et L e

©
T4 .
v : L
|o

;

122 [
1.« [
[l 112 [

= I

N
10

I

compiler that generates executable code with performance comparable to that produced by a C or

NIPER-596
Distribution Category UC-122

General-Purpose Automation Programming: NIFER--596
A Case Study on Using a Graphic Language DE92 001071

By
S. M. Mahmood
D. K. Olsen

October 1992
Work Performed Under Cooperative Agreement No. DE-FC22-83FE60149

Prepared for
U.S. Department of Energy
Assistant Secretary for Fossil Energy

Thomas B. Reid, Project Manager
Bartlesville Project Office
P. O. Box 1398
Bartlesville, OK 74005

Prepared by
IIT Research Institute
National Institute for Petroleum and Energy Research
P. O. Box 2128
Bartlesville, OK 74005

MASTER

Tt al e e T BN B R MR - S S ST - T w0 Y SN N L L N ua il
it 1 ke TN TR T e L LIRAE TN e L eelin

TABLE OF CONTENTS

Page
0T v o 1
EXCCULIVE SUIMITIATY ... uvtniitttinietteatenee et eten et ettt e eae et e tere e et reeraentanneneeaanes 1
ODbjJECtive ant SCOPE OF TEPOIT . . .v ..t ttteiteetttetnnenteeeteate et ttttesttauatneetreentereeeaerninens 2
27 Te) ¢4 {111+ T O N 3
Programming concepts relevant to LabVIEW 2 3
Object-oriented programming (OOP)......ooviiiiiiiiiiiiiiiire e 5
Procedure-oriented programming (POP) versus object oriented programming (OOP)......6
8074 T IR 4 11 8
Description of LabVIEW 2., ... e 8
Brief introduction of LabVIEW 2. e, 8
Programming structure of LabVIEW 2 ... 9
Basic facilities in LabVIEW 2. ... o 11
Description of NIPER's automation softwarecooooiii, 13
Data ACQUISILION . .ottt ettt ettt e 13
INStrUMENt CONLIOL ...ttt e e 15
Interactive graphiCs........covviuiviiiiiiiiiii i 18
N 1T 000 117 o N 19
ACKNOWIEAEMEMES. ..ttt ettt e 19
L 8 (-3 4 LT 19
Appendix A: Facility features and typical equipment controlled by the software............... 21
Appendix B: A sample of LabVIEW 2 program...........ccoiiiiiiiiiiinnininininnen... 22
Appendix C: Basic structures in LabVIEW 2...... ... 24
Appendix D: Hierarchical structure of NIPER's data acquisition software 26
Appendix E: NIPER's data acquisition facility.................coooiiiiin . 35
Appendix F: NIPER's instrument control facility...............ooooin 39
TABLES
B.1 Legendfor figure B.l.....coiuiiiiiiii i 23
C.1 Legendforfigure C.1... ..ot 25
D.1 Modules in the data-acquisition program as shown in figure D.1al 28
E.1 Legendforfigure E.1.. ..o 37
F.1 Legendforfigure F.l ... e 41

ILLUSTRATIONS

Page

I. A sample FORTRAN Program.....c.coocooiiiiiiiiiiiiiiiiiiiiiie e eeieeeeiine s 4
2. The control-flow diagram of the sample FORTRAN program...................cccceevvnnen. 4
3. A sample program segment in LabVIEW 2............cccooiiiiiiiiiiiiiiii e, 5
4. Different ways of classification of ObJECtS.........o.oiitiiiiiiiiiii e, 7
5. Asimple dataflow diagram.........c...oooiiriiiiiiiiii e 9
6. Basic structuresin LabVIEW 2. ... o, 12
7. Front panel of NIPER's data acquisitionmodule....................ooocoiiiiiiiiinn s 14
8. A simplified flow diagram of data acquisition facility...................ccoooiiiiiinn.n, 16

9. Front panel of NIPER's instrument control module............ccooooviivveeiiieiiiieinn.nn. 17
10. An example snapshot of automatic 3-D visualization of data.......................ccoenenn. 18
B.1 A sample program segment in LabVIEW 2..............ccoovviiiiiiiiiiiieiiiiieen. 22
C.1 Basic structures in LabVIEW 2. ..o 0 24
D.1 Hierachical structure of NIPER's data acquisition facility..........................ooeees, 27
E.1 Front panel of NIPER's data acquisition facility............cccooevivviriiiiiiiiiniinnnnnnn. 36
F.1 Front panel of NIPER's instrument control module..........ccccvvvvviiiviiiiiiiiinnn..n. 40

iv

GENERAL-PURPOSE AUTOMATION PROGRAMMING: A CASE STUDY
ON USING A GRAPHIC LANGUAGE

By S.M.Mahmood and D. K. Olsen

ABSTRACT

Object-oriented programming is the future direction of computer programming and
automation. It provides fast, easy and very reliable methodology for developing large complicated
software programs to test prototype configurations and develop computer control of multiple
operations. This report is part of technology transfer to assist the petroleum industry and other
engineering, science and manufacturing areas by conveying background information and the
benefits of this approach that were acquired during development of the data
acquisition/control/analysis/presentation software to operate a high-temperature, high-pressure
steamflood laboratory. NIPER developed the background and extensive applications using object-
oriented programming software using National Instruments™ LabVIEW® 2 as the programming
platform. The objective of developing this software was to automate the thermal lab; however, it
was designed in such a way that the program would be general and could be configured to any
laboratory automation during the run time. This modular program has been constructed so that
application, with minor modification, can be used in other laboratory, pilot plant or commercial
operations for data acquisition/control/analysis/presentation.

EXECUTIVE SUMMARY

The report addresses part of tasks 1 and 6 of research called for in NIPER's FY92 annual
plan for project BE11A, Thermal Processes for Light Oil Recovery. It also provides a background
and outline of the modular software developed using National Instruments™ LabVIEW® 2 as the
programming platform that uses an object-oriented programming language "G." Object-oriented
programming is the future direction of computer programming and automation. It provides fast,
easy and very reliable methodology for developing large complicated software programs to test
prototype configurations and develop computer control of multiple operations. NIPER developed
this general modular program for data acquisition/control/analysis/presentation to have the
following capabilities: (1) Allow user to operate interactively through a computer panel by
communicating with laboratory instruments such as pumps, controllers, balances, temperature
sensors, pressure sensors, fluid flow controllers, and alarms; (2) warn operators of conditions out
of preprogrammed ranges and shut down operations systematically if the operator does not
respond; (3) monitor the test progress by material balance based system and provide early
warnings to user for situations that may need user's attention in near future, such as feed tank

running low on liquid or sudden changes in material balance indicating e.g. possible leak in the
system; (4) prohibit user from making unsound operations such as running a pump when outtlow
valve is closed; (5) let user manipulate current and/or previous data interactively, e.g. analyze,
compare, plot, curve-fit and print; and (6) communicate with other applications and users for
sending data and warnings and receiving instructions.

This modular program, developed by NIPER using LabVIEW 2 has been constructed so that
application, with minor modification, can be used in other laboratory or pilot plant operations for
data acquisition/control/analysis/presentation. The software permits analysis and presentation
within LabVIEW 2 and other software programs written for a Macintosh computer. Some of its
features and typical control instruments are listed in Apdendix A.

This report along with a companion reportl completes milestones 1 and 6 of research called
for in NIPER's FY92 annual plan for project BE11A, Thermal Processes for Light Oil Recovery.
The companion report1 covers the configuration of equipment and operators' guide for use of
equipment and laboratory control systems. The combination of both reports helps NIPER to
document some of the operational aspects and procedures to improve and maintain safe, efficient
operating procedures for construction and operation of a high-temperature, high-pressure
steamflood laboratory.

The software developed is part of a broader task to develop procedures and apparatus for
measuring dynamic saturation changes in laboratory steamfloods using an X-ray CT scanner that
incorporates temperature, pressure and electrical conductivity measurements as part of the
monitoring of steamflood performance. Results from these laboratory steamflood experiments
would then be used to calibrate numerical simulators for predictive purposes for support of light oil
steamfloods conducted in the field.

OBJECTIVE AND SCOPE OF REPORT

The objective of this report is to convey a background and the benefits of using object-
oriented programming as acquired during development of the data acquisition/con-
trol/analysis/presentation software to operate a high-temperature, high-pressure steamflood
laboratory. This report is an overview of what has been developed and provides a background so
that the readers can not only appreciate the simplicity of the programming platform but also follow
the discussion and judge the applicability of this software to their specific application. The
background demonstrates the simplicity of writing, testing, debugging, and maintaining large
programs when using the graphical interface lunguage (LubVIEW 2) compared to traditional line-
code programming, such as FORTRAN, with which the reader may be more familiar. Discussion
on the concepts of object-oriented programming is included as well as comparison of a simple
FORTRAN program because it is necessary to show by example a program written in both

LabVIEW 2 environment and a traditional line-code language. However, such discussion is only
illustrative and is not intended as a tutorial or to be exhaustive. References are provided at the end
of the report where additional information and independent reviews of object-oriented
programming and LabVIEW 2 can be found.

