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ABSTRACT
This paper presents a relatively simple method based 

on planar geometry to analyze the inverse kinematics for 
closed kinematics chain (CKC) mechanisms. Although 
the general problem and method of approach are well 
defined, the study of the inverse kinematics of a closed- 
chain mechanism is a very complicated one. The ciurent 
methodology allows closed-form solutions to be found, if 
a solution exists, for the displacements and velocities of 
all manipulator joints. Critical design parameters can be 
identified and optimized by using symbolic models. This 
paper will focus on planar closed-chain structures extended 
with a rotational base. However, with open and CKC 
mechanisms combined in different planes, the extension to 
the case is straightforward. Further, real-time algorithms 
are developed that can be handled by existing 
microprocessor technology.

To clarify the methodology, the Soldier Robot 
Interface Project (SRIP) manipulator is analyzed, and a 
graphic simulation is presented as a verification of the 
results. This manipulator has 17 links, 24 one-degree-of- 
freedom (DOF) joints, and 7 CKC loops working in a 
plane and a rotational base, which determine its 3 DOFs. 
The SRI? manipulator allows a decoupled linear motion 
along the vertical or horizontal directions using only one 
of its linear actuators. The symbolic solution for the 
inverse kinematics allows optimization to be performed to 
further decouple the Cartesian motions by changing link 
lengths of the manipulator. The conclusion achieved by 
the optimization is that only two link lengths need to be 
changed to tune the manipulator for a perfect decoupling at 
each area of the workspace.

1. INTROD UCTION
In closed kinematics chain (CKC) manipulators, the 

moments and forces that move the links are typically 
transmitted through four-bar, five-bar, or higher planar- 
linkage mechanisms. These mechanisms are closed-chain 
structures having planar motion, used to supply rigidity 
and high end-effector force and to reduce dynamic and static

* Research sponsored by the Office of Technology Development, 
U.S. Department of Energy, and the U.S. Army Human Engineering 
Laboratory, performed at Oak Ridge National Laboratory, managed by 
M artin  M arietta  Energy System s, Inc., u n d e r contract 
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loads due to the weight of motors by placing them closer 
to the base of the manipulator. For a serial link 
manipulator, a closed-form solution of the inverse 
kinematics is difficult, and most current 6-degree-of- 
freedom (DOF) serial-link manipulators are based on 
having the last three axes intersecting at a common point 
[Pieper, 68]^ because a closed-form solution is guaranteed 
to exist. However, with a CKC manipulator, the closed- 
form solution of the inverse kinematics is significantly 
more difficult. The link's spatial relationships can be 
described by holonomic constraint equations [Luh and 
Zheng, 85]^. For each CKC loop a passive joint is 
selected and virtually cut, obtaining two holonomic 
constraint equations. Like the serial case, these equations 
are highly nonlinear. If this method is applied to the 7 
closed-chain loops of the Soldier Robot Interface Project 
(SRIP) manipulator, then 14 independent nonlinear 
equations will be generated that are to be solved 
simultaneously giving 64 different joint solutions if joint 
limits and other physical considerations are ignored. 
Therefore, the Holonomic Constraints method was not 
suitable for practical application to the SRIP manipulator.

The ideal method to solve the inverse kinematics of 
manipulators that contain CKC loops should:
1. provide a closed-form  solution for the joint 
displacements and speeds for both direct and inverse 
kinematics; and
2. present an efficient way to choose the correct solution 
because CKC robots always have several solutions, 
depending on the number of joints, links, and CKC loops.

The new method presented in this paper satisfies all 
of the above conditions. Most, if not all, CKC robots 
work in a plane only. This plane may be extended to a 
three-dimensional space by using a rotatory base and a 2- 
or 3-DOF hand. The general algorithm is presented with a 
direct application to the SRIP mamipulator after each of 
the following steps;

1. link connection description and reduction of the robot 
to its CKC plane,

2. finding the closed chain vector equations,
3. solving the inverse kinematics and joint speeds,
4. obtaining a closed-form for the inverse Jacobian of 

the CKC mechanism and extending it to the three- 
dimensional manipulator with a rotational base.



