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ABSTRACT

This paper presents a rclatively simple method based
on planar geometry to analyze the inverse kinematics for
closed kinematics chain (CKC) mechanisms. Although
the general problem and method of approach are well
defined, the study of the inverse kinematics of a closed-
chain mechanism is a very complicated one. The current
methodology allows closed-form solutions to be found, if
a solution exists, for the displacements and velocities of
all manipulator joints. Critical design parameters can be
identified and optimized by using symbolic models. This
paper will focus on planar closed-chain structures extended
with a rotational base. However, with open and CKC
mechanisms combined in different planes, the extension to
the case is straightforward. Further, real-time algorithms
are developed that can be handled by existing
microprocessor technology.

To clarify the methodology, the Soldier Robot
Interface Project (SRIP) manipulator is analyzed, and a
graphic simulation is presented as a verification of the
results. This manipulator has 17 links, 24 one-degree-of-
freedom (DOF) joints, and 7 CKC loops working in a
plane and a rotational base, which determine its 3 DOFs.
The SRIP manipulator allows a decoupled linear motion
along the vertical or horizontal directions using only one
of its linear actuators. The symbolic solution for the
inverse kinematics allows optimization to be performed to
further decouple the Cartesian motions by changing link
lengths of the manipulator. The conclusion achieved by
the optimization is that only two link lengths need to be
changed to tune the manipulator for a perfect decoupling at
each area of the workspace.

1. INTRODUCTION
In closed kinematics chain (CKC) manipulators, the
moments and forces that move the links are typically
transmitted through four-bar, five-bar, or higher planar-
linkage mechanisms. These mechanisms are closed-chain
structures having planar motion, used to supply rigidity
and high end-effector force and to reduce dynamic and static

* Research sponsored by the Office of Technology Development,
U.S. Department of Energy, and the U.S. Army Human Engineering
Laboratory, performed at Oak Ridge National Laboratory, managed by
Martin Marietta Energy Systems, Inc., under contract
DE-AC05-840CR21400.

loads duc to the weight of motors by placing them closer
to the base of the manipulator., For a serial link
manipulator, a closed-form solution of the inverse
kinematics is difficult, and most current 6-degree-of-
freedom (DOF) serial-link manipulators are based on
having the last three axes intersecting at a common point
[Picper, 68]! because a closed-form solution is guaranteed
to exist. However, with a CKC manipulator, the closed-
form solution of the inverse kincmatics is significantly
more difficult. The link's spatial relationships can be
described by holonomic constraint equations [Luh and
Zheng, 85]2. For each CKC loop a passive joint is
selected and virtually cut, obtaining two holonomic
constraint equations. Like the serial case, these equations
are highly nonlinear. If this method is applied to the 7
closed-chain loops of the Soldier Robot Interface Project
(SRIP) manipulator, then 14 independent nonlinear
equations will be generated that are to be solved
simultaneously giving 64 different joint solutions if joint
limits and other physical considerations are ignored.
Therefore, the Holonomic Constraints method was not
suitable for practical application to the SRIP manipulator.
The ideal method to solve the inverse kinematics of
manipulators that contain CKC loops should:
1. provide a closed-form solution for the joint
displacements and speeds for both direct and inverse
kinematics; and
2. present an efficient way to choose the correct solution
because CKC robots always have several solutions,
depending on the number of joints, links, and CKC loops.
The new method presented in this paper satisfies all
of the above conditions. Most, if not all, CKC robots
work in a plane only. This plane may be extended to a
three-dimensional space by using a rotatory base and a 2-
or 3-DOF hand. The general algorithm is presented with a
direct application to the SRIP mamipulator after each of
the following steps;

1. link connection description and reduction of the robot
to its CKC plane,

2. finding the closed chain vector equations,

3. solving the inverse kinematics and joint speeds,

4. obtaining a closed-form for the inverse Jacobian of
the CKC mechanism and extending it to the three-
dimensional manipulator with a rotational base.



The graphic simulation for the CKC SRIP
manipulator was implemented to verify the results of this

paper.