BACKGROUND

NIPER has operated a steamflood research laboratory since 1984. Since that time, it has
used two physical models as principal tools to investigate various aspects of steam displacement of
both heavy and light crude oil. In 1990, the entire steamflood laboratory including both one-
dimensional (1-D) steamflood models and a two-dimensional (2-D) flat plate steamflood models
were reviewed. In light of previous laboratory operating problems, and their limitations in
modeling field-scale steamtloods as pointed out in a 1991 study of scaling parameters of
steamflood physical models,? a new titanium steamflood model, which is X-ray CT scannable, yet
has large-volume (25L) capacity, was designed and is being constructed. The configuration of that
equipment, an operators' guide for use of equipment and laboratory control systems, and plumbing
and electrical schematics with specifications are being compiled.!

Due to the safety and reliability consideration involved in the operation of a high-temperature,
high-pressure steamflood laboratory, a decision was made to adopt National Instrument's™
LabVIEW 2 as the programming platform because of its highly structured object-oriented
programming approach and operate the system from a Macintosh II computer.6 The main
components of the steamflood laboratory are the steamflood physical models, the laboratory
configuration, NIPER's automation software, and a Macintosh II computer installed with several
digital and analog data transfer boards.

PROGRAMMING CONCEPTS RELEVANT TO LabVIEW 2

This section describes the concepts of programming languages that are pertinent to
LabVIEW 2. In light of these concepts, LabVIEW 2 will be compared (in later sections) with
traditional languages. The following discussion is aimed to highlight the basic differences in the
conventional languages and LabVIEW 2.

To refresh reader's memories, let us first consider a simple program that iteratively reads data
from a file, converts it to degrees Fahrenheit, and warns user if the value exceeds a predetermined
limit. Fig. 1 lists a FORTRAN program to achieve this objective. To help understand the structure
of the program, a control-flow diagram is customarily used, such as the one shown in Fig. 2.

OPEN (5, FILE = 'ALLIANCE:LABVIEW 2:INPUT TEMPERATURE/,
+ STATUS ='OLD'") CELSIUS

ALLIANCE IS THE VOLUME LE., HARD DISK, LABVIEW2 IS THE
FOLDER CONTAINING FILE NAMED INPUT TEMPERATURE

10 READ (S, *, END = 99)
FAHRENHEIT = ((CELSIUS * 9/5) + 32)
IF (FAHRENHEIT.GT.450) GOTO 20
GOTO 10
20 CALL BEEP (1)
C BEEP IS A SUBROUTINE THAT ACTIVATES AN AUDIBLE BEEP
99 STOP
END

ol@!

FIGURE 1. - A FORTRAN program that iteratively reads data from a file, converts it to °F, and
beeps if the value is higher than 450° F.

Open file and
START place cursor to
the first line

b :

then advance curso

to next line Close file

Convert the reading
to Fahrenheit

{ / Read current line,/
r

v

Does the current STOP

Is the temperature line contain _
in Fahrenheit end-of-file
higher than 4507 . character?

Q—7/ Beep one time /

FIGURE 2. - The control-flow diagram of the example FORTRAN program (shown in Figure 1)
that iteratively reads data from a file, converts it to °F, and beeps if the value is
higher than 450° F.

o " u TR TR AT W [Cooag o0 " . oo "

Now, let us consider a program in LabVIEW 2 (Fig. 3) which achieves the same objective
as the FORTRAN program. Notice that the LabVIEW 2 program itself is in the form of a flow
diagram, thus no control flow diagram is needed. Further explanation of this program is provided
in Appendix B.

At the first glance, it may appear that the FORTRAN program is easier to follow. It may
very well be true for small programs like the one presented in this example. However, our
experience in writing and maintaining software for the thermal lab using the BASIC language and
then LabVIEW 2 shows that as the size and the complexity of the program grows, line-code
programs increasingly become more difficult to follow than visual programs.

Object-Oriented Programming (OOP)

The important concepts of object-oriented programming (OOP) are described below. This
description is included to help readers visualize the significant advantages that this approach to
programming offers over languages such as Basic, FORTRAN, Pascal, and C, which are some of
the more familiar line code languages. National Instrument's LabVIEW 2, the basis of NIPER's
automation software, is a programming platform (compiler) that uses a high-level object-oriented
language called "G."

Alliance ‘LabVIEW 2 :Input Temperature |

FIGURE 3. - A sample program segment in LabVIEW 2 that iteratively reads data from a file,
converts it to °F, and beeps if the value is higher than 450° F. For description of
this program, see Appendix B.

OOP refers to a programming style that relies on the concepts of inheritance and data
encapsulation. Inheritance is a language facility for defining a new class of objects as an extension
of previously defined classes. The new class inherits the variables and operations of the previous
classes. Inheritance helps in building complex structures by using the existing simpler objects.
Since common properties of objects can be preprogrammed by defining classes, programming
effort can be significantly reduced. Data encapsulation (also called implementation hiding,
meaning certain details of implementation code are deliberately hidden from the user) allows
objects to be packaged so that unnecessary details of implementation are not visible from outside
the object. Examples of inheritance and data encapsulation are shown on the following page. An
object may include a set of functions, procedures, subroutines, data, type-definitions, arithmetic
and/or other operations. Any or all entries in an object may be defined as either public, private, or
protected, depending upon their intended use. Objects interact with each other by sending and
receiving messages.

The properties of OOP allow one module (an independent program segment like subroutines)
to be written with little knowledge of the code in another module. Modules can be reassembled
and replaced without reassembly of the whole system. OOP's programming style can be practiced
with widely differing languages. For example, C++ (a line code language) allows both inheritance
and data encapsulation to deal with the most demanding systems' tasks yet retains C (also a line
code language) as a subset for tasks requiring low-level programming.” LabVIEW 2
superimposes a graphical editing and execution system upon the object-oriented "G" language to
create a platform for the users wherein programs (modules) can be easily written, tested, debugged
and modified by copying the objects from the LabVIEW 2 library and user's own library of
modules. Thus, it provides a simple yet powerful visual programming environment.

Procedure-Oriented Programming (POP) Versus
Object-Oriented Programming (OOP)

Figure 4 illustrates the difference in procedure-oriented programming (POP) and OOP.8 The
requirement in this example is to build figures, which are basically composed of basic shapes—
lines, rectangles and circles. POP will structure a program around the operations on shapes. It
may include operations for drawing, rotating, and scaling a figure. For each shape in the figure,
the procedure will classify shape and then execute the code that is appropriate for drawing that
kind of shape. However, the code for each shape will contain only very elementary operations.
Because of the use of elementary operations, the code for manipulating shapes is spread across the
various procedures, which is often problematic. If a new shape is added, e.g. an arrow head, the.n
the code for handling the new shape has to be added to each procedure. Even if the uew

TR TR T It e TP TR

b

information is small, it is spread across procedures, each of which must be analyzed before the
new code is added to ensure that there are no conflicting directions or assignments.

The OOP approach of handling this problem is: A class named "shape" is defined, which has
subclasses of lines, rectangles, and circles. Class shape then collects common properties, such as
the height, the width, the position, and an operation foi moving the shape. Properties that are
specific to lines, rectangles, and circles appear in the appropriate subclasses. Inheritance, an OOP
property, allows arrows to be added by extending the subclass “line", without touching the code
for the other objects. An arrow inherits all the properties of a line, so the only additional code
needed to draw an arrow will be the code for drawing an arrowhead. Another property of OOP—
data encapsulation—will allow the drawing of various shapes by simply sending messages to the
class shape, without the need to see its implementation details. In OOP, each module is a
completely executable program in its entirety, and it does not intcract with other program segments
in any way except by receiving and sending messages. This message-passing mechanism is
superior to the use of "subroutine calls" in traditional programming because it eliminates any
chances of inadvertently altering the data in the calling program. The ncer doog 561 need o0 now
the implementation details of a module to re= Il in any other module. He merely needs to know the
abstract information abort (s actions and about the input/output data to be exchanged through
messages.

since OOP is more of a philosophy than a specific language, differentiating OOP with
precision from other programming styles is difficult. In abstract terms, OOP relies heavily on
making and using objects (building blocks) instead of using elementary units and operations. If
the objects are appropriately defined, the task of manipulating them becomes easier. The objects

shapes

(a) Disjoint sets of objects (b) Nested sets of objects

FIGURE 4. - Different ways of classification of objects: (a) POP (b) OOP.

are treated as complete units; hence, operations on them are far less likely to have inadvertent side
effects, i.e., unwanted influences on other objects or program are avoided. The power of OOP
becomes increasingly apparent as the size and complexity of a program increases. It is easier and
safer in OOP to extend the classes, and the code for each individual operation is often small and
seems to simply "pass the buck" by invoking operations in other objects.®8 Debugging or editing
time is thus significantly reduced for the programmer.

