

2
EFFECTS OF LIGHT ON RESPIRATION AND DEVELOPMENT OF PHOTOSYNTHETIC CELLS

Renewal Application

and

Progress Report

for period March 1, 1980 - November 1, 1980

Martin Gibbs
 Brandeis University
 Waltham, MA 02254

November 20, 1980

MASTER

Martin Gibbs
 Martin Gibbs, Principal Investigator

Joel Cohen

Joel Cohen, Administrator
 Sponsored Programs

Prepared for the Department of Energy under
 Contract No. DE-AC02-76 ER03231

JP
 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

The oxyhydrogen reaction in the presence and absence of CO_2 was studied in H_2 -adapted Scenedesmus obliquus by monitoring the initial rates of H_2 , O_2 and $^{14}\text{CO}_2$ uptake and the effect of inhibitors on these rates with gas sensing electrodes and isotopic techniques. Glucose and acetate respiration was competitive with H_2 uptake. KCN inhibited equally respiration and the oxyhydrogen reaction in the presence and absence of CO_2 . It was concluded that the oxyhydrogen reaction both in the absence and presence of CO_2 has properties in common with components of respiration and photosynthesis. Participation of these two processes in the oxyhydrogen reaction would require a closely linked shuttle between mitochondrion and chloroplast. In this grant renewal, we will be concerned with the isolation of protoplasts and chloroplasts from a H_2 - adapted alga in order to elucidate the cooperation between the two organelles.

Acetate has been shown to stimulate H_2 photoproduction in H_2 -adapted algae even more so than an uncoupler of electron transport. In some algae, glucose functions similarly. We plan to evaluate the role of these compounds either in terms of the glyoxylate cycle or electron acceptors resulting in formation of alcohols.

In our last report, we proposed the term "chloroplast respiration" to account for the breakdown of polyglucan within the chloroplast. A means of reoxidizing reduced pyridine nucleotide was required to complete the cycle. A new enzyme ascorbic acid reduced pyridine nucleotide peroxidase has been isolated from the chloroplast. We propose to continue with the characterization of this enzyme.

PROGRESS REPORT

I. Oxyhydrogen Reaction

A. Absence of CO_2

The oxyhydrogen reaction in green algae, a process first noted and studied in depth by Gaffron (1), involves a simultaneous uptake of H_2 and O_2 under darkness. Using Warburg manometric techniques, he usually observed a quotient of H_2 and O_2 equal to one. In the presence of CO_2 , uptake of CO_2 was observed and the quotient of $\text{H}_2 : \text{O}_2$ changed to two. Horwitz (2) used a mass spectrometer to monitor O_2 and CO_2 levels continuously and observed that both cellular respiration and the oxyhydrogen reaction coupled to CO_2 reduction had the same dependence on O_2 tension and that the rates of O_2 uptake for the two reactions fell within the same range. The conclusion was reached that the oxyhydrogen reaction had some properties in common with respiration.

Interestingly, during the reduction of N_2 to ammonia, a considerable fraction of the electron flow through the nitrogenase complex is utilized in the reduction of protons, resulting in the evolution of H_2 (3). The result of several surveys shows H_2 evolution representing a mean loss of 29% of the total electron flow to the nitrogenase system (4). The discovery (5,6) of a H_2 - oxidizing system in legume nodules and other N_2 - fixing organisms (7,8) has created interest in the H_2 - recycling process. Peterson and Burris (9) and Bothe et al (10) have reported that H_2 oxidation supported ATP formation and provided respiratory protection for nitrogenase in blue green algae.

Similarly, the oxyhydrogen reaction has been envisaged as a protective mechanism against the aerobic inactivation of hydrogenase. In contrast to nodule bacteroids and to the blue-green algae, the energy generated in the oxyhydrogen reaction can be coupled to CO_2 reduction via the reductive pentose phosphate cycle (11).

In our study, the initial velocities of H_2 , O_2 , and CO_2 uptake in H_2 - adapted Scenedesmus obliquus and the effect of inhibitor, glucose and acetate on these uptake rates were monitored. The rates of H_2 and O_2 uptake were monitored continuously during the first few minutes of the oxyhydrogen reaction using gas sensing electrodes while

the assimilation of CO_2 was followed by isotopic methodology.

