
compiler that generates executable code with performance con_parable to that produced by a C or

NIPER-596

Distribution Category UC-122

General-Purpose Automation Programming: NIPER---596
A Case Study on Using a Graphic Language DE92 001071

By
S. M. Mahmood

D. K. Olsen

October 1992

Work Performed Under Cooperative Agreement No. DE-FC22-83FE60149

Prepared for
U.S. Department of Energy

Assistant Secretary for Fossil Energy

Thomas B. Reid, Project Manager
Bartlesville Project Office

P. O. Box 1398

Bartlesville, OK 74005

Prepared by
IIT Research Institute

National Institute for Petroleum and Energy Research
P. O. Box 2128

Bartlesville, OK 74005

MAS]ER

TABLE OF CONTENTS

P_ay
Abstract .. 1

Executive summary .. 1

Objective and scope of report ... 2

Background .. 3

Programming concepts relevant to LabV1EW 2® .. 3

Object-oriented programming (OOP) .. 5

Procedure-oriented programming (POP) versus object oriented programming (OOP)6

Program testing .. 8

Description of LabVIEW 2 .. 8
Brief introduction of LabVIEW 2 .. 8

Programming structure of LabVIEW 2 ... 9

Basic facilities in LabVIEW 2 .. 11

Description of NIPER's automation software .. 13

Data acquisition .. 13

Instrument control ... 15

Interactive graphics .. 18

Summary .. 19

Acknowledgments .. 19
References ... 19

Appendix A: Facility features and typical equipment controlled by the software 21

Appendix B: A sample of LabVIEW 2 program .. 22

Appendix C: Basic stnJctures in LabVIEW 2 ... 24

Appendix D: Hierarchical structure of NIPER's data acquisition software 26

Appendix E: NIPER's data acquisition facility ... 35

Appendix F: NIPER's instrument control facility .. 39

TABLES

B. 1 Legend for figure B. 1... 23

C. 1 Legend for figure C.1 ... 25

D. 1 Modules in the data-acquisition program as shown in figure D. 1 28

E. 1 Legend for figure E. 1 ... 37

F. 1 Legend for figure F. 1 ... 41

iii

ILLUSTRATIONS

P_ae

1. A sample FORTRAN program ... 4

2. The control-flow diagram of the sample FORTRAN program 4

3. A sample program segment in LabVIEW 2 .. 5

4. Different ways of classification of objects ... 7

5. A simple dataflow diagram .. 9

6. Basic structures in LabVIEW :2... 12

7. Front panel of NIPER's data acquisition module ... 14

8. A simplified flow diagram of data acquisition facility .. 16

9. Front panel of NIPER's instrument control module ... 17

10. _a example snapshot of automatic 3-D visualization of data 18

B.1 A sample program segment in LabVIEW 2 ... 22

C. 1 Basic structures in LabVIEW 2 .. 24

D. 1 Hierachical structure of NIPER's data acquisition facility 27

E.1 Front panel of NIPER's data acquisition facility ... 36

F. 1 Front panel of NIPER's instrument control module ... 40

iv

GENERAL-PURPOSE AUTOMATION PROGRAMMING: A CASE STUDY
ON USING A GRAPHIC LANGUAGE

By S. M. Mahmood and D. K. Olsen

ABSTRACT

Object-oriented programming is the future direction of computer programming and

automation. It provides fast, easy and very reliable methodology for developing large complicated

software programs to test prototype configurations and develop computer control of multiple

operations. This report is part of technology transfer to assist the petroleum industry and other

engineering, science and manufacturing areas by conveying background information and the

benefits of this approach that were acquired during development of the data

acquisition/control/analysis/presentation software to operate a high-temperature, high-pressure

steamflood laboratory. NIPER developed the background and extensive applications using object-

oriented programming software using National Instruments _ Lab VIEW ® 2 as the programming

platform. The objective of developing this software was to automate the thermal lab; however, it

was designed in such a way that the program would be general and could be configured to any

laboratory automation during the mn time. This modular program has been constructed so that

application, with minor modification, can be used in other laboratory, pilot plant or commercial

operations for data acquisition/control/analysis/presentation.

EXECUTIVE SUMMARY

The report addresses part of tasks 1 and 6 of research called for in NIPER's FY92 annual

plan for project BE1 lA, Thermal Processes for Light Oil Recovery. lt also provides a background

and outline of the modular software developed using National Instruments vMLabVIEW ® 2 as the

programming platform that uses an object-oriented programming language "G." Object-oriented

programming is the future direction of computer programtning and automation. It provides fast,

easy and very reliable methodology for developing large complicated software programs to test

prototype configurations and develop computer control of multiple operations. NIPER developed

this general modular program for data acquisition/control/analysis/presentation to have the

following capabilities: (1) Allow user to operate interactively through a computer panel by

communicating with laboratory instruments such as pumps, controllers, balances, temperature

sensors, pressure sensors, fluid flow controllers, and alarms; (2) warn operators of conditions out

of preprogrammed ranges and shut down operations systematically if the operator does not

respond; (3) monitor the test progress by material balance based system and provide early

warnings to user for situations that may need user's attention in near future, such as feed tank

running low on liquid or sudden changes in material bahmce indicating e.g. possible leak in the

system; (4) prohibit user from making unsound operations such as running a pump when outflow

valve is closed; (5) let user manipulate current and/or previous data interactively, e.g. analyze,

compare, plot, curve-fit and print; and (6) communicate with other applications and users for

sending data and warnings and receiving instructions.

This modular program, developed by NIPER using LabVIEW 2 has been constructed so that

application, with minor modification, can be used in other laboratory or pilot plant operations for

data acquisition/control/analysis/presentation. The software permits analysis and presentation

within LabVIEW 2 and other software programs written for a Macintosh computer. Some of its

features and typical control instruments are listed in Appendix A.

This report along with a companion report I completes milestones 1 and 6 of research called

for in NIPER's FY92 annual plan for project BE 11A, Thermal Processes for Light Oil Recovery.

The companion report 1 covers the configuration of equipment and ope.,rators' guide for use of

equipment and laboratory control systems. The combination of both reports helps NIPER to

document some of the operational aspects and procedures to improve and maintain safe, efficient

operating procedures for construction and operation of a high-temperature, high-pressure

steamflood laboratory.

The software developed is part of a broader task to develop procedures and apparatus for

measuring dynamic saturation changes in laboratory steamfloods using an X-ray CT scanner that

incorporates temperature, pressure and electrical conductivity measurements as part of the

monitoring of steainflood performance. Results from these laboratory steamflood experiments

would then be used to calibrate numerical simulators for predictive purposes for support of light oil

steamfloods conducted in the field.

OBJECTIVE AND SCOPE OF REPORT

The objective of this report is to convey a background and the benefits of using object-

oriented programming as acquired during development of the data acquisition/con-

trol/analysis/presentation software to operate a high-temperature, high-pressure steamflood

laboratory. This report is an overview of what has been developed and provides a background so

that the readers can not only appreciate the simplicity of the programming platform but also follow

the discussion and judge the applicability of this software to their specific application. The

background demonstrates the silnplicity of writing, testing, debugging, and maintaining large

programs when using the graphical interface language (LabVIEW 2) compared to traditional line-

code programming, such as FORTRAN, with which the reader may be more familiar. Discussion

on the concepts of object-oriented programming is included as well as comparison of a simple

FORTRAN program because it is necessary to show by example a program written in both

LabVIEW 2 environment and a traditional line-code language. However, such discussion is only

illustrative and is not intended as a tutorial or to be exhaustive. References are provided at the end

of the report where additional information and independent reviews of object-oriented

programming and LabVIEW 2 can be found.

