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Measurements of the deuteron form factors over a wide range of mo-

mentum transfer can provide important clues to the role of subnucleon
degrees of freedom in nuclear dynamics. For a meaningful calculation
of the form factors it is essential that the current density operators and
the deuteron wave function transform under Lorentz transformations in
a mutually consistent manner. Standard nucleon-nucleon interactions
can be used to construct unitary representations of the Poincare group
on the two-nucleon Hilbert space. Deuteron wave functions represent
eigenstates of the the four-momentum operator. Existing parametriza-
tions of measured single-nucleon form factors are used to construct a
conserved covariant electromagnetic current operator. The light-front
symmetry of the representation allows a clean separation of the effects
of one- and two-body «u-rents for arbitrary momentum transfers. Com-

parison with data indicates that for Q% < GeV? the elastic cross sections
are not dominated by by two-body currents.

1. INTRODUCTION

High energy electron scattering by hadronic targets is perhaps the most use-
ful probe of the target structure. The electron-hadron interaction is sufficiently
weak to be treated perturbatively, and its form is invariant under Lorentz trans-
formations and space-time translations (Poincaré invariance). Cross sections are
determined by matrix elements of the four vector current density I¥(z), which are
definite functions of Lorentz invariant form factors. To relate the current operator
to the structure of the target involves the strong interactions that bind the target,
and requires the construction of nonperturbative models. Nonrelativistic models
are inherently unsatisfactory and inconclusive even when they agree with data.
A model of the deuteron structure should respe-t the the principles of quantum
theory and Poincaré invariance, that is, the representations of the current density
and the deuteron states must both transform consistently under the same unitary
representation of the Poincaré grcup. It should also be sufficiently well defined
that failure to agree with data provides significant information.
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For the models described here") the nuclear dynamics is obtained by ex-

plicitly constructing a unitary representation of thePoincaré grop on the tensor
product of two single-nucleon Hilbert spaces. This representation must be in agree-
ment with the deuteron binding energy and the nucleon-nucleon scattering data.
The intent is to achieve a Lorentz invariant separation of one-body, and two- body
current effects in the deuteron form factors.

Qne-bady Gperators are operators with domain and range in an single-nucleon
Hilbert space, and on the two-nucleon Hilbert space they are defined by taking
the tensor product with the identity. Current-density operators are sums of one-
body operators that are completely specified by the form factors of the nucleons
and two- body operators that vanish on states of widely separated nucleons. The
separation of the current into one- and two-body perts is not invariant under gen-
eral unitary transformations and he vne-body operators alone cannot be covariant
under all Poincaré transformations.

It is possible, however to construct current operators for which all two-body
matrix elements are generated from one-body currents by dynamic Lorentz trans-
formations and an explicit knowledge of these two-body currents is not need for the
calculation of deuteron form factors, which are then unambiguously determined by
the nucleon form factors and the deuteron wave function. The implicit effects of
subnucleon degrees of freedom, mesons and/or quarks, must show up in additional
two-body currents, which make separately Lorentz invariant contributions to the
deuteron form factors.

2. FORM FACTORS AND COVARIANCE OF CURRENT OPERATORS
For any particle of spin j and mass m the states [p,u),(—7 < p <37,
p* = —m?) transform under Lorentz transformations according to
U(A) lp,s) = ) 1A, u') (' Rw (A, P) 1) , (1)
u'

where the matrix R represents a rotation (Wigner rotation) that depends on the
momentum p, and on the choice of a Lorentz transformation L(p) that reduces
the vector p to {m,0,0,0}. It will be convenient to chose Z(p) such that it leaves
the light front z+ = 2 + 7.z = 0 invariant. The Wigner rotation R, (A, p) is the
identity for all Lorentz transformations A that leave the light front invariant.

The transformation propertics of the matrix elements (u',p'| I*(0) |p, 1) of
the current deunsity follow from the covariance of the current,

ut(A)IP(z)U(A) = AP L I7(A12) (2)

and the transformation properties (1) of the state vectors |p,u). Current conser-



vation requires that
(#,1P’IQ'I(O) IP»#) ’ (3)

where Q = p' — p. For any value of Q? all matrix elements of the current operator
are related by Lorentz transformations to 23+ 1 form factors which are conveniently
chosen standard matrix elements. For spacelike @ it is always possible to chose
the direction of the vector 77 such that Q@+ = 0, and therefore éi = Q2. For
@* = 0 the matrix elements (u',p'|I*(0)|p,n) /p* are invariant under Lorentz
transformations that leave the light front z+ = 0 invariant, except for rotations
about the longitudinal axis. They are therefore independent of p* and the sum
p. + 7. ' and I will use the abbreviated notation