As seen in Figure 1. the addition of 1 atm. of H_2 increased the rate of O_2 uptake by only 30%. By contrast, the rate of H_2 uptake was highly dependent on the presence of O_2 . Since H_2 uptake increased at a rate much greater than O_2 uptake with increasing pH₂, it appears that H_2 may compete successfully with endogenous electron sources in the mitochondrial reduction of O_2 .

The next experiments were designed to determine if H_2 - uptake was affected by exogenous substrates such as glucose and acetate. H_2 uptake was inhibited by glucose and acetate (Fig. 2). In bacteroids, Ruiz-Argueso et al. (12) reported that succinate, acetate and formate also inhibited H_2 uptake. It would appear that the pathways of substrate-stimulated respiration and H_2 oxidation share a common electron transport chain component(s).

The effects of KCN and the uncoupler, carbonylcyanide-p-trifluoro-methoxyphenyl-hydrazone (FCCP) were compared on both respiration and the oxyhydrogen reaction (Fig. 3) Hydrogen and oxygen uptake were nearly equally affected by KCN and is consistent with the results of Bothe et al. (10) and Peterson and Burris (9) both of whom reported that cyanide inhibited the oxyhydrogen reaction in blue-green algae.

FCCP accelerated the rate of O_2 uptake in respiration indicating that energy conservation rather than a supply of endogenous electron donors limited mitochondrial electron transport. The rates of H_2 and O_2 uptake in the oxyhydrogen reaction followed the same pattern as that of cellular respiration, namely, an increasing rate up to 5 micromolar FCCP. In sharp contrast, uncouplers inhibited H_2 - uptake but accelerated O_2 uptake in blue-green algae (7) and in nodule bacteroids (13). The similar response of respiration and the oxyhydrogen reaction to cyanide may indicate that the primary terminal oxidase in both processes was cytochrome oxidase. The finding with the uncoupler suggests that the oxyhydrogen reaction is apparently limited by energy conservation. Clearly further work is needed to clarify the pathway of electron transport from H_2 to O_2 .

B. Presence of CO_2

The chemosynthetic reduction of CO_2 coupled to the oxyhydrogen reaction did not affect the $\text{H}_2 : \text{O}_2$ ratio indicating it made little demand upon that reaction. On the other hand, all inhibitors of the oxyhydrogen reaction such as KCN (Fig.4) caused a strong inhibition of CO_2 reduction. Dark CO_2 reduction in the absence of H_2 was little disturbed by cyanide.

Thus, the oxyhydrogen reaction has properties in common with components from both respiration and photosynthesis. This would require a closely linked relationship between mitochondrion and chloroplast.

II H_2 Photoevolution. Acetate and uncouplers.

Acetate stimulates H_2 photoevolution in Chlamydomonas reinhardi (Table I). The effect was roughly two-fold but most importantly even higher than that caused by FCCP, the uncoupler. The optimal concentration was high being in the order of 5mM (Fig.5)

III Chloroplast Respiration

This term was proposed in the last progress report to account for the oxidation of starch within the chloroplast recognizing the fact that ATP and pyridine nucleotide do not cross the chloroplast membrane. The oxidation of glyceraldehyde-3-phosphate to glycerate-3-phosphate is coupled to substrate ATP formation and the formation of NAD (P) H. NADPH can be reoxidized by O_2 through the ferredoxin-NADP reductase enzyme. A missing key enzyme is a means of reoxidizing NADH. We can now report the isolation of pyridine-nucleotide ascorbate peroxidase in leaves of Sedum praealtum, Pisum sativum, Spinacia oleracea and in cells of Euglena gracilis. Partially purified spinach enzyme had substrate K_m 's of 5uM for NADH, 50uM for $\text{H}_2 \text{O}_2$ and 300uM for ascorbate at a pH optimum of 6.8. The spinach enzyme is inhibited by cyanide and alpha-alpha dipyridyl indicating Fe^{2+} involvement. About 20% of the total cellular activity was found in the chloroplast. The enzyme may have a dual purpose: (a) reoxidization of NADH; (b) detoxification of chloroplast generated $\text{H}_2 \text{O}_2$. Light treatment of spinach chloroplasts resulted

in a decreased activity, a property eliminated by the presence of 10 μ M DCMU or subsequent darkness. The pH optimum of 6.8 is consistent with a stromal pH of 7.0 in the dark.

