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ABSTRACT 

The theoretical work in this report is concerned with. a reactive 

flow Lagrange analysis (RFLA) for shocked explosives that was formulated 

and developed at SRI International and.Lawrence Livermore National 

Laboratory (LLNL). This RFLA takes a set of Lagrange particle velocity 

and pressure histories recorded in shocked explosive as input and calcu­

lates the flow fields in the explosive and its global rate of decomposition. 

A similarity solution modeling a type of .initiation observed in PBX9404 

and incorporating a realistic description of shocked explosive was con­

structed to. provide a means of testing the computational procedures used 

in the RFLA. These procedures and the RFLA were validated in test calcu­

lations performed with the similarity solution at LLNL. 
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I SUMHARY 

The long-range objective of this research is to develop the basic 

understanding of detonation that is essential for the improved control 

and effective use of explosives in military applications. Lagrange gage. 

studies of the initiation and propagation of detonation were undertaken 

jointly by SRI and LLNL to provide the information required for such an 

understanding of explosives. In these studies, the experimental .work 

was performed at Lawrence Livermore National Laboratory, and the majority 

of the theoretical work was performed at SRI International. 

The experimental studies performed at LLNL during the present program 

have resulted in the development of particle velocity and stress gages for 

recording Lagrange histories in the shocked explosive environment. These 

Lagrange histories .provide the information to: 

• Establish the hydrodynamic phenomenology of 
the shock initiation process. 

• Validate reactive hydrodynamic codes. 

• Calculate the global reaction rate of the 
shocked explosive. 

The theoretical studies performed at SRI and LLNL during the present 

program have resulted in: 

• The formulation of a constitutive relationship for 
~hucked reacting cxploaivc. 

• The incorporation of a realistic description of shocked 
reacting explosive into a .similarity solution modeling 
a type of initiating flow observed in shocked PBX9404. 

• The development and validation of a RFLA for calculating 
global decomposition rates of shocked explosives from a 
series of particle velocity histories and a pressure 
history. 

Formulation of this constitutive relationship and validation of this RFLA 

were presented in papers (1,2) at the Seventh Symposium (International) 

on Detonation held June 16-19, 1981 at the United States Naval Academy, 

·Annapolis, Maryland. 
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II THEORETICAL WORK 

A. Introduction 

In the theoretical wor~ performed at SRI under the current contract, 

.a realistic description of shocked reacting explosive was incorporated 

into a similarity solution modeling a type of initiating flow observed in 

shocked PBX9404. A realistic description of the explosive was obtained 

by incorporating a Mie Gruneisen. equation of state for the solid, and a 

polytropic equation of state for the reaction products into the consti-:" 

tutive relationship for shocked explosive developed earlier in the 

program (1). For the purposes of the similarity solution, the decompo­

s:l.tion reaction was assumed to produce reaction products with a fixed 

relative composition along a particle path and also was assumed.to proceed 

to completion. The constitutive relationship and model .similarity. 

solution were used .in calculations at LLNL (2) to test the validity of our 

RFLA for calculating the flow fields and reaction rates in a shocked 

explosive from a set of particle velocity histories and a pressure history. 

Such model solutions to the flow equations are convenient for testing 

procedures used to calculate flow and thermodynamic variables in a RFLA. 

They provide a means for determining the best methods for estimating flow 

derivatives from Lagrange histories recorded in the type of flow modeled 

by the solution. The accuracy of schemes of estimating the flow derivatives 

needed to integrate the flow equations, and the accuracy of the methods 

used to calculate the reaction rate are tested as follows. 

Lagrange analyses are first performed with a set of flow histories 

generated from the .solution, and then the flow variables and reaction rates 

calculated in these analyses are compared with those given by the solution. 

We first present the model similarity solution and then the constitutive 

relationship that was incorporated into it. 

