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ABSTRACT

The theoretical work in this report is concerned with a reactive
flow Lagrange analysis (RFLA) for shocked explosives that was formulated
and developed at SRI International and Lawrence Livermore National
Laboratory (LLNL). This RFLA takes a set of Lagrange particle velocity
and pressure histories recorded in shocked explosive as input and calcu-
lates the flow fields in the explosive and its global rate of decomposition.
A'similarity solution modeling a type of initiation observed in PBX9404
and incorporating a realistic description of shocked explosive"was con-
structed to. provide a means of testing the computational procedures used
in the RFLA. These procedurés and the RFLA were validated in test calcu-

lations performed with the similarity solution at LLNL.
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I SUMMARY

The long-range objective of this research is to develop the basic
understanding of detonation that .is essential for the improved control
and effective use of explosives in military applications. Lagrange gage.
studies of the initiation and propagation of detonation were undertaken.
jointly by SRI and LLNL to provide the information required for such an
understanding of explosives. In these studies, the experimental work
was performed at Lawrence Livermore National Laboratory, and the majority

of the theoretical work was performed at SRI International.

The experimental studies pefformed at LLNL during the present program
have resulted in the development of particle velocity and stress gages for
recording Lagrange histories in the shocked explosive environment. These

.

Lagrange histories provide the information to:
® Establish the hydrodynamic phenomenology of
the shock initiation process.
® Validate reactive hydrodynamic codes.
® (Calculate the global reaction rate of the
shocked explosive.
The theoretical studies performed at SRI and LLNL during the present
program have resulted in:
® The formulation of a constitutive relationship for
slhivcked reacting cxploasive.

® The incorporation of a realistic description of shocked
reacting explosive into a similarity solution modeling
a type of initiating flow observed in shocked PBX9404.

® The development and validation of a RFLA for calculating
- global decomposition rates of shocked explosives from a
serles of particle velocity histories and a pressure
history.
Formulation of this constitutive relationship and validation of this RFLA
were presented in papers (1,2) at the Seventh Symposium (International)

on Detonation held June 16-19, 1981 at the United States Naval Academy,
‘Annapolis, Maryland.



IT THEORETICAL WORK

A. Introduction

In the theoretical wqu performed at SRI under the current contract,
a realistic description of shocked reaéting explosive was incorporated
into a similarity solution modeling a type of initiating flow observed in
shocked‘PBX9404. A realistic description of the explosive was obtained
by incorporating a Mie Gruneisen equation of state for the solid, and a
polytropic equation of state for the reaction products into the consti-
tutive relationship for. shocked explosive developed earlier in the '
program (1). - For the purposes of the similarity solution, the decompo-
sition reaction was assumed to produce reaction products with a fixed
relative combosition along a particle path and also was assumed.to proceed
to completion. The constitutive-relationship and model .similarity.
solution were used in calculations at LLNL (2) to test the validity of our
RFLA for calculating the flow fields and reaction rates in a shocked

explosive from a set of particle velocity histories and a pressure history.

Such model solutions to the flow equations are convenient for testing
procedures used to calculate flow and .thermodynamic variables in a RFLA.
They provide a means for determining the best methods for estimating flow
derivatives from Lagrange histories recorded in the type of flow modeled
by the solution. The accuracy of schemes. of estimating the flow derivatives
needed to integrate the flow equations, and the accuracy of the methods

used to calculate the reaction rate are tested as follows.

Lagrange analyses are first performed with a set of flow histories
generated from the .solution, and then the flow variables and reaction rates
calculated in these analyses are compared with those given by the solution.
We first prescnt the model similarity solution and then the comstitutive

relationship that was incorporated into it.



