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ABSTRACT

Migration to zero offset (MZO), also called dip moveout (DMO) or prestack
partial migration, transforms prestack offset seismic data into approximate zero-
offset data so as to remove reflection point smear and obtain quality stacked
results over a range of reflector dips. MZO has become an important step in
standard seismic data processing, and a variety of frequency-wavenumber ( f-k)
and integral MZO algorithms have been used in practice to date.

Here, I present a finite-difference MZO algorithm applied to normal-moveout
(NMO)-corrected, common-offset sections. This algorithm employs a traditional
poststack 15-degree finite-difference migration algorithm and a special velocity
function rather than the true migration velocity. This paper shows results of
implementation of this MZO algorithm when velocity varies with depth, and
discusses the possibility of applying this algorithm to cases where velocity varies
with both depth and horizontal distance.

INTRODUCTION

When reflectors are dipping, common-midpoint (CMP) gathers recorded at the
Earth’s surface are no longer common-reflection-point (CRP) records. The reflections
in a CMP gather, in fact, come from different reflection points, a phenomenon called
reflection point smear or dispersal. Although NMO correction can align the reflections
that come from horizontal reflectors, it fails to correct those reflections that come from
reflectors with a range of dips. As a result, CMP stack after NMO correction will
attenuate non-aligned reflections. The reason for this failure, roughly speaking, is
that NMO correction is a 1-D process, while reflection-point smear is a 2-D problem;
and 1-D processes cannot solve 2-D problems.
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One way to ensure CRIP stacking of seismic data is the application of full prestack
migration (preferably full prestack depth migration) to offset data. In principle, this
is an ideal way because it can directly position reflections in offset data to their
original reflection points.  Generally speaking, however, full prestack migration is
computationally expeusive.

A second approacly, which accomplishes CRP stacking in an indirect and approxi-
mate mannet, consists of four steps: NMO correction, migration to zero offset (MZQ),
stacking, and poststack migration. The result after the application of these four steps
is approximately equivalent to that obtained by using full prestack migration. This
approach, in general, is much more practical than full prestack migration.

MZ0, also called dip moveont (DNO) or prestack partial migration, is a key step
in the second approach mentioned above.  As its name implies, this 2-D prestack
process transforms prestack offset data so that they appear like true zero-offset data.

Many papers have heen published on the two most conunonly used MZO ap-
proachies:  frequency-wavenumber (f-k) NMZ0 and integral NMZO (Hale, 1988). In
contrast, only a few papers on finite-difference MZQO have been published so far.
Finite-difference algorithms play an important role in conventional migration meth-
ods because they can readily handle veloeity variation.  Since NZO is a form of
migration, finite-ditference algorithms should have application there, as well.

Yilmaz and Claerbout (1980) proposed two finite-difference MZO algorithms from
analysis of the double square-root equation.  Bolondi, et al. (1982) and Salvador
and Savelli (1982) presented another finite-difference MZQO algorithm, based on the
coneept of offsct continuation. These algorithims have generally low efficiency and low
accuracy for handling large-offset seismic sections and reflections from steep reflectors,

Here, I present a finite-difference MZO algorithm applied to NNO-corrected common-

offset sections. Tests show the effectiveness of this algorithm for handling velocity
variations, large offsets, and reflections from steep interfaces.

DERIVATION OF MZO VELOCITY

I constant-velocity media, conventional »Ligration spreads an impulse at the point
(i = 0,1y) in the stacked section to the impulse-response trajectory defined by

.l':z + ";2 = (l'f()/2)2\ (1)

where o is the CMP coordinate. = is depth, 1) 18 zero-offset refleetion time, and o is
the medium velocity, Equation (1) deseribes a cirele with radins ofy/2 on the o-:
plane, the migrated-position domain. If we let 7 = 2:/¢ denote vertical time, or
time-cquivalent deptli, equation (1) becomes
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This is an elliptic equation on the x-7 plane, whose two axes are vty and 21,
respectively. That ig, the impulse response of conventional migration is a circle on
the a-z plane, while it is an ellipse on the x-7 plane.

Now, consider the behavior of MZO. The MZO ellipse, after NMO correction, is
defined by

a2 15
mTp = 1, (3)

where t,, 1s the time after NMO correction, and A is half the source-receiver offset
(Hale, 1988). If we define a velocity 0 such that

ho=ot,/2,

or
0= 20t (4)
and define a depth quantity
I= l"f,(,/'Z,
then equation (3) becomes
= (0, [2)7 (5)

defining a cirele with radins ot, /2. That is, the impulse response of MZO after NMO
correction is an ellipse whose two axes are 2 and 2t,,, respectively, on the @ty plane,
while it is a cirele on the r-Z plane,

Comparing equations (3) and (5) with equations (1) and (2), we find that if the
velocity o is used instead of v, then any conventional migration algorithm can he
used to perform MZO processing; with this choice, the impulse response of conven-
tional migration is just the MZO ellipse defined by equation (3). 1 call o, defined
by equation (4), the MZO wvelocity. Aside from use of a different velocity, the other
difference between conventional migration and MZO is that the input to conventional
migration is P(r,ty) and the output is P(r, 7), while the input to MZO is P(a,¢,)
and the output is P(.r,ty). Here, P denotes seismic data.

