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Abstract

Collaborative efforts among building simulation researchers in Europe and the US
have resulted in wide acceptance of certain features as necessary attributes of future
simulation environments. As identified in the Energy Kernel System (EKS), the principal
features are those of the object-oriented programming (OOP) paradigm, in which a
hierarchy of submodels is readily defined and interconnected to form system models of
widely varying purpose, solution methodology, and implementation description. The
Simulation Problem Analysis Kernel (SPANK) is an early, prototypical implementation
intended to exhibit at least some of the EKS features, including an OOP-like environ-
ment. Additionally, SPANK implements a solution process that is based on graph algo-
rithms and achieves solution efficiency through a reduction in size of the iterative prob-
lem. This paper enlarges on earlier descriptions of SPANK, attempting to separate and
clarify the modeling issues and the solution issues. To this end the nature of the SPANK
environment is compared to established OOP environments. The SPANK equation-based
objects are contrasted to the assignment-based (input/output oriented) models employed
in most current simulation environments. The SPANK cut-set reduction methodology is
compared to the more widely known sparse matrix technique. Finally the utility of the
SPANK reduction algorithm is demonstrated on a number of example problems.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings Technology, Build-
ing Systems and Materials Division of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098.



Introduction

The Energy Kernel System (EKS) is a recently proposed object-based environment
intended for building simulation studies [HIRSCH 1985, CLARKE 1988A]. The Simulation
Problem Analysis Kernel (SPANK) was developed as an early prototype of such an
environment [SOWELL 1986, SOWELL 1988], and other implementations are under
development [BONIN 1987, CLARKE 1988B, SAHLIN 1988].

The basic precept was originally the same for both of these environments: particu-
lar building simulation problems are to be defined and solved using objects from a
library, thus providing much greater flexibility in defining simulation problems than
afforded by currently available whole-building simulators such as DOE-2 [BIRDSALL
1985]. However, this precept is subject to widely varying interpretations. The central
questions appear to be, what is an object, how are problems defined in terms of these
objects, and how do the objects interact to determine a solution. In one view [CLARKE
1988B], objects are relatively large, algorithmic procedures, perhaps extracted from exist-
ing programs, and the issues of problem definition, object interaction and solution pro-
cedure have yet to be concretely defined. The SPANK object, on the other hand, is a sin-
gle equation, with the possibility of defining larger macro objects (or submodels) by
assembling objects and macro objects in a hierarchical manner. This definition of the
object is not arbitrary, but was developed to facilitate model development and efficient
solution through reduction.

The relative merits of the two interpretations will eventually be decided based on
the usefulness of the resulting software. In the meanwhile, this paper is intended to
more fully describe and defend the SPANK interpretation. Additionally, we attempt to
clarify the distinction between SPANK and existing, component-based simulators such as
TRNSYS [KLEIN 1983].

The SPAJNK Environment and Object-Oriented Programming

The SPANK development effort is aimed at a convenient, flexible and intuitive simu-
lation environment. The object-oriented programming (OOP) paradigm, as usually
defined, meets this need in some ways, but not in others. Therefore SPANK makes use of
some of the OOP concepts, but not all. In this section we explain where SPANK is
object-oriented, where it is not, and why it is not.

Fundamentally, OOP has been described as ‘‘...a style of programming based on
directly representing physical objects and mental concepts in the machine” [LIEBERMAN
1987]. Thus the computer objects behave and interact with their neighbors so as to
mimic their real-world counterparts. Other general descriptions emphasize code reusabil-
ity: programs are to be assembled from pre-existing software modules. As OOP environ-
ments have developed, more specific definitions have emerged.

One of the earliest object-oriented languages (OOL) was SIMULA [BIRTWISTLE
1973], which also introduced the idea of a class, meaning a template of an object from
which instances could be constructed. The concept has been enlarged upon by various
proponents to emphasize features such as the encapsulation of data and the methods
(procedures) allowed to operate on that data, information hiding, and inheritance. Later



extensions to the OOP paradigm included message passing as the means of object interac-
tion.

Uniform implementations of the object-oriented paradigm, such as Smalltalk
[GOLDBERG 1983] use all of these features, and require uniform usage of the paradigm,
so that even normal arithmetic is treated as message passing to numerical objects. Such
strict adherence leads to syntax that appears inverted and nonintuitive. Other imple-
mentations, such as C++ [STROUSTRUP 1986], support all of the OOP features, but also
allow usage of normal assignment-based procedural constructs. At the other end of the
spectrum, some simulation programs have been described as “‘object-oriented” while pro-
viding only simple modularity.

