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ABSTRACT

Measurements of the deuteron form factors over a wide range of mo-
mentum transfer can provide important clues to the role of subnucleou
degrees of freedom in nuclear dynamics. For a meaningful calculation
of the form factors it is essential that the current density operators and
the deuteron wave function transform under Lorentz transformations in
a mutually consistent manner. Standard nudeon-nucleon interactions
can be used to construct unitary representations of the Poincare group
on the two-nucleon Hubert space. Deuteron wave functions represent
eigenstates of the the four-momentum operator. Existing parametriza-
tions of measured single-nucleon form factors are used to construct a
conserved covariant electromagnetic current operator. The light-front
symmetry of the representation allows a clean separation of the effects
of one- and two-body • ujxents for arbitrary momentum transfers. Com-
parison with data indicates that for Q2 < GeV2 the elastic cross sections
are not dominated by by two-body currents.

l. INTRODUCTION

High energy electron scattering by hadronic targets is perhaps the most use-
ful probe of the target structure. The electron-hadron interaction is sufficiently
weak to be treated perturbatively, and its form is invariant under Lorentz trans-
formations and space-time translations (Poincare invariance). Cross sections are
determined by matrix elements of the four vector current density I"{x), which are
definite functions of Lorentz invariant form factors. To relate the current operator
to the structure of the target involves the strong interactions that bind the target,
and requires the construction of nonperturbative models. Nonrelativistic models
are inherently unsatisfactory and inconclusive even when they agree with data.
A model of the deuteron structure should respect the the principles of quantum
theory and Poincare invariance, that is, the representations of the current density
and the deuteron states must both transform consistently under the same unitary
representation of the Poincare group. It should also be sufficiently well denned
that failure to agree with data provides significant information.

* Work supported b> the Department of Energy. Nuclear Physics Division, under contract
W-31-109-ENG-38.
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For the models described here the nuclear dynamics is obtained by ex-
plicitly constructing a unitary representation of thePoincare grov*p on the tensor
product of two single-nucleon Hilbert spaces. This representation must be in agree-
ment with the deuteron binding energy and the nucleon-nucleon scattering data.
The intent is to achieve a Lorents invariant separation of one-body, and two- body
current effects in the deuteron form factors.

One-body operators are operators with domain and range in an single-nucleon
HUbert space, and on the two-nucleon Hilbert space they are denned by taking
the tensor product with the identity. Current-density operators are sums of one-
body operators that are completely specified by the form factors of the nudeons
and two- body operators that vanish on states of widely separated nucleons. The
separation of the current into one- and two-body parts is not invariant under gen-
eral unitary transformations and he one-body operators alone cannot be covaxiant
under all Poincare transformations.

It is possible, however to construct current operators for which all two-body
matrix elements are generated from one-body currents by dynamic Lorentz trans-
formations and an explicit knowledge of these two-body currents is not need for the
calculation of deuteron form factors, which are then unambiguously determined by
the nucleon form factors and the deuteron wave function. The implicit effects of
subnucleou degrees of freedom, mesons and/or quarks, must show up in additional
two-body currents, which make separately Lorentz invariant contributions to the
deuteron form factors.

2. FORM FACTORS AND COVARIANCE OF CURRENT OPERATORS

For any particle of spin j and mass m the states |p,/i), (— j < fi < j ,
p2 = —m3) transform under Lorentz transformations according to

(1)

where the matrix V,w represents a rotation (Wigner rotation) that depends on the
momentum p, and on the choice of a Lorentz transformation L(p) that reduces
the vector p to {m, 0,0,0}. It will be convenient to chose L(p) such that it leaves
the light front x+ = x° -f X'X = 0 invariant. The Wigner rotation 7£,r (A,p) is the
identity for all Lorentz transformations A that leave the light front invariant.

The transformation properties of the matrix elements (/i',p'| J"(0) |p,/j) of
the current density follow from the covariance of the current,

= A" ̂ ' (A- 1 *) , (2)

and the transformation properties (l) of the state vectors \p,fi). Current conser-



vation requires that

0AP'!Q-r(o)|p,/z) , (3)

where Q = p' — p. For any value of Q2 all matrix elements of the current operator
are related by Lorentz transformations to 2j-f 1 form factors which are conveniently
chosen standard matrix elements. For spacelike Q it is always possible to chose
the direction of the vector n such that Q+ = 0, and therefore Q\ = Q2. For
Q+ = 0 the matrix elements (/i',p'|7+(0) |p,/x)/p+ are invariant under Lorentz
transformations that leave the light front x+ = 0 invariant, except for rotations
about the longitudinal axis. They are therefore independent of p+ and the sum
px + Pi.' and I will use the abbreviated notation

(4)

with the understanding that these matrix elements are functions of Q±. The co-
ordinate axis are chosen such that n = {0,0,1} and Q± = { V Q 2 » 0 J 0 } - Lavariance
of I+ under rotations about the longitudinal axis and under time reversal plus
reflection on the plane perpendicular to n implies the relations

(5)

and

< ' > • (6)

The properties just listed make it convenient to use the matrix elements
(fj.'\ J+(0)|/i) to define the form factors. For spin i the form factors Fi and F%

defined by

with T = Q3/4m2, are identical to the usual Dirac and Pauli form factors. For spin
1 conventional form factors G0(Q2), Gt(Q

2) and G2(Q
2), are related to the matrix



elements | « + l|I+(O) | + 1) + (0|/+(0) |0)), ( + l |/+(0)|0) and < + l | 7+(0) | - l ) by

Go{Q2) =

- 1(1 -4r,) ( + i|

where TJ = Q2/4Mj.

The difference, (+ l | I+(0) |+1) - (0| I+(0) |0) of the diagonal matrix elements
is determined by the requirements of rotational invariance of the charge density.