The graphic sim ulation for the CKC SRIP 
manipulator was implemented to verify the results of this 
paper.

2. SOLVING TH E CKC MANIPULATOR
The algorithm presented in this paper has been 

applied to the SRBP manipulator. This device has 17 
links, 24 one-DOF joints, and seven CKC loops working 
in a plane and a rotational base which determine its 3 
DOF. This complicated manipulator allows a special 
movement of its end-effector. The CKC planar 
mechanism has only two linear actuators and one­
dimensional movement in the vertical or the horizontal, 
achieved by moving only one of the motors. The base 
rotates the manipulator to reach an arbitrary point in 3- 
Dimensional space, (see Fig. 1.)

The number of DOFs in a CKC mechanism can be 
readily determined by Grubler's formula [Hunt, 78]^;

= 3 L  - 2 N i - N 2 , ( 1 )

n = N um ber of degrees of freedom,
L = N um ber of links, not including the fixed Base, 
N i = N um ber of single degree-of-freedom joints,
N2 = N um ber of two degree-cf-freedom  joints.

Therefore, the SRIP manipulator has;

NumberofEXDF = 3 x 1 7 - 2 x 2 4  - 0 = 3 . (2)

2.1. L ink C onnection D escription
This section discusses each component of the 

complete manipulator separately on the rotational base and 
the CKC mechanism. CKC robots are based on four-bar, 
five-bar, and higher planar-linkage mechanisms. If a 
linkage mechanism is not planar, then it can be projected 
into multiple planes and solved in a manner similar to the 
planar case. Because they are typical, the planar CKC 
will be the only case examined in detail in this paper; 
however, with open and closed kinematic chain 
mechanisms combined in different planes, the extension to 
the case is straightforward.

To describe the location of each link relative to its 
neighbors, we defme a frame attached to each link. The 
link frames are named by number according to the link to 
which they are attached. That is, frame {i} is attached 
rigidly to link i, as in Craig's notation [Craig, 86]“*. As 
shown in Fig. 2, three different frames give the 
relationship between the components of the manipulator 
base frame (B), manipulator plane frame (M), and end- 
effector Same (E).

Thus, assuming that point ®P = [x, y, z]^ written 
with respect to the base frame (B) is known, it is possible 
to obtain ^ P  = [x^,, yml^ written with respect to the 
robot plane frame (M) and the angle 0 i, that must rotate 
the base.

01 = Atan2 (y, x),

X m =V x^ + y^ ,
ym = z.

(3a)

(3b)
(3c)

This transformation reduces the kinematic problem to 
the CKC manipulator plane, which simplifies the 
solution. All frames referred to links that belong to the 
CKC are attached with their Z axes perpendicular to the 
plane of the robot, defmed by X m  and Y m , simplifying all 
the transformation matrices between these fiames.

The reduction of the manipulator to a plane allowed 
us to create a graphic simulation, that verified the results 
of this paper. Fig. 3 shows a wire-frame simulation of 
the SRIP manipulator in which all the links are included; 
the two linear actuators are represented by small squares 
attached to their links.

Once the three- to two-dimensional transformation 
has been accomplished, the next step is to number all the 
links and joints. Because all the links are in the same 
plane, each link can be represented as a two-dimensional 
vector. These vectors have the length of the link (rj's) and 
the angle of the joint with the same number (0i's). Note 
that angles 0j are absolute and measured from axis X m , 
allowing us to take absolute instead of partial derivatives 
with respect to time later in this paper. These 
two-dimensional vectors can be written in complex form 
with respect to the X m and Y m axes by using Euler's 
formula as follows:

rn = r„ e ie „  _ --  *n COS 0n + i tn sin 0n . (4)

Some links may have more than two joints. For 
each extra joint, an extra vector is given until all the 
joints of all the links can be represented as an addition of 
planar vectors. As shown in Fig. 4 and 5:
(a) Links 2 through 7 and 12 through 16 are represented 

by vectors of constant lengths, 6̂
(b) Links 8 and 9 are represented by one variable length 

vector because of prismatic joints with respect to 
links 6 and 7 respectively.