BACKGROUND

NIPER has operated a steamflood research laboratory since 1984. Since that time, it has

used two physical models as principal tools to investigate various aspects of steam displacement of

both heavy and light crude oil. In 1990, the entire steamflood laboratory including both one-

dimensional (l-D) steamflood models and a two-dimensional (2-D) flat plate steamflood models

were reviewed. In light of previous laboratory operating problems, and their limitations in

modeling field-scale steamfloods as pointed out in a 1991 study of scaling parameters of

steamflood physical models, 5 a new titanium steamflood model, which is X-ray CT scannable, yet

has large-volume (25L) capacity, was designed and is being constructed. The configuration of that

equipment, an operators' guide for use of equipment and laboratory control systems, and plumbing

and electrical schematics with specifications are being compiled, l

Due to the safety and reliability consideration involved in the operation of a high-temperature,

high-pressure steamflood laboratory, a decision was made to adopt Natienal Instrument's _

LabVIEW 2 as the programming platform because of its highly structured object-oriented

programming approach and operate the system from a Macintosh II computer.6 The main

components of the steamflood laboratory are the steamflood physical models, the laboratory

configuration, NIPER's automation software, and a Macintosh II computer installed with several

digital and analog data transfer boards.

PROGRAMMING CONCEPTS RELEVANT TO LabVIEW 2

This section describes the concepts of programming languages that are pertinent to

LabVIEW 2. In light of these concepts, LabVIEW 2 will be compared (in later sections) with

traditional languages. The following discussion is aimed to highlight the basic differences in the

conventional languages and LabVIEW 2.

To refresh reader's memories, let us first consider a simple program that iteratively reads data

from a file, converts it to degrees Fahrenheit, and warns user if the value exceeds a predetermined

limit. Fig. 1 lists a FORTRAN program to achieve this objective. To help understand the structure

of the program, a control-flow diagram is customarily used, such as the one shown in Fig. 2.

!
' ni ' ,, ,, pVl , , iII r, rl ' , , I, ' , li ,1 , n '1 n'wI I ,r,nr, nn , I ,

ii i ii

OPEN (5, FILE = 'ALLIANCE:LABVIEW 2:INPUT TEMPERATURE',
+ STATUS = 'OLD') CELSIUS

C AI,LIANCE IS THE VOLUME I.E., HARD DISK, LABVIEW2 IS THE
C FOLDER CONTAINING FILE NAMED INPUT TEMPERATURE

10 READ (5, *, END = 99)

FAHRENHEIT = ((CELSIUS * 9/5) + 32)

IF (FAHRENtIEIT.GT.450) GOTO 20

GOTO I0

20 CALL BEEP (1)

C BEEP IS A SUBROUTINE THAT ACTIVATES AN AUDIBLE BEEP

99 STOP

END

. i ii|11

FIGURE 1. - A FORTRAN program that iteratively reads data from a file, converts it to °F, and
beeps if the value is higher than 450 ° F.

I _[Open file and

START place cursor to
the first line

/ Readcurrentline, /

Convert the reading] / the n taodnVeantcle7rs°/ Close file
to Fahrenheit I t ,I,'"

c_/ ee /
FIGURE 2. - The control-flow diagram of the example FORTRAN program (shown in Figure 1)

that iteratively reads data from a file, converts it to °F, and beeps if the value is
higher than 450 ° F.

Now, let us consider a program in LabVIEW 2 (Fig. 3) which achieves the same objective

as the FORTRAN program. Notice that the LabVIEW 2 program itself is in the form of a flow

diagram, thus no control flow diagram is needed. Further explanation of this program is provided

in Appendix B.

At the first glance, it may appear that the FORTRAN program is easier to follow, lt may

very well be true for small programs like the one presented in this example. However, our

experience in writing and maintaining software for the thermal lab using the BASIC language and

then LabVIEW 2 shows that as the size and the complexity of the program grows, line-code

programs increasingly become more difficult to follow than visual programs.

Object-Oriented Programming (OOP)

The important concepts of object-oriented progralnming (OOP) are described below. This

description is included to help readers visualize the significant advantages that this approach to

programming offers over languages such as Basic, FORTRAN, Pascal, and C, which are some of

the more familiar line code languages. National Instrument's LabVIEW 2, the basis of NIPER's

automation software, is a programming platform (compiler) that uses a high-level object-oriented

language called "G."

FIGURE 3. - A sample program segment in LabVIEW 2 that iteratively reads data from a file,
converts it to °F, and beeps if the value is higher than 450 ° F. For description of
this program, see Appendix B.

OOP refers to a programining style that relies on the concepts of inheritance ,'roddata

encapsulation. Inheritance is a language facility for defining a new class of objects as an extension

of previously defined classes. The new class inherits the variables and operations of the previous

classes. Inheritance helps in building complex structures by using the existing simpler objects.

Since common properties of objects can be preprogrammed by defining classes, programming

effort can be significantly reduced. Data encapsulation (also called implementation hiding,

meaning certain details of implementation code are deliberately hidden from the user) allows

objects to be packaged so that unnecessary details of implementation are not visible from outside

the object. Examples of inheritance and data encapsulation are shown on the following page. An

object may include a set of functions, procedures, subroutines, data, type-definitions, arithmetic

and/or other operations. Any or ali entries in an object may be defined as either public, private, or

protected, depending upon their intended use. Objects interact with each other by sending and

receiving messages.

The properties of OOP allow one module (an independent program segment like subroutines)

to be written with little knowledge of the code in another module. Modules can be reassembled

and replaced without reassembly of the whole system. OOP's programming style can be practiced

with widely differing languages. For example, C++ (a line ct_e language) allows both inheritance

and data encapsulation to deal with the most demanding systems' tasks yet retains C (also a line

code language) as a subset for tasks requiring low-level programming. 7 LabVIEW 2

superimposes a graphical editing and execution system upon the object-oriented "G" language to

create a platform for the users wherein programs (tnodules) can be easily written, tested, debugged

and modified by copying the objects from the LabVIEW 2 library and user's own library of

modules. Thus, it provides a simple yet powerful visual programming environment.

Procedure-Oriented Programming (POP) Versus
Object-Oriented Programming (OOP)

Figure 4 illustrates the difference in procedure-oriented programming (POP) and OOP.8 The

requirement in this example is to build figures, which are basically composed of basic shapes m

lines, rectangles and circles. POP will structure a program around the operations on shapes. It

may include operations for drawing, rotating, and scaling a figure. For each shape in the figure,

the procedure will classify shape and then execute the code that is appropriate for drawing that

kind of shape. However, the code for each shape will contain only very elementary operations.

Because of the use of elementary operations, the code for manipulating shapes is spread across the

various procedures, which is often problematic. If a new shape is added, e.g. an arrow head, th__n

the code for handling the new shape has to be added to each procedure. Even if the '.lew

information is small, it is spread across procedures, each of which must be analyzed before the

new code is added to ensure that there are no conflicting directions or assignments.

The OOP approach of handling this problem is: A class named "shape" is defined, which has

subclasses of lines, rectangles, and circles. Class shape then collects common properties, such as

the height, the width, the position, and an operation fo_ moving the shape. Properties that are

specific to lines, rectangles, and circles appear in the appropriate subclasses. Inheritance, an OOP

property, allows arrows to be added by extending the subclass "line", without touching the Code

for the other objects. An arrow inherits all the properties of a line, so the only additional code

needed to draw an arrow will be the code for drawing an arrowhead. Another property of OOP--

data encapsulation--will allow the drawing of various shapes by simply sending messages to the

class shape, without the need to see its implementation details. In OOP, each module is a

completely executable program in its entirety, and it does not interact with other program segments

in any way except by receiving and sending messages. This message-passing mechanism is

superior to the use of "subroutine calls" in traditional programming because it eliminates any

chances of inadvertently altering the data in the calling program. Th_ "_5 d2_, _,,.,, i,_,d "._, _zqow

the implementation details of a module to ,,_ ".t;,, any other module. He merely needs to know the

abstract information abn,,'. ",_ actions and about the input/output data to be exchanged through

messages.

Since OOP is more of a philosophy than a specific language, differentiating OOP with

precision from other programming styles is difficult. In abstract terms, OOP relies heavily on

making and using objects (building blocks) instead of using elementary units and operations. If

i the objects are appropriately defined, the task of manipulating them becomes easier. The objects

li!i! i!ili!i!ii! !il
l

 i iiiiiiii:ii:' '°i, ,iii i!i!!i!ii!!!!!i!!ii!!!!!!!?!i!!!!!ii!!!i!!!!!!!!i!iii i iiiiiiiiiiiiiiiiiiiiiiiliiiii:iiiiiill !iiii!i!ii!iii!i!_,................

i!iii!',',',iii'_!
(a) Disjoint sets of objects (b) Nested sets of objects

FIGURE 4. - Different ways of classification of objects: (a) POP (b) OOP.

m ,_ , r,, ' " '' ,1 ' II ' i1 ,11 Irll, i ' II Mll , I III' I Ilrl, 1,1

are treated as complete units; hence, operations on them are far less likely to have inadvertent side

effects, i.e., unwanted influences on other objects or program are avoided. The power of tOP

becomes increasingly apparent as the size and complexity of a program increases, lt is easier and

safer in tOP to extend the classes, and the code for each individual operation is often small and

seems to simply "pass the buck" by invoking operations in other objects. 8 Debugging or editing

time is thus significantly reduced for the programmer.