2. SOLVING THE CKC MANIPULATOR

The algorithm prescnted in this paper has been
applied to the SRIP manipulator. This device has 17
links, 24 one-DOF joints, and seven CKC loops working
in a plane and a rotational base which determine its 3
DOF. This complicated manipulator allows a special
movement of its end-effector. The CKC planar
mechanism has only two linear actuators and one-
dimensional movement in the vertical or the horizontal,
achieved by moving only one of the motors. The base
rotates the manipulator to reach an arbitrary point in 3-
Dimensional space. (sce Fig. 1.)

The number of DOFs in a CKC mechanism can be
readily determined by Griibler's formula [Hunt, 783;

n=3L-2N;-Np, 1

n =Number of degrees of freedom,

L =Number of links, not including the fixed Base,
N1 = Number of single degree-of-freedom joints,
N2 = Number of two degrec-of-freedom joints.

Therefore, the SRIP manipulator has:

Number of DOF = 3x17 -2x24 - 0 = 3. (2)

2.1. Link Connection Description

This section discusses each component of the
complete manipulator separately on the rotational base and
the CKC mechanism. CKC robots are based on four-bar,
five-bar, and higher planar-linkage mechanisms. If a
linkage mechanism is not planar, then it can be projected
into multiple planes and solved in a manner similar to the
planar case. Because they are typical, the planar CKC
will be the only case examined in detail in this paper;
however, with open and closed kinematic chain
mechanisms combined in different planes, the extension to
the case is straightforward.

To describe the location of each link relative to its
neighbors, we define a frame attached to each link. The
link frames are named by number according to the link to
which they are attached. That is, frame (i} is attached
rigidly to link i, as in Craig's notation [Craig, 86)%. As
shown in Fig. 2, three different frames give the
relationship between the components of the manipulator:
base frame {B}, manipulator plane frame {M], and end-
effector frame (E].

Thus, assuming that point BP = [x, y, z]T written
with respect to the base frame {B] is known, it is possible
to obtain MP =[x, ym]T written with respect to the
robot plane frame {M) and the angle 81, that must rotate

the base.

91 = Atan2 (y, x)l (33)
xm=Vx%+y?, (3b)
ym = Z. (3C)

This transformation reduces the kinematic problem to
the CKC manipulator plane, which simplifies the
solution. All frames referred to links that belong to the
CKC are attached with their Z axes perpendicular to the
plane of the robot, defined by XM and Y, simplifying all
the transformation matrices between these frames.

The reduction of the manipulator to a plane allowed
us to create a graphic simulation, that verified the results
of this paper. Fig. 3 shows a wire-frame simulation of
the SRIP manipulator in which all the links are included;
the two linear actuators are represented by small squares
attached to their links.

Once the three- to two-dimensional transformation
has been accomplished, the next step is to number all the
links and joints. Because all the links are in the same
plane, each link can be represented as a two-dimensional
vector. These vectors have the length of the link (r;'s) and
the angle of the joint with the same number (8;'s). Note
that angles 6; are absolute and measured from axis X,
allowing us to take absolute instead of partial derivatives
with respect to time later in this paper. These
two-dimensional vectors can be written in complex {orm
with respect to the Xm and YM axes by using Euler's
formula as follows:

- i0, _ . .

fn =TIne = Iy cOS By +1rp Sin By . 4)

Some links may have more than two joints. For
each extra joint, an extra vector is given until all the
joints of all the links can be represented as an addition of
planar vectors. As shown in Fig. 4 and §:

(@ Links 2 through 7 and 12 through 16 are represented
by vectors of constant lengths, Tg

() Links 8 and 9 are represented by one variable length
vector because of prismatic joints with respect to
links 6 and 7 respectively.

(© Links 1, 10, 11, and 17 are represented by more than
one vector. As an example, link 10 is determined by
three vectors because of its four joints,



Fig. 1. Soldier Robot Interface Project manipulator (ORNL-Photo 5086-89).
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Fig. 2. Schematic diagram of a closed Fig. 3. Graphic simulation for the Soldier
kinematic chain robot with its three Robot Interface Project manipulator (dimensions
frames. are in meters).



Figure 4.
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Fig. 5a. Soldier Robot Interface Project
manipulator links 11 trough 17.