(c) Links 1 ,10,11, and 17 are represented by more than 
one vector. As an example, link ID is determined by 
three vectors because of its four joints.



Fig. 1. Sold ier R obot Interface Project m anipulator (O RNL-Photo 5086-89).
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Figure 4. Soldier R obot In terface Project m anipulator links 1 through 10 (d im ensions in m eters).
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2.2. Solving The Serial V irtual M anipulator
To solve the CKC planar mechanism, a reduced serial 

model must first be found. In a minimum number of 
links in the CKC mechanism, select the shortest way 
from the manipulator base to its end. Usually, a virtual 
open-chain rotwt exists with a 2-link arm; let us name it 
the virtual manipulator. As shown in Fig. 5, the 
shortest way through the SRIP manipulator is by using 
links 1, 11, and 17, which constitute its virtual serial 
manipulator. Now the CKC device has been separated 
into a virtual manipulator plus several virtual open-chains 
with origin and end points belonging to the virtual 
manipulator.

To solve for the displacement and speed of the joints

z

t
s..

■

F ig . 5b . S o ld ie r  R ob ot In te r fa c e  P roject  
virtual m anipulator.

that belong to the virtual manipulator, any known method 
for open-chain robots can be used [Craig, 86; Pieper, 68; 
Yoshikawa, 90]. Because this is a simple 2-DOF planar 
case, let us present a straightforward closed-form solution 
that will be used in obtaining not only the inverse 
kinematics solution for the virtual manipulator, but also 
for the rest of the SRIP manipulator joint values cases 
found in the SRIP manipulator CKC loops. Figures 6a 
and 6b present two possible cases found in the SRIP 
manipulator.

A closed-chain vector equation can be written for each 
of these two cases which locates vectors with unknown 
terms on the left-hand side while leaving on the right side 
all the known vectors:



r . + rb e'®*’ = r. e ‘ ®*

(fa  + fb) e ‘ ®* = r, e ' ®*

(5a)

(5b)

where the unknown terms in Eq. (5a) are 6 g and 9b, and 
those in Eq. (5b) are rb and 9a.

Fig. 6a presents the two possible solutions, elbow up 
or down, for the inverse kinematics o f a planar 2 -Iink 
rotational-joint manipulator o f which link lengths are 
fixed. An inverse kinematic solution can be obtained by 
using an algebraic method similar to the ones presented in 
[Craig, 8 6 ] or [Yoshikawa, 90] but modified to handle 
multiple solutions for both angles, independently of the 
links location on the X-Y plane of Fig. 6 a.

With the vector r*. defined by point (x, y), and the 
length of the links known, the solution to the angles o f  
the two links in Fig. 6 a is found to be

9a = Atan2 ( k x + ka y. - k y + k# x ) , 
9b = Atan2 ( -  k x + kb y, k y + Iq, x ) ,

kb =

k =

+ y
2 2 2 

tb - fa + Ts
2 fg

Ts -

kb

(6a)
(6b)

(6 c)

(6d)

(6e)

(60

Note that solution is not possible for the cases in 
which (1) rg = 0  : (2) rs > r* + rb : or (3) rg < rg - rb- The 
positive or negative square root in the formula for k above 
gives two possible solutions for angles 9a and 9b: (a) If 
k> 0, then 9a - 9b > 0: left side (elbow up), solid lines 
in Fig. 6 a; (b) If k <  0, then 9a - 9b < 0: right side 
(elbow down), dashed lines in F g . 6a.

Note that elbow up or down is usually referred to in 
the literature with respect to the gravity axis. Instead, in 
this paper, elbow up refers to elbow on the left side o f the 
vector addition rg, and elbow down means on the right 
side. When multiple solutions exist, some criteria are 
needed. This method provides a way o f choosing by 
simple graphical iteration. As an example, in the SRIP 
manipulator, some specific configurations were needed to 
keep the weaker links o f the CKC linkages in tension to 
prevent structural damage.