Program Testing

For automation programs (laboratory, pilot plant or production facilities) that deal with

instrument control, it is imperative that the correctoess of the program be established with

reasonable certainty. Because of the program's size and complexity, such programs can seldom be

guaranteed to be "absolutely error-free." lt is "hopeless to establish the correctness of a program

by testing, unless the internal structure of the program is taken into account," argues the noted

computer scientist Dijkstra. 9 Programmers wish to design programs carefully so that the

correctness can be understood in terms of structure. In his words, "the art of programming is the

art of organizing complexity." Large programs ,are difficult to test and debug because the effect of

a change can propagate into various segments, some of them remaining undetected for ,-,.nextended

time. Structure and organization are the key to managing large programs. The readability of a

program can be improved by organizing it so that each part can be understood relatively

independently of the other parts.

LabVIEW 2 using the object-oriented programming language "G" provides several constructs

for organizing computations, lt helps the programmer to write good programs, which are easy to

read (follow), easy to understand, and most importantly, easy to modify. LabVIEW 2 structured

program organization enables the user to package the same amount of information into far fewer

symbols. Its superb abstraction mechanism puts the needed information on user's fingertips,

'allows the user to easily examine the program in various levels of details, and m_es the task of

remembering easier. The program is divided into isolated program fragments (modules). These

modules can be understood, improved, and changed without concern for how these changes will

affect the main program because they interact with other modules and elements only through

receiving and sending messages (i.e., never access global variables).

DESCRIPTION OF LabVIEW 2

Brief Introduction of Lab VIEW 2

LabVIEW 2 is a visual programming environment that can be used effectively by a broad

range of people with different programming skill-levels. The two-dimensional, graphical notations

that LabVIEW 2 uses are much easier to comprehend than the textual notations such as line codes.

i , ,, , , i ' rl , ,,qf , ' I_q , ,, p" , , ,r ' ' ' " " ,,' I,I ,

The programs look like a dataflow diagram (Fig. 5_,in which elements are pictorially represented
and dataflow between elements is through color-coded wire connections. With this representation,

constructing or understanding a program is easy and natural. 11 Kodosky, MacCrisken, and

Rymar]2 have described some of the programming structure behind LabVIEW 2, and we have
used a number of their examples because of the clarity of their presentation. The first section

provides more detail about the language structure, whereas the later section describes the basic
facilities in LabVIEW 2.

Programming Structure of LabVIE W 2

National Instruments LabVIEW 2, by using the high-level, object-oriented language "G,"

allows LabVIEW programs to be highly structured and modular. Each module is a totally

independent and interactively executable program, which can be used as a subprogram by other
modules. To use a module as a subprogram, its icon is copied into the program. Data exchange

(input/output) with the module can be accomplished by making wired connections between the
terminals shown on the icon and other elements in the program. In this fashion, large programs

can be developed in an hierarchical manner by starting with small modules and using them within

other modules. Since each module has its own independent program and a separate input/output

interface, debugging or modifying a large program developed with LabVIEW 2 is quite easy.
L_VIEW 2 handles the execution sequence of a program in a different ma_;nerthan line-code

languages. In the traditional languages such as Basic, Fortran, C, or Pascal, the execution of
instructions takes piace according to the control flow diagram designed by the programmer.

LabVIEW 2, on the other hand, is base6 on a modified dataflow model such that the sequence of

execution need not be predefined.

node data token

input _ / /
terminal \

_ outputterminal

/
arc

FIGURE 5.- A Simple Dataflow Diagram.

............... _n_n_w_|_|nnm!_n_|p!|_NNNNN_N|Ni_|_|_n_um_u_n_n_m___|_n__nim|nn_N_|_|_||m_
, , 1, ,n, , '_1 , , ,n ' ',lr ' ' qr , _,, , _e ' I_ '_' " 'P " " lr , r, II ,,,

Dataflow diagrams specify the data dependency between computations, but they do not

specifically force any particular sequence of independent computations. A simple pure, data-driven

dataflow diagram is illustrated !n Fig. 5. lt is a directed, acyclic graph consisting of nodes, arcs,

term!'_als, and data tokens. Terminals in the program are the connections to the external world,

and act as the sources or sinks of data tokens. Arcs are the directed paths over which data tokens

move, and nodes are the locations in which computations are performed. The fan-out of an arc

implies copying the data token; the fan-in of an arc is disallowed. A node consumes tokens on its

input arcs and produces new tokens on its output arcs. What makes the diagram data-driven is the

firing rule, which states that a node cannot execute until all of its input arcs have a data token

available, at which time the ac-le consumes one token from each input arc, performs the

computation, and produces one token for each output arc. In Fig. 5, node J has already executed,

K and L are eligible to execute, and M is still ineligible because it needs a token on its second

input.

In contrast to the control-flow model, the dataflow model has no concept of locus-of-control,

no program counter (i.e. no sequence numbers like in text-based program codes), and no global

variables (globally accessible memory). A data token exists only from its production by a node or

input terminal to its consumption by another node or output terminal. All nodes that are eligible to

execute can do so in any order or even in parallel; the results of the diagram will be the same in ali

cases.

The classical dataflow model, however, lacks the provisions for conditional or iterative

computations. Several extensions of damflow model have been proposed by relaxing the firing

rules and allowing cycles in the graph_the modifications that severely compromise the clarity of

the programs. LabVIE'¢ ,' provides an extension to overcome this limitation which not only

preserves its firing rules and acyclic structure (thus preserving program clarity) but also

incorporates the proven benefits of the structured programming methodology. This extension

involves redefining a node to be any program segment enclosed in a box-like structure that

separates the body (or inside) of the structure from the rest of the program. Because the structure

behaves like a node as far as the rest of the program is concerned, the overall dataflow

methodology is preserved. The body of a node (inside the structure) behaves like an isolated

diagram, in which access to the code is only from the top (or beginning). The program structure-

semantics such as loop behavior or conditional behavior !iave been superimposed on the body of

the structure. This can be thought of as a macrostructure (program as a whole_ containing some

microstructures (program segments inside the node), both of which independently follow the

dataflow model. The microstructures, however, have some additional control properties.

Using the extended dataflow strategy, LabVIEW 2 is able to retain the important benefits of

both structured programming and dataflow strategy. In addition, LabVIEW 2 incorporates a

10

'II

compiler that generates executable code with performance comparable to that produced by a C or

Pascal compiler.

Basic Facilities in Lab VIE W 2

0) Editing:

LabVIEW 2 contains three interrelated editors, one for each of the three parts of a module, or

virtual instrument (also abbreviated as VI) as National Instrument calls it. These three editors

consist of the following: the block diagram, the front panel, and the icon. A block diagram is a

directed acyclic graph containing nodes, interconnecting signals, and source and sink terminals

which correspond to the front panel controls and indicators, respectively, lt is constructed by

selecting built-in functions, structures, and previously constructed Vls from graphical palettes and

arranging them in the block diagram window. The VIs from the user's own library can also be

copied. The front panel contains ali of the input/output controls and indicators for interactive

programming. These controls and indicators define the data types of the inputs and outputs of the

VI. The controls and indicators are initialized with the previously stored values, but the values can

be reassigned by the user during and prior to the program execution. The icon of each VI contains

terminals (non-overlapping subregions) that are in one-to-ene correspondence with a subset of the

panel controls and indicators. These terminals can be used to import/export data programmatically.