2 



B. Construction of the Similarity Solution 

The similarity solution was constructed using differential geometry 

and Lie~group-theory. The procedure used before to construct a model 

similarity solution (3) was extended by.removing the constraint that the 

constitutive relationship of the shocked reacting explosive be invariant 

under the Lie group G admitted by the flow equations and the Rankine­

Hugoniot (RH) jump conditions. The removal of this constraint on the 

constitutive relationship allows a realistic description of the explosive 

to be incorporated into the similarity solution. We now present the 

similarity solution. The details of this construction will not be 

presented however, because they will be given in another paper. 

Our similarity solution is based on the assumptions that the shock 

is a nonreactive discontinuity and that the one-dimensional flow induced 

by· the shock is adiabatic and inviscid. To describe this type of flow 

we let t, h, D, u, v, p, e, and A. denote time, Lagrange distance, shock 

velocity, particle velocit:y, specific volume, pressure, ·specific internal 

energy and the fraction of unreacted explosive. We also use the super­

script o to denote the initial unshocked condition, and the subscript i 

to denote the initial shocked condition •. In this case, the equations 

expressing the conservation of mass, mome~tum, and energy in the one­

dimensional .flow behind .the shock can be written as 

dV 
-at= 

0 
v 

dU 
dh 

dU 0 .£E. 
at= - v dh 

and the RH jump conditions as 

v
0

D = v(D - u) 

2 0 
u = p(v - v) 

e - e
0 = I(v

0 
- v) 

(1) 

(3) 

(.4) 

(_5) 

(.6) 
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Our similarity solution was constructed in terms of invariants of the 
' 

infinitesimal generator of the Lie group admitted by Eq. (1) through (6). 

It can .be written in terms of the similarity parameter 

as 

. (1 - t/a) n -
- (1 - h/B)a/b 

v - v0 
= (v. - v0 )V(n)/(l - h/8) 0/b 

1 

E/b 
p = piP(n)/(1 - h/8) 

e- e0 = (e. - e0 )E(n)/(l- h/B)f/b 
1 

(7) 

(8) 

(9) 

(10) 

(11) 

where a denotes a characteristic time, 8 denotes a characteristic 

distance, a, b, c, o, E, and.f are group parameters, and the functions 

U(n), .v(n), P(n), and E(n). are related by the flow equations (1) through 

(3). Equations (7) through (11) are written so that n = 1 and V(l) = 
U(l) = P(l) = E(l) along the shock path. 

We now derive equations for the shocked state, denoted by the 

subscript H, and use the RH jump conditions to derive relationships 

among the group parameters. The equation for the shock trajectory is 

obtained as 

(1 - h/8) (1 - t/a)b/a . (12) 

by setting n = 1 in Eq. (7), and the equations for the shocked state as 

u. 
1 

ull = (1 - h/8)c/b 

(v. - v
0

) 
1 

= -----=-:--
(1 - h/B)o/b 

(13) 

(14) 
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PH = /b 
(1 - h/B)E: 

0 
(ei - e ) 

(1 - h/B//b 

by setting u = uH and U(n) = 1, v = vH and V(n) = 1, p pH and 

(15) 

(16) 

P(n) = 1, and e = eH and E(n) = 1, respectively, in Eqs. (8), (9), (10), 

and (11). 

Differentiating Eq. 12 gives the following equations for the shock 

velocity D 

D = D.(l- t/a)b/a-l 
1 

= D.(l ~ h/B)l-a/b 
1 

(17) 

where the initial shock velocity Di is related to a .and B by the equation 

Di = bB/aa. Combining Eqs. (13) and (17) then gives the equation relating 

shock velocity and shock particle velocity as 

D = D. (uH )(a-b)/c 
1 u. 

