

# LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

ORNL/M--532/RI

DE88 017036

ENVIRONMENTAL SURVEILLANCE DATA REPORT FOR  
THE FIRST QUARTER OF 1988

T. J. Blasing  
K. L. Daniels  
P. Y. Goldberg  
B. M. Horwedel  
I. L. McCollough  
A. E. Osborne-Lee  
C. K. Valentine  
D. A. Wolf

Date Published: August 1988

Prepared by the  
Environmental Monitoring and Compliance Department  
Environmental and Health Protection Division  
Oak Ridge National Laboratory  
Oak Ridge, Tennessee 37831  
operated by  
MARTIN MARIETTA ENERGY SYSTEMS, INC.  
for the  
U.S. DEPARTMENT OF ENERGY  
under Contract No. DE-AC05-84OR21400

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## CONTENTS

|                                                              | Page |
|--------------------------------------------------------------|------|
| LIST OF FIGURES                                              | v    |
| LIST OF TABLES                                               | vii  |
| ACKNOWLEDGEMENTS                                             | xi   |
| EXECUTIVE SUMMARY                                            | xiii |
| INTRODUCTION                                                 | 1    |
| AIR                                                          | 3    |
| EXTERNAL GAMMA RADIATION                                     | 27   |
| WATER                                                        | 29   |
| Surface Water                                                | 31   |
| National Pollutant Discharge Elimination System Requirements | 51   |
| METEOROLOGICAL PROCESSES                                     | 77   |
| BIOLOGICAL MONITORING                                        | 83   |
| Milk                                                         | 83   |
| REFERENCES                                                   | 87   |

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## List of Figures

| Figure                                                                                 | Page |
|----------------------------------------------------------------------------------------|------|
| 1 Location map of the ORNL perimeter and Oak Ridge Reservation air monitoring stations | 4    |
| 2 Location map of the remote air monitoring stations                                   | 4    |
| 3 Location map of TLDs along the Clinch River                                          | 27   |
| 4 Location map of ORNL streams and sampling stations                                   | 30   |
| 5 Location map of NPDES monitoring points                                              | 32   |
| 6 Location map of Gallaher and Kingston sampling points                                | 33   |
| 7 Locations of meteorological towers at ORNL                                           | 78   |
| 8 Wind rose at 10-m level of meteorological tower A, January-March 1988                | 79   |
| 9 Wind rose at 30-m level of meteorological tower A, January-March 1988                | 79   |
| 10 Wind rose at 10-m level of meteorological tower B, January-March 1988               | 80   |
| 11 Wind rose at 30-m level of meteorological tower B, January-March 1988               | 80   |
| 12 Wind rose at 10-m level of meteorological tower C, January-March 1988               | 81   |
| 13 Wind rose at 30-m level of meteorological tower C, January-March 1988               | 81   |
| 14 Wind rose at 100-m level of meteorological tower C, January-March 1988              | 81   |
| 15 Locations of milk sampling stations near the Oak Ridge facilities                   | 84   |
| 16 Locations of milk sampling stations remote from the Oak Ridge facilities            | 84   |

## List of Tables

| Table                                                                                                  | Page |
|--------------------------------------------------------------------------------------------------------|------|
| 1 Long-lived gross alpha activity in air, January 1988                                                 | 6    |
| 2 Long-lived gross alpha activity in air, February 1988                                                | 8    |
| 3 Long-lived gross alpha activity in air, March 1988                                                   | 10   |
| 4 Long-lived gross beta activity in air, January 1988                                                  | 12   |
| 5 Long-lived gross beta activity in air, February 1988                                                 | 14   |
| 6 Long-lived gross beta activity in air, March 1988                                                    | 16   |
| 7 $^{131}\text{I}$ concentrations in air, January 1988                                                 | 18   |
| 8 $^{131}\text{I}$ concentrations in air, February 1988                                                | 19   |
| 9 $^{131}\text{I}$ concentrations in air, March 1988                                                   | 20   |
| 10 Tritium activity in air, January-March 1988                                                         | 21   |
| 11 Long-lived radioactivity in composited air filters from individual stations, January-March 1988     | 23   |
| 12 Long-lived radioactivity in composited air filters from individual stations, January-March 1988     | 24   |
| 13 Long-lived radioactivity in composited air filters from air monitoring networks, January-March 1988 | 25   |
| 14 External gamma radiation measurements at ORNL and reservation perimeter air monitoring stations     | 28   |
| 15 Summary of collection and analysis frequencies of surface and tap water samples                     | 35   |
| 16 Quarterly concentrations of radionuclides in surface streams and tap water, January-March 1988      | 37   |
| 17 Radionuclide concentrations in water around ORNL, January-March 1988                                | 39   |
| 18 Radionuclide concentrations in water at 7500 Bridge, January-March 1988                             | 44   |