Inside the block diagram, the arcs (or connecting wires) are drawn using the Wiring tool to

establish the paths of data exchange. The wiring tool is a cursor that looks like a spool of wire. As

each edit transaction is performed, the syntax checker detects and flags any cycles introduced into

the dataflow graph, propogates data attributes (type) to ali the temainals, computes the data type for

each built-in function, and redraws any arcs whose attributes have changed. Each arc is drawn

with a distinctive pattern, width, and color code to indicate the data type, array dimensionality, and

numeric representation.

(1_',)Built-in Library:

L._bVIEW 2 comes with a large library of Vls (modules) for easy handling of most low-level

programming details. Use of these VIs allows the programmer to concentrate on customizing the

program. Numerous driver programs for common instruments are also included, and many are

available from third-party vendors. For systems involving several instruments or for programs

requiring specialized communication with the instruments, the user may have to write his own

driver program. Depending upon the complexity of the system and the level of programmer's

, experience with LabVIEW 2, such programming may take several days. The time required for

i programming will be significantly lower than the conventional line code languages.

iI

(III) Control Structures:

LabVIEW 2 provides five box-like structures and one file-linking structure as shown in

Figure 6. Various elements in these structures are explained in Appendix C. The top three are

quite similar to the "while loop", the "for loop", and the "case structure" in other prog:ramming

languages. The Sequence structure executes one frame at a time in the numeric sequence of the

frames, where the values can be passed from any frame to ali the following frames in the

sequencer. This is accomplished using local registers (arrows inside of the box). The sequence

structure, as the name implies, is used to impose an order of execution. The same is true for the

Formula Node, in which text-like expressions are evaluated from a top to bottom sequence. The

values to the variable are assigned or evaluated through the input/output terminals, e.g. x, y, and z

as shown in Figure 6(E). The Code Interface Node (CIN) is equivalent to calling an executable

subroutine that is accessible to the program yet is outside the program body itself. The subroutine

is imported and evaluated using the input parameters provided through the input terminals on the

node (arrows in the left boxes). The result is then copied to the output terminals (arrows in the

right boxes) where it is available for other program elements. The CIN allows the user to use C,

Pascal, or an assembly code language, while still enabling him to benefit from object-oriented

programming; but most importantly, it allows more efficient dynamic memory allocation for arrays

and strings that minimizes memory fragmentation. 13

[For Loop ! While Loop] I Case Structure]

i ! l-'
(A) (B) (C)

[Sequence Structure I Formula Node I i Code Interface Node

ii!.!:_!_:_i_!_:_!...::_!_!_!_:_!_!_i_!<.._!_!:_!_i:_!_!i!i] (fiN)

,..........:.:.D:.:-:.::-.:.:-:.:-:-:.:.:.:.::.............

(D) (g) (F)

FIGURE 6. - Basic structures in LabVIEW 2.

12

li
q|l

(IV) On-line Help

Information about any of the SubVIs can be conveniently obtained by selecting Show Help

from the _ menu and then passing the Wiring tool over them. The type of information

available on-line includes the name of a module (VI or function), a brief description of its intended

use, and a brief visual/textual description of input/output data and terminal locations. For more

details, both the front panel and the block diagram can be viewed by double clicking on a module.

The entire hierarchy of a module (or a part of it) can also be conveniently viewed. An example of

this is shown in Appendix D (Fig. D. 1).

DESCRIPTION OF NIPER'S AUTOMATION SOFTWARE

NIPER's automation software consists of the following three main interactive sections:

A. Data Acquisition

B. Instrument Control

C. Interactive Graphics

All three of these facilities are fully integrated, such that while the user interacts with one, the

others continue to process at the background. Facilities can be alternated manually or automatically

on the basis of event priority. For example, the data acquisition panel may be activated during the

actual scanning of data to display the acquired data and report any errors, then the interactive

graphics can be called up to display the data graphically with various orientations and styles.

Finally, the control panel may be activated to give a visual picture of the process. Events may be

assigned priorities so that higher priority messages can automatically be switched to the interactive

panel. Following is a brief description of each facility.

Data Acquisition

The control panel for this facility is shown in Fig. 7. This facility has three features: (1) let

user manipulate current and/or previous data interactively, e.g. analyze, compare, plot, curve-fit

and print; (2) warn user for system errors and out-of-range measured values; and (3) allow user to

reconfigure system set-up; e.g. connect or disconnect instruments, define allowable ranges outside

of which warning is issued and system is shut down, select interval between scans, and emergency

shutdown sequence, etc. The title bar contains nine buttons which allow user to select between

features. By pointing and clicking the buttons in the title bar (see Fig. 7), user may switch

between these features. Some of these buttons open a new window for allowing user to make

selections. Since these subwindows have lower priority, they do not interfere with other activities,

i.e., data acquisition and control functions continue in the background. A brief description of

various controls and displays is given in Appendix E.

13

ii
T

.: ! i " t i J t

"J._

•¢¢_. __ _ _ .
'. ::::::::::::::::::::::::::: ::::::::::::::::::::: T ,,.,,.__ ,u...........

._._..._,_.-_-_.--___--_-__--_ _..... _ _-..,_=._,_m •i:..__.G-.;,..,-_- VT,

-- :>. 6 r-- . : " - : : _ I_ co
0 0', ' : .:.L .-_ " r,.

.... _"' _ "_----I_l_.'"_L___,_._.-t._ ' _"..'_:!:!l a_ _ _ ""ll_...D%__,..._._ '._Z,_...,'._...L_.::::_::_ • z . o _ ¢_

j i_"__" _.""!'"'+',,.:-_:::::":i l _ lr) rn "-

._....:., ._,'.. .._, -- ., ..j_:::::!_:_.:._:i::__gi__ _. -
.... ,,.:.e. _, ..I I'_ "'_--___"_:i:_ i_lIo_ _ - .__

....El ""_" 't':" ,-- I-- >" -,

lm ... ,........,._.._. > o - o -_: _:' : : :: _, • ""_ 0"_ ", • : • '':'. ! r.,-
:. • : I:: ' 0 '_ _",'-

0 IZI:"r"':"_':':" _ ,.,,., -
.....:......_..e.

0 "-" _: : : I:" ., lr.._I__ri. _i] _i_:_ .e_,_.... II__=..F_-iiii| _i,., '" _ o . Z
..-, *' -"'" I_'.:" _ 0 !--

- "d'" ""/ _ .:,. ,_ o_ _ -• . ", : _. _- Ct) "'-J. ..,; . : • ; ('4 1_9 _ cf_ _
. "':" "t"': "i':" _ _ • ",=_ _ ",__ ,-
I" '.......L.....i..!_.i.. _: - v,-< > ., =_ _. _,- _ I____,i_ oI____ _L;-_ o

.......:......
x_f . v'-.----" s"' - .I_ • • ,., m • LD

_ -z _- '"" I__ i _ ..,

_ c,i :o',i..- ._ "," I "_' _ _ .r"_

14

li

Figure 8 is the flow diagram showing an outline of the functionality of data acquisition

facility. It is a simplified diagram because customary flow diagrams cannot easily depict

LabVIEW 2 programs, which are data-driven yet incorporate control features. The hierarchical

structure of the data-acquisition program modules along with a brief description of each module is

given in Appendix D.

Instrument Control

The front panel for this facility is shown in Fig. 9. A brief description of various controls

and indicators is given in Appendix F. The process control facility allows the user to operate the

remote-sensing instruments such as pumps, controllers, balances, temperature sensors, pressure

sensors, fluid flow controllers, and alarms through the front panel, lt also provides several safety

features (described in the following paragraphs) to minimize common operator mistakes. The

instruments are pictorially represented by indicators (see figure) which change their color or shape

as the conditions change. For example, the level of fluid in a tank's indicator increases or

decreases with the change of fluid weight in actual tank. This combination of pictorial and

dynamic representation gives a visual sense of the process which makes it easier and faster to

trouble-shoot the problems.

The facility has a built-in logic that checks the validity of user's commands and disallows

them when unsound; e.g. it would not allow the user to run a pump if the outflow valve is closed;

thus reducing the chances of avoidable accidents and failures. Another safety feature built into the

facility is the continuous monitoring of the test progress by material balance, i.e. the injected fluids

and discharged fluids are continuously weighed and compared. If a discrepancy beyond the user's

acceptable limits is found, user is warned of possible leaks or other mishaps in the system.