Program Testing

For automation programs (laboratory, pilot plant or production facilities) that deal with
instrument control, it is imperative that the correctness of the program be established with
reasonable certainty. Because of the program's size and complexity, such programs can seldom be
guaranteed to be "absolutely error-free." It is "hopeless to establish the correctness of a program
by testing, unless the internal structure of the program is taken into account,” argues the noted
computer scientist Dijkstra.® Programmers wish to design programs carefully so that the
correctness can be understood in terms of structure. In his words, "the art of programming is the
art of organizing complexity.” Large programs are difficult to test and debug because the effect of
a change can propagate into various segments, some of them remaining undetected for an extended
time. Structure and organization are the key to managing large programs. The readability of a
program can be improved by organizing it so that each part can be understood relatively
independently of the other parts.

LabVIEW 2 using the object-oriented programming language "G" provides several constructs
for organizing computations. It helps the programmer to write good programs, which are easy to
read (follow), easy to understand, and most importantly, easy to modify. LabVIEW 2 structured
program organization eﬁables the user to package the same amount of information into far fewer
symbols. Its superb abstraction mechanism puts the needed information on user's fingertips,
allows the user to easily examine the program in various levels of details, and makes the task of
remembering easier. The program is divided into isolated program fragments (modules). These
modules can be understood, improved, and changed without concern for how these changes will
affect the main program because they interact with other modules and elements only through
receiving and sending messages (i.e., never access global variables).

DESCRIPTION OF LabVIEW 2

Brief Introduction of LabVIEW 2
LabVIEW 2 is a visual programming environment that can be used effectively by a broad
range of people with different programming skill-levels. The two-dimensional graphical notations
that LabVIEW 2 uses are much easier to comprehend than the textual notations such as line codes.

The programs look like a dataflow diagram (Fig. 5), in which elements are pictorially represented
and dataflow between elements is through color-coded wire connections. With this representation,
constructing or understanding a program is easy and natural.ll Kodosky, MacCrisken, and
Rymar!2 have described some of the programming structure behind LabVIEW 2, and we have
used a number of their examples because of the clarity of their presentation. The first section
provides more detail about the language structure, whereas the later section describes the basic
facilities in LabVIEW 2.

Programming Structure of Lab VIEW 2

National Instruments LabVIEW 2, by using the high-level, object-oriented language "G,"
allows LabVIEW programs to be highly structured and modular. Each module is a totally
independent and interactively executable program, which can be used as a subprogram by other
modules. To use a module as a subprogram, its icon is copied into the program. Data exchange
(input/output) with the module can be accomplished by making wired connections between the
terminals shown on the icon and other elements in the program. In this fashion, large programs
can be developed in an hierarchical manner by starting with small modules and using them within
othar modules. Since each module has its own independent program and a separate input/output
interface, debugging or modifying a large program developed with LabVIEW 2 is quite easy.

LabVIEW 2 handles the execution sequence of a program in a different manner than line-code
languages. In the traditional languages such as Basic, Fortran, C, or Pascal, the execution of
instructions takes place according to the control flow diagram designed by the programmer.
LabVIEW 2, on the other hand, is based on a modified dataflow model such that the sequence of
execution need not be predefined.

node /data token

input \ /
terminal

output
terminal

FIGURE 5. - A Simple Dataflow Diagram.

T— 8L 2 e L e A A S O T

Dataflow diagrams specify the data dependency between computations, but they do not
specifically force any particular sequence of independent computations. A simple pure, data-driven
dataflow diagram is illustrated ‘n Fig. 5. It is a directed, acyclic graph consisting of nodes, arcs,
terminals, and data tokens. Terminals in the program are the connections (o the external world,
and act as the sources or sinks of data tokens. Arcs are the directed paths over which data tokens
move, and nodes are the locations in which computations are performed. The fan-out of an arc
implies copying the data token; the fan-in of an arc is disallowed. A node consumes tokens on its
input arcs and produces new tokens on its output arcs. What makes the diagram data-driven is the
firing rule, which states that a node cannot execute until all of its input arcs have a data token
available, at which time the acde consumes one token from each input arc, performs the
computation, and produces one token for each output arc. In Fig. 5, node J has already executed,
K and L are eligible to execute, and M is still ineligible because it needs a token on its second
input.

In contrast to the control-flow model, the datatlow model has no concept of locus-of-control,
no program counter (i.2. no sequence numbers like in text-based program codes), and no global
variables (globally accessible memory). A data token exists only from its production by a node or
input terminal to its consumption by another node or output terminal. All nodes that are eligible to
execute can do so in any order or even in parallel; the results of the diagram will be the same in all
cases.

The classical dataflow model, however, lacks the provisions for conditional or iterative
computations. Severdl extensions of dataflow model have been proposed by relaxing the firing
rules and allowing cycles in the graph—the modifications that severely compromise the clarity of
the programs. LabVIEV . provides an extension to overcome this limitation which not only
preserves its firing rules and acyclic structure (thus preserving program clarity) but also
incorporares the proven benefits of the structured programming methodology. This extension
invoives redefining a node to be any program segment enclosed in a box-like structure that
separates the body (or inside) of the structure from the rest of the program. Because the structure
behaves like a node as far us the rest of the program is concerned, the overall dataflow
methodology is preserved. The body of a node (inside the structure) behaves like an isolated
diagram, in which access to the code is only trom the top (or beginning). The program structure-
semantics such as loop behavior or conditional behavior %ave been superimposed on the body of
the structure. This can be thought of as a macrostructure (program as a whole) containing some
microstructures (program segments inside the node), both of which independentiy follow the
dataflow model. The microstructures, however, have some additional control properties.

Using the extended datatlow strategy, LabVIEW 2 is uble to retain the important benefits of
both structured programming and dataflow strategy. In addition, LabVIEW 2 incorporates a

10

-l T—

- _ I LLp et .

compiler that generates executable code with performance comparable to that produced by a C or
Pascal compiler.

Basic Facilities in LabVIEW 2
(I) Editing:

LabVIEW 2 contains three interrelated editors, one for each of the three parts of a module, or
virtual instrument (also abbreviated as VI) as National Instrument calls it. These three editors
consist of the following: the block diagram, the front panel, and the icon. A block diagram is a
directed acyclic graph containing nodes, interconnecting signals, and source and sink terminals
which correspond to the front panel controls and indicators, respectively. It is constructed by
selecting built-in functions, structures, and previously constructed Vs from graphical palettes and
arranging them in the block diagram window. The VIs from the user's own library can also be
copied. The front panel contains all of the input/output controls and indicators for interactive
programming. These controls and indicators define the data types of the inputs and outputs of the
VI. The controls and indicators are initialized with the previously stored values, but the values can
be reassigned by the user during and prior to the program execution. The icon of each VI contains
terminals (non-overlapping subregions) that are in one-to-cne correspondence with a subset of the
panel controls and indicators. These terminals can be used to import/export data programmatically.

Inside the block diagram, the arcs (or connecting wires) are drawn using the Wiring tool to
establish the paths of data exchange. The wiring tool is a cursor that looks like a spool of wire. As
each edit transaction is performed, the syntax checker detects and flags any cycles introduced into
the dataflow graph, propogates data attributes (type) to all the terminals, computes the data type for
each built-in function, and redraws any arcs whose attributes have changed. Each arc is drawn
with a distinctive pattern, width, and color code to indicate the data type, array dimensionality, and
numeric representation.

(1Y) Built-in Library:

L 20VIEW 2 comes with a large library of Vs (modules) for easy handling of most low-level
programming details. Use of these VIs allows the programmer to concentrate on customizing the
program. Numerous driver programs for common instruments are also included, and many are
available from third-party vendors. For systems involving several instruments or for programs
requiring specialized communication with the instruments, the user may have to write his own
driver program. Depending upon the complexity of the system and the level of programrer's
experience with LabVIEW 2, such programming may take several days. The time required for
programming will be significantly lower than the conventional line code languages.