B. Construction of the Similarity Solution

The similarity solution was constructed using differential geometry
and Lie-group-theory. The procedure used before to construct a model
similarity Solutio; (3) was extended by.removing the constraint that the
constitutive relationship of the shocked reacting explosive be invariant
under the Lie group G admitted by the flow equations.and the Rankine-
Hugoniot (RH) jump conditions. The removal .of this constraint on the
constitutive relationship allows a realistic description of the explosive
to be incorporated into the similarity solution. We now present the
similérity solution. The details of this construction will not be

presented however, because they will be given in another paper.

Our similarity solution is based on the assumptions that the shock
is a nonreactive discontinuity and that the one-dimensional flow induced
by the shoék is adiabatic and inviscid. To describe this type of flow
we let t, h, D, u, v, p, e, and A denote time, Lagrange distance, shock
velocity, particle velocity, specific volume, pressure, specific internal
energy and the fraction of unreacted explosive. We also use the super—
script o to denote the initial unshocked condition; and the subscript i
to denote the initial shocked condition. .In this case, the equations
expressing the conservation of mass, momentum, and energy in'the one-

dimensional flow behind the shock can be written as

oV _ o du ”
EY v h (1)
du _ _ o29dp : : i
3t ¥ Bh (2)
de _ _ oV ' ‘ay
-a—E =. P Bt ) (3)

and the RH jump conditions as

v’D = v(D - u) (4)
u2 = p(vo - v) _ ) (5
e - e =20 - v) ‘ ‘ (6)



Our similarity solution was constructed in terms of invariants of the
infinitesimal generator of the Lie group admitted by Eq. (1) through (6).

It can be written in terms of the similarity parameter

A - t/a)

" T | -7
as

u = um/a - w/e°lP | (8)

v - v = vy - v /a - we® | (9)

p=p R/ - /&) (10)

e - % = (e, - EM/Q - b/B)/P | (11)

where o denotes a characteristic. time, B denotes a characteristic
disfance, a, b, ¢, 6, 8; and . f are group parameters, and the functions
u(n), -v(n), P(n), and E(n).are related by the flow equations (1) through
(3). Equations (7) through (11) are written so that n = 1 and V(1) =
U(1) = P(1) = E(1) along the shock path. . ‘

We now derive equations for the shocked state, denoted by the
subscript H, and use the RH jump conditions to derive relationships
among the group parameters. The equation for the shock trajectory is

obtained as

1 -n/8) = @ - t/y®? | (12)

n

by setting n 1 in Eq. (7), and the equations for the shocked state as

u

_ i '
LAY )
(v, - vo)
v, - v% = —= \ (14)
I‘ a-wedt '



i
Py = (15)
B 1 - w/pye/?P
(e, - €% '
o i
e, - e = ————7 : (16)
H - h/B)f/b

by setting u =u_ and U(n) =1, v = Yy and V(n) = l,.p = Py and

H
P(n) =1, and e = ey and E(n) = 1, respectively, in Eqs. (8), (9), (10),

and (11).

Differentiating Eq. 12 gives the followihg equatiohs for the shock

velocity D

b/a-1 - D. 1-a/b

D = Di(l - t/a) l(1 - h/B) (17)

where the initial shock velocity D, is related to o .and B by the equation

i

Di = bR/ad. Combining Eqs. (13) and (17) then gives the equation relating
shock velocity and shock particle velocity as

(a=b)/c

uH .
D= Di <:—> (18)
1

and combining Eqs. (14) and (15) gives the corresponding equatibn»for

the Hugoniot curve in the "(p-v) plane as

eﬂ/ )

=
pH = B(1 VH/V ) (19)
_ .__5. 8/6
where B = pi/(l - Vi/V ) . It follows from Eqs. (18) and (19) that

(a = b)/c and €/b must be related because D and py are related by the
RH jump conditions. Relationships among the group parameters a, b, c,
§, e, and f are obtained by combining Eqs. (13) through (17) with the

RH jump conditions written as

(vo_— VH) D = v°uH (20)
vpy = Duy o (21)
2(ey - %) = pH(VO - vy : (22)



