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'ABSTRACT 

V a r i a b l e  width r i b b o n  h e a t i n g  e lements  have ,been f a b r i -  
c a t e d  which p rov ide  a  chopped c o s i n e ,  v a r i a b l e  h e a t  f l u x  . 

pr0'fil.e f o r  f u e l  rod s i m u l a t o r s  used.  i n  t e s t  loops  by t h e  
Breeder  Reactor  Program Thermal 'Hydraul ic  Out-of-Reactor 
Sace,ty test f a c i l i t y  and t h e  Gas-Cooled F a s t  Breeder Reac- . ' 

t o r  'Core  Flow Tes t .  Loop. . . 

- Thermal, mechan ica l ,  and e l e c t r i c a l  d e s i g n  c o n s i d e r a -  
t i o n s  r e . s u l t  ' i n  t h e  d e r i v a t i o n  of a n  a n a l y . t i c a 1  e x p r e s s i o n  
f o r . t h e  r i b b o n  c o n t o u r s .  From t h i s ,  t h e  r i b b o n s ' a r e .  machined . 

. .  . 
and wound. -on numer ica l ly  c o n t r o l l e d  equipment .. Pos tprocess -  . 

i n g  and i n s p e c t i o n  r e s u l t s  i n  a  wound, g h r i a b l e  'width r i b b o n  . . 
. w i t h  t h e  p r e c i s e  d imens iona l ,  e l e c t r i c a l ,  and mechanical  
p r o p e r t i e s  needed f o r  use  i n  f u e l  p i n  s i m u l a t o r s .  

. . . . 
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2  

~ N T R O D U C T I O N  

Nucl'ear f u e l  rod  s i m u l a t o r s  (FUSS o r  r o d s )  a r e  n e c e s s a r y  t o  the  
o p e r a t i o n  of t h e  t h e r m a l - h y d r a u l i c  t e s t  f a c i l i t i e s  . f o r  f o u r .  Oak Ridge 
N a t i o n a l  Labora to ry .  (ORNL) programs; These programs and t h e i r  f a c i l i t i e s  ' 

' a r e  t h e  Blowdown Heat Transfer-Thermal Hydrau l i c  T e s t  ~ a c i l i t ' ~  (BDHT- 
THTF) , t h e  Gas Cooled,  F a s t .  Reactor-Core Flow T e s t  Loop (GCFK-CFTL) , t h e  
Breeder  Reac to r  Program-Thermal - . ~ ~ d r a u i i c  Out-of-Reactor S a f e t y  (BW- 
THORS) f a c i l i t y ,  and t h e  Mul t i rod  B u r s t  T e s t  (MRBT).Program and t e s t  
f a c i l i t y .  . These exper imenta l '  f a c i l i t i e s  a r e  used t o  conduc t  out-of- 
r e a c t o r  thermal-hydraulic and mechanical  i n t e r a c t i o n  s a f e t y  t e s t s  f o r  
b o t h  l ight .-water and b r e e d e r  r e a c t o r  programs. The FRS u n i t s  s i m u l a t e  . 
t h e  geometry ,  h e a t  f l u x  p r o f i l e s ,  a n d  o p e r a t i o n a l  c a p a b i l i t i e s  of a  
r e a c t o r  c o r e  f u e l  e l ement  under s teady-s t a t e  and t r a n s i e n t  c o n d i t i o n s .  
The FRSs a r e  s u b j e c t e d  t o  t e m p e r a t u r e s  a s  h i g h  as 1375OC (.2500°F) and 
power l e v e l s  a s  h i g h  a s  57 .5  kW/m (17.5 kW/f t ) ,  a s '  w e l l  a s  s e v e r e  
the rmal  s t r e s s e s  d u r i n g  t r a n s i e n t '  t e s t s .  

The h e a t  f l u x  p r o f i l e  f o r  ' a n  FRS i s  g e n e r a t e d  by a t u b u l a r  o r  
c o i l e d  r i b b o n  h e a t i n g  e lement  embedded i n  b o r o n . n i t r i d e  (BN) i n s u l a t i o n  
w l t h i n  a s t a i n l e s s  s t e e l  s h e a t h .  "Chopped c o s l n e "  ( c o s i n e  p r o f i l e  chop- . . 
ped a t  e i t h e r  end s o  t h a t  power g o e s  t o  z e r o  a b r u p t l y )  h e a t  f l u x  pro- 
f i l e s  f o r  'BRP-THORS 'and GCFR-CFTL FRSs have been; g e n e r a t e d  by va ry ing  
the .  h e l i c a l  p i t c h  of a  c o n s t a n t  wLdth r ibbon .  T h i s  method, whi le  ac -  
c e p t a b l e  f o r  s t e a d y - s t a t e  tes ts ,  r e s u l t e d  i n  unaccep tab le .  p r o f i l e  per-  
t u r b a t i o n s  ,dur ing t r a h s i e n t  h e a t  ' f l u x .  A thorough summary of develop- 
ment i n  s u p p o r t  of t h e  BRP program i s  p r e s e n t e d  i n  Ref. 1.  

  his paper  d e s c r t b e s  the.  d e s i g n ,  f a b r i c a t i o n  developmen.t,  and i n -  
s p e c t i o n  o f .  v a r i a b l e  width ,  h e l i c a l l y  wound ,hea ' t ing  e l e m e n t s ,  which . 

. . .  e l i m i n a t e  , t h e  d i s a d v a n t a g e  of v a r i a b l e  p i t c h  r i b b o n s  whi le  p rov id ing  
o t h e r  impor tan t  a d v a n t a g e s  t o  a n  e v o l v i n g  -FRS f a b r i c a t i o n  technology.  

. . FUEL ROD SIMULATOR 

.Var iab le  width  r i b b o n s  were'' developed f o r  t h e '  BRP-THORS and t h e  . 

GCFR-CFTL FRSs. While they  a r e  s i m i l a r  i n  many' r e s p e c t s ,  t h e r e ,  a r e  
major d i f f e r e n c e s  i n  t h e  purp'ose, d e s i g n ,  and o p e r a t i o n  of t h e  two 
s i m u l a t o r s .  . T h i s  paper  d i s c u s s e s  v a r i a b l e  width r i b b o n s  f o r  t h e  THORS 
$RS. 