Fig. 6b {vesents a planar 2-link rotational-prismatic- 
joint manipulator. Because the vector rg, defined by point 
(x, y), is known, the solutions to the unknowns (angle 
and length) are found to be

9a = Atan2 (y, x) ,

r b  =  ^[7 + 7  -  t a  •

(7a)

(7b)

For the virtual serial manipulator the closed chain 
vector equation, see Eq. 5 and Fig. 6 , can be written fw  
links 11 and 17 as follows:

r i i  e ' ®** + ri7 e*®!"^ = ^n, + i ( y m - f i ) .  (8)

Showing their absolute angles solution to be

9 n  = Atan2( k  Xm+ka(ym - r i) ,-  k(ym - ri)+ka Xm), (9a) 
9 i 7 = Atan2(-k Xm+kb(yni - ri), k(yni - ri)+kb Xni), (9b)

r.  = V 2 /Jtm + (ym - n )
2 2 2

k b =
2 fg

k a=  tg - kb ,

k = + V rb ^  - kb  ̂ .

(9c)

(9d)

(9e)

(9f)

Y

X X
Fig. 6a. Planar 2-link rotational-joint 
m anipulator.

Fig. 6b. Planar rotational-prism atic 
jo in t manipulator.



Note that k was chosen to be positive, giving an 
elbow-up configuration for the SRIP virtual manipulator. 
This configuration is necessary to keep link 14 working 
on tension, as it was designed to be, when the 
manipulator is supporting a payload.

Once 6 i i  and 617  have been calculated, then 6 n a . 
6 llb< 6 1 I0  ^ u d . and 6 i 7a are also known because the 
vectors associated with these angles are attached rigidly to 
r ii an d ri7 .

2.3. Inverse Kinematics
The vectors that belong to the virtual manipulator, 

corresponding to links 1, 11, and 17, are known. Now, 
look for another set o f  unknown joined vectors ra and 1̂  
of constant lengths from which the initial point o f the 
first and the final point of the second are known because 
they belong to the virtual manipulator. Or, in the case of 
prismatic joints, look for a single vector whose length and 
angle are unknown and its base and end points are known.

The general idea is to solve for the vectors that 
constitute the CKC in an iterative chain. Once the virtual 
manipulator is known, then fmd vectors attached to it and 
solve for them. Next, fmd vectors attached to these two 
and to the virtual manipulator and solve for them. The 
chain will lead to solving for the whole CKC system.

For every step in which another closed chain is found, 
a closed-chain vector equation [see Eq. (S)] can be written. 
For the SRIP manipulator, Eq. (10) can be written. Of 
the eight equations in Eqs. (10a) through (lOh), one 
corresponds, to the virtual manipulator and the rest to the 
seven CKC loops that constitute the SRIP manipulator. 
Note that the tom s on the right-hand side of each equation 
are known; therefore, each equation is cast into the form 
of Eq. (5a) or Eq. (5b). ^ c h  of these equations in

complex form lead to two independent equations, one 
along the real axis and another along the complex axis.

Equations (8 ) and (9) describe an example solving 
Eq. (10a) for the absolute angles O n and 6 1 7 . The  
method presented in Eqs. (6 ) and (7), can solve all the 
variables o f the CKC system: 6 2 , 8 3 , 8 4 , 8 5 , 8 5 , 8 7 , 
R g. R9 . 8 1 0  (8 io » . 8 io b ). 811  (8 1 U , 8 i ib ,  8 i i c ,  
6 lld ). 012. 8 1 3 , 8 1 4 , 815 , 8 i 6 . and 817 (8i7»).

Some o f the vectors in Eq. (10), have a negative sign 
which is needed to create the closed-chain vector equations. 
To directly apply the solution presented by Eq. (6 ) it is 
easier to use only positive vectcM-s on the left-hand side. 
To make the necessary transformation, note that in 
complex form

■r. e ‘ ®* = r. (11)

which is used next to solve for 8 1 s and 8 1 6 , using 
Eqs. 6 , 7, 10b, and 11:

816  = Atan2(ki x i+ kia y i,- k i yi-nku x i) ± n, (12a) 
815 = Atan2(- k i x i+kib  y i,k i yi-bkib x i ) , (12b)