Similarly, the program continuously monitors the rate of change of preselected parameters, and

cautions the user when user-defined tolerance is exceeded. Thus, a leak in the tubing causing

sudden reduction in pressure will be reported immediately and a corrective action will be taken by

the computer if not overriden by an operator.

This facility also warns operators when a measured value falls out of its preprogrammed

range. This feature can be used to provide early warnings for situations that may need user's

attention in near future, e.g. to get an alert message when a feed tank starts running low on liquid.

The most useful feature of this facility is to act as a warden when user's instructions are not

available. When a situation falls outside the user-defined ranges, and no response from the user is

received in due time, the facility shuts down operations systematically as per user's pre-set

instructions.

BEGIN

ING LAST USER)

ECTION__/

(TO EACH CHANNEL &) MEANWHILE, SERVICE

USER REQUESTS

O RAWDATA__ RECONFIGURE IF
R MESSAGES) USER HAS CHANGED

FILES_ PARAMETERS

o._,L_, o._T..TO.O_.L_

END
FIGURE 8. - A simplified flow diagram of data acquisition facility.

16

1

Interactive Graphics

The 3-D visualization of data as shown in Fig. 10 is an example of LabVIEW's data export

and communication capability with other applications. In this example, every time a new data set

was scanned during the lab experiment, the graphic facility in NIPER's automation software

automatically opened a Microsoft Excel file containing this chart. The chart was updated with new

data. The chart was then automatically rotated with different attributes such as at different angles,

aspect ratios, etc. Then, the chart was closed and the control was transferred to LabVIEW 2. Ali

the while, LabVIEW 2 continued to operate in the background acquiring (or waiting for) new data

and checking for error and safety messages.

Excel is one of many applications that can be integrated with LabVIEW 2. In fact, any

application that supports the Microsoft System 7's feature of Dynamic Data Exchange (DDE) can

be integrated, i.e. the applications can link, subscribe, and publish to or from other files. Also,

any application that allows macro-exp,'msion (sometimes called scripting) is also a good candidate

"- 71
--

70.8

70.6

70

70.2-

70-

69.8-

i 69. $3

69.4

"" _ S2

|
•,-- ,-. $1

FIGURE 10. - A sample snapshot of automatic 3-D visualization of data in Microsoft
Excel. DeltaGraph Professional and Spyglass Transform can also be
similarly used.

18

II

for integration. The commercial applications that definitely appear to have these capabilities are

Excel _, DeltaGraph Professional fM, and Spyglass Transform _. The Spyglass Transform can

display diffused-color surreal graphics by filling in interpolated data points along with the actual

data in a multidimensional spatial field.

SUMMARY

A laboratory automation software has been developed using National Ins_truments

LabVIEW 2, an object-oriented visual programming environment. LabVIEW 2 has shown to be

an effective platform for developing comprehensive and integrated programs to acquire data,

control instruments, perform extensive analysis, and display data; ali in real-time and with

enhanced graphics that may use other applications as weil. Such automation programs can increase

the reliability, efficiency and safety of lab operations because the operator can visualize the process

as it happens, listen to the warnings and alarms by the system, and immediately control the

process; ali without exposing himself to everyday risks involved with lab experiments. Even more

important is the computer's ability to act as a backup warden handling emergency situations when

operator fails to respond, lt is also very useful in situations where experiments have to be

alternated, since the configurations are stored and need not be reset.

ACKNOWLEDGMENTS

This work was sponsored by the U.S. Department of Energy under cooperative agreement

DE-FC22-83FE60149. The help in revising manuscript by G. Sharma, W. Lucas and Y. Tyagi is

acknowledged. The authors thank E. B. Ramzel, G. Sharma, W. Lucas, M. K. Tham and A.

Strycker of NIPER; T. B. Reid of the DOE Bartlesville Project Office for their critical reviews; and

the staff of National Instruments for their encouragement and review.

REFERENCES

1. Olsen, D. K., S. M. Mahmood, P. S. Sarathi and E. B. Ramzel. Operating Guide and
Specifications for NIPER Steamflood Laboratoo', in review, July 1992.

2. Kirkman, I. W. and P. A. Buksh. Data Acquisition and Control Using National
Instruments' "I.ztbVIEW" Software. Rev. Sci. lnstrum., Vol. 63, No. 1, Jan. 1992, pp
869-872.

3. Liles, Ken. Data Acquisition Software Automates Automotive Fuel hljector Test Facility.
Engineering & Management, Oct./Nov. 1991, pp 18-21.

4. Liles, Ken. Data Acquisition--A Mac-Based System for Fuel and Lubricant Testing.
Scientific Computing & Automation, Jan. 1992, pp 19-23.

5. Olsen, D. K., P. S. Sarathi, S. M. Mahmood, and E. B. Ramzel. Thermal Processes for
Light Oil Recovery, Dept. of Energy Report No. NIPER-515, December 1990, pp. 18-20.

19

o

6. Apple Computer Inc. Macintosh 11User Manual, Cupertino, CI_, 1986.

7. Stroustmp, B. The C++ Programming l_xtnguage, Addison-W._sley, Reading, MA., 1986.

8. Sethi, Ravi. Programming Languages: Concepts and Construc ts, AT&T Bell Laboratories,
Murray Hill, New Jersey, Addison-Wesley, Reading, MA., 1!189.

9. Dijkstra, E.W. Notes on Structured Programming. Contained in Reference 10, pp 1-82.

10. Dahl, O.J., E. W. Dijkstra and C. A. R. Hoare Structured Pr¢ gramming. Academic Press,
London, 1972.

11. National Instruments Corp. I__bVIEW 2 Getting Started _tanual, Part No. 320246-01,
Austin, TX, April 1991.

12. Kodosky, J., J. MacCrisken and G. Rymar. Visual Progran ruing Using Structured Data
Flow. Proceedings of the 1991 IEEE (Institute of Electrical and Electronics Engineers)
Workshop on Visual Languages, Kobe, Japan, Oct. 8-11 1991. Reprinted by IEEE
Computer Society, 106.62 Los Vaqueros Circle, P.O. Box 30 4, Los Alamitos, CA 90720-
1264.

13. National Instruments Corp. LabVIEW 2 User Manual, Part No. 320244-01, Austin, TX,
Sept. 1991.

2O

APPENDIX A

FACILITY FEATURES AND TYPICAl., EQUIPMENT
CONTROI,LED BY TIlE SOFTWARE

FEATURES

MACINTOSH BASED, USER-FRIENDLY SOFTWARE
DEVELOPED USING NATIONAL INSTRUMENTS LabVIEW 2
(OBJECT-ORIENTED, "G" LANGUAGE)

CAN BE USED WITH MOST EXPERIMENTAL SET-UP
WITHOUT ANY MODIFICATION DUE TO THE
GENERAL-PURPOSE, MODULAR DESIGN

REAL-TIME DISPLAY OF DATA, GRAPHICS, CONTROLS,
ERRORS and STATISTICS

COMPREHENSIVE ON-LINE DATA ANALYSIS INCLUDING
LINEAR & NON-LINEAR CURVE-FITS & STATISTICS

ERROR WARNING & RECOVERY SYSTEMS WITH
USER-DEFINED ACTIONS OR USING DEFAULTS

BOTH DIGITAL & ANALOG CONTROL OF INSTRUMENTS
(VIA, RS232/IEEE-488, ELECTRICAL PULSE & WAVES)

DATA AC'QUIS1TION, ANALYSIS, DISPLAY AND CONTROL
OF INSTRUMENTS ARE ALL RUN-TIME ADJUSTABLE

DYNAMIC MEMORY ALLOCATION TO OPTIMIZE MEMORY
REQUIREMENrF AND INCREASE EFFICIENCY

ARTIFICIAL DATA DEPENDENCY & NON-INTERRUPT
INSTRUMENT DRIVERS TO MINIMIZE DEADLOCKS

TYPICAL EQUIPMENT CONTROLLED BY TillS SOFTWARE

BACKPRESSURE REGULATOR
THERMOCOUPLES
PRESSURE TRANSDUCERS
SWITCHING VALVES
ELECTRONIC BALANCES
PUMPS
BOILER
ALARMS AND SHUTDOWN
LCR METER (ELECTRICAL CONDUCTIVITY)
RELAYS
FLUID LEVEL SENSORS

21

APPENDIX B

A SAMPLE OF LABVI['W 2 PROGRAM

A sample LabVIEW 2 program is explained here. This is the same program shown in Fig. 3

and briefly mentioned ea,'lier in the text. The legend for Fig. B. 1 (numbers in circles) is presented

in Table B. 1.