LITERATURE CITED

1. Gaffron, H. J. Gen Physiol 26: 241 (1942)
2. Horwitz, L. Arch. Biochem. Biophys. 66: 23 (1957)
3. Shubert KR, HJ Evans. Proc. Natl. Acad. Sci. 73: 1207 (1976).
4. Schubert KR, JA Engelke,
SA Russell, HJ Evans. Plant Physiol. 60:651 (1977)
5. Dixon, ROD Ann Bot. 31: 179 (1967)
6. Dixon, ROD Arch. Mikrobiol. 62:272 (1968)
7. Bothe H, J. Tennigkeit, G. Eisbrenner
Arch. Mikrobiol. 114: 43 (1977)
8. Hyndman, LA, RH Burris, PW Wilson, J. Bacteriol. 65:522 (1953)
9. Peterson, RB, RH Burris. Arch. Mikrobiol. 116:125 (1978)
10. Bothe H, E Distler, G. Eisbrenner Biochemie 60:277 (1978)
11. Russell G K, M. Gibbs. Plant Physiol. 43:649 (1968)
12. Ruiz-Argueso T, DW Emerich, HJ Evans. Arch. Mikrobiol. 121: 199 (1979)
13. Emerich DW, T. Ruiz-Argueso, HJ Evans Plant Physiol. 66: 1050 (1980)
14. Schlosser UG, H. Sachs, DG Robinson Protoplasma 88:51 (1976).
15. Berliner MD, KA Weng. Protoplasma 89:389 (1976).
16. Clement - Metral, JD. J. Microscopie Biol. Cell 26:167(1976)

Figure Legends

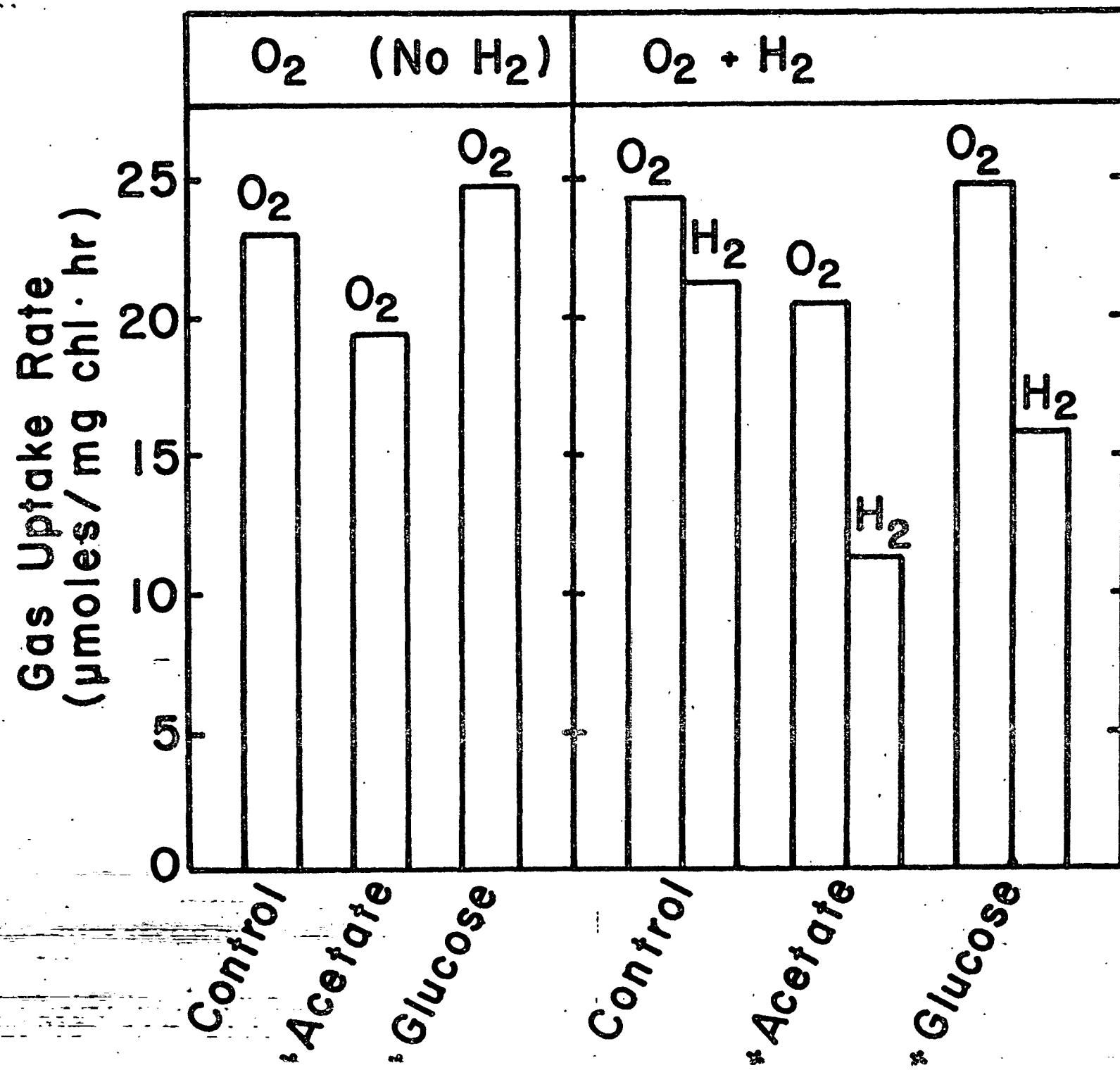
Fig. 1 Effect of pH₂ on O₂ and H₂ uptake rates.