FINITE-DIFFERENCE MZO

Finite-difference MZO for constant velocity

In the previous section, we defined MZO velocity in constant-velocity media and
showed that conventional migration algorithms can be used to perform MZO. Let



Li Finate-Difference MZO

us now consider how MZO can be implemented with a traditional poststack, 15-
degree finite-difference migration algorithm (Claerbout, 1985). T'wo reasons for this
choice are: (1) among all finite-difference migration schemes, this one has the highest
computational efficiency, and (2) examples and analysis in later sections show that,
for MZO, this algorithm has sufficient accuracy and ability to handle large-offset
data where subsurface reflectors are steep. However, when using a finite-difference
algorithm to performi MZO, we must address a practical problem. According to the
derivation of MZO velocity, when we compute the response of an impulse at the point
(..t ), © should be a constant from the time 0 to t,. This problem, which exists with
finite-difference MZO approaches, can be casily and exactly solved in non-recursive
integral algorithms, but cannot be exactly solved in finite-difference algorithms, which
ATC TCCUTSIVE PrOCesses.

CDP Number
100 290 390 400

Time(sec)

1.54

F1G. 1. Impulse responses of finite-difference MZ0O with veloeity 0. In this test | the
CMP interval is 10 m, and offset=2 km.

The impulse responses of finite-difference MZO in Figure 1 shiow the result of
using the veloeity defined by equatiou (4). The distance hetween the intersections of
air impulse response with the surface is greater thau 24, indicating that the velocity
used to obtain this figure is too large. The tests T have done suggest that we can
approximately solve this problem by replacing 0, as given above, by

=20 [t ,s(t)]. (6)

¢ is the MZO velocity we use in finite-difference MZO nuder the constant-medinm-
velocity asswnption. T find that when T choose s(fy) that decreases linearly from
about 1.1 at the minimum processing time to 1.0 at the maxinmum proeessing time,
the impulse responses are squeezed to approximately the correet shapes. With this
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slight adjustment of velocity, the finite-difference MZO algorithm can be readily im-
plemented by modifying existing 15-degree finite-difference migration code.

CDP Number CDP Number
100 200 390 400 100 200 300 400

Time(sec)
Time(sec)

o . . )

Fic. 2. Impulse respouses of finite-difference MZO for constant. velocity. T this test,
the CMP interval is 10 m. (a) Offset=2 k. (b) Offset=3 km.

Figure 2 shows impulse respouses of finite-difference MZO obtained by using the
velocity defined by equation (6) with offset of 2 km, in Figure 2a, and 3 km, in
Figure 2b. In both the cases; impulse responses are half ellipses and have a tendeney
to interseet the surface at the shot and receiver points. We sense from this figure
that although a so-called 15-degree approximate algorithm is used, we have achieved
cnough accuracy for both the large offsets and the large dips. These results suggest
that when finite-difference algorithms are used to implement conventional migration
and MZO, the concept of dip-limited aceuracy differs for conventional migration and

MZO0.

Finite-difference MZO for depth-variable velocity

MZO for depth-variable velocity is often called V(z) MZO. Although velocity
variation is often ignored in MZO processing, and constant-velocity MZO processing
is often nsed in arcas where velocity is known to vary, many authors (c.g., Hale
and Artley, 1991; Artley, 1991: Witte, 1991) have recognized the need to include
veloeity variation in MZO processing and have attempted to improved the accuracy
of MZO approaches when velocity varies with depth. However, generally speaking,
it is relatively costly for MZO to handle velocity variations exactly . By introducing
Hale's y(t,,) factor (Hale, 1988) in the definition of MZO velocity, we can extend the
above finite-difference MZO algorithm o that it can approximately handle velocity
variations with depth. Hale (1988) has shown that, for depth-variable velocity, the
MZO ellipse defined by equation (3) should he modified as

Q
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a? n t2 =1 (7)
Y(t, )b 2 7
where
3vi(ty,) ty, dve 1
M/“‘n) = 2 : - Tt (8)
va(ty)  wo(t,)dt, 2
1 rta
vo(t,) = [;- / v‘z(s)(ls]]ﬂ,
‘n 0
and

1 i ‘
witn) = [ o))