2.2. Solving The Serial Virtual Manipulator

To solve the CKC planar mechanism, a reduced serial
model must first be found. In a minimum number of
links in the CKC mechanism, select the shortest way
from the manipulator base to its end. Usually, a virtual
open-chain robot exists with a 2-link arm; let us name it
the virtual manipulator. As shown in Fig. 5, the
shortest way through the SRIP manipulator is by using
links 1, 11, and 17, which constitute its virtual serial
manipulator. Now the CKC device has been separated
into a virtual manipulator plus several virtual open-chains
with origin and end points belonging to the virtual
manipulator.

To solve for the displacement and speed of the joints

Fig. 5b.
virtual manipulator.

0.2

Soldier Robot Interface Project manipulator links 1 through 10 (dimensions in meters).
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Soldier Robot Interface Project

that belong to the virtual manipulator, any known method
for open-chain robots can be used [Craig, 86; Pieper, 68;
Yoshikawa, 90]. Because this is a simple 2-DOF planar
case, let us present a straightforward closed-form solution
that will be used in obtaining not only the inverse
kinematics solution for the virtual manipulator, but also
for the rest of the SRIP manipulator joint values cases
found in the SRIP manipulator CKC loops. Figures 6a
and 6b present two possible cases found in the SRIP
manipulator. .

A closed-chain vector equation can be written for each
of these two cases which locates vectors with unknown
terms on the left-hand side while leaving on the right side
all the known vectors: '



i6p
i0,

eifs (5a)

(5b)

r.e'e‘+n,e = 1

(ta + 1) 1% = g ¢i8s,
where the unknown terms in Eq. (5a) are 8, and 6, and
those in Eq. (5b) are r, and 6,.

Fig. 6a presents the two possible solutions, elbow up
or down, for the inverse kinematics of a planar 2-link
rotational-joint manipulator of which link lengths are
fixed. An inverse kinematic solution can be obtained by
using an algebraic method similar to the ones presented in
(Craig, 86) or [Yoshikawa, 90] but modified to handle
multiple solutions for both angles, independently of the
links location on the X-Y plane of Fig. 6a.

With the vector rg, defined by point (x, y), and the
length of the links known, the solution to the angles of
the two links in Fig. 6a is found to be

68=Atan2( kx +kay,'ky+kax), (&)
Ob = Aan2 (-kx+kpy, ky+kyx), (6b)
g = Vx2+y2 , (6¢)
2 2 2
kpy = S -fa *10 &
21
k, = ;- kp, (6e)
Kk = 240 -ky . (60

Note that solution is not possible for the cases in
which (D r5=0;(2)rg>ra+mp;0r(3) r5<ry-m. The
positive or negative square root in the formula for k above
gives two possible solutions for angles 6a and 6b: (a) If
k> 0, then 0s - 8b > 0: left side (elbow up), solid lines
in Fig. 6a; (b) If k< 0, then 06a - 6b < O: right side
(elbow down), dashed lines in Fig. 6a.

(xy)

Fig. 6a.
manipulator.

Planar 2-link rotational-joint

X

Note that elbow up or down is usually referred to in
the literature with respect to the gravity axis. Instead, in
this paper, elbow up refers to elbow on the left side of the
vector addition rg, and elbow down means on the right
side. When multiple solutions exist, some criteria are
needed. This method provides a way of choosing by
simple graphical iteration. As an example, in the SRIP
manipulator, some specific configurations were needed to
keep the weaker links of the CKC linkages in tension to
prevent structural damage.

Fig. 6b presents a planar 2-link rotational-prismatic-
joint manipulator. Because the vector r;, defined by point
(x, y), is known, the solutions to the unknowns (angle
and length) are found to be

6, = Aun2(y,x) , (7a)
b = Vx2+y2-ra- (7v)

For the virtual serial manipulator the closed chain
vector equation, see Eq. 5 and Fig. 6, can be written for
links 11 and 17 as follows:

el 4 g 10T S i), ®
Showing their absolute angles solution to be

611 = Aan2( k Xxpm+ka(Ym - £1).- k(ym - 11)+ka Xn), (9a)
017 = Atan2(-k Xp+kp(Ym - 1), K(ym - r1)+kp Xm), (9b)

2 2
Is = me + OYm-11)" ,

(9¢)
r172-r12+r2
kp= —ZH (9d)
H
ka= fs'kb’ (90)
k=+Vn -k . )
Yy 4
i
X

Fig. 6b. Planar rotational-prismatic
joint manipulator.