Substituting Eqs. (13) through (17) into Eqs. (20) through (22) shows
that the following relationships

a+8d=>b+c (23)
a+c=b+c¢c (24)
f=8+c¢ , A . (25)

are imposed on the group. parameters by the conservation of mass, momentum,
and energy across the shock discontinuity at the wave front. The addition

and substraction of Eqs. (23) and (24) gives the equations

2(a - b)
2c

e -6 (26)
e+ 6 (27)

that allows us to write the relationship between shock velocity and

particle velocity in terms.of €/6 as

. (e/6~-1)/(e/6+1)
) <uH> (28
D,  \u, )
i 1

The relationships. imposed on the functions U(n), v(n), P(n), and
E(n) by the conservation of mass, momentum, and energy are obtained by.
combining Eqs. (7) through. (11) with the flow equations (1) through (3).
Substituting the flow derivatives obtained by differentiating Eqs. (7)
through (11) into Eqs. (1) through (3). and téking account .of Eqs. (23)
through (25) leads to the following differential equations, expressing

the conservation of mass, momentum, and energy, that relate U, V, P, and E

av du

c
= == = 2 )
an n an + " U (29)
LU
an n an + - P (30)
dE _ . dv ‘
an 2p an (31)

It follows from Eqs. (29) through (31) that the specification of
Uwor V or P is sufficient to determinc a particular flow. When U is
specified, the integrations of of Eqs. (29) and (30) give respectively
.V and P, and the integration of Eq. (31) gives E. Similarly, when V is
specified, the integrations of Eq. (29) and (30) give respectively U and P,



Formal integration of Eqs. (29) through (31) gives the expressions

for V, P, and E in terms of U as

n
V=nU - (l-c/a)/U dn . (35)
1 ’ '
n
Png/a=1+_/-n(€/a"l)—g-Il dn (36)
. n
1 "
n .
- c du -
E—l+2fP [aU+ndn] dn ' (37)
1 o

Equations (33) and (34) were used to evaluate the integrals in

Eqs. (35) through. (37) and determine the functional dependence of V, U,

n
and E on n. The integral Il=/ U dn in Eq. (35) was written as
1
{1l =-m
n=(+5"y,) a-v
T U PR N B e QO P (38)
2 |12 " 3 z N _

and the equation for P obtained by integrating Eq. (36) was written as

P=A ﬁe/a + B2 - Cn + F (39)

with A=1-B+C-F, B=m/2(c/a+2), C=m/(c/a + 1), and

F = mUl/Z(E/a). Equation (37) was rewritten for convenience as

E=142(I +1) (40)



and the integration of Eq. (31) gives E. When P is specified, the
integration of Eq. (30) gives U, the integration of Eq. (29) gives V,
and E again follows by integrating Eq. (31).

D. Flow Modeling a Shock Initiation Process

Our model similarity solution for. shock initiatiqn is expressed in
terms of U because .a set of particle velocity histories are measured in
the Lagrange gage experiments.' In constructing the present solution,
an expression for dzU/dn2 was chosen to similate significant features of
some particle velocity histories recorded in PBX9404. This expression.
was integrated to determine the corresponding expressions for dd/dn and
U, and Eqs. 29 through 31 were integrated to determine expressions fof
V, P, and E. The solution was based on the equation

d2U

dn2

= n(n - n) (32)

because the experimentally determined particle velocity histories exhibit
a maximum and a .point of inflection. 1In a-particular solution, m is
constant, and .the point of inflection in the particle velocity occurs
along a particle path when n = n. The equations for dU/dn and U obtained
by integrating Eq. (32) were written as

v _m ;2 = |
an -2 (n 2nn+1U) ‘ (33)
and .
m,l 3 = _2
U—1+2(3Tl—nn +Uln-U2) | (34)
where

A

Ul =2nn - nz, U2 = (1/3 + U1 -~ n), and 1 locates the maximum in

particleAvelocity along a particle path.