11

(1) Control Structures:

LabVIEW 2 provides five box-like structures and one file-linking structure as shown in
Figure 6. Various elements in these structures are explained in Appendix C. The top three are
quite similar to the "while loop", the "for loop", and the "case structure” in other programming
languages. The Sequence structure executes one frame at a time in the numeric sequence of the
frames, where the values can be passed from any frame to all the following frames in the
sequencer. This is accomplished using local registers (arrows inside of the box). The sequence
structure, as the name implies, is used to impose an order of execution. The same is true for the
Formula Node, in which text-like expressions are evaluated from a top to bottom sequence. The
values to the variable are assigned or evaluated through the input/output terminals, e.g. x, y, and z
as shown in Figure 6(E). The Code Intertace Node (CIN) is equivalent to calling an executable
subroutine that is accessible to the program yet is outside the program body itself. The subroutine
is imported and evaluated using the input parameters provided through the input terminals on the
node (arrows in the left boxes). The result is then copied to the output terminals (arrows in the
right boxes) where it is available for other program elements. The CIN allows the user to use C,
Pascal, or an assembly code language, while still enabling him to benefit from object-oriented
programming; but most importantly, it allows more efficient dynamic memory allocation for arrays
and strings that minimizes memory fragmentation.!3

For Loop [While Loop | | Case Structure |

(B) (C)

[Sequence Structure |

- mCINEIND, |

Code Interface Node
(CIN)

123

-0
$loo

(O] hdhdh-e
L4

(D) (E) (F)

FIGURE 6. - Basic structures in LabVIEW 2,

12

w yoorw ' (TR o [T e v AR I N

» W

(V) On-line Help

Information about any of the SubVIs can be conveniently obtained by selecting Show Help
from the Windows menu and then passing the Wiring tool over them. The type of information
available on-line includes the name of a module (V1 or funciion), a brief description of its intended
use, and a brief visual/textual description of input/output data and terminal locations. For more
details, both the front panel and the block diagram can be viewed by double clicking on a module.
The entire hierarchy of a module (or a part of it) can also be conveniently viewed. An example of
this is shown in Appendix D (Fig. D.1).

DESCRIPTION OF NIPER'S AUTOMATION SOFTWARE

NIPER's automation software consists of the following three main interactive sections:

A. Data Acquisition

B. Instrument Control

C. Interactive Graphics

All three of these facilities are fully integrated, such that while the user interacts with one, the
others continue to process at the background. Facilities can be alternated manually or automatically
on the basis of event priority. For example, the data acquisition panel may be activated during the
actual scanning of data to display the acquired data and report any errors, then the interactive
graphics can be called up to display the data graphically with various orientations and styles.
Finally, the control panel may be activated to give a visual picture of the process. Events may be
assigned priorities so that higher priority messages can automatically be switched to the interactive
panel. Following is a brief description of each facility.

Data Acquisition

The control panel for this facility is shown in Fig. 7. This facility has three features: (1) let
user manipulate current and/or previous data interactively, e.g. analyze, compare, plot, curve-fit
and print; (2) warn user for system errors and out-of-range measured values; and (3) allow user to
reconfigure system set-up; e.g. connect or disconnect instruments, define allowable ranges outside
of which warning is issued and system is shut down, select interval between scans, and emergency
shutdown sequence, etc. The title bar contains nine buttons which allow user to select between
features. By pointing and clicking the buttons in the title bar (see Fig. 7), user may switch
between these features. Some of these buttons open a new window for allowing user to make
selections. Since these subwindows have lower priority, they do not interfere with other activities,
i.e., data acquisition and control functions continue in the background. A brief description of
various controls and displays is given in Appendix E.

13

T R . ' o " | [o ' [T T B T B I O T O TR O R R A |

-a[npow uonrsinboe viep S, YIJIN Jo [sued Juold - "L YNDI

4
i
*
O~ M<EIB I~ G o

O

‘92 ‘S ‘pE e ZE 1S 0L 62 8T LT 92 ‘S ‘¥Z '§TTT 1L

S -0 oo
‘BLLLBLsLpLISLZIIL 0L 678 L'9'8 b ST
TAYIdSIA JIHAY HO d04 31gY UV AY

10N SI (S)TINYHI ONIADTIOS 3HL 304 ¥ 1% ONINNY A
‘ob ‘6% ‘8% ‘LS

:(SY1INNYHI ONIADTI04 JHL ONIAOHS ATLN3YANI SIIHAVE9

SIOVYSSIN JHIYAD

Spuodas "Il L NNd

ONINNNY SI W3LSAS Wd 1€

669
0'0L
1'0L
Z 0L
£0L
0L
¥'0L

90L
L 0L
L 0L
8'0L
6 0L
0 1L

252 25258
R AR RN o.. otosed

5 o S i
- N o L
2. 2 L
’ > J.f. 2 e .#ﬂ.llrl.
. K\ - " \\v\." - S . - /Av'll.\uuva
NSRS L A TSl e NNR
b 3 x\k? = “.\” \m w7 i !”VI.“ DY
" 2 e \ - ¢
k. - A L =
(D e XN g e
; z N 2 5% i oL N
oL e, 2 S AT MAN
N PN RS T
3 B
62669 LZL EEERo | ¥ AP
wosor s | MO o | P e
..oms:u

n..,_

uno) ebe g
14

:¢4°69) TINVHI 3wl If 208d/swaN

S
‘oN #bey

L_0E

A0

s oulbeligRegere)

(bisd)
'SSId
—pue—
(48)
“did3L

‘ON NNy

{sad

a«mu

._zmhxu

HJLIAS 340

d0iS 01
SS3dd

31 2 31va

COLERULIE

14

0o

'
-

Figure 8 is the flow diagram showing an outline of the functionality of data acquisition
facility. It is a simplified diagram because customary flow diagrams cannot easily depict
LabVIEW 2 programs, which are data-driven yet incorporate control features. The hierarchical
structure of the data-acquisition program modules along with a brief description of each module is
given in Appendix D.

Instrument Control

The front panel for this facility is shown in Fig. 9. A brief description of various controls
and indicators is given in Appendix F. The process control facility allows the user to operate the
remote-sensing instruments such as pumps, controllers, balances, temperature sensors, pressure
sensors, fluid flow controllers, and alarms through the front panel. It also provides several safety
features (described in the following paragraphs) to minimize common operator mistakes. The
instruments are pictorially represented by indicators (see figure) which change their color or shape
as the conditions change. For example, the level of fluid in a tank's indicator increases or
decreases with the change of fluid weight in actual tank. This combination of pictorial and
dynamic representation gives a visual sense of the process which makes it easier and faster to
trouble-shoot the problems.

The facility has a built-in logic that checks the validity of user's commands and disallows
them when unsound; e.g. it would not allow the user to run a pump if the outflow valve is closed;
thus reducing the chances of avoidable accidents and failures. Another safety feature built into the
facility is the continuous monitoring of the test progress by material balance, i.e. the injected fluids
and discharged fluids are continuously weighed and compared. If a discrepancy beyond the user's
acceptable limits is found, user is warned of possible leaks or other mishaps in the system.
Similarly, the program continuously monitors the rate of change of preselected parameters, and
cautions the user when user-defined tolerance is exceeded. Thus, a leak in the tubing causing
sudden reduction in pressure will be reported immediately and a corrective action will be taken by
the computer if not overriden by an operator.

This facility also warns operators when a measured value falls out of its preprogrammed
range. This feature can be used to provide early warnings for situations that may need user's
attention in near future, e.g. to get an alert message when a feed tank starts running low on liquid.
The most useful feature of this facility is to act as a warden when user's instructions are not
available. When a situation falls outside the user-defined ranges, and no response from the user is
received in due time, the facility shuts down operations systematically as per user's pre-set
instructions.

15

BEGIN

OPEN
INPUT/OUTPUT
FILES

LOAD FILES
CONTAINING LAST USER
SELECTIONS

SORT
CHANNELS FOR EACH
EXTENSION SLOT

SEND SIGNAL
TO EACH CHANNEL &
RECEIVE RESPONSE

STORE RAW DATA
& ERROR MESSAGES
IN FILES

INCLUDE
OTHER DATA FILES
IF REQUESTED

ANALYZE
DATA & DISPLAY
RESULTS

WARN FOR OUT
OF LIMIT DATA & SHUT)
DOWN (EMERGENCY)

WARN USER OF
ERRORS. iF NO REPLY,
FOLLOW DEFAULT

WAIT FOR
NEXT SCAN CYCLE.
MEANWHILE, SERVICE
USER REQUESTS

RECONFIGURE IF
USER HAS CHANGED
PARAMETERS

REPEAT
OR START ORDERLY
SHUT-DOWN

END

FIGURE 8. - A simplified flow diagram of data acquisition facility.