*1 = - ri7« cos 8i7a + H id  cos 81 id , (12c)
y i = - ri7a s in 8 i7a + r u d  sin 8 n d  , (12d)

r is  =  V XI  +  yi , (12e)
2 2  2

.  ‘ ‘  (120
2 ris

k ib  = ^15 - ri6  -I- ris

kl a  = r i s - l^lb .

kl = -V  ri6̂ - kib̂  .
( 12g)

( 12h)

Note that ki has been chosen to be negative because 
from Fig. 5, it can be seen that vectors -rie + ris are on

r i i  e ‘ 0 l l  + ri7 e ‘ ®i7 = Xn, + i ( ym • r i ) ,

- r i 6  e*®l6 +  r i s  e ‘ ®l5 = - r n a  e ‘ ®17a + r n d  e ‘ ®l ld,

- ri3 e ‘ ®l3 +  r i4 e ‘ ®l4 = - r n a  e ‘ ®Ha + r n  e ‘ ®ll  -b
r i i d  e»011d - n s  e ‘ 015 ,

r i o  e ‘ 0lO + ri2 e*®l2 = r m  e l 0 i l a  - r n  e * 0 i 3 , 

r2 e ‘ 02 + r4 e ' ®4 = - rib e ' ® l b  + r io e ‘ 0 i o  +  riob e*®lOb,

r3 e ‘ 03 + rs e ‘ 05 = - r ic e ‘ ®lc -b r io e*®lO + n o a  e ‘ ®lOa,

(re + Rg) e ‘ ®6 = - r2  e ‘ 02 - rib e ‘ ®lb -b r m  e ‘ ®Hb ,

(t7 +  R9) e *®7 = - T3 e ‘ ®3 - ric e*®lc  + r n c  e * ® H c .

(10a)

(10b)

(10c)

(lOd)

(lOe)

(100
(lOg)

(lOh)



the right side or elbow down of the vector - r n  + rj id- 
By the same method, solutions can be found for all the 
variables of the CKC. The positive or negative kj's were 
chosen from Fig. 4 and 5 to be for (a) 11a k > 0, 
( b ) l l b  k i < 0 , ( c ) l l c  k2 > 0 , (d) l i d  ks < 0 , 
(e) 1 l e  k4 < 0 , and (0  1 If  ks > 0 .

Equations (lOg) and (lOh) are easy to solve by 
applying Eq. (7). As an example, let us solve for Rg and 
06 from Eq. (lOg):

06 = Atan2 (yg, Xg). (13a)

Rg = Vxg + yg - r6 , (13b)
Xg = - r2 cos 02 - rib  cos 0 ib  + n i b  cos 0 n b  , (13c) 
yg = - r2 sin 02 - rib  sin 01b + r i i b  sin 011b . (13d)

In the same way solved for Rg, it can be solved for 
R 9 to find both SRIP m anipulator linear motor 
movements. All the variables of the CKC robot have 
been found from its end-point position P = [x, y, z]^ and 
its geometrical parameters. Therefore, the inverse 
kinematics for the CKC manipulator has been calculated.

2.4. Jo in t Speeds
To calculate the joint speeds of the links belonging to 

the CKC manipulator, take derivatives with respect to 
time of the closed-chain vector equations [see Eq. (10)]. 
The derivative with respect to time of a vector whose 
angle is absolute, measured from the Xm axis to itself, can 
be written in complex form as

^ fr a  e 
dt

i 0a‘] = fa e i 6a + i 0ara  e i 0 a (14)

where ra = 0 if the link is rotational and of fixed length.
Also, because absolute angles are used 0 io  = OiOa =

010b. 011 = 011a = 011b = 011c = 011d. and 017 = 017a- 
As an example, let us solve first for the speeds of the 

SRIP virtual manipulator [Eq. (10a)] and then for links 15
and 16 [Eq. (10b)]. Finally, we will solve for Rg, from 
Eq. (lOg), to find the speed of one of the linear actuators 
of the SRIP manipulator.