with -

n
=% / <AUn_€/a + BN - cn U+ FU) dn ~ " (41)
1
and
n ,
- 1-&/a du 3 duv _ .2 du du
I, = f (An an + Bn an Cr‘] an + Fn dn)dn_ (42)
1 /
The identity
n" '%% = 4" - ™ U (43)

was used to convert TZ into a form similar to Tl and the equation

for E was rewritten as

E—l=2(TA+TB—TC+TF) , (44)
with
n
TA = A [nl-&:/aU -1 = (L ~-c¢/a - c/a) f n—elaU dn] (45)
: 1
n .
TB = B' [n3U -1-(3 -c/a) / an dn} (46)
1
n . ‘
TC =C [an -1« (2 - c/a) f nu dn] (47)-
1
n
TF T [nU -1~ (1 - c/a) f U dn] (48)
1



1

S S Gl A Y A= R
n#l © n+ 1 2 n

<:;—<ﬁ (™ -y - iy (0 - 1)>

n
We then set In+ =~/. nnU dn and used the equation
1

g

U. .
m 1 ( n+2 )
3 ary 0 1 (49)
with n=-e/a, n =2, nn=1, and n = 0, to evaluate .respectively the
1-¢/a’ I3, 12, and I1 in Eqs. (45), (46), (47), and (48).

These equations for E were programmed .into a code .for making Lagrange

integrals I

plots of the flow variables. They were checked by comparing calculated
values of internal energy against values obtained by integrating Eq. (31)

numerically.

When the expressions for U, P, V, and E are known, the initial
shocked state must be specified, and values of the group -parameters and
the flow parameters m, n, and a must be assigﬁed.béfore flow fields can
be calculated fof a particular. solution. Values of Py and Di and /8
were first assigned to ensure that shocked states described by the solution
are representative of those attained .in a real explosive. These values
were based on the linear relationship between shock velocity and shock
particle velocity for cast TINT, D = 2.3 + 2,15 U given by Dremin (4).

with Py = 20 kilobars and D, = 3 mm/us, the values u; = 0.414 mm/ys and

vi/vo = 00,8620 g/cm3 were'cilculated from the jump conditions. The ratio
€/8 = 2.7 was then chosen to.ensure that shocked states at the front of
the wave match those governed by Dremin's linear relationship in the
20-110 kilobar rcgion. In this case B = 4201.04 kilobars in Eq. (19) and
the exponent of:the shock particle velocity in Eq. (28) (e/8 -1)(e/8§ +1) =
0.4594, The values €/b = 6/7.and o = 4us were then chosen to define the

~variation of the shocked state with distance. In this case, 6/b = 6/18.9,

- 10



24/18.9 and c¢/b = 11-1/18.9. The
3mm/us then gives B = 1524 mm.

and Equations (26) and (27) give a/b

initial condition Di = bB/ac with D

i
Another procedure was used at LLNL to chose the group parameters in the

similarity solution used to test our RFLA. In this procedure, o, B, Di’
and €/§ were first specified, then - the initial condition was used to
calculate a/b, and Eq. (26) and (27) were used to calculate c/b, §/b,
and €/b. |

~

With the shockgd state defined, values of ﬁ, N, and m must be
assignfd to define the flow attained behind the shock., The values of
ﬁ and n must be chosen to satilsfy the'condition'Zﬁ >1 + a to ensure
that the particle velocity profiles exhibit maxima. In the present case,
we set n = 0.85 and,a = 0.6. The value of m = 36 was chosen to ensure
that a particle is further compressel as it leaves the shocked state and

that its path in the- (p-v) plane lies to the right of the Hugoniot curve.