*2[nPOUI [01U0D JUSWINLISUT S, YTJIN JO [oued U0l - *6 FANDIA

— 00€

17

JWN|0A AUB]
paJisaq

88 32 R °

|auBd ju0.4

T T I e O S N S NS N N |

[T

o . N m

SRR N i i NN, N N N .

_ N

Interactive Graphics

The 3-D visualization of data as shown in Fig. 10 is an example of LabVIEW's data export
and communication capability with other applications. In this example, every time a new data set
was scanned during the lab experiment, the graphic facility in NIPER's automation software
automatically opened a Microsoft Excel file containing this chart. The chart was updated with new
data. The chart was then automatically rotated with different attributes such as at different angles,
aspect ratios, etc. Then, the chart was closed and the control was transferred to LabVIEW 2. All
the while, LabVIEW 2 continued to operate in the background acquiring (or waiting for) new data
and checking for error and safety messages.

Excel is one of many applications that can be integrated with LabVIEW 2. In fact, any
application that supports the Microsoft System 7's feature of Dynamic Data Exchange (DDE) can
be integrated, i.e. the applications can link, subscribe, and publish to or from other files. Also,
any application that allows macro-expansion (sometimes called scripting) is also a good candidate

a4

el
e 'g
R
R
TS ‘ﬁ .
L

oY,

+

TEELS,
O.:::
o520
N
bee.
%

&
o
S5
0'“ 5
-
GRS
el

.
: m'
R3S
o i

55

LR
20
r2osPs
R

57
93

%
%5
(4 ""

3

X X W
% &ﬁ‘ ",‘;03, o ’
SR AR
X S
ok Kk
BRI

A
A

¥
~
O
5.

oo
”
S

FIGURE 10. - A sample snapshot of automatic 3-D visualization of data in Microsoft
Excel. DeltaGraph Professional and Spyglass Transform can also be
similarly used.

18

e e LY,

for integration. The commercial applications that definitely appear to have these capabilities are
Excel™, DeltaGraph Professional™, and Spyglass Transform™. The Spyglass Transform can
display diffused-color surreal graphics by filling in interpolated data points along with the actual
data in a multidimensional spatial field.

SUMMARY

A laboratory automation software has been developed using National Instruments
LabVIEW 2, an object-oriented visual programming environment. LabVIEW 2 has shown to be
an effective platform for developing comprehensive and integrated programs to acquire data,
control instruments, perform extensive analysis, and display data; all in real-time and with
enhanced graphics that may use other applications as well. Such automation programs can increase
the reliability, efficiency and safety of lub operations because the operator can visualize the process
as it happens, listen to the warnings and alarms by the system, and immediately control the
process; all without exposing himself to everyday risks involved with lab experiments. Even more
important is the computer's ability to act as a backup warden handling emergency situations when
operator fails to respond. It is also very useful in situations where experiments have to be
alternated, since the configurations are stored and need not be reset.

ACKNOWLEDGMENTS
This work was sponsored by the U.S. Department of Energy under cooperative agreement
DE-FC22-83FE60149. The help in revising manuscript by G. Sharma, W. Lucas and Y. Tyagi is
acknowledged. The authors thank E. B. Ramzel, G. Sharma, W. Lucas, M. K. Tham and A.
Strycker of NIPER; T. B. Reid of the DOE Bartlesville Project Office for their critical reviews; and
the staff of National Instruments for their encouragement and review.

REFERENCES

1. Olsen, D. K., S. M. Mahmood, P. S. Sarathi and E. B. Ramzel. Operating Guide and
Specifications for NIPER Steamflood Laboratory, in review, July 1992.

2. Kirkman, I. W. and P. A. Buksh. Data Acquisition and Control Using National
Instruments' "LabVIEW" Software. Rev. Sci. Instrum., Vol. 63, No. 1, Jan. 1992, pp
869-872.

3. Liles, Ken. Data Acquisition Software Automates Automotive Fuel Iijector Test Facility.
Engineering & Management, Oct./Nov. 1991, pp 13-21.

4. Liles, Ken. Data Acquisition—A Mac-Based System for Fuel and Lubricant Testing.
Scientific Computing & Automation, Jan. 1992, pp 19-23.

5. Olsen, D. K., P. S. Sarathi, S. M. Mahmood, and E. B. Ramzel. Thermal Processes for
Light Oil Recovery, Dept. of Energy Report No. NIPER-515, December 1990, pp. 18-20.

19

10.

11.

12.

13.

Apple Computer Inc. Macintosh Il User Manual, Cupertino, Cn, 1986.
Stroustrup, B. The C++ Programming Language, Addison-W :sley, Reading, MA ., 1986.

Sethi, Ravi. Programming Languages: Concepts and Constructs, AT&T Bell Laboratories,
Murray Hill, New Jersey, Addison-Wesley, Reading, MA., 11189.

Dijkstra, E. W. Notes on Structured Programming. Contained in Reference 10, pp 1-82.

Dahl, O.J., E. W. Dijkstra and C. A. R. Hoare Structured Prc gramming. Academic Press,
London, 1972.

National Instruments Corp. LabVIEW 2 Getting Started Manual, Part No. 320246-01,
Austin, TX, April 1991.

Kodosky, J., J. MacCrisken and G. Rymar. Visual Progran ming Using Structured Data
Flow. Proceedings of the 1991 IEEE (Institute of Electricil and Electronics Engineers)
Workshop on Visual Languages, Kobe, Japan, Oct. 8-11 1991. Reprinted by IEEE
Computer Society, 10662 Los Vaqueros Circle, P.O. Box 30 4, Los Alamitos, CA 90720-
1264.

National Instruments Corp. LabVIEW 2 User Manual, Part No. 320244-01, Austin, TX,
Sept. 1991.

20

&

APPENDIX A

FACILITY FEATURES AND TYPICAL EQUIPMENT
CONTROLLED BY THE SOFTWARE

FEATURES

MACINTOSH BASED, USER-FRIENDLY SOFTWARE
DEVELOPED USING NATIONAL INSTRUMENTS LabVIEW 2
(OBJECT-ORIENTED, "G" LANGUAGE)

CAN BE USED WITH MOST EXPERIMENTAL SET-UP
WITHOUT ANY MODIFICATION DUE TO THE
GENERAL-PURPOSE, MODULAR DESIGN

REAL-TIME DISPLAY OF DATA, GRAPHICS, CONTROLS,
ERRORS and STATISTICS

COMPREHENSIVE ON-LINE DATA ANALYSIS INCLUDING
LINEAR & NON-LINEAR CURVE-FITS & STATISTICS

ERROR WARNING & RECOVERY SYSTEMS WITH
USER-DEFINED ACTIONS OR USING DEFAULTS

BOTH DIGITAL & ANALOG CONTROL OF INSTRUMENTS
(VIA RS232/IEEE-488, ELECTRICAL PULSE & WAVES)

DATA ACQUISITION, ANALYSIS, DISPLAY AND CONTROL
OF INSTRUMENTS ARE ALL RUN-TIME ADJUSTABLE

DYNAMIC MEMORY ALLOCATION TO OPTIMIZE MEMORY
REQUIREMENT AND INCREASE EFFICIENCY

ARTIFICIAL DATA DEPENDENCY & NON-INTERRUPT
INSTRUMENT DRIVERS TO MINIMIZE DEADLOCKS

TYPICAL EQUIPMENT CONTROLLED BY THIS SOFTWARE

BACKPRESSURE REGULATOR
THERMOCOUPLES

PRESSURE TRANSDUCERS
SWITCHING VALVES
ELECTRONIC BALANCES
PUMPS

BOILER

ALARMS AND SHUTDOWN
LCR METER (ELECTRICAL CONDUCTIVITY)
RELAYS

FLUID LEVEL SENSORS

21

APPENDIX B
A SAMPLE OF LABVIFW 2 PROGRAM
A sample LabVIEW 2 program is explained here. This is the same program shown in Fig. 3

and briefly mentioned easlier in the text. The legend for Fig. B.1 (numbers in circles) is presented
in Table B.1.

ZA 4| True P
v
750
ot

FIGURE B.1 - An example program segment in LabVIEW 2 that iteratively reads data from a
file, converts it to °F, and beeps if the value is higher than 450° F. For
description of this program, see Appendix B.

22

TABLE B.1
LEGEND FOR FIGURE B.1

O 0 3 &

10.
11.
12.
13.
14.
15.

16.