1 

and combining Eqs. (14) and (15) gives the corresponding equationfor 

the Hugoniot curve in the ·(p-v) plane as 

- . o E:/o 
PH B(l - vH/v ) 

-~ E:/ 0 
0 where B :::;z p./(1- v./v) . It follows from Eqs. (18) and (19) that 

1 1 

(a - b)/c and E:/b must be related because D and pH are related by the 

(18) 

(19) 

RH jump conditions. Relationships among the group parameters a, b, c, 

o, e, and f are obtained by combining Eqs. (13) through (17) with the 

RH jump conditions written as 

(v 0 
- v ) D 

0. 

H = v UH 

0 
DuH v PH 

2(e - eo) pH(v 
0 

- v) = H H 
5 

(20) 

(21) 

(22) 



Substituting Eqs. (13) through (17) into Eqs. (20) through (22) shows 

that the following 

a+ 0 = b + c 

a + c b + £ 

f = 0 + £ 

relationships 

·(23) 

(24) 

(25) 

are imposed on the group parameters by the conservation of mass, momentum, 

and energy across the shock discontinuity at the wave front. The addition 

and substraction of Eqs. (23) and (24) gives the equations 

2(a -b) = £ - o 
2c £ + 0 

that allows us to write the relationship between shock velocity and 

particle velocity in terms.of £/o as 

( ) 

(£/o-1) 1 (£/o+l) 
D UH 
- =-
D. u. 

1 1 

(26) 

(27) 

(28) 

The relationships. imposed on the functions U(n), V(n), P(n), and 

E(n) by the conservation .of mass, momentum, and energy are obtained by. 

combining Eqs. (7) through. (11) with the flow equations (1) through (3). 

Substituting the flow derivatives obtained by differentiating Eqs. (7) 

through (11) into Eqs. (1) through (3) and taking account of Eqs. (23) 

through (25) leads to the following differential equations, expressing 

the conservation of mass, momentum, and energy, that relate U, V, P, and E 

dV n du + .£ u -= 
dn dn a 

(29) 

dU dP £ -= n -+-P 
dn dn a 

(30) 

dE 2P dV -= 
dn dn 

(31) ' 

It follows from Eqs. (29) through (31) that the specification of 

U ··or V or P is sufficient to determine a particular flow. vJhen U is 

specif~ed, the integrations of of Eqs. (29) and (30) give respectively 

. V and P, and the integration of Eq. (31) gives E. Similarly, when V is 

specified, the integrations of Eq. (29) and (30) give respectively· U and P, 

6 



Formal integration.of Eqs. (29) through (31) gives the expressions 

for V, P, and E in terms of U as 

n 
v = nu - (1 - c/a) Jf u dn 

1 

n 
1 + J n(r::./a - 1) du dn 

dn 
1 

- u + n- dn 
[

c dU] 
a dn 

Equations (33) and (34) were used to evaluate the integrals in 

(35) 

(36) 

(37) 

Eqs. (35) through. (37) and determine the functional dependence of V, U, 

n 
and E on n. The integral r

1 
= j( U dn in Eq. (35) was written as 

1 

m [1 4 n 3 ul 2 J + 2 IT <n - 1) - 3 <n - 1) + 2 <n - 1) (38) 

and the equation for P obtained by integrating Eq. (36) was written as 

with A= 1- B + C- F, B = m/2(r::./a + 2), C = mn/(r::./a + 1), and 

F = mU/2 (c./ a). Equation (37) was rewritten for convenience as 

7 

(39) 

(40) 



and the integration of Eq. (31) gives E. When P is specified, the 

integration of Eq. (30) gives U, the integration of Eq. (29) gives V, 

and E again follows by integrating Eq. (31). 