D. The Constitutive Relationship for Shocked Reacting Explosives

Our model of shocked explosive is based on the idea that reaction
starts in hot spots and then propagates into the bulk of the explosivé.
The reaction propagates because heat -is transferred between the hot
reaction products and the explosive,; but it is assumed that no appreciable'
amount of heat is transferred into the bulk of the explosive. The explosive
and its reaction products are treated as phases that are governed by their
own equations of state and attain mechanical, but not thermal, equilibrium.
Under the assumption that no appreciable amount of heat is transferred into
the bulk of the explosive, the explosive'is compressed and released
isentropically ae the reaction proceeds, and the pressure increases or

decreases along a particle path.

With the notation already introduced, we let the subscr#ipts x and p
denote explosive and its products and write the specific internal energy

and the specific volume of the reacting explosive as

e Xep + (1-- )\)ex . (50)

<
1]

va + L= Ny | ' (51)

11



Under the assumption of mechanical equilibrium, P, = pp = p, we write the

equations of state of the explosive and its products as

—_ o =
e, =e + ex(p, Vx) ‘52)
_ <C ) ~
e, = Zl rai(ep)i + ep(p, Vo ul,...ac) (53)
where o

l""ac’ denote the mass fractions of the reaction products. We
assume for the sake of simplicity that the detomation products are. poly-
tropic with a constant index k, and that the explosive is a Mie-Gruneisen

solid with a constaant Gruneisen parameter I'. 1In this case,

pv
~ —
e = —F 54
p (k-1) (54)
and .the equation of state of the solid can be written as
PV,
T Tty | | (>3
The equations for the pressure and energy along the Hugoniot curve,
written formally as,
P = pyv,) - : (56)
Py (v.) '
~ _ 'H X o _ ‘
®x T 2 (vx vx) ‘ (57)

define the function g(vx) over the region spanned by the Hugoniot curve

as

P, (v ) ‘ :
g(v)) = — 2 ;<r 1 2> W2 = v) =0 (58)

and thus allow values of éx to be calculated over this region.

12



The elimination of vp among Eqs. (50) through (54) allows us to

write the é = e(p, v, Vs A) relationship for the reacting explosive as

X p(v - vx)

v
e —e = =) q(OLl,...OLC)+ex —(E—:—l—)]+ ex+-(—k-—_1—) (59)

with q(al,...ac) =.—(Zi ui(eg)i - E:) and e given by ﬁqs. (55) and (58).
Equation (59) is used to calculate A along a particle path with values
of e, p, and v supplied By a Lagrange. analysis, and values of vx(p) and
Ex(p) calculated along the isentrope passing through the shocked state.
It is therefore necessary to calculate the equation for the isentropes

of the explosive in the (p - v) plane. The isentropic condition,

dEX = —pdvx, and the differential'form of Eq. (55) give the following

differential equation for the. isentropes
dep + (T + 1).pdvX = -T dg ' (60)

_ Equation (60) can be integrated to give

R : ' X% v 2
v - oy <"§>F'l=-F [vrg] *+ T (61)
H
v
x
where )
v
x
1 = er_l g dv, (62)
H
v
x

When the Hugoniot curve of the explosive is knowvn, I can be evaluated,
Faquation (61) can be used to determine v, as a function of p along an
isentrope, and Eqs. (55) and (58) can be used to calculate the correspond-

ing values of Ex(p).

13



E. Mie-Gruneisen Equations of State for Condensed Explosive

Mie Gruneisen equations of state of condensed explosives constructed

in the present work with different Hugoniot curves will now be presented.

1. Hugoniot Curve Used in Model Similarity Solution

When D = Dj(uH/ui)(E/d—l)(€/6+l) and py can be written as
Py = E(v:- vx)n with n = €/8, as in the model similarity solution, g(vx)

is given by the equation

_.E (T + 2) o _ ntl o, 0 _ n
glv, ) = T [————2 (v, vx) vx(vx vx) J (63)
and the integral
rv
x A
_.E' T=1 | (T + 2) o _ n+tl o0, 0 _ n
I = T v, [——TZ——_ (v vx) vx(vx vx) ] dvx (64)
H
v
x

must be evaluated to obtain the relationships>vx(p) and"ex(p) along
an isentrope. Examining Eq. (64) leads to the conclusion that I

can be evaluated in closed form, either when I' is arbitrary and n .is
an integer, or when I' = 1 and n is arbitrary, The latter case is
considered here because a.value of n = 2.7 gives a good fit to the
experimental Hugoniot curve of cast TNT in the 20-150 kbar region.
We now evaluate the terms in Eq. (61) when ' = 1. Thg first term on

the right-hand side of Eq. (61) is written as

+ 2(v:':)2(v; - vx)“} ‘ (65)