The THORS P R S  ( F i g .  1 )  i s  i n t e n d e d  f o r  u s e  i n  a  l i q u i d  sodium e n v i -  
ronment. I t  h a s  a  double-ended d e s i g n  ( c u r r e n t  e n t e r s  one end and e x i t s  
t h e  o t h e r )  w i t h ,  a  5.84-mm-OD - (q.230-in.)  by 0.38-mm-thick (0.015-in.) 
c l a d .   he 3.175-mm-OD (0.125-in.) h e a t i n g  e lement  h a s  a  t o t a l  . r e s i s -  
t a n c e  of 3.039 0 , a  peak-to-average h e a t  f l u x  p r o f i l e  of 1.30: 1 ,  and a  . 
.peak-to-minimum p r o f i l e  of 2.. 92 : 1  .. The BN preforms.  prosvide s t r u c t u r e  
and i n s u l a t i o n .  i n  t h e  c e n t r a l  and ann l i l a r  r e g i o n s .  Three  0.38-mm-OD 
(0.015 i n . )  t y p e  K ,  i n s u l a t e d  j u n c t i o n  thermocouples ,  wi'th BN b a c k f i l l e d  
i n t o  t h e  j u n c t i o n  r e g i o n ,  a r e  l o c a t e d  on t h e  c l a d  i n s i d e  d iamete r  a t  
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120" i n t e r v a l s  and v a r i o u s  a x i a l  l o c a t i o n s  w i t h i n  t h e  FRS a n n u l a r  r e -  
.g ion .  The v a r i a b l e  width  r i b b o n  i s  e x t e r n a l l y  connec ted  t o  t h e  p o w r  
supp ly  v i a  a  n i c k e l  i n t e r m e d i a t e  rod  which i s  . in  t u r n  jo ined  t o . a  copper  
rod.  The ground. c o n n e c t i o n  i s  made ' by .welding a  n i c k e l  ground plug t o  
t h e  ground l e a d  e x t e n s i o n  ( F i g .  1 ) .  

Power i s  o b t a i n e d  by I ~ R .  h e a t i n g  of  t h e  r i b b o n .  The FRS i s  c a p a b l e  
o f  o p e r a t i n g  a t  400 ~ / c m 2  (55.0 k ~ / m ,  390 V a t  130, A) a t  1000°C (1832°F) 
c l a d  t empera tu re  f o r  s h o r t  p e r i o d s  of t ime and a t  315 w/cm2 (43.3  kWjm) 
a t  1'000°C i n d e f i n i t e l y . .  A d d i t i o n a l l y ,  t h e  FRS. i s  des. igned t o  w i t h s t a n d  
sodium v o i d i n g '  and c l a d  d r y o u t  f o r  .1 s whi le  o p e r a t i n g  a t  t h e  l a t t e r  
c o n d i t i o n . '  S e v e r a l  c o r e  s i m u l a t i o n s  u s i n g  .FRSs have been  assembled and 
t e s t e d  under  v a r i o u s  o p e r a t i o n a l  c o n d i t i o n s  i n  t h e  THORS f a c i l i t y . 2  

DESIGN 

For.  peak FRS performance,  t h e  h e a t i n g  e l e m e n t ,  a s  t h e  power gener -  
a t i n g  component, i s  r e q u i r e d  t o  o p e r a t e  under c o n d i t i o n s  approach ing  t h e  
maximum c a p a b i l i t y  of t h e  m a t e r i a l .  'The geometry o f ,  and t h e  c o n f i g u r a -  
t i p n  w i t h i n ,  t h e  FRS must be op t imized  based upon c a r e f u l  c o n s i d e r a t i o n  
o f '  t h e  t h e r m a l ,  mechan ica l ,  and e l e c t r i c a l  p r o p e r t i e s  of FKS m a t e r i a l s  
f o r  t h e  o p e r a t i o n a l  range. '  

High h e a t  f l u x  FRSs may have a r a d i a l  t e m p e r a t u r e  p r o f i l e  a s  h i g h  
a s  260°C/mm s o  t h a t  t h e  r a d i a l  d i s t a n c e  from c l a d  o u t s i d e  d i a m e t e r  t o  , 

h e a t i n g  . e l ement  i n s i d e  d iamete r  d i r e c t l y  d e t e r m i n e s  maximum o p e r a t i n g  
c o n d i t i o n s  f o r  t h e  h e a t i n g  e lement  f o r  a  g i v e n  c l a d  t e m p e r a t u r e .  Gener- 
a l l y ,  t h e  c o i l e d  h e a t i n g  e lement  d i a m e t e r  shou ld  be  a s  l a r g e  as p o s s i b l e '  
whi le  mai .n ta in ing a n  a p p r o p r i a t e l y  t h i c k  BN i n s u l a t i o n  ,between t h e  h e a t -  
i n g  e lement  and t h e  FRS c l a d d i n g .  T h i s  a n n u l a r  re 'gion,  which c o n t a i n s  
t h e  FRS i n t e r n a l  the.rmocouples,  must m a i n t a i n  a c c e p t a b l e  i n s u l a t i o n  r e -  
s i s t i v i t y  a t  t h e  r e q u i r e d  . o p e r a t i o n a l  t e m p e r a t u r e s  and .must w i t h s t a n d  
t h e  v o l t a g e  p o t e n t i a l  b e t e e n  h e a t i n g  . 'element .and c l a d  o r  thermocouples ,  
wi,thout d i e l e c t r i c .  breakdown. 

Because FRS. peak i n t e r n a l  t e m p e r a t u r e  w i . 1 1  i n c r e a s e  a s  t h e  r i b b o n  
t h i c k n e s s  i s  i n c r e a s e d ,  t h e  t h i c k n e s s  of t h e  h e a t i n g  e lement  shou ld  be, 
a s  s m a l l  a s  p r a c t i c a l .  Problems i n  forming o r  f a b r i c a t i n g .  t h e '  . r i b b o n ,  
a s  w e l l  a s  h a n d l i n g ,  a s s e m b l i n g ,  and swaging of r i b b o n s  and FRSs, p l a c e  
p r a c t i c a l  l i m i t s  on t h e  minimum r i b b o n  t h i c k n e s s .  T.he h e a t i n g  e lement  
m ~ i s t  be  c a p a b l e  of w i t h s t a n d i n g  d i f f e r e n t i a l  t h e r m a l  . e x p a n s i o n  wi thou t  
permanent d e f o r m a t i o n  d u r i n g  t r a n s i e n t '  t e s t i n g .  A s  t h e  r i b b o n  t h i c k n e s s  
dec reases . ,  t h e  p e r c e n t  v a , r i a t i o n  i n  t h i c k n e s s  becomes mudh h a r d e r  to.  
. c o n t r o l .  T h i s  i n  t u r n  a f f e c t s  l o c a l  h e a t  g e n e r a t i o n ,  .because  l o c a l  
power g e n e r a t i o n  ( w i t h  c o n s t a n t , c u r r e n t  th rough  t h e  r i b b o n )  i s  i n v e r s e l y  . 

p r o p o r t i o n a l  t o  t h i c k n e s . ~ .  A p r a c t i c a l  r i b b o n  t h i c k n e s s  and t o l e r a n c e  
l i m i t  i s  0.25 t 0.0125 mm (0.010 f 0.0005 i n . ) .  