Taking derivatives with respect to time of Eq. (10a),

i 011 r i i  e ‘ -t- i 0 n  r p  e ‘ = Xm i yym . (15)

which can be separated into two independent equations: the 
fttst in the real axis and the second in the complex axis,

- 011 r i l  sin 011 - 017 r n  sin 0 n  = Xn, , (16a)
011 I'll cos 011 -t- 017 ri7  cos 017 = Ym • (16b)

By using C; for cos (0i) and Sj for sin (0;). Eqs. (16a) 
and (16b) can be written in matrix formulation and solved 
for the speed of angles 0 n  and 0 n  by inverting a 2 x 2 
matrix

011 _ A ll A i 2 Xm = A
.  ®17 . _ A21 A22 _ . y ™ . ym

A = . -1
r n  ri7  Si i .17

ri7 Ci7  r i 7 S i 7  

r n  C i i  - r i i  S n

. (17a)

. (17b)

being S n - n  = sin (0 n  - 0 n ) .  The speed of angle 61 of 
the SRIP manipulator rotational base can be obtained by 
taking derivatives with respect to time of Eq. (3a) 
[Yoshikawa, 90]. After further reduction

0, = y ^ - ^ y  = y ^ - ^ y
2 2  2

X y Xm

C _ 31 Xm + y ymAm —.........   * ---
Xm

ym = z •

(18a)

(18b)

To solve for the speed of angles 615 and 616, take 
derivatives with respect to time of Eq. (10b),

- i 016 ri6  e ‘ ®1® i 615 r is  e ‘ ®15 =

- i 017 ri7a e * ®17a + i e^ j r n d  e ‘ . (19)

Separating the resulting equation into the real and 
complex axes and writing them in matrix form.

-ri5 S is

- r i6  C 16 015

r i 6  S 16 _

r i l d  C i i d -r i7a C l7 a 011

- r i l d  S l id r i7 a S l7 a - ®17 .
. (20)

By premultiplying the equation by the inverse of the 
m atrix on the left-hand  side and reducing 
trigonometrically, it is found that

(21a)015 = B 011

016 . .  ®17 .

B =

ri6  r i i d  Si i d-16 

ri5 r i i d  Siid-15

ri6  ri7a Si6-17a 

ri5  ri7a Si5-17a

- r i5 r i 6 S16-15
(21b)



To solve for the speeds of angle 06 and length Rg. 
one of the linear actuators, take derivatives with respect to 
time of Eq. (lOg),

i 06  (r6 + R g) e '  +  R g e  ‘ =

- 1 02 r2 e ’ + i 011 rn b  e ’ . (22)

Note that rib,  ric,  is just a constant vector on 
the X m -Y m plane. Separating the resulting equation into 
the real and complex axes, writing them in matrix form, 
and premultiplying the equation by the inverse of the 
matrix on the left-hand side as was done in Eq. (20), it is 
found that

(23a)06 = 0 02

.  Rs . .  ®11 .

O =

f2 C6-2 

(r6+R8)r2 S6-2

- r i lb  C iib -6

(r6-HRg)riib S iib -6

(re+Rg)
(23b)

Any of the joint variables can be solved similarly. 
Finding the following matrix relations:

011 = A Xm
/ 015 = B 011

.  ®17 . Ym _ 016 . - z

013 = D 015 / 010 = F 013

014 . .  011 . 012 . - =

02 = H 010
t

03 = L 010

®4 . . 010 ^ = ®5 ^ 010 ^

06 = 0 02 / 07 = P 03

.  R s . .  011 . .  R 9 . .  .

(24)

The inverse kinematics and the joint velocities have 
been calculated. By further extending the application of 
this methodology for real time computation, a closed form 
for the inverse Jacobian can be found,

2.5. The Inverse Jacob ian
The Jacobian of a robot is the matrix relation between 

the speed of its motors and the Cartesian speeds of its end 
effector. After we have obtained the speed of all the joints 
of the CKC robot and knowing the ones of the 
end-effector, the inverse of the Jacobian is obtained in this 
section.