D. Flow Modeling a Shock Initiation Process 

Our model similarity solution for. shock initiation is expressed in 

terms of U because .a ·set of particle velocity histories are measured in 

the Lagrange gage experiments. In constructing the present solution, 

an expression for ci
2U/dn

2 
was chosen to similate significant features of 

some particle velocity histories recorded in PBX9404. This expression 

was integrated to determine the corresponding e,xpressions for dU./dn and 

U, and Eqs. 29 through 31 were integrate~ to determine expressions for 

V, P, and E. The solution was based on the equation 

(32) 

because the experimentally determined particle velocity histories exhibit 

a maximum and a .point of inflection. In a particular solution, m is 

constant, and .the point of inflection in the particle velocity occurs 

along a particle path when n = n. The equations for dU/dn and U obtained 

by integrating Eq. (32) were written as 

dU m 2 -
- = - <n - 2n n + u ) dn 2 1 

and 

where 

m 1 3 u = 1 + -<- n 2 3 

(33) 

(34) 

A 

2n n (1/3 + ul- n), and n locates the maximum in 

partir.le velocity along a particle path. 

8· 



with 

and 

n 
Ii = ~ f. (Aun-t./ a + Bn

2
u' - Cn U + FU) dn 

1 

n 
i2 ~ J (Anl-F.:/a :~ + Bn3 dU --

dn 
Cn2 dU + Fn dU) d 

·I dn dn n 
1 

The identity 

was used to convert 1
2 

into a form similar to r
1 

and the equation 

for E was rewritten as 

with 

n 

[
nl-t./aU _ f -E/a ~ T = A 'I l - (1 - E/a - c/a) n U dn A 

1 

n 

TB B [n
3

u - 1 - (3 - c/a) J n
2

u dn] 

1 

n 
TC = C [n

2
u - 1 _. (2 - c/a) f nu dn] 

1 

n 

TF ... F [nu - 1 - (1 - c/ a) J u dn 1 
1 

9 
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n 
We then set In+l = j{ nnu dn and used the equation 

1 

In+l 
.1 e ~ mU2 )(nn+l _ 1) = 

n + 1 

+ 
m 

(3(n 1 ( n+4 _ 1) n 3) (nn+3 - 1)) 2 + 4) n (n + 

u 
(nn+2 - 1) + 

m 1 
2 (n + 2) (49) 

w·ith n'= -s/a, n .2, n. = 1, and n = 0, to evaluate respectively the 

integrals Il-t./a' I 3 , I 2 , and I 1 in Eqs. (45), (46), (47), and (48). 

These equations forE were programmed.into a cod~ for making Lagrange 

plots of the flow variables. They were checked by comparing calculated 

val~es of internal energy against values obtained by integrating Eq. (31) 

numerically. 

When the expressions for. U, P, V, and E are known, the initial 

shocked state must be specified, and values of the group -parameters and 
' A 

the flow parameters m, n, and n must be assigned .before flow fields can 

be calculated for a particular.solution. Values of pi and Di and s/6 

were first assigned to ensure .that r;'hocked states described by the solution 

are representative of those attained .in a real explosive. These values 

were based on the linear relationship between shock velocity and shock 

particle velocity for cast TNT, n = 2.3 + 2.15 ~' given by :Dremin (4). 

With pi = 20 kilobars and Di = 3 mm/ps, the values ui = 0.414 mm/l-ls and 
0 3 v./v = 0.8620 g/cm· were·calculated from the jump conditions. The ratio 

l. 

t./6 2. 7 was then chosen to .ensure that .shocked states at the front of 

the wave match those governed by Dremin's linear relationship in the 

20-110 kUobar region. In this.case B:;:: 4201.04 kilobars in Eq. (19) and 

the exponent of·the shock particle velocity in Eq. (28) (t./6 -l)(t./6 +1) = 
0.4594. The values t./b = 6/7and a= 4l-ls were then chosen to define the 

. variation of the shocked state with distance. In this case, 6/b = 6/18.9, 

- 10 



and Equations (26) and (27) give a/b = 24/18.9 and c/b = 11•1/18.9. The 

initial condition Di = bS/aa with Di = 3mm/~s then gives S = 15•24 mm. 