Becausc t r a n s i e n t  o p e r a t i o n  of t h e  FRS i s  of paramount c o n c e r n ,  t h e  
h e a t i n g  e lement  c o n f i g u r a t i o n  must be  c a r e f u l l y  a n a l y z e d  under t r a n s i e n t  
c o n d i t i o n s '  a s  p a r t  .of t h e  d e s i g n  e f f o r t .  Heat  c a p a c i t y  e f f e c t s  become 



pronounced i n  t h e .  t r a n s i e n t  h e a t  f l u x  p r o f i l e ;  and a x i a l  and c i r c u m f e r -  
e n t i a l  conduc t ion  do n o t  smooth out.  t h e  p r o f i l e .  a s  t h e y  do under s t e a d y -  
s t a t e  c o n d i t i o n s .  Fur thermore ,  w i t h  t h e .  u s e  of BN preform techno logy ,  
a x i a l  conduc t ion  i s  much lower  than  r a d i a l  conduc t ion  because  of t h e  
a n i s o t r o p i c  n a t u r e  of the rmal  c o n d u c t i v i t y  i n  BN preforms.  Thus, under  
t r a n s i e n t  c o n d i t i o n s . ,  such  p r o p e . r t i e s  a s  t h e  t u r n - t o - t u r n  s p a c i n g ,  r a t i o  
of  c o i l  s u r f a c e  a r e a  t o  s h e a t h  s u r f a c e  a r e a ,  c o i l  d i a m e t e r  v a r i a t i o n ,  
c o i l  t u r n s  p e r  u n i t  l e n g t h ,  and e c c e n t r i c i t y  of t h e  h e a t i n g  e lement  .be'- 
come impor tan t .  . 

E v a l u a t i o n  of t h e r m a l ,  mechanical , '  and .  p h y s i c a l  p r o p e r t i e s  of: t h e ,  
h e a t i n g  e lement  ma te r i a l '  p r o v i d e  d e s i g n  ' l i n i i t s  f o r  th'e v a r i a b l e  wid th  
c o i l  and a s s u r e  t h a t .  i t  can  be f a b r i c a t e d  and w i l l  be s u i t a b l e  t o ,  .its 
environment.  E l e c t r i c a l  c o n s i d e r a t i o n s  p rov ide  t h e  . d e s i g n  b a s i s  f o r  t h e  
exac,t c o n f i g u r a t i o n  t o  meet FRS o p e r a t i n g  requ i rements .  

Design of t h e  h e a t i n g  e lement  i s .  dependent  upon c u r r e n t ' a n d  v o l t a g e  
a v a i l a b l e  from t h e  power supp ly .  For p a r a l l e l  c o n n e c t i o n  of t h e  FRS t o  
. t h e  power s u p p l y ,  a  h e a t i n g  e lement  r e s i s t a n c e  "window" c a n  , b e  c a l c u -  
l a t e d  by . 

where V i s  v o l t a g e ,  P i s '  power i n  w a t t s ,  and I 'is c u r r e n t .  F a c t o r s  s u c h  . ' 

a s  t e r m i n a l  , I ~ R  h e a t i n g ,  l a r g e  .bundle Connection., FRS . d i e l e c t r i c  break- 
d,own, and m a t e r i a l  temperatur.e c o e f f i c i e n t  of r e s i s t a n c e  (TCR) must a l s o  
be  c o n s i d e r e d  i n  o p t i m i z i n g  t h e  e lement  r e s i s t a n c e .  

Once t h e  r e s i s t a n c e  h a s  been d e ' t e r ~ n i n e d ,  t h e  d e s i g n  of a  c o n s t a n t  
wid th ,  r e c t a n g u l a r  r i b b o n  h e a t i n g  e lement  c a n  bk accomplist ied us ing  t h e  
me.thod i l l u s t r a t e d  i n  F i g .  2 .  From t h i s ,  r i b b o n  width  w i s  d e r i v e d  I n  
terms of t h e  p h y s i c a l  and d imens iqna l  pa ramete r s  of t h e  h e a t i n g  element: '  

. . .  . . . .  . 

The r i b b i o ~  t h i c k n e s s  t ,  c o i l  p i ' tch  diameter .  D = OD - t ,  m a t e r i a l  r e s i s -  
t i v i t y  p., "ound e lement  r e s i s t a n c e  R, .  and a x i a l  h e a t e d  l e n g t h  C a r e  t h e  
i n p u t  pa ramete r s  t h a t ,  a l o n g  w i t h  t h e  r i b b o n  w i d t h  w,  comple ' tely d e f l n e  
t h e  wound c o ' i l .  

Once t h e  wid th  h a s  been determined, .  f a c t o r s  d e s c r i b i n g  t h e  FRS 
power p r o f i l e .  a r e  needed. These a r e .  peak laverage  power-, Pp/Pa ; peak/ . 

minimum power, Pp/Pm; and c o i l  a x i a l  1eng th .C .  F igure  3 shows a  t y p i c a l  . 
chop'ped c o s i n e  p r o f i l e  where Pp, Pa, P,, and C a r e  d e f i n e d .  

The powe'r p r o f i l e  of Fig. 3 can  be d e f i n e d  by 



DEFINITIONS, 

WINDING.ANGLE 

WIDTH OF HEAT1N.G-ELEMENT 

THICKNESS OF HEATING ELEMENT 

AXIAL LENGTH OF: WIDTH 
. . .  

AXIAL LENGTH OF HEATING ELEMENT 

TURNS PER CENTIMETER 

LENGTH OF RIBBON.FOR 1 TURN 

OVERALL' LENGTH OF RIBBON 

NUMBER' OF TURNS I N  COIL 

PITCH DIAMETER OF C O ~ L  . ' 

CROSS-SECTIONAL AREA OF RIBBON 

RESISTANCE OF HEATING ELEMENT 

DERIVATIONS 

C C s i n O  C '  N = - = - -  - - C 
tan 0 ,  L = NP ='- 

a w a ~ .  cos 0 ' 

p~ TD p c  A (.~~:c)ll~ A = - = -  S O w = - =  - 
R ' R w '  . t 

. . 
.F ig .  2 .  c o n s i d e r a t i o n s  of winding a  r i b b o n  of l e n g t h  L on a  p i t c h  

d i a m e t e r  D f o r  a n  .a.xial  l e n g t h  C r e s u l t s  i n  a n  e q u a t i o n  t h a t  d e f i n e s  
r i b b o n  width  i n  terms of t h e  m a t e r i a l  and d i m e n s i o n a l  p r o p e r t i e s . .  , 

. . . . . .  .- . . . . . . . . . . . . . - . . . . .  . . . . . . . . 

Fig. 3 .  V a r i a b l e  h e a t  f ' lux  chopped c o s i n e  p r o f i l e .  