FIGURE B.1 - An example program segment in LabVIEW 2 that iteratively reads data from a
file, converts it to °F, and beeps if the value is higher than 450 ° F. For
description of this program, see Appendix B.

22

TABI,E B.1

LEGEND FOR FIGURE B.I
, ,,,

1. This entire box is a While Loop structure. The While Loop, which can be thought of as a
single node itself, executes the diagram inside its borders until the Boolean (True-False)
value passed to the conditional terminal (box 5) is False.

2. This box contains the string which specifies the volume name, directory name, and file name
from which the temperature data (in Celsius) is to be read.

3. This node opens the specified file and reads the current line of temperature data into a
numeric array. The node then closes the file, passes the array to node 6, and passes a
numeric error message value to node 4.

4. This node checks to see if the error message from node 3 is equal to zero (indicating no
error). If so, the node outputs a Boolean value of True. If the error message does not equal
zero, the Boolean output is False.

5. This box is the conditional terminal for the entire While Loop. The terminal is checked at the
end of each iteration and exits the While L_c)p structure once the Bo¢>lean value from node 4
is False.

6. This node reads a specified element of the numeric array from node 3 _:nd then passes the
value of that element to node 12.

7. This is a numerical constant that coy.rains the integer value that specifies which element of the
array node 6 is to read.

8. This is a numeric constant used in the temperature conversion from Celsius to Fahrenheit.
The value is passed to node 11.

9. This is a numeric constant used in the temperature conversion from Celsius tc) Fahrenheit.
The value is passed to node 11.

10. This is a numeric constant used in the temperature conversion from Celsius to Fahrenheit.
The value is passed to node 13.

11. This node divides the value from constant 8 by the value from constant 9. The numeric result
(a conversion factor of 9/5) is then passed on tc) node 12.

12. This node multiplies the output value from no,de 6 by the output value from node 11. The
numeric result is passed on tc) node 13.

13. This node adds the value from constant 1() to the output value from n_de I i. The resulting
numeric output (Fahrenheit temperature) is p_kssedon to node 15.

14. This is a constant numeric value specified as the temperature limit.
15. This node checks to see if the output value from node 13 is greater than the temperature limit

of box 14. If so, then the resulting Boolean output is True. If the value from node 13 is less
than the temperatu[e limit of box 14, then the Boolean output is False.

16. This is a Case structure. The node inside this structure beeps if the Boolean output from
node 15 is True, which means that the temperature value read from the file is higher than the
temperature limit specified by box 14.

23

APPENDIX C

BASIC STRUCTURES IN LABVIEW 2

The basic structures in Lab VIEW 2 are explained here. These structures were also shown in

Fig, 6 and briefly mentioned earlier in the text. The legend for figure C. 1 (numbers in circles) is

presented in Table C.1. A brief discussion of this figure is also included.

EXPI.ANATION OF FIGURE C.1

Structure A presents a For Loop, which performs numeric iteration. This structure is

comparable to _,"For Loop" in Fortran. It executes a specified number of times. The While Loop

is displayed in B. This loop continues execution as long as the specified boolean condition is true.

Since it checks for the true or false condition at the end of each cycle, it always executes at least

once. The Case Structure, shown in structure C, may contain two or inore subdiagrams, also

called "cases". One of these "cases" is selected during execution as specified by the input value

(which may be either Boolean or numeric scalar). Structure D shows a Sequence Structure. This

structure holds numerically numbered frames which are executed sequentially. The function of the

"Formula Node" in structure E is simply to hold one or more equations. This structure computes

_% ForLoop , While Loop J , Case Structure J

r
M

(A) (B) (___(C j _

]Sequence Structure] ["F'ormula Node]]Code Interface Node]

i!iii z !I
;y !iiii

(D) (E) (F)

FIGURE C.1. - Basic structures in LabVIEW 2.

I 24

the equation sequentially from top to bottom and outputs the result. Structure F, the Code Interface

Nodes (CIN), allows the user to program a segment of the block diagram (,.,_. LabVIEW 2

program) using "C", "Pascal", or an assembly code language.

TABLE C.I

LEGEND FOR FIGURE C.1

1. The count terminal holds the value (supplied by the constant wired to it) of how many times
the loop is to be executed.

2. The arrows on the vertical edges are shift registers, which pass values from one iteration
cycle to the next. Any data stored in the down-arrow (right shift register) is available at the
beginning of next iteration cycle through up-arrows (left shift register). The up-arrow may
be initialized by wiring values to be used in the first iteration cycle. The down-arrow may be
used to pass the last value outside the loop at the end of execution.

3. This is an example of parameter passing through the structure. A numeric ccmstant, the value
123, is being pas_d to be used in the structure.

4. The i is the iteration terminal, lt holds the current number of completed cycles.
5. This curved arrow is the conditional terminal, lt receives the Boolean value of the test

condition at the end of each iteration. If the test value is false, it finishes the iteration.
6. This subdiagrazn display window shows the case being displayed. The right and left arrows

are increment buttons that allow user to observe different subdiagrams, or cases. The cases
may be numeric or boolean.

7. The selector receives the case selection information; i.e., the case to be executed.
8. The arrows inside the frame hold the local variables. These variables pass data from one

frame to the subsequent frame. The inward arrow indicates a local variable which is wired to
receive the value, whereas the outward arrow indicates a local variable which already has a
value which can be distributed.

9. An example of the parameter passing method for the formula node. Parameters may be
passed through the vertical edges. In this example, z is the output variable and x and y are
input variables.

25

!

APPENDIX D

HIERARCHICAL STRUCTURE OF N|PER'S DATA ACQUISITION SOFTWARE

The hierarchical structure of NIPER's data acquisition program in LabV1EW 2 is presented in

Fig. D.1. Whereas the functionality of this facility was described earlier in the text, the

functionality of each module in the corresponding program is explained here in Table D.1.

26

1
...... lip ' ' wl_'

.,..,

.,u,

0
° ,...d

.,..I,

_J
r_

Z
0

!

TABLE D.I

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.1

Node
Icon Description

NIPER
data

1. acqstn This is the driver VI (virtual instrument) for data acquisition facility.

NIPER,

2. dial°gi Displays numeric data, warning signals and error messages.

NIPER
read/

3. write Reads and writes analog and digital data to and from ali the boards (GPIB,
Serial, Analog I/O), process it, displays it, stores it in files, and pass on to
graphic modules.

NIPER

4. log R i_ Reads data of previous runs from log files one run at a time.

NIPiR
5. graph Receives recent data from NIPER read/write (#3)* or receives previously stored

data from NIPER log R (#4) as per user request.

NIPE'R
I/0

6. OPEN Opens a panel at the beginning of the test for the user to select one of the
previous settings or select a new setting. If user does not respond, the program
selects the last setting. See NIPER CONFIG (#17) for the type of settings it
can handle.

I

iNIPER
7. HELP Opens a panel that gives basic information about LabVIEW and the data

acquisition program. In this program addition, 5/20/92, this facility is not
interactive or user selectable.

NIPiR!
curve l

8. fit I Receives recent data from NIPER read/write (#3) or previous data from NIPER
log R (#4) and superimposes curve fit data/lines.

i llmll

* The numbers indicated with a "#" symbol in this table refer to one of the other modules listed
here, e.g. #3 refers to "NIPER read/write" module.

28

hi , "' =' l_a' ' ' '' III ' 'Ir'

TABLE D.I

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.l--Continued

Node
Icon Description

FNIPER
graph

9. oonfig Selectshow much and which channelsofdatatobe displayed.The module
alsoallowsselectionofthekindofcurvefitdesired.

NIPER]
strtup!

10. OConfl This is the startup (default) setting for NIPER graph configuration (#9).

NIPER
,zero

1l. ohanel Takes the calibration reading from analog board to compensate for temperature
readings.