Another procedure was used at LLNL to chose the group parameters in the 

similarity solution used to test our RFLA. In this procedure, a, S, Di' 

and s/o were first specified, then· the initial condition was used to 

calculate a/b, and Eq. (26) and (27) were used to calculate c/b, o/b, 

and E/h. 

With the shocked state defined, values of n, n, and m must be 

assigned to define the flow attained behind the shock. The values of· 
A A 

n and n must be chosen to satisfy the condition· 2n > 1 + n to ensure 

that the particle velocity profiles exhibit maxima.. In the present case, 

we set n = 0. 85 and. n = 0. 6. The value of m ,, 36 was· chosen to ensure 

that a particle is further compresse:i as it Ieaves the shocked state and 

that its path in the· (p-v) plane lies to the right of the Hugoniot curve. 

D. The Constitutive Relationship for Shocked Reacting Explosives 

Our model of shocked explosive .is based on the idea that reaction 

starts in hot spots and then propagates into the bulk of the explosive. 

The reaction propagates .because heat is transferred between the hot 

reaction products and the explosive; but it is assumed that no appreciable 

amount of heat is transferred into the bulk of the explosive. The explosive 

and its reaction products are treated as phases that ar.e governed by their 

own equations of state and attain mechanical, but not thermal, equilibrium. 

Under the assumption that no appreciable amount of heat is transferred into 

the bulk of the explosive, the explosive is compressed and released 

isentropi~Ally aE the reaction proceeds, and the pressure increases or 

decreases along a particle path. 

With the notation already introduced, we let the subscr$pts x and p 

denote explosive and its products and write the specific internal energy 

and the specific volume of the reacting explosive as 

e = Ae + (1 - A)e . p X 
(50) 

v AV + (1 - A)V 
p X 

(51) 

11 



Under the assumption of mechanical equilibrium, px = pp = p, we write the 

equations of state of the explosive and its products as 

e = e
0 + e (p, v ) 

X X X X 

e 
p 

E
1
c ai(e0

). + e (p, v, a
1

, ••• a) 
p 1 p p c 

(52) 

(53) 

where a
1

, ... ac, denote the mass fractions of the reaGtion products. We 

assume for the sake of simplicity that the detonation products are.poly­

tropic with a constant index k, and that the explosive is a Hie-Gruneisen 

solid with a constant Gruneisen parameter r. In this case, 

e 
p 

pv 
p 

(k - 1) 

and .the equation of state of the solid can be written as 

e 
X 

The equations for the pressure and energy along the Hugoniot curve, 

written formally as, 

p 

(54) 

(55) 

(56) 

(57) 

define the function g(v ) over the region spanned by the Hugoniot curve 
X 

as 

g(v ) = . X 
(58) 

and thus allow values of e to be calculated over this region. 
X 

12 



The elimination of v among Eqs. (50) through (54) allows us to 
p 

write the e = e(p, v, vx, A) relationship for the reacting explosive as 

0 
e - e 

X 
. (59) 

. c 0 0 
with q(a1 , ••• ac) = .-(l:l ai (ep) { - e) and ex given by Eqs·. (55) and (58). 

Equation (59) is used to calculate A along a particle path with values 

of e, p, and v supplied by a Lagrange analysis, and values of v (p) and 
X 

e (p) calculated along the isentrope passing through the shocked state. 
X 

It is therefore necessary to calculate the eq~ation for the isentropes 

of the explosiv~ in the (p - v) plane. The isentropic condition, 

de = -pdv and the differential form of Eq. (55) give the follm·ling x x' 
differential equation for the.isentropes 

v dp + (r + l)pdv = -r dg 
X · X 

Equation (60) can be integrated to give 

where 

r-H 
pv 

X 

v 

1 .=v {Hx f-1 },H vx g dvx 

X 

~ -r [vrg] :x + r21 
v 

X 

(60) 

(61) 

(62) 

~.fuen the Hugoniot curve of the explosive is knmm, 1 can be evaluated, 

F.quation (61) can be used to determine v as a function of p along an 
X 

isentrope, and Eqs. (55) and (58) can be used to calculatP. the correspond-

ing values of e (p). 
X . 