. . 
where 4 .  i s  t h e  a n g l e  t h a t  r e l a t e s  t h e  power p r o f i . l e  t o .  t h e  c o i l  , a x i a l '  
l e n g t h  C. ~y d e f i n i t i o n ,  c o s  m p  = Pp /Pp = 1 ,  and ( p  = 0' a t  Pp . The , .  
a n g l e  a t  P, where  x  = +C/2 i s  now 

The p r o f i l e  c a n  now b e  d e s c r i b e d  w i t h i n  t h e  "chopped r e g i o n "  by 

.[? , . P  = P  P c o s  0 = p p ; c 0 s  - cos- l (P,/Pp)] . ( 5 )  

E q u a t i o n  ( 5 )  r e l a t e s  t h e .  chopped, c o s i n e  p r o ~ i l e  a n a l y t i c a l l y  t o  t h e  Ax- 
. . 

i a l  power v a r i a t i o n .  ' -  , 

S i n c e  c u r r e n t  i s  ' c o n s t a n t ,  t h rough  t h e  h e a t i n g  e l e m e n t , .  power i s  
p r o p o r t i o n a l  . t o  r e s i s t a n c e . ,  The l o c a l  peak r e s i s t a n c e  Rp i s  i n  the' 
c e n t e r  of  t 'he p r o f i l e  and i s  g i v e n  by 

a s  shdwn i n  Fig. '3. ' .  
. . 

The r i b b o n  ' w i d t h  a t  t h e  peak o f  t h e  p r o f i l e ,  wp ,  (where P  P ) c a n  
now be c a l c u l a t e d  f rom Eq. ( 2 )  b y  r e p l a c i n g  R w i t h  Rp of  Eq. (g) and 

. . ' t a k i n g  'C t o  b e ' o f  u n i t  l e n g t h :  

The d e s i g n  of ' a  r i b b o n  p r o f i l e  t o  g i v e  a  s p e c i f i c  a x i a l  h e a t  f l u x  
. d i s t r i b u t i o n  was f i r s t .  r .epor ted  by ,D. L. C l a r k  a n d .  T.. S. Kress .  The 
. l o c a l  h e . a t . f l u x  d i s t r i b u t i o n  was e s t a b l i s h e d  by them t o  be:' 

. .. . . 

where P  i s  t h e  l o . c a l  power p e r  u n i t  a r e a ,  ' w ' i s  t h e  ' l o c a l  r ib.bon w i d t h ,  
and I i s  t h e  curre 'n t . '  

.From Eq. (8 ) . ,  t h e  l o c a l  r i b b o n  width .  w i s  



_... . 

I f  E q .  ( 9 )  d e f i n e s  t h e  power a t  some ' r e f e r e n c e  p o s i t i o n  s u c h  a s  t h e  cen- 
a t e r  where P = Pp and w , =  w p  ( F i g .  3 ) ,  t h e n  t h e  l o c a l  width  w ,  w i t h  r e -  

s p e c t  . t o  t h e  r e f e r e n c e  wid th ,  i s  

Equa t ion  ( 10)  c a n  be used t o  ' e s t a b . l i s h  t h e  r e l a t ' i v e  width  anywhere 
a l o n g  t h e  r i b b o n .  However, knowing ' j u s t  t h e  wid'th i s  n o t  s u f f i c , i e n t .  
The . r ibbon must be  wrapped: around a ,  mandrel  t o  form ' the . c o i l  of thg :  de- 
s i r e d  d iamete r  a n d . 1 e n g t h . L .  F i g u r e  4 shows t h e  u n c o i l e d  . r i b b o n  c o n t o u r  

- :and-  t h e  c.oi1e.d . c o n f i g u r a t i o n .  For t h e  c o i l  t o  wind p r o p e r l y ,  t h e  v e r t i -  
' c a l  c o n t o u r  a n g l e  8 must' be t h e  same on b o t h  s i d e s  of t h e  r i b b o n  a t  ' any 
p o s i t i o n  a l o n g  t h e  a b c i s s a  shown i n  Fig.. 4.  Thus,  . f o r  t h e  g a g  G v  = 0, .  
t h e  v e r t i c a l  component of t h e  width  of t h e  r i b b o n ,  w v ; ' i s  c o n s t a n t  and 
i s  

. . 

. . 

w V  = nD , (11) 

. w h e r e  D i s  t h e  r i b b o n  p i t c h  d i a m e t e r  ' a s  d e f i n e d  p r e v i o u s l y .  The l o c a l  
. width  w .is g i v e n  i n  t e rms  of . the  c o n t o u r  a n g l e  8 by 

w = nD c o s  0. . . (12)  
. . _ .  ._ . _ . _. . - -. - - . - ----. . . . . . . . . . - . . .- - . - . . . - . . . 

. . 

. Fig .  4. V a r i a b l e  w.idth c o n t o u r  i s  des igned  wi th  a  co f i s t an t  v e r t i -  , 

c a l  wid.th, W v  = nD, T,ocal w i d t h  W v a r i e s  wi th  winding.  a n g l e  8 t o  a l l o w  ' 

c o i l  t o  be  wound on  a  c i rcumference  nD wi th  no v a r i a t i o n  i n  g a p  between 
t u r n s .  



o r  i n  terms of a  r e f e r e n c e  , ang le  g p  a t  P p ,  wp by 

The v e r t i c a l  con tour  o r  winding a n g l e ,  8 ,  .can now be determined i n  
terms of t h e  s p e c i f i c  p r o f i l e  i n f o r n u t i o n  by s u b s t i t u t i o n  of Eq. ( 5 )  
i n t o  Eq. (13): 

Then' l o c a l  y i d t h w  i s  c a l c u l a t e d  us ing  Eq. (12) .  Th i s  def-ine's t h e  r i b -  
bon con tour  i n  terms of 8  .and w a t  any a x i a l  l eng th . .  x f o r  - C / 2  - < x - <. 

.C/2. 

The f i n a l  . t a s k  is  then  t o  de te rmine  t h e  rib 'bon l e n g t h  11 and t h e  
v e r t i c a l  l e n g t h  y  i n  terms of x  f o r  a g i v e n  r i b b o n  contour '  and t o  com- 
p i l e  t h e  i n f d r m a t i o n  i n  .a form t h a t  ca.n be used t o  g e n e r a t e  magnet ic  
t a p e s  f o r  machining and 'winding t h e  r . ibbons.  

E ' r o m  F ig .  4 : . '  . . 

. . X ' &  = -  
cos  0: ' 

and 

y  = x t a n  8  , 

where 2 is t h e  l e n g t h  o f  one t u r n .  ~ q u a t i b n s ' ( l 4 ) ,  ( l 2 ) ,  (LS), and ( 1 6 ) '  
comple te ly  d e f i n e  the .  pa ramete rs  .of a v a r i a b l e  width r i b b o n .  i n  terms of 

, ,  t h e  a x i a l  l e n g t h  x .  These d a t a ,  computed from a programmable c a l c u l a -  
t o r ,  ' a r e  t h e n '  used a s  i n p u t  t o  ' g e n e r a t e  r ibbon  machining and winding 
c o n t r o l  t a p e s .  