(◐): O₂ uptake and (▲) uptake under 0.02 atm O₂.

(■): H₂ uptake in the absence of O₂.

Fig. 2 Effect of acetate and glucose on O₂ and H₂ uptake rates.

The gases (0.02 atm O₂, 0.10 atm H₂) present are indicated in the figure. Acetate and glucose concentrations were 10 mM.


Fig. 3 Effect of FCCP on O₂ and H₂ uptake rates. (◐): O₂ uptake measured under 0.02 atm O₂ but in the absence of H₂.

(▲): O₂ uptake and (■) H₂ uptake measured in the presence of 0.02 atm O₂ and 0.10 atm H₂.

Fig. 4 Effect of KCN on the oxyhydrogen reaction in the presence of CO₂. Where used, the KCN concentration was 200 uM, [¹⁴C]bicarbonate (60 uCi/umol) was 10 uM, pO₂ was 0.02 atm, and pH₂ was 0.10 atm.

fig. 2.

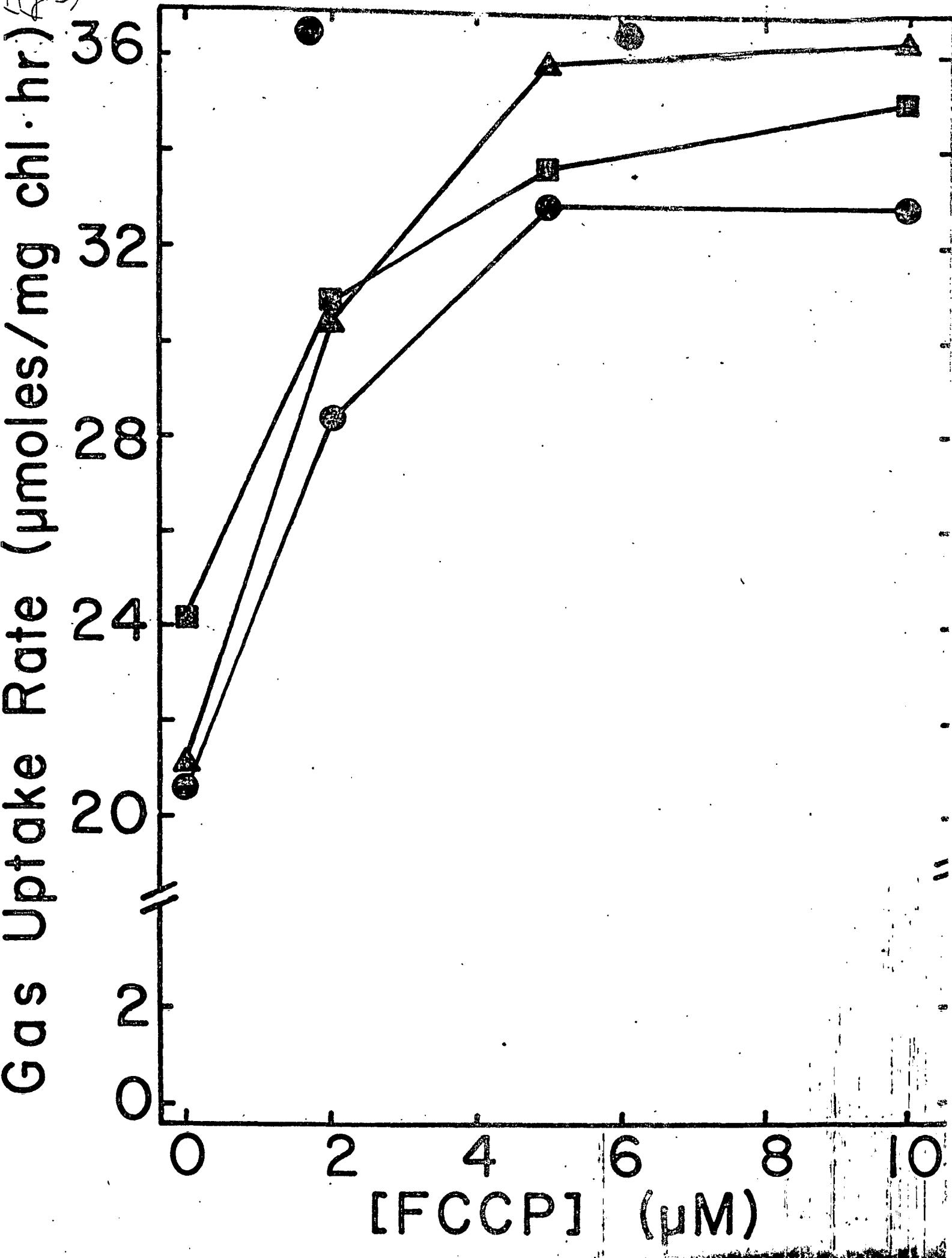
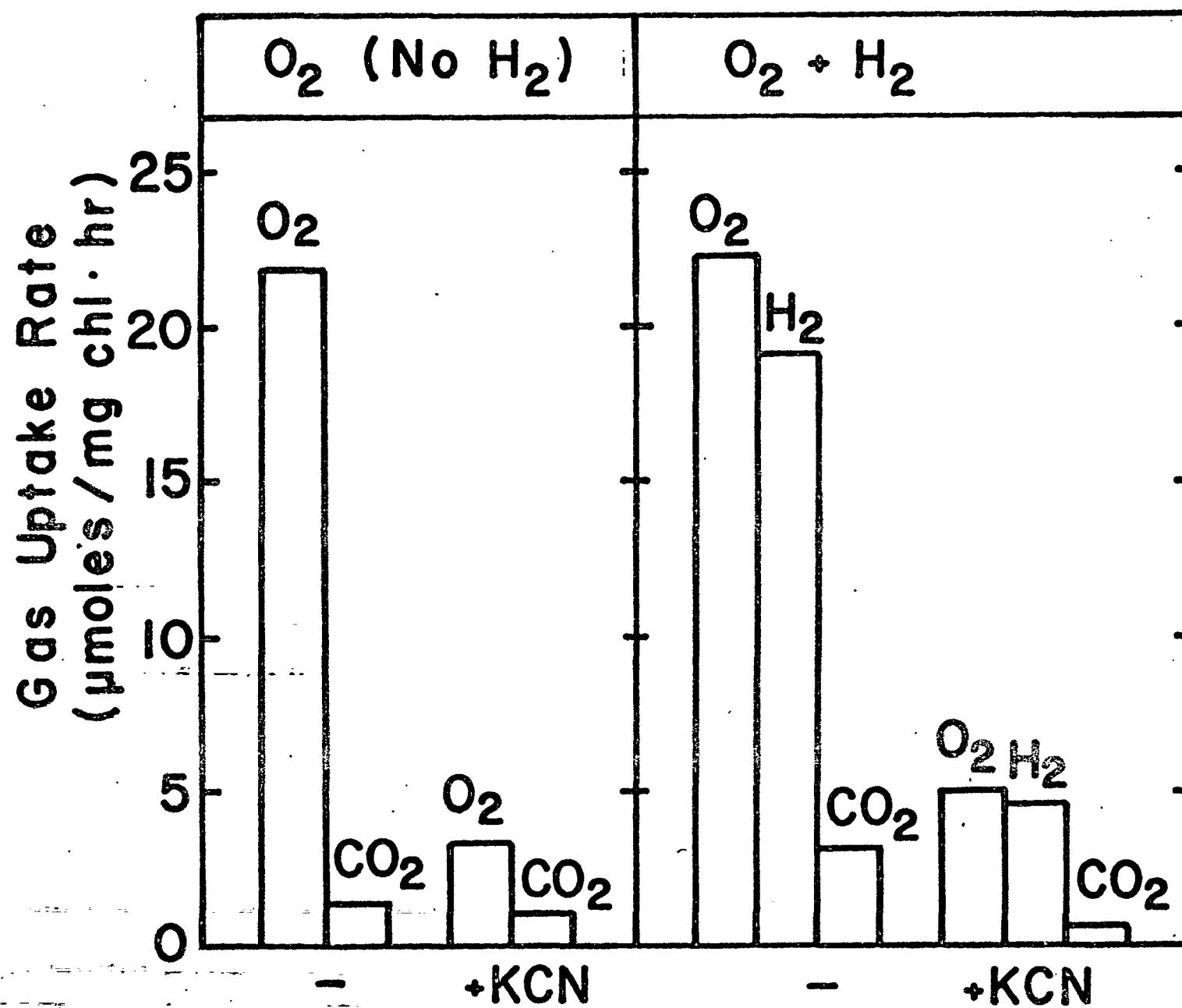