SPANK fits the object-oriented description most closely in the fundamental sense.
That is, SPANK views simulation problems as collections of interacting objects or macro
objects, where there is a close correspondence between these programming entities and
the physical or conceptual entity being modeled.

The fundamental object in SPANK is the equation. As such, it has as its private
data the variables involved in the equation. Since these variables are not classified
according to input/output designations, they are called simply interface variables. A
particular equation can usually be manipulated algebraically — manually or by symbolic
computation — to yield an explicit formula for one or more of its interface variables.
These formulas are called the inverses of the equation. The set of inverses can be viewed
as the methods of the object.

An example will clarify these ideas. The mathematical model for a flow collector is:
m3 — ml — m2 = (0 (where mj is a mass flow rate)
The inverses of this equation are:
ml = m3 — m2
m2 = m3 — ml
m3 = ml - m2
Thus, the collector object is:

Interface:
ml, m2, m3

Methods:
Ml: ml = m3 — m2
M2: m2 — m3 —ml
M3: m3 - ml + m2

Some solution strategy for the overall simulation problem determines which of the
methods is needed, and the list of objects needing this result. In a uniform object-
oriented environment, this solution process would also be an object or objects. However
SPANK does not carry the object-oriented paradigm to this extent. Instead, the object
interconnections are specified by means of a simple Network Specification Language
(NSL). NSL is similar to input languages for earlier simulators such as TRNSYS [KLEIN
1983] in that it specifies object interconnectivity. However, it differs in that information
flow direction is not implied. This feature is in keeping with the input/output-free



nature of SPANK objects. Problem definition in NSL is described in earlier papers
[SOWELL 1986, SOWELL 1988], so here we show only a simple example for convenience in
the current discussion.

A two-object problem might be specified as:

define obj class a objl;
define obj class b obj2;

input ap(obj2.a);
input xp(objl.x);

link  ypfobjl.y, objS.u);
link zpfobjl.z, objS.v);

Here obj class a and obj class b are two different object types, each with three
interface variables. The interface variables for obj class a are x, y, and z, while those for
obj dass b are a, u, and v. The first define statement creates an instance of obj class a
called objl, while the second makes 0bj2 an instance of obj class b. The two input state-
ments declare ap and xp as required external input to the problem, giving values to the
obj2.a and objl.x interface variables, respectively. The [link statement acts to define
friend relationships among objects. The first link declares a problem variable yp that is
linked to both objl.y and obj2.u. This means that y of obj/ is forced to be the same as u
of obj2. In a like manner zp is indicated to be a problem variable equivalent to both
objl.z and obj2.v. This problem specification is placed in a file which becomes input to
the SPANK processor.

It is apparent that NSL retains object orientation in the basic sense. That is, the
objects can correspond to entities in the modeled system (modularity); the methods by
which the model equations are enforced are hidden (information hiding, data abstrac-
tion); objects are instances of classes (code reuse); and although not evident in this exam-
ple, macro objects can be constructed from objects and other macro objects (multiple
inheritance, code reuse, information hiding). On the other hand, there is not much simi-
larity to the message passing syntax of object-oriented languages such as Smalltalk.
That is, we do not see in NSL any indication of obj/ “sending a message” to obj2. This
is because the SPANK processor acts as a “hardwired” executive that determines the
solution sequence and carries it out. In a true object-oriented simulation environment,
the solution methodology and control would be embodied in objects and would be sub-
ject to user selection and control. We hope to improve SPANK flexibility in the future
by the introduction of general integrator and iteration objects. However, it is not clear
that strict adherence to the OOP paradigm is the best means of providing this flexibility.

SPANK and Component Based-Simulators

The object-oriented features of SPANK superficially resemble older component-based
simulation environments such as TRNSYS. Both SPANK and TRNSYS are based on the
idea of assembling simulation problems from pieces of existing code by use of simple
interconnection languages. In SPANK, object interfaces are linked together using the link



verb, while in TRNSYS one connects the outputs of one component to the inputs of oth-
ers using component and variable numbers. Observe that in addition to allowing code
reuse, either environment provides the modeler with the important advantage of nonpro-
cedural specification of the problem. That is, the simulation problem is defined and
solved without having to specify a solution sequence. Therefore either environment is
superior to the more primitive technique of procedural programming (e.g., in Fortran),
even if subroutine libraries are employed to achieve code reuse.