13 



E. t1ie-Gruneisen Equations of State for Condensed Explosive 

Mie Gruneisen equations of state of condensed explosives constructed 

in the present work with different Hugoniot curves will now be presented. 

1. Hugoniot Curve Used in Hodel Similarity Solution 

(E/o-l)(E/o+l) . 
When D = Di (uH/ui) and pH can be \'ITJ..tten as 

= B(v0
- v )_n with n = E/o, as in the model similarity solut:ton, 

X X ... 
g(v ) 

X 

is given by the equation 

g(v ) = ! [ cr + 2) (vo 
X f 2 X 

V ) n+l _ vo(vo )n] - vx X X X 

and the integral 

-Jvx B 
l=r 

H 
v 

X 

f-1 
v 

X 

+ 2) (vo 
2 X 

dv 
X 

must be evaluated to obtain the relationships v (p) and.e (p) along 
X X 

an isentrppe. Examining Eq. (64)-leads to the conclusion that 1 

can be evaluated in closed .form, either.when r is arbitrary .and n is 

an integer, or when f ~ 1 and n is arbitrary, The latter case is 

considered here because a.value of n = 2.7 gives a good fit to the 

experimental Hugoniot curve of cast TNT in the 20-150 kbar region. 

We now evaluate the terms in Eq. (61) when r = 1. The first tet"m on 

the right-~and side of Eq. (61) is written as 

v 

H 
v 

X 

= - ~I 3(v~ - vx)n+2- 5(v~ - vx)n+l 

I' v 

H 
v 

X 

14 

(63) 

(64) 

(65) 



and the integral is written as 

I · B[ 3 (vo 
= -: 2 (n + 2) x 

v )n+2 - 2 
X 

0 

vx o vx)n+l) 
(n + 1) (vx-

The equation for the isentropes can then be written as 

v 
X 

[
pvx2] H = ![ 3(n + 1) (a·_ v )n+2_ 

·2 (n + 2) vx x 

2. 

v 
X v 

H 
v 

X 

Linear D = aH + bHuH Hugoniot Curve 

v 

H 
v 

X 

When the explosive is· assumed t,o have a linear D-u Hugoniot 
H 

curve of the form 

the shock pressure is given by the equation 

(vo - vx) ·x 

with ~ = aH/bH and BH = .(1-bH) /bH. Combining Eqs. (69) and (58) 

gives the equation for g(vx)· as 

~ 
g(v) = 2 

(vo - v )2 
X _.::;X:....__.:....;X_-=-

(BHVO + V )2 
X X 

A3.. v (v
0 

- v ) 
H X X X 

l' (BHv
0 + v )

2 
X X 

15 

(66) 

(67) 

(68) 

(69) 

(70) 



Here again, to obtain an explicit expression for the isentropes we set 

f = 1, and use Eq. (70) to perform the integration in Eq. (62). In this 

case, I can be written as 

I = l A2 I - v 0 . A_I 
2 -ll 1 X -ll 2 

where 

(v - v ) 
X X 

[ 

0 

and 

2vx + 2(BH + 1) v~ ln{BHv: + v)] :x 

v 
X 

The equation for the isentropes can thus be written as 

v 
X 

H 
v 

:X. 

+ I 

(71) 

(72) 

(73) 

(74) 

with g given by Eq. (70) and I given by Eq. (71) through (73). Having the 

equ;;ttions:fe~ calculating vx(p) and ex(p) along a particle path, we can 

now consider the calculation of A. 