If we define

v = 2\/7h/t, (9)
and
= !—’f()/Q,
then we obtain
vt + 2% = (0t /2)? (10)

from equation (7). This is also the cquation of a circle. Now, we see that the
difference between the cases of constant and depth-variable velocity is only in the
different definitions of MZO velocity. Moreover, since v is dependent on t, only,
MZO velocity o, defined by equation (9), is still a function of t,, just as is @ in the
constant-velocity case. So, finite-difference MZO for depth-variable velocity can also
be implemented in the same way as in the constant-velocity case. As in equation (6),
we also incorporate the s(tq) factor into the definition of V{(z) MZO velocity, equation

(9),
v = 2/7h/[t.s(to)]. (11)

Finite-difference MZO for (x,z)-variable velocity

V(x,z) MZO, migration to zcro offset for (v, z)-variable-velocity media, is a new
topic. Van der Schoot, et al. (1989), Popovici (1990), and Hsu (1991) have used
modeled traveltime calculation to address this topic. Although the MZO algorithms

6
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discussed above are not theoretically suitable to the laterally variable velocity case,
the finite-difference algorithm we adopt provides a possible numerical way for MZO
to approximately haudle velocity variations in the lateral direction. As is known,
neither NMO correction before MZO nor time migration after MZO can exactly deal
with laterally variable velocity in theory. In practice, however, these processes handle
this issue through lateral interpolation of velocities defined at a number of CMPs in a
seismic section and usually can produce acceptable results. For MZO in v(x, 2) media
with moderate lateral velocity variation, we simply use the v(z) approach developed
above with slowly changing velocity along a line, much as is done in conventional
NMO and time-migration processing. Since MZO is relatively insensitive to velocity
variation, errors in this kind of MZO processing are expected to be smaller than the
errors that arise when such a simple approach to lateral variation is taken in NMO
correction and time migration.

CDP Number COP Number
100 200 300 100 200 300 400
e e e

Time(sec)
Time(sec)

@ (b)

F1G. 3. Impulse responses of finite-difference MZO for (a) the V(z) case and {b) the
V(a, z) case. The CMP interval is 10 m.

Figure 3a shows the impulse responses of V{(z) MZO for offset= 2 km. In this
test, velocity linearly inereases from 3 km/s at 0.1 s to 4 km/s at 1.4 s. Comparing
Figure 3a with Figure 2a, we sec that velocity variation with depth causes the impulse
response to narrow slightly. This is consistent with what Hale and Artley (1991) have
deseribed. Figure 3b shows the impulse responses of approximate V(a, z) MZO. In
this test, I use the same parameters as in Figure 3a, as well as a 0.5 per kilometer
linear increase of velocity in the w-direction. We see only minor asymmetry between
the left and right branches of the impulse responses in this figure. This suggests that
the influence of velocity variation in the lateral direction may not be as significant in
MZO as in conventional migration.

~l
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SYNTHETIC DATA EXAMPLES

Figure 4 shows a geological model containing nine horizontal reflector segments
and five dipping reflector segments, with dips range from 30 to 90 degrees in 15-degree
increments. For the synthetic seismic data, the velocity used increases linearly with
depth z, according to v(z) = 1.5 + 0.8z kin/s, and the CMP interval is 5 m.

Geological Model

Depth {km)

s 5 ] : 3 2
Midpoint (km)

Fi1G. 4. Geological model used to generate synthetic seismic data.

Four sections obtained after different processings are shown in Figure 5. Figure da
is a zero-offset synthetic section. The goal of applying MZO is to transform offset
data into this form of data. The dashed line in this figure marks the location of the
CMP gather shown in Figure 6, and the box shows the region detailed in Figures 5b,
5c and 5d. Figure 5b is a detail of the stacked section obtained by simply stacking ten
NMO-corrected common-offset sections, whose offsets range from 0.1 to 1.9 km. We
see that the dipping reflections, especially the reflection from the 90-degree reflector,
have been attenuated, and some noise, due to out-of-phase stacking, appears among
the dipping reflections.

A detail of the stacked result after NMO and constant-velocity MZO corrections
is plotted in Figure 5¢c. Compared with Figure 5b, the stacking quality for dipping
reflections in this figure has been significantly improved, but the energy of the dipping
reflections is still weaker. Figure 5d shows a detail of the stacked result after NMO
and V(z) MZO corrections. In V(z) MZO processing, we used the known rmns velocity
vy(ty,) for the model. We see from this figure that the stacking quality for dipping
reflections, especially the reflection from the 90-degree reflector, has been further
significantly improved, and all reflections have amplitudes close to those in the zero-
offset section shown in Figure 5a. For comparison, we have used the identical stacking
and plotting parameters to get four figures.
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Midpoint (km)
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Zero-offset Section Stacked Section After NMO
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Stacked Section After MZO Stacked Section After V(z)

(c) (d)