This entire box is a While Loop structure. The While Loop, which can be thought of as a
single node itself, executes the diagram inside its borders until the Boolean (True-False)
value passed to the conditional terminal (box 5) is False.

This box contains the string which specifies the volume name, directory name, and file name
from which the temperature data (in Celsius) is to be read.

This node opens the specified file and reads the current line of temperature data into a
numeric array. The node then closes the file, passes the array to node 6, and passes a
numeric error message value to node 4.

This node checks to see if the error message from node 3 is equal to zero (indicating no
error). If so, the node outputs a Beolean value of True. If the error message does not equal
zero, the Boolean output is Fulse.

This box is the conditional terminal for the entire While Loop. The terminal is checked at the
end of each iteration and exits the While Loop structure once the Boolean value from node 4
is False.

This node reads a specified element of the numeric array from node 3 and then passes the
value of that element to node 12.

This is a numerical constant that contains the integer value that specities which element of the
array node 6 is to read.

This is a numeric constant used in the temperature conversion from Celsius to Fahrenheit.
The value is passed to node 11.

This is a numeric constant used in the temperature conversion from Celsius to Fahrenheit.
The value is passed to node 1.

This is a numeric constant used in the temperature coaversion from Celsius to Fahrenheit.
The value is passed to node 13.

This node divides the value from constant 8 by the vulue from constant 9. The numeric result
(a conversion factor of 9/5) is then passed on to node 12.

This node multiplies the output value from node 6 by the output value from node 11. The
numeric result is passed on to node 13.

This node adds the value from constant 10 to the output value from node 11. The resulting
numeric output (Fahrenheit teimperature) is passed on to node 5.

This is a constant numeric value specified as the temperature limit.

This node checks to see if the output value from node 13 is greater than the temperature limit
of box 14. If so, then the resulting Boolean output is True. If the value from node 13 is less
than the temperature limit of box 14, then the Boolean output is False.

This is a Case structure. The node inside this structure beeps if the Boolean output from
node 15 is True, which means that the temperature value read trom the file is higher than the
temperature limit specified by box 14.

23

APPENDIX C

BASIC STRUCTURES IN LABVIEW Z

The basic structures in Lab VIEW 2 are explained here. These structures were also shown in

Fig. 6 and briefly mentioned earlier in the text. The legend for figure C.1 (numbess in circles) is
presented in Table C.1. A brief discussion of this figure is also included.

EXPLANATION OF FIGURE C.1

Structure A presents a For Loop, which pertorms numeric iteration. This structure is
comparable to = "For Loop" in Fortran. It executes a specified number of times . The While Loop
is displayed in B. This loop continues execution as long as the specified boolean condition is true.
Since it checks for the true or false condition at the end of each cycle, it always executes at least
once. The Case Structure, shown in structure (C, may contain two or more subdiagrams, also
called "cases". One of these "cases" is selected during execution as specified by the input value
(which may be either Boolean or numeric scalar). Structure D shows a Sequence Structure. This
structure holds numerically numbered frames which are executed sequentially. The function of the

"Formula Node" in structure E is simply to hold one or more equations. This structure computes

For Loop

[WhileLoop |

l 10 I_..__

123
(A)
[Sequence Strutuﬂ Code Interface Node
s mEINEND (CIN)
. 1 0100
1 23 0010
‘ *[+ 4—@
Y
o+
(D) (E) (F)

FIGURE C.1. - Basic structures in LabVIEW 2.

1 ' W ' o .y ' [T ' PR T e noe R T RIEERY T

DL
— -l

the equation sequentially from top to bottom and outputs the result. Structure F, the Code Interfuce
Nodes (CIN), allows the user to program a segment of the block diagram (:.¢. LabVIEW 2
program) using "C", "Pascal”, or an assembly code language.

TABLE C.1
LEGEND FOR FIGURE C.1

(8]

o s

[o b |

The count terminal holds the value (supplied by the constant wired to it) of how many times
the loop is to be executed.

The arrows on the vertical edges are shift registers, which pass values from one iteration
cycle to the next. Any data stored in the down-arrow (right shift register) is available at the
beginning of next iteration cycle through up-arrows (left shift register). The up-arrow may
be initialized by wiring values to be used in the first iteration cycle. The down-arrow may be
used to pass the last value outside the loop at the end of execution.

This is an example of parameter passing through the structure. A numeric constant, the value
123, is being passed to be used in the structure.

The i is the iteration terminal. It holds the current number of completed cycles.

This curved arrow is the conditional terminal. It receives the Boolean value of the test
condition at the end of each iteration. If the test value is false, it finishes the iteration.

This subdiagram display window shows the case being displayed. The right and left arrows
are increment buttons that allow user to observe different subdiagrams, or cases. The cases
may be numeric or boolean.

The selector receives the case selection information; i.e., the case to be executed.

The arrows inside the frame hold the local variables. These variables pass data from one
frame to the subsequent frame. The inward arrow indicates a local variable which is wired to
receive the value, whereas the outward arrow indicates a local variable which already has a
value which can be distributed.

An example of the parameter passing method for the formula node. Parameters may be
passed through the vertical edges. In this example, z is the output variable and x and y are
input variables.

(8%
o

APPENDIX D
HIERARCHICAL STRUCTURE OF NIPER'S DATA ACQUISITION SOFTWARE
The hierarchical structure of NIPER's data acquisition program in LabVIEW 2 is presented in

Fig. D.1. Whereas the functionality of this facility was described earlier in the text, the
functionality of each module in the corresponding program is explained here in Table D.1.

o
(@)

- Kupiory uowsInbar-EIEp S,YIJIN JO NS [FIYOIEIANH - ' 1'd TINOI

)
¥

R
353

s
xa

27

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.1

Node
Icon Description
NIPER
data
1 acqstn] | This is the driver VI (virtual instrument) for data acquisition facility.
NIPER
dialog
2. Displays numeric data, warning signals and error messages.
NIPER
read/

3. | ¥t] | Reads and writes analog and digital data to and from all the boards (GPIB,
Serial, Analog I/0), process it, displays it, stores it in files, and pass on to
graphic modules.

NIPER

4. logR Reads data of previous runs from log files one run at a time.
NIPER
h

5. e Receives recent data from NIPER read/write (#3)* or receives previovsly stored
data from NIPER log R (#4) as per user request.

NIPER
170

6. | LOPEN| | Opens a panel at the beginning of the test for the user to select one of the
previous settings or select a new setting. If user does not respond, the program
selects the last setting. See NIPER CONFIG (#17) for the type of settings it
can handle.

NIPER

7. HELP Opens a panel that gives basic information about LabVIEW and the data
acquisition program. In this program addition, 5/20/92, this facility is not
interactive or user selectable.

NIPER
CUlfVe

8. fit Receives recent data from NIPER read/write (#3) or previous data from NIPER

log R (#4) and superimposes curve fit data/lines.

The numbers indicated with a "#" symbol in this table refer to one of the other modules listed
here, e.g. #3 refers to "NIPER read/write" module.

28

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM

AS SHOWN IN FIGURE D.1—Continued

Node
Icon Description
NIPER
graph
9. | Leonfigf | Selects how much and which channels of data to be displayed. The module
also allows selection of the kind of curve fit desired.
NIPER
strtup
10. | IBConf] | This is the startup (default) setting for NIPER graph configuration (#9).
NIPER
zero
11. | lehenell | Takes the calibration reading from analog board to compensate for temperature
readings.
NIPER
data
12. Error Receives error messages from various modules, prioritizes them and brings the
error message to the user attention if parameters are out of range.
Press
scan
13. | 895! | Driver VI for the Scanivalve multiple port scanning system. Advances to a
channel selected by user. If no residence time is selected, the module takes
reading immediately, otherwise it takes readings in subsequent program cycles.
The Scanivalve then advances to the next selected channel and repeats until all
channels have been scanned. The program then waits for the next run interval
to repeat.
Contr]
DBPR
14, | L100 Driver V1 for back pressure controller. Communicates in each program cycle to
make sure the communication is not lost and the actual pressure is close enough
to the control pressure. Communicates with sumcheck protocol and three
consecutive OK's to safeguard from mishaps.
NIPER
0 s s . A -
15. cER Initializes all the registers to zero before beginning of a test to eliminate data
corruption.
I
H
16. F Separates the integer and fractional parts of any number. For example, for the

number 123.456 the integer part is 123.000 and the fractional part is 0.456.