NIPER
data

12. Error Receives error messages from various modules, prioritizes them and brings the
error message to the user attention if parameters are out of range.

Press
scan

13. stjstm Driver VI for the Scanivalve multiple port scanning system. Advances to a
channel selected by user. If no residence time is selected, the module takes
reading immediately, otherwise it takes readings in subsequent program cycles.
The Scanivalve then advances to the next selected channel and repeats until ali
channels have been scanned. The program then waits for the next run interval
to repeat.

Contrl
DBPR

14. lOO Driver VI for back pressure controller. Communicates in each program cycle to
make sure the communication is not lost and the actual pressure is close enough
to the control pressure. Communicates with sumcheck protocol and three
consecutive OK's to safeguard from mishaps.

i
NIPERi

15. ZEROi Initializes ali the registers to zero before beginning of a test to eliminate data
corruption.

,.--..-.

16. i Separates the integer and fractional parts of any number. For example, for the
number 123.456 the integer part is 123.000 and the fractional part is 0.456.

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.1--Continued

Node
Icon Description

NIPERi
CONF !

17. Opens a front panel for user to configure the system interactively. The user can
select reading intervals, establish links with one or more of the available
channels, deactivate a link until further selection, and define maximum and
minimum data values for each channel so that if a reading falls beyond these
preset limits, the user may be alerted. This module has several other attributes.
This is an interactive panel open only on user's request. If the user does not
respond, or if user does not choose to use this facility, the last setting or the one
selected by the user at the beginning of a test is used a default.

NIPER

18. logW! Stores ali the information about the current test including data, and updates
every program cycle. User can then view or use them interactively in later runs
by using NIPER log R (#4) module.

V* :i EtI.,._',.

19. _x'_i Finds the line, slope and intercept which best describe the input (X,Y) sequence!
of values using the least mean squared error criterion.

20. x_ Finds the exponential curve, amplitude and decay parameters which best
describe the input (X,Y) sequence of values using the least mean squared error
criterion.

L._._.._

21. ._ Finds the polynomial curve and polynomial coefficients which best describe the
input (X,Y) sequence of values using the least mean squared error criterion.

22. CONFIGI Updates analog input configuration information.

23. nUXCFG Configures the number of multiplexer boards connected to the IO board.

30

TABLE D.I

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.lmContinued

Node
Icon Description

? ?

24. 4*_'°l Set the Boolean to the input value (True or False) if mode is TRUE, otherwise
retain the last value. Return the current value of the Boolean.

Scale
Conv-

25. ersion Converts the data to user specified units.

26. R[AD Reads the specified analog input channel (initiates an Analog to Digital
conversion on an analog input channel and returns the result.

27. Isc_tL[Converts the binary result from the Read (#26) module to the actual input
voltage re_ from that channel.

THERMD
[LIH|ARIZI
/i .,_

28. L[-,_¢'/ Takes a voltage value acquired from a thermocouple of specified type, and
converts it into the corresponding temperature at the thermocouple in degrees
Celsius.

°C!°F

29. J Converts degrees Celsius to degrees Fahrenheit according to the formula: F =
C * 9/5 + 32.

Read!
PJ61

30. Mtler! This is the driver VI for Mettler balance (type PJ6). Controls and reads signal
via RS232 communication protocol (serial).

Read!
PJI5:

31. Metlr This is the driver VI for Mettler balance (type PJI5). Controls and reads
signals via RS232 communication protocol (serial).

v axp.
Io:[_Q,,,.,¢_,",, _1_

32. x_ Finds the exponential amplitude and decay parameters which best describe the
input (X,Y) sequence of values using a least mean squared error criterion.

....

31

TABLE D.I

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.l--Continued

Node
Icon Descril_';on

i ii i ii i ii ii

....

_R_a/t
hros

33. This is the driver VI for the Paroscientific DigiQuartz pressure ce:nputer.
Controls and reads signals via RS232 communication protocol (serial).

34. Returns TRUE if the difference between A (top input) and B (bottom input) is
less than the specified tolerance (center input), otherwise FALSE. Tolerance is
0.1 if unwired (default).

35. Beeps once with the given frequency (pitch), intensity (volume, also depends!
on the speaker volume set in the control panel), and duration [number of
1/60ths of a second, up to 600 (10 secs)l.

36. x_ Finds the polynomial coefficients which best describe the input (X,Y) sequence
of values using the least mean squared error criterion.

1

37. ! Performs a polynomial evaluation of the input sequence X using the specified
coefficients a and the polynomial order m. The number of elements in the
coefficients array is m+1.

38. Ms_" Computes the mean squared error value of the input sequences X and Y.

39. _._ Handles file input/output errors. Prompts user for an alternate action. If the
user does not respond, the module performs a default save.

r,r
I::Y.:"

40. x_ Finds the slope and intercept which best describe the input (X,Y) sequence of
values using the least mean squared error criterion.

32

!
m

"" ' ' , rl, ' ' ' ' " ' rl , , lr , l , , llq

TABLE D.I

MODUI,ES IN TIlE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.lmContinued

............

Node
Icon Description

, , ,, ,, , , i ,

I"{"

41 Performs a linear evaluation on the input sequence X using the specified:
Multiplicative constant (a), abd Additive constant (b). The output sequence Y is
of the form Y - X*a + b.

gT '
42. :ERROR Translates a numeric LabDriver error code into a string message describing the

error.

43. Writes the specified no. of bytes to the serial board in order to send out to the
connected instrument.

,°¢
44. _ Reads the specified no. of bytes from the serial board that were sent in by the

connected instrument.

NIPER

45. global Sets the Boolean to tile input value (True or False) if mode is TRUE, otherwise
retain the last value. Return the current value of the Boolean.

r_lDi. LI

46. _: , Beeps once with the given MIDI frequency (a standard preset frequency
scheme), intensity (volume, also depends on the speaker volume set in the
control panel), and duration (number of I/2 milliseconds, up to 32767).

I_b,,.ROS]47. mar Initializes serial communication parameters (RS232 protocol) for communicate
with paroscientific DigiQuartz pressure computer.

."."."" I

48. "_ 2] Probes the board and determines the number of bytes available to be read.

'_tRz.Li
PaRT I

49. _ Initializes serial port with user-provided parameters.
.................

33

l

TABLE D.I

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.I--Continued

i

Node
Icon Description

S[mZRL
PaRT

50. ,v _._._ Initializes _n_ port with u_r-provided parmneters.

stm(1
IUFF[I! l

51. _ Sets serial port buffer size.

.--.q_

_i 52. _'P" Opens serial board for communication.

34

APPENDIX E

NIPER'S DATA ACQUISITION FACILITY

Figure E.I shows the front panel of NIPER's data acquisition facility. Individual

components of this front panel are described here, whereas the functionality of this facility was

described earlier in the text. The legend for this figure (numbers in circles) is presented in Table

E.1.

35

36

TABI,E E.I

i,EGEND FOR FIGURE E.I

1. This button opens a scroll window which provides information about LabVIEW 2 and
object oriented programming. Like ali of the other windows or panels that are opened
from the main panel, the help window automatically disappears, and the main panel
reappears, after a certain time duration. The user must re-press a button if the
corresponding window or panel needs to be displayed.

2. This button opens a panel whereby user can set the status time, time interval, and number
of multiplex boards. Other options allow user, for each individual channel, to choose the
status (active or inactive), the channel location, the sensor, and the alarm (for a low limit
and a high limit). If any changes are made, the user must press the ACCEPT button at
the bottom of the panel. There are also options to cancel the changes, or to store a
particular setting for later use.

3. This button enables user to relay information to external programs. The default program
is chosen; an option under ADJUST GRAPHIC lets user change the particular program if
that is desired.

4. This button displays and explains ali the errors in the current run. Errors previously
suppressed are not displayed till this button is pressed.

5. This button allows a data reading to be t_en at exactly the time this button is pressed.
This additional data reading is added to the stored data in the current run.

6. This button enables user. to view plots of previous runs (one run at a time only). The
desired run number can be chosen by using either button 12 (clicking on a particular piace
in the bar) or by using using button 11 (scrolling the arrows). Button 13 displays the
number of the previous run. After this previous run number is chosen, pressing button 6
will display the plot of that particular previous run.