. . 

MACHINING . 

The o b j e c t i v e  of the.  machining phase of r ibbon  development is  t o  
c0nve.t-t t h e  r ibbon  con tour  i n £  ormat ion i n t o  r i b b o n s  of v a r i a b l e  width 
. t h a t '  have a p r e k i s e l y  c o n t ' r o l l e d  c o n t o u r .  . The major r e q u i r e m e n t s  a r e  t o  . 

hold  t h e  . w.idth . v a r i a t i o n  and t h e  x  and y  l o c a t i o n s  d e s c r i b i n g  . . .. the  -- - .- r i b b o n  . . . . - --. 



contour on the x-y plane (and therefore  the angle)  t o  within 1% through- 
out  the  ribbon length. 

Early at tempts t o  machine the  ribbon contour on a .numerically con- 
t r o l l e d  (NC) hor izonta l  mil l ing machine were unsuccessful because these 
tolerances could not be held,  excessive ribbon edge burring occurred, 
and machine t i m e  per ribbon was excessive. 

These d i f f i c u l t i e s  prompted inves t igat ion of the  use of grinding 
techniques which allowed machining (grinding) a s t ack  of elements simul- 
taneously. This method el iminated edge b u r r s  and reduced fabr ica t ion  
time. Dimensional inaccuracies were overcome by using a high precis ion 
NC template grinding machine (Fig. 5) ,  which is equipped with a 50.8-em- 
diam (20-in.) r o t a t i n g  o s c i l l a t i n g  aluminum oxide grinding wheel with a n  
ad jus tab le  v e r t i c a l  o s c i l l a t i n g  s t roke ,  mounted on the "Y" a x i s  or main 
s l i d e .  It ha9 been r e t r o f i t t e d  with a v e r t i c a l  mi l l ing  attachment t h a t  
i s  mounted on the  grinding wheel housing. However, the "X" a x i s  or 
cross  s l i d e  machine t r a v e l  was only about two-thirds a s  lo& as was 
needed t o  machine current  ribbon designs. This l i m i t a t i o n  was overcome 
by ' us ing  a s taging technique t o  e f f e c t i v e l y  extend the  c ross  s l i d e  
t r a v e l  from 137 cm (54 in.) t o  -245 c m  (96.5 in.). Thus, s l i d e  t r a v e l  
was provided t o  machine the  element contour of a l l  design conf igura t ions  
of i n t e r e s t .  

Ribbons a r e  machined fr'om str ips* of base stock up t o  15.2 cm 
(6 in.)  i n  width and 259.1 c m  (102 in.) i n  length; ,  up t o  15 of these - - . -  - - -  

Fig. 5. Numerically c o n t r o l l e t  -emplate grinding'machine. 



s t r i p s  a r e  s tacked toge ther  and clamped between s t e e l  p l a t e s .  F igure  6 
shows t h e  hea t ing  element geometry wi th in  t h e  base s tock .  

A s  t h e  f i g u r e  shows, up t o  5 s e t s  of 15 r ibbons  can be obta ined  
from one s tock  assembly. The machining sequence is  a s  fol lows:  

1. The upper l e f t  s u r f a c e  of s t a c k  one i s  machined. 
2. The upper r i g h t  s u r f a c e  of s t a c k  one i s  machined. 
3. The s t a c k  is  reversed  and remounted on. t h e  machine. 
4. The r eg ion  between s t a c k s  one and two is  mi l l ed  and t h e  f i r s t  s t a c k  

of 15 s t r i p s  i s  separa ted  from the  r e s t  of t he  assembly. 
5. The upper l e E t  su r f ace  of t h e  f i r s t  s t a c k  is  completed. 
6. The upper r i g h t  s u r f a c e  of t h e  f i r s t  s t a c k  is then  machined, cod- 

p l e t i n g  t h e  f i r s t  s t ack .  

S tacks  2 through 5 a r e  completed s i m i l a r l y .  
A t y p i c a l  r ibbon machining opera t i o n  uses  two numerical ly  con- 

t r o l l e d  d r i v e  t apes  (des igna ted  a s  s t a g e s  one and two i n  Fig. 6 )  gener-. 
a t e d  from t h e  des ign  c a l c u l a t i o n s .  The f i r s t  st-age t ape  is designed t o  
c o n t r o l  more than ha l f  of t h e  element contour machining. A t  t h e  end of 
t he  program, a n  angular  t a b  i s  def ined  t o  e s t a b l i s h  the  r e l a t i o n s h i p  of 
t he  second s t a g e  t ape  t o  the  program of t he  f i r s t  s t a g e  tape. The pa th  
def ined  by the  s t a g e  one program and i t s  r e l a t i o n  t o  t h e  s t a g e  two pro- 
gram a r e  shown i n  Fig. 7. A s  shown, t he  program t r a v e l  of t he  second - - 

STAGE TWO 
.,. STAGE ONE 1 

6 k- - - .  - .. STOCK LENGTH (190-260 cm) - -I 
Fig.  6. Fuel  p i n  s imula tor  hea t ing  element geometry wi th in  r ibbon 

s tock .  a 

- - - - - a - - - - - -  - -- - -. - - - - - -  

CONTOUR PASS FOR STAGE ONE 
ST AGE 

START ONE-- 

ALIGNMENT TAB. -STAGE 
, - - - -+-  - - -+-  --  +14--*-- - - -  a- --LA--- TWO - ,  

POINT 
25 rnm 

Fig. 7. Stage one contour machining. Pass  starts a t  high po in t  a t  
( I ) ,  proceeds down, then  l e f t  t o  r ibbon end, moves up, then  long i tud i -  
n a l l y  t o  al ignment  t a b ,  and completes contour pass  a d j a c e n t  t o  s t a r t i n g  
poin t .  Stages one and two over lap  a t  t h e  alignment t a b  by 25 min. 

--- - -  - -  -- - .  . - - - 



s t a g e  tape  over laps  tne  programmed traveL or  
-25 mm (1 in.)  s o  t h a t  t he  t o o l  pa th  of the  second tape w i l l  blend with 
the  f i n i s h e d  su r face  of t he  f i r s t  tape. These two t apes  c o n t r o l  (1) the  
end m i l l  ope ra t ion  t h a t  s epa ra t e s  the  f i v e  s t acks  of m a t e r i a l  and 
(2)  t he  gr inding  of t he  f u l l  contour  of one s i d e  of a  v a r i a b l e  width 
ribbon. F ix tu r ing  enables  t h e  r ibbon s t a c k  t o  be removed and reversed 
s o  t h a t  the  o t h e r  (symmetrical) s i d e  can be machined. 