N LI

mo il LN (N " W oy o G e

I H" "o

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM

AS SHOWN IN FIGURE D.1—Continued

Node
Icon Description
NIPER
CONF . .
17. Opens a front panel for user to configure the system interactively. The user can
nt pa L b y ;
select reading intervals, establish links with one or more of the available
channels, deactivate a link until further selection, and define maximum and
minimum data values for each channel so that if a reading falls beyond these
preset limits, the user may be alerted. This module has several other attributes.
This is an interactive panel open only on user's request. If the user does not
respond, or if user does not choose to use this facility, the last setting or the one
selected by the user at the beginning of a test is used a default.
NIPER
log W

18. °9 Stores all the information about the current test including data, and updates
every program cycle. User can then view or use them interactively in later runs
by using NIPER log R (#4) module.

19. Finds the line, slope and intercept which best describe the input (X,Y) sequence
of values using the least mean squared error criterion.

20. Finds the exponential curve, amplitude and decay parameters which best
describe the input (X,Y) sequence of values using the least mean squared error
criterion.

P
P
21, | 2 Finds the polynomial curve and polynomial coefficients which best describe the
input (X,Y) sequence of values using the least mean squared error criterion.
AT
22. | [CONFIG| | ypdates analog input configuration information.
23. | IMUXCFG} | Configures the number of multiplexer boards connected to the 10 board.

30

T o [T o TN TR weor T

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM

AS SHOWN IN FIGURE D.1—Continued

Description

24.

25.

26.

27.

28.

29.

30.

31.

32.

Read
PJé

Mtler

Read
PJ1S
Metlr

Set the Boolean to the input value (True or False) if mode is TRUE, otherwise
retain the last value. Return the current value of the Boolean.

Converts the data to user specified units.

Reads the specified analog input channel (initiates an Analog to Digital
conversion on an analog input channel and returns the result.

Converts the binary result from the Read (#26) module to the actual input
voltage read from that channel.

Takes a voltage value acquired from a thermocouple of specitied type, and
converts i(into the corresponding temperature at the thermocouple in degrees
Celsius.

Converts degrees Celsius to degrees Fahrenheit according to the formula: F =
C*9/5 + 32,

This is the driver VI for Mettler balance (type PJ6). Controls and reads signal
via RS232 communication protocol (serial).

This is the driver VI for Mettler balance (type PJ15). Controls and reads
signals via RS232 communication protocol (serial).

Finds the exponential amplitude and decay parameters which best describe the
input (X,Y) sequence of values using a least mean squared error criterion.

31

ey

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM

AS SHOWN IN FIGURE D.1—Continued

Node

Icon Description
Read
?

33. e This is the driver VI for the Paroscientific DigiQuartz pressure cc:nputer.
Controls and reads signals via RS232 communication protocol (serial).

34. [Returns TRUE if the difference between A (top input) and B (bottom input) is
less than the specified tolerance (center input), otherwise FALSE. Tolerance is
0.1 if unwired (default).

35. :‘ Beeps once with the given frequency (pitch), intensity (volume, also depends
on the speaker volume set in the control panel), and duration [number of
1/60ths of a second, up to 600 (10 secs)].

36. Finds the polynomial coefficients which best describe the input (X,Y) sequence
of values using the least mean squared error criterion.

PILRN

37. Performs a polynomial evaluation of the input sequence X using the specified
coefficients a and the polynomial order m. The number of elements in the
coefficients array is m+1.

i28
38. MSE Computes the mean squared error value of the input sequences X and Y.
NIPER

39. ? | Handles file input/output errors. Prompts user for an alternate action. If the
user does not respond, the module performs a default save.

40. Finds the slope and intercept which best describe the input (X,Y) sequence of

values using the least mean squared error criterion.

32

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM

AS SHOWN IN FIGURE D.1—Continued

Node
Icon

Description

41.

42.

43.

44.

45.

46.

47.

48.

49.

SERIAL
PORT

Performs a linear evaluation on the input sequence X using the specified:
Multiplicative constant (a), abd Additive constant (b). The output sequence Y is
of the form Y = X*a + b.

Translates a numeric LabDriver error code into a string message describing the
error.

Writes the specified no. of bytes to the serial board in order to send out to the
connected instrument.

Reads the specified no. of bytes from the serial board that were sent in by the
connected instrument.

Sets the Boolean to the input value (True or False) if mode is TRUE, otherwise
retain the last value. Return the current value of the Boolean.

Beeps once with the given MIDI frequency (a standard preset frequency
scheme), intensity (volume, also depends on the speaker volume set in the
control panel), and duration (number of 1/2 milliseconds, up to 32767).

Initializes serial communication parameters (RS232 protocol) for communicate
with paroscientific DigiQuartz pressure computer.

Probes the board and determines the number of bytes available to be read.

Initializes serial port with user-provided parameters.

33

TABLE D.1

MODULES IN THE DATA-ACQUISITION PROGRAM
AS SHOWN IN FIGURE D.1—Continued

Icon Description

50.

51.

52.

wzi1] | Initializes serial port with user-provided parameters.

Sets serial port buffer size.

Opens serial board for communication.

34

APPENDIX F

NIPER'S DATA ACQUISITION FACILITY
Figure E.l shows the front panel of NIPER's data acquisition facility. Individual
components of this front panel are described here, whereas the functionality of this facility was
described earlier in the text. The legend for this figure (numbers in circles) is presented in Table
E.l1.

35

Ve

| e
= ‘B12L9LSLPLELZI L 0L 687298 ET L
——x 1AYI1dSIQ JIHAY 39 304 NGV UV AY
—— 10N SI (S)TINYHI ONIA0TIO0S IHL 404 ¥1YQ - ONINIY A
‘Ob ‘6% ‘8% ‘LT
_ Hgg ‘ce ‘pE €28 18708762 '82°42°92°SZ P e T2
——— S(S)TINNYHI ONIAOTIOE FHL INIAOHS ATLNRAIND SIIHAY A
——— TR LRI S39VSSIN JIHAY A9
oz ool 069 009 0SS 00S oSy
- - w \ s
..... T : » T
L\ D ¥
saven: e S ~ X
oy A AR 33
. .—AYI:
e V ") >
- 2V
) €
< e 4
Z6260-| 6 |6¥L6°69 LzL EEEEc | ¥
@1 woeor| si. | EEEO o | g
AT XV A X 4 Josung
JIHdVAD 114 107d 01d-X3 viva S303d3
ienray JAAND IN3ID3Y MI1ATY IN 139y JAV1dSI

-38ed 1xau 9yl uo puaI3I[Al
01 JaJa1 $I[OIID 3y} UI s12quIny “2[npott uonsinboe viep S YIdIN 0 pued woid - 1'4 TINDIA

yuno) 2bey
r
:(4°690) TINYHO 3sva] 20°d/SWeN
g
V.*Q ‘opN ebedq
ONINNNY S! IWALSAS Wd 12
s atys oulbe’qRz e eq]
2Z
0'0L HOLIAS 340
L oL 4015 01
0L (bisd)
£0L fl-comug 5534d
WL 9 31¥a

WY 61:60° 11

MUEL 2L 04 1NOD
._rahxu MIIATY @nﬂ_m__.x_

a

L]

9l

()
@)

5 @ G

000 G

¢l

|8uBd Ju0. 4

36

"

TABLE EFE.l
LEGEND FOR FIGURE E.1

9.

12.

This button opens a scroll window which provides information about LabVIEW 2 and
object oriented programming. Like all of the other windows or panels that are opened
from the main panel, the help window automatically disappears, and the main panel
reappears, after a certain time duration. The user must re-press a button if the
corresponding window or panel needs to be displayed.

This button opens a panel whereby user can set the status time, time interval, and number
of multiplex boards. Other options allow user, for each individual channel, to choose the
status (active or inactive), the channel location, the sensor, and the alarm (for a low limit
and a high limit). If any changes are made, the user must press the ACCEPT button at
the bottom of the panel. There are also options to cancel the changes, or to store a
particular setting for later use.

This button enables user to relay information to external programs. The default program
is chosen; an option under ADJUST GRAPHIC lets user change the particular program if
that is desired.

This button displays and explains all the errors in the current run. Errors previously
suppressed are not displayed till this button is pressed.

This button allows a data reading to be taken at exactly the time this button is pressed.
This additional data reading is added to the stored data in the current run.

This button enables user. to view plots of previous runs (one run at a time only). The
desired run number can be chosen by using either button 12 (clicking on a particular place
in the bar) or by using using button 11 (scrolling the arrows). Button 13 displays the
number of the previous run. After this previous run number is chosen, pressing button 6
will display the plot of that particular previous run.

This button displays plot of all data in current run. When button 8 (CURVE FIT) is
pressed concurrently, the added data from this option is superimposed on top of the
original data which was displayed by button 7.