Despite these common features, there are significant differences between component-
based simulators and object-oriented environments like SPANK or IDA (formerly MOD-
SIM) [SAHLIN 1988]. These differences impact the component model development, com-
ponent model validation, problem definition, and problem solution phases of simulation.

From the modeling perspective, the most important difference is that SPANK objects
are equation-based or declarative, while TRNSYS components are assignment-based or pro-
cedural [MATTSSON 1988]. Assignment-based components have two disadvantages when
compared to equation-based objects. First, assignment-based components are inherently
procedural algorithms and therefore require prescribed inputs. A particular implementa-
tion is then limited to problem usage where the needed inputs are available from outputs
of other components. Therefore the definition of the components limits the class of
simulation problems that can be solved. On the other hand, when equation-based
objects are used, there are no prescribed inputs: all interface variables are candidate
inputs. Therefore a single implementation of an object serves all possible problem
usages. The second disadvantage attributable to assignment-based component models is
that, because they are procedural, the modeler must devise an algorithm for the com-
ponent model. Equation-based environments, on the other hand, are declarative, mean-
ing that the modeler need only give the equations that must be enforced (in any order).
That is, the object itself does not describe how the solution is to be achieved.

Another advantage, easily obtained with object-oriented models, is hierarchical
decomposition, whereby complex objects are formed from simpler ones. In SPANK, for
example, one defines a mass balance object and an energy balance object. These can
then be combined into a macro object representing a collector. Moreover, each macro
object can also be used to define other macro objects, giving another form of code reuse
not available in component-based environments. While some assignment-based simula-
tors (e.g., ACSL) provide a similar macro facility, the advantage is not as great. For one
thing, in such environments construction of the macro is itself a procedural programming
task. In contrast, the SPANK approach requires only specification of the included objects
and the linkages between variables internal to the macro.

Validation also favors the equation-based, object-oriented approach. First, the com-
ponent model implementation, being nothing more than the equations of the underlying
mathematical model, is easier to manually check than an algorithm. Also, the declara-
tive nature of SPANK objects allows automatic problem analysis, such as matching of
equations to variables. As a byproduct of this matching, unequal numbers of equations
and variables are easily detected. Assignment-based, algorithmic component models do
not allow such detection. Because declarative languages in general lend themselves to
automatic correctness proofs, we might expect a greater degree of automated validation



of equation-based object models in the future.

There are also differences in solution strategy between SPANK and many
component-based environments. Component-based solvers most often follow a
sequential-modular solution strategy [CHEN 1985] in which each component (most often
comprising several equations) is executed in turn. Recyclic problems require iteration, so
the sequence is repeated, using some method for updating the cyclic variables, until con-
vergence is achieved. TRNSYS, for example, employs successive substitution. One prob-
lem with this method is that the ‘“‘packaging” of equations into component modules
reflects the user’s view of the physical system, and not necessarily the order in which the
equations should be executed in an efficient solution process. For example, each com-
ponent model may have a mass and an energy balance equation. In many simulation
problems the mass flows can be solved independently, without iteration. In the
sequential-modular approach, however, both mass and energy equations are executed
iteratively. In SPANK each equation is treated separately. This allows graph theoretic
techniques to be used to find an efficient solution sequence with a minimum number of
variables involved in the iteration. Also, the more efficient Newton-Raphson method can
conveniently be used in place of successive substitution.

In the preceding discussion a strong case has been made for equation-based, input-
output free modeling as well as defending the techniques employed in SPANK to provide
this characteristic. We wish to point out that equation-based, input-output free model-
ing can be achieved in another manner. If all problem equations are put in the resi-
dual” form, i.e.,

Jiix)=ri> », =1, on
where x is an vV-vector of problem and input variables, then a general scheme (e.g.,
Newton-Raphson iteration) can be employed to find a solution by forcing all of the r, to
zero. With this method, the N-n variables that are to be problem inputs (i.e., the
knowns) can be arbitrarily specified, just as they are in SPANK, because the forms of the
residual equations are not affected. All that is necessary is to maintain an index vector
indicating which of the xt are variables and which are fixed so the proper ones can be
updated during iteration. This technique is often used in conjunction with sparse matrix
methods as discussed below. As normally implemented, the size of the iteration set is n.