Note that k was chosen to be positive, giving an
elbow-up configuration for the SRIP virtual manipulator.
This configuration is necessary to keep link 14 working
on tension, as it was designed to be, when the
manipulator is supporting a payload.

Once 811 and 817 bhave been calculated, then 611,
O11b. B11c, 811d. and 817, are also known because the
vectors associated with these angles are attached rigidly to
rjy and ry7.

2.3. Inverse Kinematics

The vectors that belong to the virtual manipulator,
corresponding to links 1, 11, and 17, are known. Now,
look for another set of unknown joined vectors ra and ry
of constant lengths from which the initial point of the
first and the final point of the second are known because
they belong to the virtual manipulator. Or, in the case of
prismatic joints, look for a single vector whose length and
angle are unknown and its base and end points are known.

The general idea is to solve for the vectors that
constitute the CKC in an iterative chain. Once the virtual
manipulator is known, then find vectors attached to it and
solve for them. Next, find vectors attached to these two
and to the virtual manipulator and solve for them. The
chain will lead to solving for the whole CKC system.

For every step in which another closed chain is found,
a closed-chain vector equation [see Eq. (5)] can be written.
For the SRIP manipulator, Eq. (10) can be written. Of
the eight equations in Egs. (10a) through (10h), one
corresponds, to the virtual manipulator and the rest to the
seven CKC loops that constitute the SRIP manipulator.
Note that the terms on the right-hand side of each equation
are known; therefore, each equation is cast into the form
of Eq. (5a) or Eq. (5b). Each of these equations in

complex form lead to two independent equations, one
along the real axis and another along the complex axis.

Equations (8) and (9) describe an example solving
Eq. (10a) for the absolute angles 6] and 617, The
method presented in Eqgs. (6) and (7), can solve all the
variables of the CKC system: 6, 83, 84, 65, 8¢, 07,
Rg, Rg, 810 (8104, 810b). 811 (B11a, 8111, O11c,
0114). 812, 813, 614, 015, 616, and 817 (8174).

Some of the vectors in Eq. (10), have a negative sign
which is needed to create the closed-chain vector equations,
To directly apply the solution presented by Eq. (6) it is
easier to use only positive vectors on the left-hand side.
To make the necessary transformation, note that in
complex form

cryeifaop 1@atm) an

which is used next to solve for 815 and 8¢, using
Egs. 6, 7, 10b, and 11:

016 = Atan2(k; x1+kjs ¥1,- k] yi+k1a X1) £ %, (122)
015 = Atan2(- k| x1+k1p y1.k1 Y1+kip x1), (12b)

X] = -r174€08017, + r11dcos 0114 , (12¢)

YI = -117,8i0017, + 11145in 0114,  (12d)
2 3

s = VX4 (12¢)

kpp = FIS-TI6 + M5 (126)
21

kija = r15- kip (12g)

2 2
ki =-Yrng -kpp . (12h)

Note that k; has been chosen to be negative because
from Fig. S, it can be seen that vectors -r16 + rys are on

111 1011 4 117 ¢1017 =x5 + i(ym-11), (10a)

-116 €916 + 115 e1915= - 1y9, 10172 4 114 ¢10114, (10b)

-113 eif13 4 4 elB14= -T11a eiB11a 4+ ni eif11 4

114 €1911d - 115 ei815, (100)
ri0 e1810 + 13 €1012 = 1y, ei811a - 113 ei813 (10d)
re102 4+ g ei® = _pp ei®ib 4+ g 1010 + rgp eiB10b, (10e)
rel® 4 r5eiBs = g eiflc 4 119 €1010 + 1y, €i010a, (10f)
(r¢ + Rg) ei9%6 =-rpei82 .1 e181b 4 gy eiO11b (10g)

(r7 + Rg) el

-13 eifs . flc eibic 4 Iie eifilc, (10h)



the right side or elbow down of the vector -r17 + ryi4.
By the same method, solutions can be found for all the
variables of the CKC. The positive or negative k;'s were
chosen from Fig. 4 and 5§ to be for (a) 11a k>0,
(b) 11b ky <0, (c)llc k>0, (d)11d k3 < O,
(e) 11e k4 <0, and (f) 11f ks > 0.