(' 1 12(0) |us) = (', 2" | T*(0) P, ) /2% (4)

with the understanding that these matrix elements are functions of Q.. The co-
ordinate axis are chosen such that 7 = {0,0,1} and g, = {\/C—ZE,O,O}. Invariance
of I* under rotations about the longitudinal axis and under time reversal plus
reflection on the plane perpendicular to 7 implies the relations

(| T*(0) |w) = (1) =) (uf I*(0) |u') (5)

and

(| T (0} ) = (—=1)* = #) (—u!| T*(0) |—ps) . (6)

The properties just listed make it convenient to use the matrix elements

(u'| I*(0) |u) to define the form factors. For spin ; the form factors Fy and F3
defined by

R@) = (+HIOH) . B@)= (-4, @

with 7 = Q?/4m?, are identical to the usual Dirac and Pauli form factors. For spin
1 conventiopal form factors Go(Q?), G1(Q?) and G3(Q?), are related to the matrix



elements L ((+1{7*(0) [+1) + (0 1+(0) [0)), (+1{1*(0){0) and (+1|I*(0)}|-1) by

Go(Q*) = ;%;[%(1 = In)((+1]I*(0) |+1) + (0] I*(0} |0))

= 31 - 40) (411 14(0) |=1) + /20 (+1] 1*(0) [0)]

61(@%) = T [(+UT @) 1) + OUI(©)[0) - (+1 I7(0) |-1)

~ -y wurEo)]

Ve .
= it [V2n (+111+(0) Io)

~ In((+111(0) [+1) + (O] 1*(0) [9) — (+1] 1*(0)|-1)] ,

(8)

G2(Q%)

where 1 = Q*/4M3.

The difference, (+1|I*+(0) |+1) — (0] I*+(0) |0) of the diagonal matrix elements
is determined by the requirements of rotational invariance of the charge density.

(OLI*(©)10) = (+LLI*(0) [+1) = 75— [a((H*(©) 1+1) + (01 1+(0) 10)

+ (+1{1*(0) |-1) — /87 (+1{ I*(0) |0})] .

(9)

The observable electric and magnetic structure functions A(Q?) , B(Q?) and tke
tensor polarization T2q are related to the form factors Gy, G,,G3 by

A(Q") = G3(Q*) + G3(Q*) + $nGi(QY)

B(@") = $n(1 + 1)GYQ@Y) , (10)

2 gy _ _Gi+VBGoGs + InGi[} + (1 + 1) tan?(6/2)]
Taol@,0) = VZlA + B taai(8]2) '

For sufficiently large Q?, when perturbative QCD is applicable, the matrix element



(0} I*(0)|0) gives the leading contribution.?) In that approximation

/ ~1_+_§.1.’E_+l) + 2
AR (0] I*(0)|0)

B ¥n(l+m) )

AT 1+ 401 +0)’

and

{n(1 = 2n) — §0(1 + ) tan®(6/2)
VZ[1+$n( + 1)+ ¥n(1 +n)tan(8/2)]

T20(Q%,8) = (12)

In the region of interest, Q2 < 10GeV?, it would be inappropriate to expand these
expressions in powers of 77. However, the 1 dependent factor of the structure
function A is approximately constant since it has a broad minimum at 7GeV?>.

3. DEUTERON WAVE FUNCTIONS

Eigenfunctions of the four momentum operator that transform unitarily un-
der Poincaré transformations can be constructed using conventional deuteron wave
functions. Conventional bound-state wave functions of a nucleus are eigenfunc-
tions of the energy and spin operators for the nucleus at rest, that means they
can be interpreted as eigenfunctions of mass and spin operators. Eigenfunctions
of the four-momentum can then be generated by choosing three componeats of the
four- momentum to be conserved kinematically, while the remaining component
is determined by the mass and the three kinematic components. In the unitary
representation of the Poincaré group, generated in this manner, at most the rep-
resentation of a subgroup (the kinematic subgroup) may be independent of the
interactions.If I choose the light-front momentum P = {P+, P, } to be kinemati-
cally conserved then the kinematic subgroup leaves the light front z+ = 0 invariant,
and the deuteron wave function ¥p, .,(P1,P2, #1,42) has the form

/a Jkr, P -
‘I’P‘.}u(pllphl‘hl‘z) = —ag(i’:%;)—)x”‘(f,kr,[ll,pz)ﬁs(l) —_ Pd) P;, (13)

where

P=p;+p2, €=%T, k., =pr. —EP, (14)



and

8¢, kr,P) 1
6(P1,Pz) T P+ (15)

is the Jacobian of the variable transformation (p;,p2) — (§, kr, P).

The matrix elements (u}|I*(0)|pq) that determine the deuteron form factors,
can be calculated if the deuteron wave function ¥p, ., (P1, P2, 11, #2) and the as-

sociated representation (u}, i, P, P} |1¥(0)|P1, P2, 41, #2) of the current operator
are known.