<o| r+(o) |o»

The observable electric and magnetic structure functions A(Q2) , B(Q2) and the
tensor polarization T20 are related to the form factors GQ,Gi,G2 by

(10)

T20(Q
2,9) = ?-t.

For sufficiently large Q2, when perturbative QCD is applicable, the matrix element



(0| /+(0) |0) gives the leading contribution. In that approximation

A i + i , ( l + , ) '

and

(12)

In the region of interest, Q2 < lOGeV2, it would be inappropriate to expand these
expressions in powers of ij. However, the TJ dependent factor of the structure
function A is approximately constant since it has a broad minimum at 7GeV .

3. DEUTERON WAVE FUNCTIONS

Eigenfunctions of the four momentum operator that transform unitarily un-
der Poincare transformations can be constructed using conventional deuteron wave
functions. Conventional bound-state wave functions of a nucleus are eigenfunc-
tions of the energy and spin operators for the nucleus at rest, that means they
can be interpreted as eigenfunctions of mass and spin operators. Eigenfunctions
of the four-momentum can then be generated by choosing three components of the
four- momentum to be conserved kinematically, while the remaining component
is determined by the mass and the three Idnematic components. In the unitary
representation of the Poincare group, generated in this manner, at most the rep-
resentation of a subgroup (the kinematic subgroup) may be independent of the
interactions.If I choose the light-front momentum P = {P+,P±} to be kinemati-
cally conserved then the kinematic subgroup leaves the light front x+ = 0 invariant,
and the deuteron wave function V Pi,m(pi ,Pi, Hi, P2) has the form

where



and

is the Jacobian of the variable transformation (pi,P2) -+ (£,fcr»P)-

The matrix elements (/i'<J|J't"(Q)j/i<i) that determine the deuteron form factors,
can be calculated if the deuteron wave function $pd,nd(pi,P2,Pi,H2) and the as-
sociated representation (/ij,Mi»PaiPil-^+(0)|PijP2iMiiAt2) of the current operator
axe known.

To assume that only one-body currents,

+ 04>P2ljr2'(0)|P2>/42) VfMt^Pi - P i ) t

contribute explicitly to to the deuteron form factors may neglect important phys-
ical effects but it does not involve any formal inconsistency because all the matrix
elements (17) that occur in (16) are related to each other and to the nucleon form
factors by kinematic Lorentz transformations. The deuteron form factors can then
be calculated by evaluating the integrals

M l ,

dts[k'T-kT-(i-OQ]

(18)

Results obtained by calculating form factors using Eq. (18) ' are presented in
the next Section.
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Fig. 1. The deuteron structure function A(Qa) for different deuteron
wave functions compared to data . Precise low energy data are
indistinguishable from the curve on the scale of this figure, (a) Gari-
Krumpelmann nudeon form factors, (b) Hohler nucleon form factors.

4. NUMERICAL RESULTS AND CONCLUSIONS

The form factors obtained from Bq. (18) can be readily compared to the the
nonrelativistic form factors calculated with the same deuteron wave functions and
the same nucleon form factors. The difference are generally quite small for Q2 <
4GeV , but this does not mean that reliable relativistic results can be obtained
by adding l /ma corrections to a nonrelativistic calculation. In such correction
terms, obtained by expansion, the high-momentum tail of the wave function tends
to generate erroneous contributions. For instance, the relativistic correction to the
quadrupole moment obtained by expansion to order 1/m2 has the wrong sign as
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Fig. 2. The deuteron structure function B(Q2) for different deuteron
wave functions compared to data.8 " 1 0 ) (a) Gari-Krumpelmann nu-
cleon form factors, (b) Hohler nucleon form factors.

well as the wrong magnitude."0 For Q3 < 2 the relativistic effect in the structure
function A is a decrease by less than 2%.1} This small effect is nevertheless
significant when when measurements of A are used to determine the electric form
factor of the neutron.M) The relativistic effect in tha calculation of A increases
the "measured " value of the neutron form factor.

The dependence of the elastic structure functions A and B on the deuteron
wave function and the nucleon form factors are illustrated in Figs. 1. and 2. The
wave functions used are, in order of decreasing D-state probability, Argonne «i4

(AV14), Paris, Nijmegan, and the "energy independent relativistic" Bonn . Dif-
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Fig. 3. The ratios BjA for different deuteron wave functions and Gari-
Krumpelmann form factors. The long dashes represent the right hand
side of Eq. (11) .
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Fig. 4. The tensor polarization TJO for different deuteron wave func-
tions and Gari-Krumpelmann form factors.The long dashes represent
the right hand side of Eq. (12) .

ferent parameterizations of the nucleon form factors by Hohler and by Gari
12)

and Krumpelmann (GK) are used to illustrate the uncertainty in the empirical
nucleon form factors. The AV14 potential with GK nucleon form factors gives
satisfactory agreement with the data for both A and B. Disagreement with data



indicates the need for two-body currents which were not included in in these cal-
culations. The need for two-body currents depends most strongly on the nucleon
form factors and to a lesser degree on the choice of the deuteron model.

Calculated ratios B/A are shown in Fig. 3 and compared to the expression
(11) which obtains under the assumption that a single current matrix element,
(0|I+(0)|0), give the dominant contribution. This assumption is not in agreement
with the data for B.

The tensor polarization TJO for 6 = 70° is shown in Fig. 4. It is not very
sensitive to changes in the deuteron wave function, but the asymptotic expression
(12) shows a very different behavior. Existing data do not discriminate between
models. New data at higher Q2 might well exhibit substantial two-body current
effects.

The principal result is that the present data do not require that subnucleon
degrees of freedom produce dominant two-body current effects in the elastic struc-
ture functions.

I wish to thank S. J. Brodsky for useful comments.
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