Reduction and Sparse Matrix Techniques

A simulation problem consists of a mixed set of algebraic and differential equations.
Historically a great deal of effort has been expended on ordinary differential equation
(ODE) solvers, with attention focused on the efficiency, stability, and accuracy of integra-
tion formulas and step-size algorithms. The algebraic side of the problem, even though
it may be predominant, has been relatively ignored. Indeed, since implicit methods are
normally used to solve ODE'’s, the entire problem reduces, within a given time step, to
solving a set of nonlinear algebraic equations. SPANK is the result of an attempt to gain
solution efficiency by focusing on the algebraic side of the simulation problem.

To solve a typical simulation problem, a set of algebraic equations must be solved
simultaneously at each point in time. One way of carrying out the solution is to express
each equation in residual form and iterate using the entire set of problem variables as



iterates. With this approach the size of the iteration vector is the number of problem
variables, n, and if a Jacobian is used in updating the iteration vector, it is n by n.
Because the individual equations in simulation problems typically have far fewer than n
variables present, the Jacobian usually will be sparse, and sparse techniques are therefore
often employed in the updating process [PISSANETZKY 1984].

As an alternate solution strategy, SPANK uses equation-level information about the
problem structure to determine a small set of variables that can be iterated. This is
called reduction, because the iteration vector and Jacobian are then smaller. In a later
section of this paper we show that for HVAC systems the reduction can be significant.

It can be shown that normal matrix methods are in general not competitive with
graph-theoretic reduction. However, sparse techniques may be equally efficient if prop-
erly implemented. We note that there is a simple form of reduction that is nearly always
beneficial, and should be done even if sparse matrix techniques are to be used. By exami-
nation of data dependencies in the equation set, the equations can be divided into three
nonintersecting sets: the pre-set, consisting of equations that can be solved directly
without iteration and not involving any variables in the iteration set; the iteration-set,
consisting of those that will be involved in iteration; and the post-sef, containing the
equations that can be directly solved once the solutions of the pre-set and iteration-set
equations have been obtained. The problem can be so partitioned by straightforward
means, e.g., sorting the equations, or breaking the problem graph into strongly connected
components. The size of the iteration vector is then the size of the iteration-set. If this
partitioning is not done, regardless of the solution method, we pay the penalty of calcu-
lating pre- and post-set function and derivative values repeatedly when we could calcu-
late these functions only once and their derivatives not at all. If the matrix approach
(sparse or otherwise) is used, we also work with a larger Jacobian and have to do
updates on a larger iteration vector.

Focusing now on the iteration-set only, we can compare further reduction with
employing sparse techniques. Both approaches are described elsewhere, so here we pro-
vide only brief descriptions. In further reduction we identify a small number of variables
that cut all cycles, called the cut-set. Note that the cut-set is smaller than the iteration-
set. The solution process involves calculating and solving a reduced Jacobian, of size
equal to the cut-set. A standard linear solver can be used — Gaussian elimination, for
instance — because the Jacobian will be small and dense.

With sparse methods, the Jacobian is the size of the iteration set, and is stored in
some manner to avoid storage of zero elements. Further, steps are taken to avoid arith-
metic operations with the zero elements, and to preserve sparsity. These steps constitute
the more or less standard sparse techniques [PISSANETZKY 1984]. If these are the only
steps taken and the Jacobian is not of some special structure, the reduction method will
be more efficient because the size of the linear set to be solved remains the same. How-
ever, some sparse solvers [SODERLIND 1988] go further, and have the potential for
efficiency equal to the reduction method. Briefly, row-column interchanges are performed
in an effort to achieve a block-bordered upper triangular form, with the borders as small
as possible. When this is done, the variables represented in the right border columns can
be determined working only with a matrix of size equal to the number of border



variables, and further, the remaining variables can be thereafter determined in a manner
not unlike back substitution; i.e., in a direct manner without further simultancous solu-
tion. Thus the entire set has been solved without simultaneous solution of the iteration-
set size Jacobian.

It is interesting to note that when pursued sufficiently far, the sparse matrix tech-
niques begin to look very much like the graph-theoretic reduction technique. Indeed, it
can be shown that the border variables noted above are often one and the same with the
minimum cut-set found by SPANK. Also, the computations involved in back substitu-
tion are substantially the same as those required in calculation of the elements of the
reduced Jacobian. The only difference then appears to be in how the border or cut-set
variables are discovered. When the graph representation is used, cut-set algorithms are
readily available [LEVY 1988, SHAMIR 1979, ROSEN 1982]. The algorithms actually used
to achieve a small border set have not been documented, but it is clear that the cut-set
algorithms could be applied. Finally, when we observe that sparse storage techniques are
or can be identical to the structures used to store graphs, the differences begin to appear
superficial, so that whether one refers to sparse matrices and border sets or graphs and
cut-sets depends primarily on point of view. If this proves to be the case, we suggest
that the graph is the natural way to represent a set of sparse nonlinear equations.
Indeed, Pissanetzky points out that “A sparse matrix should not be thought of as a
matrix at all, but as a graph.” The matrix, which is fundamentally a linear construct
and only efficient when densely filled, is the ideal structure for the reduced Jacobian at
the core of the solver.