.9

and the integral is written as

o v
. B 3 o n+2 Vi o n+l
I_'Z[(n+2) (Ve = v 2D Vv ]
H
v
X
The equation for the isentropes can then be written as
v
X _
2 _B|3(mn+1) .o _ n+2 (5n + 3) o, o n+l
[pvx] —-2[ (n+ 2) (vx vx) (n+ 1) vx(vx vx)
H
v
X v
+ 2(vo)2(v0 -v )n]
X X X
H
v
X
2. Linear D = ay + bHuH Hggonlot Curve
Hugoniot

When the explosive is assumed to have a linear D-uH

curve of the form

D = aH + bHu

H
the shock pressure is given by the equation

(v> - v.))
X X

2
Py = Ay
H . o 2
(BHVX + VH)
with AH = aH/bH and BH =A(1—bH)/bH. Combining Egqs. (69) and (58)

gives the equation for g(vx)'as

By ORmwt v Gh-v)
2

x -

g(Vx) = 0 2 . o, 2
(BHVX + vx) 1 (BHVx + vx)
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Here again, to obtain an explicit expression for the isentropes we set
I = 1, and .use Eq. (70) to perform the integration in Eq. (62). In this

case, I can be written as

_ 3,2 _ Lo
=gy Ty - v 8, (71)
where
S o . o "
I == | ——=— =2v +2 : +
1 . RS v (BH + 1) v 1n(BHvx vx) (72)
H x X H
v
X
v
and (VZ _ Vx) . X |
12 = - 5 o )2 + 1n(BHvX + vX) < (73)
H x X H
v
X
The equation for the isentropes can thus be written as
v
X
2 H, 2 :
v, — pyv) = - [vxg] + 1 (74)
H , :
v
%

with g§ given by Eq. (70) and T given by Eq. (71) through (73). Having the
equations fer calculating vx(p) and Ex(p) along a particle path, we can

now consider the calculation of A.

F. Calculation of A\ in our RFLA

It is clear from Eq. (59) that a value of q(ul,...ac) must be known
before A can be calculated in a RFLA. It is also clear that the
heat of reaction will wvary along a particle path if the relative
composition also varies. We bypass this complication, however, hy
assuming that the relative composition is fixed along a particle path

~and set q(a ..ac) = q(h) accordingly. We use the superscript " to

1"

16



denote quantities evaluated along a particle path, and use H as both a
superscript and a subscript to denote quantities evaluated along the shock

path. Combining the equation for energy along a particle path

< >

A ~

o 1
e eX = - pdv +

H
2 pH x Vx) _ (73)

with Eq. (59) gives the following equation for calculating the reaction

coordinate along a particle path

~ T ~ PV, ~ plv - Vx)
A[‘l(h)““‘»"x“(k-l)} =t ®<oD

A Py ..
H, o H
+ / pdv - 2—(vx - vx) , (76)
H

At this stage q(h) must be known before Eq. (64) can be used to
calculate ; from the Lagrange flow wvariables and from an isentropé of
the condensed explosive. Values of q(h) must be compatible with the
conditions 0 < X < 1 when 9A/0t = 0. They were chosen to make ; =1
when 3A/3t = 0, and were calculated by setting X = 1 in Eq. (76) when
the flow satisfied the equation ; op/ot = - kgav/at expressing the
condition that dA/9t = O. .