Equations (10g) and (10h) are easy to solve by
applying Eq. (7). As an example, let us solve for Rg and

0¢ from Eq. (10g):

8¢ = Atan2 (yg, xg) . (13a)
Rg =‘ng+y§ - 16, (13b)

Xg =-r12c08 62 - 11p COS 01b + r11p cos 011b , (13¢)
yg =-r2sin62-11p sin O1p + r11p sin 811 . (13d)

In the same way solved for Rg, it can be solved for
Rg to find both SRIP manipulator linear motor
movements. All the variables of the CKC robot have
been found from its end-point position P = [x, y, z]T and
its geometrical parameters. Therefore, the inverse
kinematics for the CKC manipulator has been calculated.

2.4. Joint Speeds

To calculate the joint speeds of the links belonging to
the CKC manipulator, take derivatives with respect to
time of the closed-chain vector equations [see Eq. (10)].
The derivative with respect to time of a vector whose
angle is absolute, measured from the XM axis to itself, can
be written in complex form as

dQ[raeie"] = i,ei6’+ iéar,eie‘, (14)
t

where 1, = 0 if the link is rotational and of fixed length.
Also, because absolute angles are used 61 ¢ = 8j0a =
010b, 611 = 8112 =611b = B11¢c = 6114, and 817 = 617,.

As an example, let us solve first for the speeds of the
SRIP virtual manipulator [Eq. (10a)] and then for links 15

and 16 [Eq. (10b)]. Finally, we will solve for Rg, from
Eq. (10g), to find the speed of one of the linear actuators
of the SRIP manipulator.

Taking derivatives with respect to time of Eq. (10a),

iéurueleq“+iél7r17elel7=im+i9m, as)

which can be separated into two independent equations: the
first in the real axis and the second in the complex axis,

Xm. (16a)
Ym- (16b)

- 811 113 sin 613 - 817 117 sin 617
éll 1] cos 811 + 0617117 cos 017

By using C; for cos (6;) and S; for sin (6;), Egs. (16a)
and (16b) can be written in matrix formulation and solved
for the speed of angles 037 and 817 by invertinga 2 x 2
matrix

611 _| A1l A2 || Am _A Xm 17

é17 A21 A22 9m )"m ]
rn7Ci7 n79S;7

-1 Ci1 -y Sy |

A= -1

—_— , (17b)
r1rn7 Sii-17

being S11-17 = sin (811 - 817). The speed of angle 6 of
the SRIP manipulator rotational base can be obtained by
taking derivatives with respect to time of Eq. (3a)
[Yoshikawa, 90]. After further reduction

6 = YRRy _yx-Xy (182)
X2+y2 X?n
im=ﬂﬂ_itl_m, Yym=2. (18b)
m

To solve for the speed of angles 615 and 0¢, take
derivatives with respect to time of Eq. (10b),

-iB16 116 elels+ié15r1501915=
-ié17 r17aelel7‘+ié11 r“dcle“d. (19)

Separating the resulting equation into the real and
complex axes and writing them in matrix form,

[ r1s C15 -r16 C16 H 015 }

115815 116 S16 || 616
1114 C11d 1172 C17a M (:311 } 20
111dS11d 1172 S17a || 617

By premultiplying the equation by the inverse of the
matrix on the left-hand side and reducing
trigonometrically, it is found that

é16 é17

[ T16711d S11d-16 16 T17a S16-17a

115T711d S11d-15  T15 17a S15-17

B - 17a S15-17a Q1)
- 115116 S16-15




To solve for the speeds of angle 8¢ and length Rg,
one of the linear actuators, take derivatives with respect to
time of Eq. (10g),

i g (rg + Rg) e 196 4 Rge 196 -
-iézrzclez-i—ié”rllbele“b. (22)

Note that rp, like ric, is just a constant vector on
the XM-YM plane. Separating the resulting equation into
the real and complex axes, writing them in matrix form,
and premultiplying the equation by the inverse of the
matrix on the left-hand side as was done in Eq. (20), it is

{ . } { : } , ( )

[ r2 Ce.2 - 1116 C11b-6 ]
+R Sé. r¢+R S -
o - LUs*RIISe-2  (rs+Reriin S11bs | - g
- (r6+Rg)

Any of the joint variables can be solved similarly.
Finding the following matrix relations:

. . . J [ . 7]
911W=A Xm}, 915 =B 911 ,

1 617 | ym ] [616] [ 617
r h M. h r . . M. T
O3 |_p| O15 |, | G0 |_p| O13 |
L 014 611 [ ®12] [ 611 (24)
O2 |_p| 0|, | 8 |_p] 00
= 04 E £ 810 3 F Os 3 F %10 3
?6 -0 '92 ) (.97 =P '93
Rg 011 Ry 811

The inverse kinematics and the joint velocities have
been calculated. By further extending the application of
this methodology for real time computation, a closed form
for the inverse Jacobian can be found.