With the  e n t i r e  s t a c k  clamped i n  p o s i t i o n  on the  f r o n t  s i d e  support  
f i x t u r e ,  which i s  mounted on t h e  c r o s s  s l i d e  of the  machine, t h e  f i r s t  r$kfi31-i? s t age  of t h e  f r o n t  s i d e  of t he  element is  tough machined using the  end 

5-4 :*!I,> -.,Lpi m i l l  attachment.  After  t he  end mi l l i ng  pass  is  completed, t he  m i l l i n g  
k ,, sp ind le  i s  replaced by t h e  gr inding  wheel; and, using the  same d r i v e  

tape  a s  was used f o r  rough mi l l i ng ,  t he  f i r s t  s t a g e  of t h e  element con- 
tour  is ground t o  the  proper conf igu ra t ion  (Fig. 8). 

- -- ---- --- _ - - - - - - - - -__ 

F i p ,  8. Fin i sh  g r ind ing  of f i r s t  s t a g e  of one s i d e  of hea t ing  element. 
- 



S t i l l  encased i n  the  support f i x t u r e ,  the assembly is then moved 
longi tudinal ly  on the c ross  s l i d e ,  and the mi l l ing  spindle  i s  brought 
back i n t o  pos i t ion  f o r  rough mil l ing the second s tage  of the f r o n t  s i d e  
contour. Alignment of the  s tage  two contour pass t o  . tha t  of s t age  one 
is  maintained by posi t ioning the end m i l l  on the two surfaces  of the tab  
a t  the  end of the s tage  one contour (Fig. 9). After completion of the 
s tage  two mil l ing ,  the mi l l ing  spindle is  again  replaced by the  grinding 
wheel and the contour is f i n i s h  ground. 

A t  t h i s  point  i n  the  machining process, the  s tack-f i x  t u r e  
assembly is  removed from the machine, and the f i r s t  f i x t u r e  i s  replaced 
with a backup p l a t e  f i x t u r e  which is then al igned on the c ross  s l i d e .  
This second f i x t u r e  -- c o n s i s t s  - - - - . of - a - top and bottom support p l a t e  a t tached 

. Fig. 9. Alignment of s tage  two contour t o  t h a t  of s t age  one a s  
maintained by posi t ioning end m i l l  on t ab  surfaces.  



t o  an  a u x i l i a r y  support f i x t u r e  by an  attachment ba r  (Fig. 10). After 
alignment, the  element stack-fixture assembly i s  posi t ioned so t h a t  the 
previously f in i shed  f r a n t  s i d e  contour is  f i rmly  placed aga ins t  the  pre- 
machined contour of the  backup pla te .  This e s t a b l i s h e s  a reference  sur- 
f ace  between the  two sides of the  ribbon lstock. 

With the element s t ack  nes t led  i n  the  backup p l a t e  f i x t u r e  and sup- 
ported by the  a u x i l i a r y  supbort f i x t u r e ,  s t age  one of the  second s i d e  of 
the  element contour i s  separa ted  from the s t a c k  by, an  end m i l l  opera- 
t ion .  k f t e r  the  s t age  one mi l l ing  i s  completed, the  e n t i r e  assembly is  
moved on the  c ross  s l i d e  f n t o  pos i t ion  and s t age  two of the  contour is  
end mil led (Fig. 11). This, f i r s t  element is  now separated from the  re-  
mainder of the  s t ack  (Fig. 12). The a u x i l i a r y  support f i x t u r e  is  then 
removed from the  machine, and the. backup p la te  . f i x t u r e  with the  elements 
a t tached i s  reposi t ioned on the cross  s l i d e .  The second s i d e  contour is  
now ready f o r  f i r s t  s t age  f i n i s h  gr inding,  

The second s i d e  of the  element contour is  ground i n ' a  manner s i m i -  
l a r  t o  the  f i r s t  s i d e  - -. contour,  - -- - --. with - t he  f i n a l  r e l a t i o n s h i p  b e t w e n  the  - -  - . - - .  



Fig. 
ribbon con 

. I: 

11. End milling of second side Fig. 12. After completion of stage one 
tour. ,and twa millLng passes on sec~nd  sfde,  element 

, s tack  is separated from the rest  of the stock. 
wt 

s ,  
r v 



f i r s t  and second s tages  being control led  by width measurements taken a t  
' the  midpoint and the ends of the element '(Fig. 13). When the  design 
width of the element has been reached a t  the  blend point of the f i r s t  
and second s tages ,  the  machining of the  s tack  of 15 elements is com- 
pleted. Four add i t iona l  groups a r e  then machined f o r  a t o t a l  of 75 r ib-  
bons. Local width and contour tolerances of 0.013 mm (0.0005 in.) a r e  
consis tent ly  achieved. 

WINDING 

The var iable  width ribbons a r e  formed i n to  s p i r a l l y  wound c o i l s  on 
a s t a i n l e s s  s t e e l  mandrel - - by a -. high-precision - - - .- automated winding machine. 

mea 
- -- -- 



To o b t a i n  r e p r o d u c i b i l i t y  of c o i l  parameters ,  t he  winding equipment must 
have a c o n t r o l l a b l e  v a r i a b l e  lead  r a t e  (cent imeters  pe r / r evo lu t ion ) .  
This  l ead  r a t e  must be programmed t o  maintain a v a r i a b l e  v e r t i c a l  speed 
def ined  by t h e  v a r i a t i o n  i n  r ibbon width a t  po in t s  a long the  r ibbon con- 
tour.  Ro ta t iona l  v e l o c i t y  remains cons t an t  throughout t he  process.  

The Black-Clawson four-axis  NC winding machine, depic ted  schemati- 
c a l l y  i n  Fig. 14, was s e l e c t e d  t o  f a b r i c a t e  t h e  c o i l s .  Only t h e  "Y" 
a x i s  and the  "8" a x i s  motions a r e  requi red  f o r  winding. 

A t y p i c a l  c o i l  winding ope ra t ion  uses  a n  a p p r o p r i a t e l y  s i z e d  s t a i n -  
l e s s  s t e e l  rod loaded under t ens ion  b e t w e n  t h e  headstock (machine base )  
and t h e  t a i l s t o c k .  With a winding d i e  a t t ached  t o  t h e  machine ram, t h e  
headstock r o t a t e s  as t h e  r ibbon is fed  i n t o  t h e  winding d i e .  The d i e  is 
advanced by t h e  ram i n  a c o n t r o l l e d  v e r t i c a l  movement. Figure 15 de- 
p i c t s  t h e  machine i n  ope ra t ion ,  and Fig. 16 provides a c l o s e  up of t h e  
headstock chuck and t h e  c o i l  winding d i e  a f f i x e d  t o  t h e  machine ram. . 