Wil = 3 Y [ae [ e [ae; [

(ANTS T I

. (16)
S ‘I’PJ’“"(p'np'Zrﬂ"l1"'2)‘I’P4.M4(php2vl‘l1”'2)/Pd+
X (M2, 11, P2, P1 T4 (0)|P1, P2y 11y B2) -
To assume that only one-body currents,
(42, #1, P2, P1 T (0)|P1, P2, 1, #2) = (py, PAITT (0)|P1s 1) 8t 0 8(P2 — P2) (a7)

+ (2, P23 (0)IPa, 1e2) 6 4, 6(PY — P1)

contribute explicitly to to the deuteron form factors may neglect important phys-
ical effects but it does not involve any formal inconsistency because all the matrix
elements (17) that occur in (16) are related to each other and to the nucleon form

factors by kinematic Lorentz transformations. The deuteron form factors can then
be calculated by evaluating the integrals

O = 3 [ &5, j P j d 8[R8 — Ex — (1 - £)Q)

81,443
x [Fl"(Qz) x;v‘(f, E;:F‘hl“?) XMa(fa Eryﬂlvﬂz) (18)

_‘/;FZN(Qz) Z XLQ(E:E;-:FL#:) (”"l l ia? ll"’l) Xm(& ET: H1, “2)] .
#y

Results obtained by calculating form factors using Eq. (18) ) are presented in
the next Section.
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Fig. 1. The deuteron structure function A(Q?) for different deuteron
wave functions compared to data™ . Precise low energy data® are

indistinguishable from the curve on the scale of this figure. (a) Cari-
Krimpelmann nucleon form factors. (b) Héhler nucleon form factors.

4. NUMERICAL RESULTS AND CONCLUSIONS

The form factors obtained from Eq. (18) can be readily compared to the the
nonrelativistic form factors calculated with the same deuteron wave functions and
the same nucleon form factors. The difference are generally quite small for Q? <
4GeV?, but this does not mean that reliable relativistic results can be obtained
by adding 1/m? corrections to a nonrelativistic calculation. In such correction
terms, obtained by expansion, the high-momentum tail of the wave function tends
to generate erroncous contributions. For instance, the relativistic correction to the
quadrupole moment obtained by expansion to order 1/m? has the wrong sign as
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Fig. 2. The deuteron structure function B(Q?) for different deuteron

wave functions compared to data.® " '? () Gan-Krimpelmann nu-
cleon form factors. (b) Hohler nucleon form factors.

well as the wrong magnitude.‘) For Q? < 2 the relativistic effect in the structure

function A is a decrcase by less than 29%.")  This small effect is nevertheless
significant when when measurements of A are used to determine the electric form

factor of the neutron.s’” The relativistic effect in tha calculation of A increases
the “measured " value of the neutron form factor.

The dependence of the elastiz structure functions A and P on the deuteron
wave function and the nucleon form factors are illustrated in Figs. 1. and 2. The
wave functions used are, in order of decreasing D-state probebility, Argonne v14
(AV14), Paris, Nijmegan, and the “energy independent relativistic” Bonn . Dif-
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Fig. 3. The ratios B/A for different deuteron wave functions and Gari-
Krimpelmann form factors. The long dashes represent the right hand
side of Eq. (11) .
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Fig. 4. The tensor polarization Ty for different deuteron wave func-

tions and Gari-Krimpelmann form factors.The long dashes represent
the right hand side of Eq. (12) .

ferent parameterizations of the nucleon form factors by Hahleru) and by Gari

and Kriimpelmann (GK) '2) are used to illustrate the uncertainty in the empirical
nucleon form factors. The AV14 potential with GK nucleon form factors gives
satisfactory agreement with the data for both A and B. Disagreement with data



indicates the need for two-body currents which were not included in in these cal-
culations. The need for two-body currents depends most strongly on the nucleon
form factors and to a lesser degree on the choice of the deuteron model.

Calculated ratios B/A are shown in Fig. 3 and compared to the expression
(11) which obtains under the assumption that a single current matrix element,

(0|I+(0)|0), give the dominant contribution. This assumption is not in agreement
with the data for B.

The tensor polarigation Ty for § = 70° is shown in Fig. 4. It is not very
sensitive to changes in the deuteron wave function, but the asymptotic expression

(12) shows a very different behavior. Existing data'® do not discriminate between
models. New data at higher Q? might well exhibit substantial two-body current
effects.

The principal result is that the present data do not require that subnucleon

degrees of freedom produce dominant two-body current effects in the elastic struc-
ture functions.

I wish to thank S. J. Brodsky for useful comments.
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