2.5. The Inverse Jacobian

The Jacobian of a robot is the matrix relation between
the speed of its motors and the Cantesian speeds of its end
effector. After we have obtained the speed of all the joints
of the CKC robot and knowing the ones of the
end-effector, the inverse of the Jacobian is obtained in this
section.

To compute the inverse Jacobian, first the inverse
sub-Jacobian of the CKC planar manipulator is calculated
with respect to the Cartesian movement on the plane of
the robot. From Eq. (24), the following relations are
obtained:

Rg = O21 02 + 022611 , (25a)
Ro = P2; 03 + P22 611, (25b)
62 = (Hyy +H12) 610, (25¢)
63 = (L11 + L12) 610, (25d)
610 = F11 013+ F12 611, (25¢)
613 = D13 815+ D12 611, (259
815 = B11 611+ B12617. (25g)

After substituting, reducing, and collecting terms, we
can write the following expression for the two linear

motor speeds:

Rg = Ty 611 + T2 617, (263)
Rg = T3 031 + T4 617, (26b)
Ty = 022 + O21(Hy1+H12)
(F12+F11 D12+F11 D11 B1y), (26¢c)
T2 = O21(H11+H12)(F11 D11 B12), (26d)
T3 = P22 + P21(L11+L12)
(F12+F11 D12+F11 D11 B1y), (26¢)
T4 = P21 (L11+L12)(F11 D11 B12) . (26f)

Finally, applying the following relation from

Eq. (24)

A1l Xm + A12 Ym » (27a)
A2] Xm + A22 ¥m (27b)

611
017

we find the inverse sub-Jacobian for the planar CKC
mechanism to be

: Up11 X
1.28 - pll1pl2 m ‘ (28a)
Rg IJp21 up22 Ym
Op11=T1 A1 +T2 A1,
Up12=Ty A12 + T2 A22,

Up21=T3 A11 + T4 Az,
Dp22 =T3 A12 + T4 A22.

(28b)

By using Eq. (18), we can write the inverse Jacobian
for the SRIP manipulator as



ro. x X F .
Rg T 1 Upni - Up11 - Upi2 |
Ro |=| UpaiX UpsiL Upaa || ¥ |29
Xm Xm
8 -y X 0 z
- - 2 2 L -
L *m Xm i

To prove the correctness of the solution for the
Jacobian, it was compared with numerical methods of
perturbing the inverse kinematics solution. Instead of
derivatives with respect to time, an incremental
approximation for the speed of each motor was taken:

ARg = Upy ;LAx +Upny ;‘%Ay +Up124z.  (30)
m

Different points in the space with the robot were
tested, and the results were accurately to 4 decimal places.

3. WORKSPACE DEFINED BY KINEMATIC
AND MECHANICAL CONSTRAINTS

In this section, the workspace for the SRIP
manipulator is studied and plotted. Geometrical
constraints due to link lengths, link tension constraints to
prevent structural damage, and joint range constraints are
considered.

Because of its rotational base, the workspace of the
SRIP manipulator is a volume of revolution. Therefore,
it is necessary to study its workspace only in the plane
that the first joint defines.

The lengths of the links that constitute the SRIP
virtual manipulator [r] = 66.04 cm (26 in.), 11 = 109.22
cm (43 in.), and r17 = 134.62 cm (53 in.)] already
constrain the workspace to a circle of radius rq] + 17 =
243.84 cm (96 in.) around the point P(xy, = 0, yp, = 11)
on the plane of the CKC planar mechanism.