The r ibbon i s  posit 'ioned by t h e  ram s o  t h a t  t h e  winding mandrel i s  
concen t r i c  - - t o  a p rec i s ion  ground ho le  through t h e  body of t h e  d i e .  The 

-. - -- -- -- - - - 

Fig. 14. Schematic layout  of .Black-Clawson winding machine. 



Fig. 16. ~ea&to& chuck and winding die. ' 
, wound into .a c o t  1. Icr?.sat sh- how ri$la.a* ., , - .. .?:<.- L) 

is 'f mned on ro~ta ting nr;rnd$et by the chge. - t . ,  
' d  



8 d i e  i s  made i n  two s e c t i o n s  (Fig.  17) s o  t h a t  t h e  r ibbons can be posi- 
t ioned  a t  t h e  c o r r e c t  feed  ang le  p r i o r  t o  i n i t i a t i o n  of t h e  au tomat ic  
winding cycle.  The forming a r e a  of t h e  d i e  i s  made of tungs ten  ca rb ide  
t o  reduce s p a l l i n g  and r ibbon damage. 

Figure 18 shows t h e  hand t o o l  used t o  form the  l ead  t a b  of t he  r ib -  
bon i n  p repa ra t ion  f o r  a t tachment  t o  t h e  mandrel. The f i r s t  two c o i l  
t u r n s  a r e  manually wound on t h e  mandrel (Fig. 16 ) ,  and t h e  mating h a l f  
of t h e  winding d i e  i s  then  a t tached .  A r ibbon s t r i p  feed  s l o t  wi th  a 
feed  ang le  a t  22.5' i s  machined on one-half of t he  d i e  body. This  s l o t  

- is  requi red  t o  a l low t h e  r ibbon t o  feed  f r e e l y  i n t o  t h e  working bore of 
t he  d i e ;  i t  a l s o  au toma t i ca l ly  main ta ins  t h e  proper feed  ang le  a t  t h e  
c o i l  midpoint. 

Co i l s  can  be e a s i l y  wound with diameter un i formi ty  of 0.125 nun 
(0.005 i n . )  and l e n g t h  (as w e l l  a s  gap) t o l e r a n c e  v a r i a t i o n s  of about 
5%. Co i l s  w i th  these  t o l e r a n c e s  a r e  more. than  s u f f i c i e n t  f o r  use  i n  
FRSs because they  r e c e i v e  a f i n a l  swaging ope ra t ion  before i n s t a l l a t i o n  
i n t o  t h e  FRS. The swaging ope ra t ion  i s  descr ibed  i n  t h e  next  s ec t ion .  

Fig. 17. Ribbon winding d i e  showing r ibbon f eed  reg ion  and ca rb ide  
i n s e r t s  i n  forming region.  



SWAGING AND INSPECTION 

A f i n a l  p r o c e s s i n g  s t e p ,  swaging,  sets t h e  c o i l s  t o '  f i n a l  dimen- 
, s i o n s  and t o  r e q u i r e d  . t o l e r a n c e s  pr i .or  t o  i n s t a l l a t i o n  of t h e  c o i l s  i n  
t h e  FRS. 

F i r s t ,  t h e  c . o i l s  a r e  t i g h t l y  wound on' a  h a r d ,  s t a i n l e s s  s t e e l  man- 
d r e l  w i t h  t h e  . t u r n s  touch ing .  Both ends  a r e  a t t a c h e d  t o  t h e  mandrel ,  
o n e . w i t h  a  clamp and t h e  o t h e r  by . s p o t  welding. .  The c o i l  i s  t h e n  c a r e -  
f u l l y  swaged t o  l o c k  i't i n t o  t h . i s  c o n f i g u r a t i o n .  M t e r  s'waging, i t  i s  
removed from t h e  mandrel. Swaging s u p p l i e s  coldwork t o  t h e  c o i l  t o  
t h e  t u r n s  i n  ' p l a c e ,  s e t s  t h e  r e q u i r e d  d i a m e t e r ,  removes. t h e  c o n c a v i t y  
i n t r o d u c e d  by wi'nding, and d e c r e a s e s  t h e  s u r f a c e  roughness .  

~ d d i t i o n a l  coldwork pu t  i n t o  the '  c o i l s  by swagi'ng makes them r i g i d  
, a n d  m e c h a n i c a l l y ' s i m i l a r  t o  a sp r ing .  Then, gaps  between t u r n s  a r e  pro- 
d.uced by s t r e t c h i n g  t h e  c o i l  abou t  5% of  i t s  lengt'h. The c o i l  .does  n o t  
p l a s t i . c a l l y .  deform .under ' t h e s e  c o n d i t i o n s ;  t h u s ,  t h e  gaps  between t u r n s  
no l o n g e r  depend on t h e  l o c a l  m a t e r i a l  y i e l d  s t r e . s s  and a r e  q u i t e '  un i -  
form. The ,  c o i l  o u t s i d e  d i a m e t e r  can  be c o n t r o l l e d  t o  w i t h i n  20.013 mm 
(0.0005 i n . )  u s i n g  t h i s  method. 

C o i l s  a r e  d imens iona l ly '  inspec t , ed  w i t h  a  micrometer ,  c l e a n e d  i n  a  
'vapor d e g r e a s e r ,  and c u t  LO t h e  e x a c t  l e n g t h  a f t e r  swaging. To m a i n t a i n  
a  symmet r i ca l  chopped c o s i n e  p r o f i l e ,  e q u a l  a m o u n t s ' o f  m a t e r i a l  a r e  c u t .  
o f f  e a c h  end. 

In f i r a red  scann ing  t e c h n i q u e s  were used t o  e v a l u a t e  how' w e l l  ' t h e  
h e a t  f l u x  d i s t r i b u t i o n  produced by t h e  c o i l s  f i t s  t h e  d e s i g n  c r i t e r i a .  
I n f r a r e d  scann ing  of  FRSs h a s  been used f o r  some t ime  a t  O R N L . ~  A s  p a r t  
of t h i s  e f f o r t ,  t h e s e ,  t e c h n i q u e s  were ex tended  t o  r e l a t e  h e a t  f l u x  
p e r t u r b a t i o n s  t o  b a r e  c o i l  d imens iona l  L a r i a t  i o n s  and t'o determine '  t h e  
e f f e c t  of t h e s e  v a r i a t i o n s  on t h e  completed FRS h e a t  f lwk . p r o f i l e .  