Fig 4

23
Principal Investigator

Martin Gibbs

1947-56 Brookhaven National Laboratory, Senior biologist
1956-64 Cornell University, Professor, Department of Biochemistry
1965 Brandeis University, Professor and Chairman (1966-69)
1952 Visiting Professor, University of Pennsylvania
1956 Visiting Professor, Queen's University, Canada
1958-59 Visiting Scientist, RIAS
1963 Visiting Scientist, Carnegie Institution of Washington,
Stanford University
1962-64;
71-74 Consultant to NSF: Metabolic Biology Panel
1963- Editor- in-Chief, PLANT PHYSIOLOGY
1965-58 Consultant to NIH; Fellowship Review Board, Biochemistry
and Nutrition
1966-71 Editorial Board, Annual Reviews of PLANT PHYSIOLOGY
1967- Editorial Board, PHYSIOLOGIE VEGETALE
1969-70 Consultant to NATO, Fellowship Review Board
1969 National Lecturer, Sigma Xi
1971 American Academy of Arts and Sciences
1974 Visiting Professor, University of Munich
1974 National Academy of Sciences, US
1975 Honorary Vice-President of the XII International Botanical
Congress, Leningrad, USSR.
1976 Chairman, Gordon Research Conference, "CO₂ Fixation
in Green Plants."
1976- Chairman of Committee to select Fulbright-Hays Scholars
for Eastern Europe
1976- Member of the Board, Committee for International
Exchange of Scholars
1977- Adjunct professor, University of Munster, West Germany
1978- Visiting professor, University of California, Riverside

16

PUBLICATIONS

1. Erbes, D.L., D. King, M. Gibbs. Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas reinhardi by oxygen. Plant Physiol. 63: 1138 - 1142. (1979)
2. Robinson, J.M., M.G. Smith, M. Gibbs. Influence of H_2O_2 upon CO_2 photoassimilation in the spinach chloroplast. Plant Physiol. 65: 755 - 759 (1980)
3. Perchorowicz, J., M. Gibbs. Carbon dioxide fixation and related properties in sections of the developing green maize leaf. Plant Physiol. 65: 802 - 809 (1980)
4. Erbes, D.L., M. Gibbs. Kinetics of the oxyhydrogen reaction in the presence and absence of CO_2 in Scenedesmus obliquus. Plant Physiol. in press, (1981)
5. Smith, D.A., Kow Yw, M. Gibbs. Pyridine nucleotide-linked ascorbate peroxidase from spinach. Plant Physiol. 65: 8-88 (1980)