7. This button displays plot of ali data in current run. When button 8 (CURVE FIT) is
pressed concurrently, the added data from this option is superimposed on top of the
original data which was displayed by button 7.

8. This button provides a fit (linear, polynomial, etc.) to those data sets already _lected by
user for regression analysis in ADJUST GRAPHICS module (button 9), whereby the
type of curve fit and the order of fit can also be specified. The curve fit option is
activated by pressing button 8 concurrently with button 7.

9. This butt,,)n opens a panel, which, in addition to controlling the type and order of fit,
allows user to select the channel(,_) that are to be plotted. Another option is pressing
PRESS FOR NEW DATA to display only the data from that point in time. Still another
feature lets user select the time base of the desired interval. After any of these options
have been changed, pressing the ACCEPT button will incorporate these changes while
pressing the CANCEL button will return these options to their previous setting. And
finally, as mentioned earlier, the EXTERNL GRAPHIC in this panel lets user select the
particular program the user wants to communicate with.

10. This display shows the number of previous runs.
11. These increment buttons are one of the ways (the slower but _nore more discriminate

way) the user can select the specific run number before button 6 is pressed to display the
plot for that run. The fraction shown simply indicates what percentage of the total
previous runs is the run number now selected.

12. Pressing this bar at a particular place is the faster and less discriminate way of selecting
the specific number of the previous run. Using the increment buttons accomplishes the
same task but at a much slower but more discriminate manner.

37

TABLE E.I

LEGEND FOR FIGURE E.I--Continued

This indicator shows the number of the specific previous run.
This indicator shows the date and time of the start of specific previous run number. This
indicator and indicator 13 display data only after button 6 (REVIEW EX-PLOT) is
pressed.
This button ends the current run, but the data from that run is stored and the number of
ex-runs increases by one.
These increment buttons let user select the page number the DATA & DIAGNOSTCS
screen will display.
These increment buttons let user select the number of items to be displayed per page of
the DATA & DIAGNOSTICS screen.
This display shows the total number of pages of available data.
This DATA & DIAGNOSTIC screen displays the current data from all the activated
channels and diagnoses any errors.
This GRAPHIC MESSAGES screen indicates the channels that are currently graphed,
the channels that are open for graphic display but lack data, and the channels that have
data but have not yet been activated.
These arrows let the user scroll the GRAPHIC MESSAGES screen.
This graph displays the plot. The numbers on the y-coordinate can be controlled
automatically or manually altered.
This indicator shows the units information for the x-coordinate and y-coordinate.
However, this indicator shows ali of the units currently in use and in addition, is
dynamic.
This indicator shows the units of the chosen time interval.
These arrows let the user scroll the PLOT DISPLAY screen.
This "legend" matches the lines in the plot with their respective channel number.
There are two cursors (a square and a circle) that can be moved around by the arrows in
button 29. The part of the plot displayed will change ; it will follow the moving
cursor(s), lt is also possible that one or both of the cursors are "off" the screen ; this
situation can be corrected by either readjusting the scak;s of the x and/or y coordinates or
by moving the cursor(s) onto the view of :he displayed screen by using button 29.
Delta y indicates the vertical difference, or distance, between the two cursors while delta
x indicates the horizontal difference.

29. These arrows move the cursor(s) around the screen. As mentioned earlier, the displayed
screen follows the moving cursor(s).
This button allows editing of the plot. Enables user to adjust line segments and other
aspects.

38

APPENDIX F

NIPER'S INSTRUMENT CONTROL FACILITY

Figure F.1 shows the front panel of NIPER's instrument control facility. Individual

components of this front panel are described here, whereas the functionality of this facility was

described earlier in the text. The legend for this figure (numbers in circles) is presented in Table

F.1.

TABLE F.1

LEGEND FOR FIGURE F.I

1. This is the indicatorof the tankwhich stores the feed waterthat will later be converted to
steam by the steam generator.

2. This is the indicator of the thermometer which reads the temperature of liquid in TANK A
and displays this temperature.

3. This is the indicator of TANK A which stores liquid. The amount of this liquid is
controlled by a mass balance that can, at ali times, determine how much (and at what rate)
this liquid is flowing out and replace this amount in the tank. If the material balance
system is not working correctly - that is, if the amount of liquid out is not equal to the
amount flowing in, sensors can detect a malfunction and the system tries to diagnose this
error and indicate the information to the user.

4. This is the indicator of this sensor which is connected to a heater (heater 1) that heats
TANK A. The sensor is red when the heater is activated and blue when it is not
activated.

5. These increment buttons allow the user to set the thermostat of the heater that heats
TANK A at a certain temperature.

6. This button needs to be pressed if any changes are made in the thermostat setting.
Otherwise, the previous setting is used.

7. The indicator of this pump, which transfers the liquid from TANK A.
8. Another pump - this one is responsible for pumping gas from the gas source.
9. This is the valve for TANK A. The user can turn the valve on and off ; the valve is

different colors depending on whether it is on or off.
10. This and the two increment buttons on either side, can be used to control the flow rate of

the liquid flowing out of TANK A.
11. These are two flowmeters, one pictorial and the other digital. They are equivalent ways

of indicating the flow rate.
12. The indicator of the OVEN (PRE-HEATER) heats the liquid from TANK A and the gas

from the GAS SOURCE to the same temperature as the steam. Otherwise, the mixture of
these three will result in the condensation of the steam. The red and green lights are used
to turn the OVEN on and off, respectively. The red light is lit when the heater is on and
the green light is lit when the heater is off.

13. This repetitively appearing whitish-grey screen moves across the screen of the OVEN
icon to indicate that the OVEN icon is on.

14. This is the pressure vessel containing porous media through which the liquid surfactant,
the gas, and the steam flow.

15. This is the control of the valve for the GAS SOURCE. The user can turn the valve on
and off. Different colors for the valve indicate this status.

16. This is the indicator of the GAS SOURCE which stores the gas. Here also, a material
balance system, which takes the reading of the flow rate of the gas (through option 20)
and the reading of the amount of gas exiting the gas source (through option 29), is
responsible for maintaining enough gas in the GAS SOURCE.

17. This is the indicator of the pressure regulator which can be used to define an upper limit
of the gas in the GAS SOURCE.

18. Either the vertical arrows (used for fine control) or the horizontal arrows (used for gross
control) can be used to control the rate of flow of the feed water.

19. This is the icon of the pump which is responsible for pumping the feed water to the steam
generator.

*U.S.GPO:1992-661-026/60052

41

[I
" '_1' "

TABLE F.1

LEGEND FOR FIGURE F.1--Continued

20. Either the scroll arrows (used for fine control) or the horizontal arrows (used for gross
control) can be used to control the rate of flow of the gas from the GAS SOURCE.

21. This is the control of the valve for the feed water-converted-to-steam system. The user
can turn the valve on and off and different colors for the valve are used to indicate this
status.

22. The indicator of the steam generator which converts the feed water into steam.
23. This indicator shows the picture of a "green man" when everything is functioning

properly. When something is malfunctioning, the system tries to diagnose the cause of
the problem and indicate it to the user so remedial steps can be taken.

24. This control lets the user determine the speed of the stirring mechanism (stir bar) in
TANK A. This speed determines the rate at which the different components of the liquid
suffactant are mixed.

25. The repetitively appearing picture of a blue tube that moves across the core indicates that
something is flowing through the pressure vessel.

26. Pressing this button opens the DATA ACQUISITION panel from which users can select
any number of options.

27. The steam circulates and is condensed and is eventually taken into TANK B along this
drain.

28. These arrows allow the user to choose the number of times the experiment is to be
repeated. Each experiment takes a set amount of time.

29. This is the control of the backpressure regulator which releases the gas periodically to
maintain a certain pressure in this part of the system. The user can choose this pressure
by using the two arrows.

30. This is the indicator of another sensor which is connected to a heater (heater 2) which
heats TANK B. The sensor is red when the heater is activated and blue when it is not
activated.

31. This is the indicator of the thermometer which takes the temperature of the liquid in
TANK B and displays this temperature reading.

32. This is the indicator of TANK B which stores the mixture of the liquid surfactant and the
water condensed from the steam.

i[42
i, H ,, , ,

1
I
la