To compute the inverse Jacobian, first the inverse 
sub-Jacobian of the CKC planar manipulator is calculated 
with respect to the Cartesian movement on the plane of 
the robot. From Eq. (24), the following relations are 
obtained;

Rs == O21 02 + O22 011 , (25a)

R9 == P21 03 + P22 011 . (25b)

02 = (H ll + H12) 010 . (25c)

03 = (L ii  + L12) 010 . (25d)

010 = F l l  013 + F i2  011 . (25e)

013 = D ll  015 + D i2  011 . (250

015 = B ii  011 + B i2 017 ■ (25g)

After substituting, reducing, and coUecting terms, we 
can write the following expression for the two linear 
motor speeds:

R8 = Ti 011 + T2 017 .
R9 = T3 011 + T4 017 ,

Ti = O22 + 02i(H ii-fH i2)
(F12+F11 D12+F11 D l l  B i i )  , 

T2 = 0 2 l(H ii-t-H i2 )(F ii D ll  B12) ,

T3 = P22 + P21(L i1+ L i2)
(F12+F11 D12+F11 D ll B ii)  , 

T4 = P21 (L i i + L i 2)(F i i  D ll  B12) .

(26a)
(26b)

(26c)
(26d)

(26e)
(260

Finally, applying the following relation from 
Eq.(24)

611 = A ll Xm + A i2 ym . 

017 = A21 Xm + A22 Ym .

(27a)

(27b)

we find the inverse sub-Jacobian for the planar CKC 
mechanism to be

(28a)R s U p li U pi2 Xm

.  R 9 . Up21Up22 ym .

U p ll = T l  A ll  + T 2  A21 , 
lJp l2  = T l A12 + T2 A 22,
Up21 = T3 A ll  + T4 A21 , 

Up22 = T3 A12 + T4 A22 .

(28b)

By using Eq. (18), we can write the inverse Jacobian 
for the SRIP manipulator as



Rg

R9

01

Xm

U p 2 l ^
Am

Z J .

Xm

U p ll  U p l l U p l 2  
— ^m

Up21 Up22

Xm

.(29)

To prove the correctness o f  the solution for the 
Jacobian, it was compared with numerical methods of 
perturbing the inverse kinentatics solution. Instead of 
derivatives with respect to time, an incremental 
approximation for the speed of each motor was taken:

ARg = U p i i -X-Ax + U p ii ^ A y  + U p i2 Az . (30)
Xm Xm

Different points in the space with the robot were 
tested, and the results were accurately to 4 decimal places.

3. W O RK SPACE DEFINED BY K INEM ATIC  
AND M EC H A N IC A L C O N STR A IN TS

In this section, the workspace for the SRIP 
manipulator is studied and plotted. Geometrical 
constraints due to link lengths, link tension constraints to 
prevent structural damage, and joint range constraints are 
considered.

Because o f its rotational base, the workspace o f the 
SRIP manipulator is a volume o f revolution. Therefore, 
it is necessary to study its workspace only in the plane 
that the first joint defines.

The lengths o f  the links that constitute the SRIP 
virtual manipulator [ri = 66.04 cm (26 in.), r n  = 109.22 
cm (43 in.), and r n  = 134.62 cm (53 in.)] already 
constrain the workspace to a circle of radius r̂  i r p  = 
243.84 cm (96 in.) around the point P(Xm = 0, ym = f i )  
on the plane o f the CKC planar mechanism.

The larger four-bar linkage o f the SRIP manipulator 
includes links 11, 13, 14, and IS. The thin, weaker link 
(14) was designed to work on tension but not on 
compression. For link 14 to work on tension, the 
positive square root in the formula for k [see Eq. (901 
must be used. In addition, to keep the same constraint, 
when 6 i i is larger than 90°, then 617  cannot be allowed 
to exceed 90°.

Because the SRIP manipulator has only 3-IX)Fs only 
three independent joint ranges are necessary to constrain 
its workspace. In particular, the angular range constraints 
for the SRIP virtual manipulator (see Fig. 5) are those 
that best defme its workspace. The joint limits for the

SRIP virtual manipulator and rotational base were 
measured to be approximately: -180° ^ 6 1  ^ 180°, 
-90° S 011 S 150 °, and-150° ^ B n - B n  S 0° .