The larger four-bar linkage of the SRIP manipulator
includes links 11, 13, 14, and 15. The thin, weaker link
(14) was designed to work on tension but not on
compression. For link 14 to work on tension, the
positive square root in the formula for k [see Eq. (9f)]
must be used. In addition, to keep the same constraint,
when 01 is larger than 90°, then 817 cannot be allowed
to exceed 90°.

Because the SRIP manipulator has only 3-DOFs only
three independent joint ranges are necessary to constrain
its workspace. In particular, the angular range constraints
for the SRIP virtual manipulator (see Fig. 5) are those
that best define its workspace. The joint limits for the

SRIP virtual manipulator and rotational base were
measured 10 be approximately: -180° < 6; < 180°,
90° < 8;) s150° and-150° < B17-6y; S0°.

For the given constraints, the workspace for the SRIP
manipulator is identified by the patterned area in Fig. 7.
The inverse kinematics, workspace, and plotting functions
were implemented in Mathematica [Wolfram, 88].

-200 ~-100

-1004

Fig. 7. Workspace of the SRIP manipulator
(dimensions are in centimeters).

The three-dimensional workspace for the SRIP
manipulator is obtained by rotating the patterned area in
Fig. 7 around the vertical axis.

4. OPTIMIZATION OF THE SRIP ARM
MOVEMENT

The SRIP manipulator allows a special movement of
its end effector: the CKC planar manipulator's
sub-Jacobian [see Eq. (28)], relating its two linear
actuators with the Cartesian end effector movement is
almost diagonal for a specific area of the workspace. This
allows an almost decoupled linear motion along the
horizontal or vertical directions using only one of its
linear actuators. The symbolic solution for the inverse
kinematics allows optimization to be performed to further
decouple the Cartesian motions by changing link lengths
of the manipulator. The conclusion achieved by the
optimization is that only two link lengths need to be
changed to tune the manipulator for perfect decoupling at
each area of the workspace.

From Egs. (10) and (24), it can be concluded that
matrices H and O are independent of r3, and matrices L
and P are independent of r. Further, Eq. (26) shows that



T1 and Ty are independent of r3, and T3 and T4 are
independent of r5. This conclusion leads to the following:

Rg is dependent on r, but independent of r3,
lig is dependent on r3 but independent of 1.

(31a)
(31b)

Further, the effect of the linear actuator 8 (or 9) on
the manipulator end point can be tuned by changing r (or
r3) without interfering with the effect of the other
actuator.

The idea is to create a close-to-perfect diagonal
sub-Jacobian for the planar CKC mechanism by driving
Upi12 and Up2) [see Eq. (28)] to zero, changing the values
for 17 and r3 respectively. Different values for r2 and r3
were found for different positions on the plane defined by
axes Xm and YM. Figure 10 shows the clement Up of
the inverse Jacobian varying with the change in length
(r2) of link 2, while Up?) stays constant for a particular
position in the space of the SRIP manipulator.

e.18

Up12
8.3

-

e.e 8.5 1.8

Fig. 10. LJpi12 as a function of r;
(dimensions are in meters for rj).

The lengths r and r3 that make Up)2 and Upy; equal
to zero will give a diagonal sub-Jacobian, tuning the
SRIP manipulator for an area of the space close to where
it is working. For different areas of the workspace,
different values were found for the tune up.

5. CONCLUSION
A relatively simple method to solve the inverse
kinematics for manipulators that contain closed-chain
mechanisms is presented in this paper. Closed-form
solution for angles and speeds of joints’ displacements are
obtained. Finding the Jacobian of the robot and its
inverse is very useful. Also, a proof for angles and speeds

1.3
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is shown with the graphic simulation and the
approximation for the Jacobian.

To verify the results of this paper a graphic
simulation for the SRIP manipulator was used. This
graphic simulation works in the inverse direction given
joint solutions, draw the robot beginning from the base 10
the end point. Figures (3 through 5) plotted with this
graphic simulation show the robot working in different
positions and orientations.

The methodology presented in this paper was applied
to solve the SRIP manipulator, which has 17 links, 24
one-DOF joints, and 7 CKC loops working in a plane and
a rotational base that determine its 3-DOFs. Optimization
of some link lengths for tuning the decoupling of the
Cartesian movement produced by its actuators was
accomplished by taking advantage of the closed-form
solutions obtained. The method presented uses
uncomplicated numerical methods, so it is well suited for
real-time implementation.
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