This button provides a fit (linear, polynomial, etc.) to those data sets already selected by
user for regression analysis in ADJUST GRAPHICS module (button 9), whereby the
type of curve fit and the order of fit can also be specified. The curve fit option is
activated by pressing button 8 concurrently with button 7.

This button opens a panel, which, in addition to controlling the type and order of fit,
allows user to select the channel(s) that are to be plotted. Another option is pressing
PRESS FOR NEW DATA to display only the data from that point in time. Still another
feature lets user select the time base of the desired interval. After any of these options
have been changed, pressing the ACCEPT button will incorporate these changes while
pressing the CANCEL button will return these options to their previous setting. And
finally, as mentioned earlier, the EXTERNL GRAPHIC in this panel lets user select the
particular program the user wants to communicate with.

This display shows the number of previous runs.

These increment buttons are one of the ways (the slower but more more discriminate
way) the user can select the specific run number before bution 6 is pressed to display the
plot for that run. The fraction shown simply indicates what percentage of the total
previous runs is the run number now selected.

Pressing this bar at a particular place is the faster and less discriminate way of selecting
the specific number of the previous run. Using the increment buttons accomplishes the
same task but at a much slower but more discriminate manner.

TABLE E.1
LEGEND FOR FIGJURE E.1—Continued

13.
14.
15.
16.
17.

18.
19.

20.
21.
22.
23,
24.
25.

26.
27.

28.
29.
30.

This indicator shows the number of the specific previous run.

This indicator shows the date and time of the start of specific previous run number. This
indicator and indicator 13 display data only after button 6 (REVIEW EX-PLOT) is
pressed.

This button ends the current run, but the data from that run is stored and the number of
ex-runs increases by one.

These increment buttons let user select the page number the DATA & DIAGNOSTCS
screen will display.

These increment buitons let user select the number of items to be displayed per page of
the DATA & DIAGNOSTICS screen.

This display shows the total number of pages of available data.

This DATA & DIAGNOSTIC screen displays the current data from all the activated
channels and diagnoses any errors.

This GRAPHIC MESSAGES screen indicates the channels that are currently graphed,
the channels that are open for graphic display but lack data, and the channels that have
data but have not yet been activated.

These arrows let the user scroll the GRAPHIC MESSAGES screen.

This graph displays the plot. The numbers on the y-coordinate can be controlled
automatically or manually altered.

This indicator shows the units information for the x-coordinate and y-coordinate.
However, this indicator shows all of the units currently in use and in addition, is
dynamic.

This indicator shows the units of the chosen time interval.

These arrows let the user scroll the PLOT DISPLAY screen.

This "legend" matches the lines in the plot with their respective channel number.

There are two cursors (a square and a circle) that can be moved around by the arrows in
button 29. The part of the plot displayed will change ; it will follow the moving
cursor(s). It is also possible that one or both of the cursors are "off" the screen ; this
situation can be corrected by either readjusting the scales of the x and/or y coordinates or
by moving the cursor(s) onto the view of the displayed screen by using button 29.

Delta y indicates the vertical difference, or distance, between the two cursors while delta
x indicates the horizontal difference.

These arrows move the cursor(s) around the screen. As mentioned earlier, the displayed
screen follows the moving cursor(s).

This button allows editing of the plot. Enables user to adjust line segments and other
aspects.

APPENDIX F
NIPER'S INSTRUMENT CONTROL FACILITY

Figure F.1 shows the front panel of NIPER's instrument control facility. Individual
components of this front panel are described here, whereas the functionality of this facility was
described earlier in the text. The legend for this figure (numbers in circles) is presented in Table
F.1.

(98]
\2

-a8ed 1xau 3y} uo puadal 3yl 0}
19§21 S3[OII0 3y UT SISQUINN "9[NPOL [01JU0I JUIWNNSUL $,43dIN Jo [oued woig - 1’4 FANDLA

..,.?ﬁmoz%:; oo_mm
@ o-

1,000} 9 e —Quw&& N3AD)

53 ()

BN .

paiisag

swnjog yuej |j

o
3

i (£2) 2) ﬁuz

.

: m ey
227//4@ - '

».l///w T ST AT S T T AT T4 T

RC,

B OO @

(aued juo.4

‘w

TABLE F.1
LEGEND FOR FIGURE F.1

10.
11.
12.

13.
14.
15.
16.

17.
18.
19.

\O 00 [@) W

This is the indicator of the tank which stores the feed water that will later be converted to
steam by the steam generator.

This is the indicator of the thermometer which reads the temperature of liquid in TANK A
and displays this temperature.

This is the indicator of TANK A which stores liquid. The amount of this liquid is
controlled by a mass balance that can, at all times, determine how much (and at what rate)
this liquid is flowing out and replace this amount in the tank. If the material balance
system is not working correctly - that is, if the amount of liquid out is not equal to the
amount flowing in, sensors can detect a malfunction and the system tries to diagnose this
error and indicate the information to the user.

This is the indicator of this sensor which is connected to a heater (heater 1) that heats
TANK A. The sensor is red when the heater is activated and blue when it is not
activated.

These increment buttons allow the user to set the thermostat of the heater that heats
TANK A at a certain temperature.

This button needs to be pressed if any changes are made in the thermostat setting.
Otherwise, the previous setting is used.

The indicator of this pump, which transfers the liquid from TANK A.

Another pump - this one is responsible for pumping gas from the gas source.

This is the valve for TANK A. The user can turn the valve on and off ; the valve is
different colors depending on whether it is on or off.

This and the two increment buttons on either side, can be used to control the flow rate of
the liquid flowing out of TANK A.

These are two flowmeters, one pictorial and the other digital. They are equivalent ways
of indicating the flow rate.

The indicator of the OVEN (PRE-HEATER) heats the liquid from TANK A and the gas
from the GAS SOURCE to the same temperature as the steam. Otherwise, the mixture of
these three will result in the condensation of the steam. The red and green lights are used
to turn the OVEN on and off, respectively. The red light is lit when the heater is on and
the green light is lit when the heater is off.

This repetitively appearing whitish-grey screen moves across the screen of the OVEN
icon to indicate that the OVEN icon is on.

This is the pressure vessel containing porous media through which the liquid surfactant,
the gas, and the steam flow.

This is the control of the valve for the GAS SOURCE. The user can turn the valve on
and off. Different colors for the valve indicate this status.

This is the indicator of the GAS SOURCE which stores the gas. Here also, a material
balance system, which takes the reading of the flow rate of the gas (through option 20)
and the reading of the amount of gas exiting the gas source (through option 29), is
responsible for maintaining enough gas in the GAS SOURCE.

This is the indicator of the pressure regulator which can be used to define an upper limit
of the gas in the GAS SOURCE.

Either the vertical arrows (used for fine control) or the horizontal arrows (used for gross
control) can be used to control the rate of flow of the feed water.

This is the icon of the pump which is responsible for pumping the feed water to the steam
generator.

*UJ.S.GP0:1992-661-026/60052
41

T ' [N mr " o ' ' [o [. . o

=

TABLE F.1
LEGEND FOR FIGURE F.1—Continued

20.

21.

22.
23.

24.

25.
26.
27.
28.
29.

30.

31.
32.

Either the scroll arrows (used for fine control) or the horizontal arrows (used for gross
control) can be used to control the rate of flow of the gas from the GAS SOURCE.

This is the control of the valve for the feed water-converted-to-steam system. The user
can turn the valve on and off and different colors for the valve are used to indicate this
status.

The indicator of the steam generator which converts the feed water into steam.

This indicator shows the picture of a "green man" when everything is functioning
properly. When something is malfunctioning, the system tries to diagnose the cause of
the problem and indicate it to the user so remedial steps can be taken.

This control lets the user determine the speed of the stirring mechanism (stir bar) in
TANK A. This speed determines the rate at which the different components of the liquid
surfactant are mixed.

The repetitively appearing picture of a blue tube that moves across the core indicates that
something is flowing through the pressure vessel.

Pressing this button opens the DATA ACQUISITION panel from which users can select
any number of options.

The steam circulates and is condensed and is eventually taken into TANK B along this
drain.

These arrows allow the user to choose the number of times the experiment is to be
repeated. Each experiment takes a set amount of time.

This is the control of the backpressure regulator which releases the gas periodically to
maintain a certain pressure in this part of the system. The user can choose this pressure
by using the two arrows.

This is the indicator of another sensor which is connected to a heater (heater 2) which
heats TANK B. The sensor is red when the heater is activated and blue when it is not
activated.

This is the indicator of the thermometer which takes the temperature of the liquid in
TANK B and displays this temperature reading.

This is the indicator of TANK B which stores the mixture of the liquid surfactant and the
water condensed from the steam.

