside of the rear wall and 9 cm from
the inside of the side walls. The wire was loaded with 50 ohms at each of its ends, and
the loads attached to the upper and lower walls of the cavity. The depth of the slot
was 1 cm.

The length of the slot used in the HTSA solution was 9 cm. The length of the
slot fo; the gridded solutions, however, was somewhat longer than 9 cm. This is a
consequence of the manner in which the FDTD mesh models an aperture. In
particular, one can define where tangential electric fields are zero, but due to the
sparseness and offset of the Yee mesh, one could consider these points to be inside a
wall as opposed to defining a boundary condition. Thus, precisely where the slot begins
and ends is difficult to define when the FDTD mesh is used to grid it. The HTSA does
not suffer as seriously from this problem. These comments are visualized in Figure 3.

In Figures 6a and 6b is shown the aperture field for the geometry of Figure 4
with a 1—cm wide slot. In Figure 6a, the feedback scheme discussed above was not
used; thus, the aperture field used to excite the cavity was as if the aperture was
radiating into an empty half space. Comparison is made with results obtained from a
full gridded solution. Note that the two solutions agree quite well for the first couple
of nanoseconds which is to be expected because it takes some time for the wavefront to

"sense" objects behind the aperture. However, in later times the agreement is poor due
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Cavity: 19-cm high; 18-cm wide; 18-cm deep

\ Loaded Wire (19 cm)

g
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E .
: 1-cm thick walls
H Y -
Siot: 9-cm long; 1-cm deep; widths: 1 cm, 1 mm, 0.1 mm
Figure 4: Geometry for test problem 1. All walls are 1-~cm thick. The slot is

centrally located on the front face.
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Figure 5: Geometry for test problem 2. This problem is similar to test

problem 1, with the following exceptions: (1) The slot is moved to a
corner, (2) An internal box is placed 4—cm behind the aperture, and
(3) A plate is placed in front of the aperture.
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to the cavity redirecting energy back into the aperture, which is ignored when feedback
is not included in the HTSA solution. In Figure 6b, the feedback scheme is included
and the agreement is seen to be much better for all time. The slight differences in
period and modulation are due to the slight differences in slot lengths used in the two
solutions, as discussed above. The slot length differences become clear in Figure 7a,
which shows the magnitude of the current spectrum at the midpoint of the loaded wire.
The first peak corresponds to a cavity resonance, whereas the second peak is the first
slot resonance. The gridded result shows a slightly lower resonant frequency
corresponding to a slot length slightly longer than the 9—cm length used in the HTSA
solution. It is noted that the difference between the frequencies corresponding to the
first cavity resonance and the first slot resonance gives rise to the observed modulation
on the transient waveforms. The higher—order resonances are due to the cavity and
the wire. The null at about 3 GHz is due to the wire response. The transient current
response at the wire’s midpoint is shown in Figure 7b.

Figures 8—11 show similar results for aperture widths of 1 mm and 0.1 mm.
Since these apertures are too narrow to fully grid, comparison is made with results
obtained from the TSF. The differences in period and modulation are again due to the
slightly different slot lengths used in each approach. The length differences are clear
when the current spectrums are viewed. The results obtained from the TSF are
believed to be low for the reasons discussed in the introduction. It is noted that wall
losses were not a factor in the two solutions, because the walls were forced to be
perfectly conducting (a condition which gives rise to a slot Q larger than the cavity Q).
If wall losses were included, the slot Q will be lower [15].

Results for the aperture field and wire current for the geometry of Figure 5 are
shown in Figures 12 and 13, respectively. Only the 1—cm wide slot was examined
because of the superior gridded solution which can be used for comparison. This

geometry fully tests the feedback scheme of the HTSA because the slot was placed in
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the corner of the box and additional large obstacles were placed in close proximity both
in front of and behind the slot. The agreement is seen to be excellent. The reason
these results appear in better agreement than those of test problem 1 is because the
significance of the slot resonance has been deemphasized by the obstacles, and therefore
the slot length differences are not as important. It is again noted that as far as the
FDTD mesh used to model this geometry is concerned when HTSA was used, the slot

did not exist, i.e., the cavity was completely closed for this case.
IV. CONCLUDING REMARKS

A new technique for modeling narrow apertures in FDTD codes was proposed
in this paper. This technique incorporates an independent time—marching solution for
the aperture problem into the FDTD code. A feedback scheme was used so that
"half—spa.ce“ integral—equation formulations can be used to characterize the physics of
the aperture. The feedback technique takes advantage of the fact that the FDTD
solution for fields local to the aperture are total fields, and therefore the scattered field
due to reradiation by obstacles near the aperture can be extracted for use as a
short—circuit excitation term for determining the aperture distribution. "The technique
has been found to be relatively simple to implement, and gives accurate results.
Although only linear apertures with depth were investigated here, it should be possible
to apply the method to more complex aperture configurations. It is noted that
tortuous depth paths through the wall can be accounted for, in an approximate sense,
by simply increasing the depth parameter in the equivalent radius; however, the
effective depth must remain electrically small [10].

A potentially useful variation on the application of the HTSA is the following.
Suppose that one desires to model a system that has high internal complexity, but low

external complexity. If the exterior short—circuit field local to an aperture can be
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approximated by analytic means, then the FDTD code with HTSA can be used to
model only the interior region with only interior feedback. Because feedback is
included in the interior, the resulting aperture field driving the cavity will be quite
accurate, and therefore the predicted coupling to interior elements will also be quite
accurate. This approach, of course, does not propagate the fields radiated by the
aperture into the ezterior region, but neglecting this will not significantly alter the
interior response unless there exist external obstacles which would redirect this
radiation back into the aperture; i.e., significantly alter the assumed external short—
circuit fields to the extent that feedback would be required in the exterior region as
well. Assuming that exterior feedback is not required, this type of approximation can
result in considerable computer time and memory savings provided the exterior short—
circuit field can be estimated. It is noted that as an exercise Test Problem 2 was
solved without exterior feedback and the resulting waveforms differed only slightly
from the those obtained with exterior feedback.
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