MZO

Fi1G. 5. (a) Zero-offset synthetic section for the geological model shown in Figure 4.
The dashed line marks the location of the CMP gather shown in Figure 6. The box
shows the location of (b), (¢) and (d). (b) Detail of stacked section after NMO correc-
tion. (¢) Detail of stacked section after NMO and constant-velocity MZO corrections.
(1) Detail of stacked section after NMO and V(z) MZO corrections.
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Offset (km) Offset (km) Offset (km)
05 11 17 ) 05 11 17 30 . 05 11 17 30
05 0.5 0.5 .
> #
10 101 J: i L 10 715 .
- T ]z TTL ??? > Ty 1(‘
Q Q Q
) & )
215 g15 i< . g1.5 I |
F = =
SEEREED S EEREEEERE
20 el 20 20
J
) it &t
e - | sl ARaELy 5: . e ||
3.0 30 L) 30 |
CDP Gather After NMO After MZO
(a) (b) (c)

F1G. 6. (a) CMP gather for the model showed in Figure 4. (b) After NMO correction.
(c) After V(z) MZO.
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Midpoint (km)
1 2

e o

3.0-
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: 4.0 - £
Before MZO (Offset=0.5 km) After MZO (Oftset=0.5 km)

(a) (b)

Midpoint (km) Midpoint (km)
1 2 1 2

Before MZO (Offset=1.9 km)
(c) (d)

Fic. 7. Comparison among the conmon-offset sections before and after MZO.

After MZO (Offset=1.9 km)
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Figure 6 shows the reason why the stacked section after V(z) MZO correction is
better than the stacked sections after NMO and constant-velocity MZO corrections.
One of the CMP gathers from the model shown in Figure 4 is plotted in Figure Ga.
This gather contains six events from horizontal reflectors, five events from dipping
reflection segments, and several weak diffraction events from the structural corners.
The result of NMO correction applied to the CMP gather of Figure 6a is plotted
in Figure 6b. Although the events corresponding to the horizontal reflectors in this
gather have been well aligned, some problems appear: (1) the reflections from the
dipping reflectors have been over-corrected; (2) the diffractions have also been over-
corrected; and {3) anomalously, the event at about 0.6 s corresponding to the 30-
degree dipping reflector has amplitude increasing with offset. Obviously, if this NMO-
corrected CMP gather is stacked, the poorly aligned events from the dipping reflectors
and the diffraction eveuts will be attenuated.

MZQO attempts to solve all these problems. Figure 6¢ shows the result of the
finite-difference V'(z) MZO correction of Figure 6b. All events that had been over-
corrected by NMO in Figure 6b have been aligned back to their “correct” positions
with only slightly visible errors, even for the trace with offset of 3 km. As a result,
stacking this CMP gather must enhance all events, Furthermore, amplitude values of
the event from the 30-degree dipping reflector now decrease with offset, as do those
from the other reflectors. In this test, I tock the function s(4y) = 1.11 at the minimum
processing time. Here. I have not shown the constant-velocity MZO-corrected CMP
gather. The constant-velocity MZO did not align all the over-corrected events as well
as did the 17(z) MZO (Hale and Artlev. 1991). So, the stackiug quality after the
constant-velocity MZO correction is not as good as that after V(z) MZO correction.

Figure 7 offers a comparison among commou-offset sections before and after MZO.
This figure demonstrates two points: (1) MZO moves dipping reflections only a small
amount in both the horizontal and the vertical directions: and (2) although a 15-degree
approximate algorithm is used. unlike conventional migration, finite-difference MZ0O
does not generate dispersion or other artifacts even for the reflection corresponding
to the 90-degree reflector. These facts again illustrate that the concept of limitation
of dips differs for conventional migration and MZO.

CONCLUSION

From the similar Kinematies of conventional migration and MZO, T have shown
that conventional time migration algorithms, with an approximate choice of MZO ve-
locity, can be used to implement MZO processing. Finite-difference MZO algorithins
for constant-veloeity and depth-variable veloeity have been proposed in this paper,
with a suggestion for extending their application to ¢{r, 2} media.

The inipulse response tests show the correctness of the finite-difference MZ0 al-
gorithms. Successful application of finite-difference MZO to synthetic seismic data
for a geological mmodel containing steep reflectors, up to 90-degree dip, demonstrates
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the effectiveness of finite-difference MZQ in handling steep events, large offsets and
depth-variable velocity.

Obviously, the finite-difference MZO discussed in this paper is only an approxi-
mate method. There are still unsolved problems. For example, finite-difference MZO
cannot take into account the two distinct branches of V(z) MZO impulse responscs
(Artley, 1991). The computational cost of finite-difference MZO is comparable to
that of poststack finite-difference migration, but its efficiency is lower than that of
f-k MZO.
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