G. Similarity Solution Modeling a Shock Initiation Process

We are now in a position .to calculate the reaction coordinate and
the reaction rate in our similarity solution based on the particle
velocity tield definedfby Eq. (32). For the sakc of egimplicity in
performing these calculations however, another equation of state was

constructed for the explosive to eliminate the iterative process needed

17



A

to calculate v, asa function of p from Eq. (67) when the explosive is
described by the Mie=Gruneisen equation. In this construction an
isentropic (p =~ vg)'relationship was chosen to model the isentropes

given by the Mie-Gruneisen equation, and the first law of thermodynamics
was integrated using the Hugoniot curve as a boundary condition to obtain
an Ex(p, vx) relationship for the explosive. This isentropic relationship

was written as

f 7 .r
(VX B VX
P= Py F Hr 77
(v, =v)
X X

where the superscript f denotes quantities evaluated on the p = 0.isobar,
and r is a parameter to be evaluated. The volume Vi is a function of

Py and is therefore constant along an isentrope, but it must be calculated
for each isentrope. Integrating dex = - pdvx from the Hugoniot with

Eq. (77) gives the equation for the energy along an isentrope as

f ~ £ H
; _ eH _ (vx - Vx) _ (Vx B vx)
X b3 P (r + 1) Py (r +1)

(78)

The equation for calculating vi was derived by equating values of e,
computed. for two different processes. One of these was the dynamic,
adiabatic process of shock compression followed by isentropic release,
and the other was the static addition of heat at p = 0. The change in
energy in the dynamic process was written as

f o} f H H

.0 .
e —e =e =e +e =-¢ (79)
x X x x x X

H o_1 0 Hy o o3
where e e =73 pH(vX vx) is given by the Hugoniot equation, and where

(vf - VH)
of _ L B p X X (80)
X . X H (r +1)
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is given by Eq. (78). Combining the equation for ei - e:'in the heating

process
(c2) '
f o _ % o, f o
e eX =5 px(vx vx) (81)

and Eq. (80), after some rearrangement, gives the following equation

for calculating vi along an isentrope passing through Py

() p2(xr + 1) .
f x’ "x _ o H, (r -1)
(Ve = V) I py LR B A 2 (82)

where c; denotes the sound speed in the unshocked explosive and piv
denotes its initial density. Equations (77), (78), and (82) provide
the values of v, = ;X(p) and.ex = gx(p) for the qalculations of X
with Eq. (76). The agreement between isentropes constructed from

Eq. (67) and isentropes constructed from Eq. (77) and (82) shows that
these equations provide an excellent model of thelMie Gruneisen solid

for calculating A.

Compatible values of r and £/ must be chosen before values of A
can be calculated . with our similarity solutions. To satisfy thermodynamic
constraints, these parameters must be chosen to make the Hugoniot curve
steeper than thé isentropes in the (p - Vx) plane. We thus derive an
equation for evaluating the ratio of the slope of the Hugoniot to the
slope of an isentrope at a point on the Hugoniot. Differentiating

Eq. (19) gives the equation for the slope of the Hugoniot curve as

H
<§€_ > ML) - (83)
H .
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and differentiating Eq. (77) gives the equation for the slope of an

isentrope at a point on the Hugoniot curve as

‘<(%5) > =%p—H'ﬁ | (84)
S ) ’

. =-v)
X X

The ratio of the slopes of the Hugoniot and an isentrope at a point on

the Hugoniot can then be written as

‘ ' f 0,
dp/dvX _ /s 1+ (Vx -v_J
(EP/BVX) r

Sy

piS

(85)
IR

with (vf - vo)/(vo - VH) given by Eq. (82).
X X X X
For a given value of €/§ we choose the value of r to make

[(dp/av, )/(3p/3v,,
H
X
We set a limit on r at the initial shock pressure by setting

[(dp/dvxy(ap/avg)é] = 1 in Eq. (85) and solving Eq. (85) and (82) for f.