Fch- the given constraints, the workspace for the SRIP 
manipulator is identified by the patterned area in Fig. 7. 
The inverse kinematics, workspace, and plotting functions 
were implemented in Mathematica [Wolfiram, 88 ].
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F ig. 7. W orkspace o f  the SRIP tnanipulator  
(dim ensions are in centim eters).

The three-dimensional workspace for the SRIP 
m anipulate is obtained by rotating the patterned area in 
Fig. 7 around the vertical axis.

4. O PTIM IZA TIO N  OF TH E SRIP ARM  
M O V EM EN T

The SRIP manipulator allows a special movement of 
its end effector: the CKC planar manipulator's 
sub-Jacobian [see Eq. (28)], relating its two linear 
actuators with the Cartesian end effector movement is 
almost diagonal for a specific area o f the woricspace. This 
allows an almost decoupled linear motion along the 
horizontal or vertical directions using only one o f  its 
linear actuators. The symbolic solution for the inverse 
kinematics allows optimization to be perfcxmed to further 
decouple the Cartesian motions by changing link lengths 
o f the manipulator. The conclusion achieved by the 
optimization is that only two link lengths need to be 
changed to tune the manipulator for perfect decoupling at 
each area o f  the wcxkspace.

From Eqs. (10) and (24), it can be concluded that 
matrices H  and O are indqiendent o f  T3 , and matrices L 
and P are independent o f r2 . Further, Eq. (26) shows that



T i and Tj are independent o f  and T3 and T4 are 
independent of 12- This conclusion leads to the following:

Rg is dependent on r2 but independent of r3, (31a)

R9 is dependent on r3 but independent of r2- (31b)

Further, the effect o f the linear actuate 8  (or 9) on 
the manipulator end point can be tuned by changing r2 (or 
T3 ) without interfering with the effect o f the other 
actuator.

The idea is to create a close-to-perfect diagonal 
sub-Jacobian for the planar CKC m ech ^ sm  by driving 
Upi2 and Up2 i [see Eq. (28)] to zero, changing the values 
for r2 and r3 respectively. Different values for r2 and r3 
were found for different positions on the plane defmed by 
axes Xm and Ym. Figure 10 shows the element U pi2 of 
the inverse Jacobian varying with the change in length 
(r2) o f link 2 , while Up2 i stays constant for a particular 
position in the space o f the SRIP manipulator.

e.ie

-e.B3

- e . i 0

Fig. 10. U p 1 2  as a function of F2 
(dimensions are in meters for r2 ).

The lengths r2 and r3 that make U pi2 and Up2 i equal 
to zero will give a diagonal sub-Jacobian, tuning the 
SRIP manipulator for an area o f  the space close to where 
it is working. For different areas o f  the workspace, 
different values were foimd for the tune up.

5 .  C O N C L U S IO N  
A relatively simple method to solve the inverse 

kinematics for manipulators that contain closed-chain 
mechanisms is presented in this paper. Q osed-fonn  
solution for angles and speeds o f  jt^ ts ' displacements are 
obtained. Finding the Jacobian o f the robot and its 
inverse is very useful. Also, a proof for angles and speeds

10

is shown with the graphic sim ulation and the 
approximation for the Jacobian.

To verify the results o f  this paper a graphic 
simulation for the SRIP manipulator was used. This 
graphic simulation works in the inverse direction given 
joint solutions, draw the robot begimiing fftMn the base to 
the end point Figures (3 through S) plotted with this 
graphic simulation show the robot working in different 
positions and orientations.

The methodology presented in this paper was tqrplied 
to solve the SRIP manipulator, which has 17 links, 24 
one-DOF joints, and 7 CKC loops working in a plane and 
a rotational base that determine its 3-DOFs. Optimizatiao 
o f sa n e  link lengths for tuning the decoupling of the 
Cartesian movement produced by its actuators was 
accomplished by taking advantage o f the closed-form 
solutions obtained. The method presented uses 
unconplicated numerical methods, so it is well suited f a  
real-tinte implementation.
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