F. Calculation of A. in our RFLA 

It is clear from Eq. (59) that a value of q(a
1

, ••• ac) must be known 

before A can be calculated in a RFLA. It is also clear that the 

heat of reaction will vary along a particle path if the relative 

composition alsovaries. We bypass this complication, however, hy 

as!?Uming that the relative composition is fixed along a particle path 

and set q(a
1

, ..• a) = q(h) accordingly. We use the superscript A to . c 
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denote quantities evaluated along a particle path, and use H as both a 

superscript and a subscript to denote quantities evaluated along the shock 

path. Combining the equation for energy along a particle path 

A 

v 
A 

JH 
A 1 0 vH) 0 

pdv (75) e - e = - + 2 pH(vx X X 

v 
X 

with Eq. (59) gives the following equation for· calculating the reaction 

coordinate along a particle path 

A 

v 

JH 
+ 

v 
X 

pv J 
(k _x l)j 

A PH . 0 
pdv - -(v 2 X 

e + 
X 

H 
- v ) 

X 

p(v - v ) 
X 

(k 1) 

At this stage q(h) must be known before Eq. (64) can be used to 
A 

calculate A from the Lagrange flow variables and from an isentrope of 

the condensed explosive. Values of q(h) must be compatible with the 

conditions 0 < A < 1 when oA/ot = 0. They were chos~n to make A = 1 

when 3A/3t = 0, and were calculated by setting A = 1 in Eq. (76) when 
A A 

the flow satisfiP.n the equation v 3p/3t = - kp3v/3t expressing the 

~ondition that 3A/3t = 0. 

G. Similarity Solution Hodeling a Shock Initiation Process 

(76) 

We are now in a position to calculate the reaction coordinate and 

the reaction rate in our similarity solution based on the particle 

velocity tield defined .by Eq. (32). For the sake of eimplicity in 

performing these calculations however, another equation of state was 

constructed for the explosive to eliminate the iterative process needed 

17 



to ca·lculate vx as a function of p f_rom Eq. (67) when the explosive is 

described by the Hie-Gruneisen equation. In this construction an 

isentropic (p - v )· relationship was chosen to model the isentropes 
X 

, given by the Mie-Gruneisen equation, and the first law of thermodynamics 

was integrated using the Hugoniot curve as a boundary condition to obtain 

an ex(p, vx) relationsh~p for the explosive. This isentropic relationship 

was written as 

p (77) 

where the superscript f denotes quantities evaluated on the p = O.isobar, 

and r is a parameter to be evaluated: The volume vf is a function of 
X 

pH and is therefore constant alongAan isent~ope, but it must be calculated 

for each isentrope. Integrating de = - pdv from the Hugoniot with 
X X 

Eq. (77) gives the equation for the energy along an isentrope as 

(vf - v ) 
X X 

(r + 1) 

Th t . f 1 1 t' f d i d b i values of ef e equa 1on or ca cu a 1ng v was er ve y equat ng 
X X 

computed. for two different processes. One of these was the dynamic, 

(78) 

adiabatic process of shock compression followed by isentropic release, 

and the other was the static addition of heat at p = 0. The change in 

energy in the dynamic process was written as 

f 0 
e - e 

X X 
(79)" 

VH) ~~s · b h i d h ~ g1ven y t e Hugoni~t equat on, an w ere 
X 

f H 
(v - v ) 

X X 

(r + 1) 
(80) 
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is given by Eq. (78). Combining the equation for ef - e 0 in the heating 
X X 

process 

f 0 
e - e 

X X 

0 
(c ) f 

X 0 -- p (v 
f X X 

and Eq. (80), after some r.earrangement, gives the following equation 

for calculating v; along ail isentrope passing through pH 

0 0 
where ex denotes the sound speed in the unshocked explosive and px 

denotes its initial density. Equations (77), (78), and (82) provid.e 
A A A 

the values of v = v (p) and e = e (p) for the calculations of A 
X X X X 

with Eq. (76). The agreement between isentropes constructed from 

Eq. (67) and isentropes constructed from Eq. (77) and (82) shows that 

these equations provfde an excellent model of the Hie Gruneisen solid 

for calculating A. 