)s] > 1 at the initial shock pressure because
H

f (o} . .
(vx— vi)/(vy— v ) increases along. the Hugoniot curve as pH increases.

H
Plots at tﬁé Lagrange distances 4.71 mm, 10.12 mm, and 12.75 mm

made from the similarity solution with the following set of parameters

(e/8§ = 2.7, ¢/b = 6/17, oo = 4 yus, -m = 28, n = 0.85, a = 0.6, and r = 2.75)

are shown in Fig. 1 through 8. Examination of these figures shows that

the flow exhibits similar features to those given by the previous

simiiarity sqlution. Béqause this type of flows has been discussed

already (3) it will receive no further attention in this report.
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III RESULTS AND CONCLUSIONS

The Lagrange gages and RFLA developed in the present program have
put multiple Lagrange gage studies of shocked explosives on a firm
foundation. We are now in a position to calculate flow fields and
reaction rates in'PBX9404, TATB, and RX26 from the Lagrange histories
that have already been recorded in these explosives at LLNL. We suggest
that these calculations be performed at LLNL as the first step in any
work undertaken to continue the Lagrange Gage program. The calculated
reaction rates mustAthen be used to formulate rate laws .for PBX9404,
TATB,. and RX26 in terms of the compressed state variables. We suggest
that this work be performed at SRI as the second step in the continuation

of the program.

It is then necessary to determine if the calculated reaction rates
provide an insight into the decomposition of these shocked explosives.
Correlation of the reaction rates in RX26 with the reaction rates in
PBX9404 and TATB can be taken as evidence that Lagrange gages studies
provide the information needed to provide an insight into the decomposition

of shocked explosives.

It is also necessary to determine if the calculated rate laws
realistically describe explosive decomposition in hydrocodes. This can
be done by testing the abilities of the rate laws to predict flow
histories in types of flow.different from those used in their formulation.
- Successful predictions in these test calculations can be taken as evidence
that the rate laws are realistic and support the continued use of Lagrange
gage techniques to determine rate laws in other,exploéives. But
unsuccessful predictions lead to the conclusion that rate laws must be
constructed from reaction rates calculated from different types of flow.
In this case, the determination of rate laws by Lagrange techniques may
not be cost effectivg because too many experiments are required to make

the determinations.
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Although Lagrange techniques may not be cost effective for rate
law determinations, we recommend continuing Lagrange gage studies of

shocked explosives to provide the data required to:

(1) Test constitutive relationships and rate laws

used for shocked explosives in hydrocodes.

(2) Extend the domains of the pressure-volume plane
over which the mechanical equations of state of

detonation products are known.

(3) . Quantify and understand the final build-up to

detonation in the shock initiation process.

1

30



REFERENCES

(1) M. Cowperthwaite, "A Constitutive Model for Calculating Chemical
Energy Release Rates from the Flow Fields in Shocked Explosives,"
The Seventh Symposium (International) on Detonation, Volume I,
p 256, United States Naval Academy, Annapolis, Maryland, June 1981.

(2) H. C. Vantine, R. R. Rainsberger, W. D. Curtis, R. S. Lee,
M. Cowperthwaite, and J. T. Rosenberg, '"The Accuracy of Reaction
Rates Iriferred from Lagrange Analysis and In-Situ Gage Measure-
ments," The Seventh Symposium (International) on Detonation,
Volume II, p 593, United States Naval Academy, Annapolis,
Maryland, June 1981.

(3) M. Cowperthwaite, "Model Solutions for the Shock Initiation of
Condensed Explosives,' Symposium H.D.P., Behavior of Dense Media
Under High Dynamic Pressures. Paris, France, August 1978, p 20l.

(4) G. I. Kanel and A. N. Dremin, '"Decomposition of Cast Trotyl in

Shock Waves,'" Combustion, Explosion, and Shock Waves, 13 (1),
71, 1977.

31