The most a c c e p t a b l e  t echn ique  f o r  c o i l  e v a l u a t i o n  i s  . ( I )  t o  p a i n t  
t h e  c o i l  wi th  a  b l a c k  p a i n t  ( t 'o  i n c r e a s e  s u r f a c e  e m i s s i v i t y ) , .  ( 2 )  t o  
i n s e r t  a c l o s e - f i t t i n g  i n s u l a t e d  a r b o r  i n t o  t h e  c e n t e r ,  ( 3 )  t o  s t r e t c h  
t h e  coi .1 on t h e  a r b o r  a b o u t  2% of i t s  . l e n g t h ,  and ( 4 )  t o  s c a n  i t  a f t e r  
a p p l y i n g  'a. power of a b o u t  25 W f o r  4  min. , Much niore s e n s i t i v e  a n a l y s i s  
of c o i l s .  i s  p o s s i b l e  by us ing  h i g h e r  power, s h o r t e r  'tilde s c a n s ,  a n d / o r .  
by c l o s e ,  narrow range s c a n s .  The 25-W, 4-min s c a n  of a  b a r e  c o i l  was 
de te rmined  t o  be  comparable t o  t h e  1-s c o r e  t r a n s i e n ' t  i n f r a r e d  s c a n  com- 
monly used i n  ,FRS i n s p e c t i o n s .  These i n s p e c t i o n s  i n d i c a t e  t h a t  c o i l  

, o u t s i d e  d i a m e t e r  v a r i a t i o n s  of f'0.025 mm (fO.OO1 i n . )  and c o i l  g a p  
v a r i a t i o n s  of 0.05 mm (0.002 i n . )  a r e  a c c e p t a b l e  from a  t h e r m a l  p r o f i l e  
s t a n d p o i n t .  

F i g u r e  19 compares i n f r a r e d  s c a n s  of a  b a r e  c o i l  wi th  t h e  same c o i l  
. i n  a  completed FRS. . A d i s c o n t i n u i t y  i n  t h e  c o i l  t u r n s  c a u s i n g  an.  a b r u p t  
change of a b o u t  8% i n  t h e  c e n t e r  of a  h e a t  f l u x  p r o f i l e  i s  e v i d e n t  i n  
b o t h  , scans .  F i g u r e  20 shows t h e  c o r e  s t e a d y - s t a t e  and t r a n s i e n t  s c a n s  
a n d .  t h e  c l a d  t r a n s i e n t  s c a n s  of' a completed BRP FKS wi,th a  v a r i a b l e  

.wid th  he .a t ing .e lement .  The co,re t r a n s i e n t  p r o f i l e  i s  a  c l o s e  r e p l i c a  of  
t h e  s t e a d y - s t a t e  pro.£ ile ( e x c e p t  f o r  a x i a l  c o n d u c t i o n  a t  e i t h e r  end).  

. .. - - . . .. .. .- .. . . . .  



( a )  BARE COIL. STRETCHED A N 0  PAINTEO: POWERED 

AT 25 w FOR 4 min 

' I b l  CORE TRANSIENT SCAN OF THE COIL I N  la ) .  
INSTALLED IN A FPS~.POWERED A T  12.8 k w  

FOR 1 , 
. . 

Fig. . 19. ( a )  Rare c o i l ,  s t r e t c h e d  a n d .  p r i n t e d ;  powered a t  25 W 
' f o r  4 min. (b) Core t r a , n s i e n t  s can  of c o i l  i n  (.a,) i n  a n  FPS powered a t  
12.8 kW f o r  1 s. . . 

l a )  CORE STEAOY-STATE TEST: POWERED AT 32 W '  
FOR 4 mi". 

(1;) CORE TRANSIENT TEST: POWEREO A T . 4  k W  
FOR 1 s 

. . 

2 3 ' ~  

I c l  CLAD TRANSIENT TEST: POWEREO A T  -1 k W  

FOR 1 s . -. . . .  . . 

' F i g .  20'. Core s t e a d y ' s t a t e  ( a ) ,  co r e  t r a n s i e n t  ( b ) ,  and c l a d  t r an -  
s i e n t  ( c )  i n f r a r e d  , scans  of a  complet'ed FRS w i t h '  chopped , c o s i n e  v a r i a b l e  
width r ibbon h e a t i n g  element.  

.. - -- ..- , . .  . . .  . . . . 
.. . -  . . . . -- . - .. . . - - 
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. Maxfmum ' d e v i a t i o n  i s  w i t h i n  2.5%. H e a t '  f l u x  p r o f i l e s  d u r i n g  t r a n s i e n t  
o p e r a t i o n  a r e  a c c e p t a b l e  w i t h  t h i s  amount of d e v i a t i o n .  

CONCLUSION 

Design of  . ' v a r i a b l e  .width  r i b b o n  h e a t i n g  e l e m e n t s  i s  based  upon a  
mathemat ica l ly  d e r i v e d  e q u a t i o n  f o r '  t h e  chopped cos ' ine  p r o f i l e  and t a k e s  , . , 

' i n t o  account .  t h e  syncron.ous v a r i a t i o n  of t h e  l o c a l  r i b b o n  width  wi th  t h e  
winding a n g l e  s o  t h a t  t h e  c r o s s  s e c t i o n  (and t h e r e f o r e  l o c a l :  h e a t ' g e n -  .' 
e r a t i o n )  can  change e s s e n t ' i a l l y  independen t ly  o f .  t h e  turn- to- t .urn  spac-  , 

. . ing: 
The r i b b o n  p r o f i l e ,  once d e t e r m i n e d ,  i s  machined on a '  n u m e r i c a l l y  

c o n . t r o l l e d  t e m p l a t e  g r i n d i n g  machine t o  width and con tour  t o l e r a n c e s  of 
b e t t e r  t h a n  0.5%. The r i b b o n s  . a r e  wound i n t o  c o i l s  us ing  a  f i l a m e n t  
winding machine.   he c o i l s  a r e  then  swaged, c l e a n e d ,  c u t  t o  l e n g t h ,  
d i m e n s i o n a l l y  i n s p e c t e d ,  and i n f r a r e d  scanned p r i o r  t o  use., 

. . The e l e m e n t s  have bee'n ' s u c c e s s f u l l y  .opera ted  a s  components of THORS 
Bundle 9  FRS,  THORS Bundle 12 FRS p r o t o t y p e s ,  and GCFR-CFTL Bundle AG-1 

. FRS p r o t o t y p e s .  The c o i l s  a r e  f a b r i c a t e d  wi th  very  s m a l l  gaps  between 
. t u r n s  whi le  m a i n t a i n i n g  a  v a r i a b l e  p ' r o f i l e .  , These c o i l s  have been suc-  

c e s s f u l l y  i n s t a l l e d  , i n  s o p h i s t i c a t e d  FUSS u s i n g  p r e c i s e  FKS f a b r i c a t i o n  
technology.  T h i s  techno'logy i n c l u d e s  t h e .  use  of c o l d  p r e s s e d  BN' pre- , 

forms . . a s  i n s u l a t i o n  between the, h e a t i n g  e lement  ' and t h e  c l a d d i n g .  
-. . . .... , . . . . 
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