Compatible values of r and s/6 must be chosen before values of A 

(81) 

(82) 

can be calculated with our similarity solutions. To satisfy thermodynamic 

constraints, these parameters must be chosen to make the Hugoniot curve 
. \ 

steeper than the isentropes in the (p - v ) plane.. We thus derive an 
1( 

equation for evaluating the ratio of the slope of the Hugoniot to the 

slope of an isentrope at a point on the Hugoniot. Differentiating 

Eq. (19) gives the equation for the slope o~ the Hugoniot curve as 

(s/o)pH 

(v~-v:} 

19 
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and differentiating Eq. (77) gives the equation for the slope of an 

isentrope at a point on the Hugoniot curve as 

(84) 

The ratio of the slopes of the Hugoniot and an isentrope at a point on 

the Hugoniot can then be written as 

(85") 

For a given value of e/o we choose the value of r to make 

[ (dp/dv )/('dp/'dv ) ] > 1 at the initial shock pressure because 
X X s H 

f o o H . 
(v - v ) / (v - v ) increases along .. the Hugoniot curve as pH increases. 

X X X X 

We set a limit on r at the initial shock pressure by setting 

[ (dp/dv )/('dp/'dv ) ] = 1 in Eq. (85) and solving Eq. (85) and (82) for r. 
x_ x s H 

Plots at the Lagrange distances 4.71 I1Ull, 10.12 min, and 12.75 nun 

made from the similarity solution .with the following set of parameters 
A 

(e/o = 2.7, c/b = 6/17, a= 4 ~s,-m = 28, ~ = 0.85, n = 0.6, and r = 2.75) 

are. shown in Fig. 1 through 8. Examination of these figures shows that 

the flow exhibits similar. features to those given by the previous 

similarity solution. Because this type of flows has been discussed 

already (3) it will receive no further attention in this report. 
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III RESULTS AND CONCLUSIONS 

The Lagrange gages and RFLA developed in the present program have 

put multiple Lagrange gage studies of shocked explosives on a firm 

foundation. We are now in a position to calculate flow fields and 

reaction rates in PBX9404, TATB, and RX26 from the Lagrange histories 

that have already been recorded in these explosives at LLNL. We suggest 

that these calculations be performed at LLNL as the first step in any 

work undertaken to continue the Lagrange Gage program. The calculated 

reaction rates must then be used to formulate rate laws .for PBX9404, 

TATB, and RX26 in terms of the compressed state variables. We suggest 

that this work be performed at SRI as the second step in the continuation 

of the program. 

It is then necessary to determine if the calculated reaction rates 

provide an insight into the decomposition of these shocked explosives. 

Correlation of the reaction rates in RX26 with the reaction rates in 

PBX9404 and TATB can be taken as evidence that Lagrange gages studies 

provide the information needed to provide an insight into the decomposition 

of shocked explosives. 

It is also necessary to determine if the calculated rate laws 

realistically describe explosive decomposition in hydrocodes. This can 

be done by testing the abilities of the rate laws to predict flow 

histories in types of flow different from those used in their formulation. 

Successful predictions in these test calculations can be taken as evidence 

that the rate laws are realistic and support the continued use of Lagrange 

gage techniques to determine rate laws in other.explosives. But 

unsuccessful predictions lead to the conclusion that rate laws must be 

constructed from reaction rates calculated from different types of flow. 

In this case, the determination of rate laws by Lagrange techniques may 

not be cost effective because too many experiments are required to make 

the determinations. 
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Although Lagrange techniques may not be cost effective for rate 

law determinations, we recommend continuing Lagrange gage studies of 

shocked explosives to provide the data required to: 

(1) Test constitutive relationships and rate laws 

used for shocked explosives in hydrocodes. 

(2) Extend the domains of the pressure-volume plane 

over which the mechanical equations of state of 

detonation products are known. 

(3) Quantify and understand the final build-up to 

detonation in the shock initiation process. 
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