Problem Size Reduction with SPANK

As has been noted above, the declarative nature of the SPANK objects results in the
possibility of automatic manipulation of the problem graph. A large variety of such
manipulations can be envisaged, and will no doubt be explored in the future. In the
current version of SPANK the automatic manipulation takes the form of matching
(choosing an output variable for each object) and cut-set size reduction. Neither match-
ing nor cut-set reduction have unique algorithms. In SPANK specific algorithm choices
have been made and test problems have been used to investigate the algorithms’
efficiency. The actual algorithms used in SPANK for matching and cut-set reduction will
be described in a future paper. In this section, we wish to describe the results achieved
by SPANK on a variety of test problems.

One set of test problems consists of HVAC secondary systems. In a previous paper
[SOWELL 1986] the solution of a very simple (I zone) HVAC problem was demonstrated.
We have gone on to model problems of increasing complexity, ending up with problems
that are of similar complexity to those that would be simulated in a typical small DOE-2
[BIRDSALL 1985] or BLAST [BLAST 1979] run. Table | shows the results from two such
systems: a variable air volume system serving five zones, and a return air reheat system
serving five zones. The problem sizes involving in excess of 100 variables are reduced to
cut-sets of just three variables. This is satisfying but not very surprising. Anyone who
has written a Fortran model of such a system could readily predict the number and
choice of break variables. What is important is that the break variables were chosen
automatically, and that such a choice can be made for a wide variety of systems with no



effort by the modeler. While a modeler may easily be able to choose break variables for
a familiar system such as variable air volume, the task may be much more difficult for
an unfamiliar system. Moreover, SPANK has relieved us of developing the solution algo-
rithm.

A second set of test problems consists of multiroom air flow simulations. A variable
number of rooms are connected to each other by a variable number of orifices. The
smallest problem has one room with six orifices, the largest has 24 rooms with six orifices
per room. Pressures on the orifices connected to the outside are input, and the pressure
difference at and mass flow through each orifice are obtained. Results are shown in
Table 2, and once again the problem size reduction is very satisfactory.

A third set of problems involved modeling the steady state heat flow through a one
dimensional multi-layer wall. This is a simple problem with a known solution.
Although SPANK was able to solve problems of this type, Table 3 shows that the prob-
lem size reduction that was obtained was only approximately 2 to I’ This demonstrates
that the SPANK matching and cut-set reduction algorithms may not be the most
appropriate ones for all types of problems. Future versions of SPANK may use different
algorithms for different problem types.

Tables 1-3 demonstrate that SPANK’s automatic problem size reduction techniques
work well on some types of problems. We have not demonstrated how efficient SPANK
is in comparison to other techniques with regard to overall solution time. Certainly if
SPANK run-times were compared to run-times obtained by including all the problem
variables in the cut-set, the increased efficiency — at least for the first two problem types
— would be dramatic. But such a comparison would be misleading, since reduced cut-
sets are either chosen by hand, when creating special purpose Fortran simulations, or the
problem size is effectively reduced by using sparse matrix techniques. It remains to be
shown whether techniques like those used in SPANK will prove to be the most efficient on
a variety of problems. Such a demonstration will be possible only by solving identical
test problems with a variety of simulation programs.
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No. of No. of No. of
problem break iterations
variables variables to solution
148 3 I (Return Air Reheat System)
100 3 3 (VAV System)
Table 2
SPANK Reduction Results - Multiroom Air Flow
No. of No. of No. of

problem break iterations
variables variables to solution

13 1 12

72 4 8

84 4 23

96 4 11

108 4 11

118 4 11

141 9 19

207 9 14

248 24 44

95 4 8

Table 3
SPANK Reduction Results - Thermal Conduction
No. of No. of No. of

problem break iterations
variables variables to solution

151 70 3

16 8 3

31 15 3

4 2 2

61 30 4

7 3 2

Table 1

10

SPANK Reduction Results - Secondary HVAC Systems
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