**List of Tables (cont.)**

| <b>Table</b> |                                                                    | <b>Page</b> |
|--------------|--------------------------------------------------------------------|-------------|
| 19           | Flows for Clinch River and White Oak Creek,<br>January-March 1988  | 45          |
| 20           | Radionuclide concentrations and releases at ORNL,<br>January 1988  | 47          |
| 21           | Radionuclide concentrations and releases at ORNL,<br>February 1988 | 48          |
| 22           | Radionuclide concentrations and releases at ORNL,<br>March 1988    | 49          |
| 23           | NPDES Discharge Point X01, January-March 1988                      | 52          |
| 24           | NPDES Discharge Point X02, January-March 1988                      | 53          |
| 25           | NPDES Discharge Point X03, January-March 1988                      | 54          |
| 26           | NPDES Discharge Point X04, January-March 1988                      | 55          |
| 27           | NPDES Discharge Point X06, January-March 1988                      | 56          |
| 28           | NPDES Discharge Point X07, January-March 1988                      | 57          |
| 29           | NPDES Discharge Point X08, January-March 1988                      | 58          |
| 30           | NPDES Discharge Point X09, January-March 1988                      | 59          |
| 31           | NPDES Discharge Point X11, January-March 1988                      | 50          |
| 32           | NPDES Discharge Point X13, January-March 1988                      | 61          |
| 33           | NPDES Discharge Point X14, January-March 1988                      | 63          |
| 34           | NPDES Discharge Point X15, January-March 1988                      | 65          |
| 35           | NPDES miscellaneous source VC7002, January-March 1988              | 67          |
| 36           | NPDES cooling towers, January-March 1988                           | 68          |
| 37           | NPDES miscellaneous outfalls, January-March 1988                   | 69          |
| 38           | NPDES discharge point: category II outfalls,<br>January-March 1988 | 70          |

## List of Tables (cont.)

| Table                                                                 | Page |
|-----------------------------------------------------------------------|------|
| 39 NPDES discharge point: category III outfalls, January-March 1988   | 71   |
| 40 NPDES noncompliances, January 1988                                 | 72   |
| 41 NPDES noncompliances, February 1988                                | 73   |
| 42 NPDES noncompliances, March 1988                                   | 75   |
| 43 Concentrations of $^{131}\text{I}$ in milk, January-March 1988     | 85   |
| 44 Concentrations of total radioactive Sr in milk, January-March 1988 | 86   |

## **ACKNOWLEDGEMENTS**

**The authors of this report would like to thank several people who have been very instrumental in the publishing of this report. These individuals include J. D. Taylor and C. E. Nix.**

## EXECUTIVE SUMMARY

During the first quarter of 1988, over 1800 samples which represent more than 6,000 analyses and measurements were collected by the Environmental Monitoring and Compliance (EMC) Department. More than ten real-time monitoring stations, which telemeter 10-minute averaged readings of radiation levels, total precipitation, flows, water, and air quality parameters around ORNL also reported data. In addition, three meteorological towers sent weather data at various heights to a host computer every 15-minutes.

Real-time measurements of external gamma radiation are now being reported from several stations, including some recently activated or upgraded stations. Measurements this quarter indicate that external gamma radiation around ORNL is close to background, except at station 4, which is located between the Waste Treatment Plant and waste treatment ponds and therefore experiences higher levels of radiation.

Cobalt-60 concentrations in Melton Branch remained low, as they had been during the fourth quarter of 1987. Lack of discharge from the HFIR ponds is the apparent cause of the reduced concentrations, as these ponds appear to be the source of most of the cobalt-60 that does occur in Melton Branch.

Flow-weighted concentrations of radionuclides in surface water were found to be generally much lower than the DOE derived concentration guidelines except for tritium in Melton Branch. Tritium concentrations measured at Melton Branch Site 1 exceeded the corresponding guideline by 30% during March.

The effect of a prolonged shortage of precipitation is evident in the flow of the Clinch River. Flow for the first quarter of 1988 was less than half the corresponding value for the first quarter of 1987.

There were a total of 30 noncompliances associated with the NPDES permits during the first quarter of 1988. This was from a total of 2,292 samples, which represents a compliance ratio of greater than 98%. Three of the noncompliances involved low pH at the Acid Neutralization Facility during January and February. This situation has been addressed in an Energy Systems Quality Investigation Report. Where appropriate, corrective actions or investigations have been undertaken or are underway to address the other noncompliances. Eleven of the noncompliances involved suspended solids in Category II outfalls associated with the rain event of February 2. Because no appreciable precipitation had occurred since January 19, the samples taken on February 2 would be expected to contain the first-flush of several days accumulation of dust and other particulate matter from the areas drained by these outfalls.

## INTRODUCTION

The Environmental Monitoring and Compliance (EMC) Department within the Environmental and Health Protection Division (EHP) at the Oak Ridge National Laboratory (ORNL) is responsible for environmental surveillance to: (1) assure compliance with all Federal, State, and DOE requirements for the prevention, control, and abatement of environmental pollution, (2) monitor the adequacy of containment and effluent controls, and (3) assess impacts of releases from ORNL facilities on the environment.

To meet these objectives, the EMC Department has implemented a surveillance program that consists of both monitoring and sampling of environmental constituents. Monitoring provides continuous data for rapid screening of parameters. Sampling followed by laboratory analyses is usually recommended for routine surveillance rather than continuous monitoring. In general, monitoring systems are less sensitive and as a result have much higher detection levels than laboratory analysis. Laboratory analysis provides a quantitative estimate of concentrations or activities at environmental levels.

The surveillance program for 1988 includes sampling and monitoring of air, water from surface streams and point sources, fish, milk, soil, and vegetation (grass) for radioactive and nonradioactive materials. This report includes data for air, surface water, and milk. Surveillance points are located on-site to quantify discharges from ORNL facilities, and off-site to determine public exposures and to establish background reference levels.

The purpose of this report is to provide Laboratory and Central Management personnel with the most recent information on environmental conditions. It is intended strictly as a data report. Each quarter a report that summarizes all environmental monitoring data from the various media will be prepared.

Summaries of data will be presented for each month and quarter where there are multiple observations. The summary tables give the number of samples collected at each station or location and the maximum, minimum, and average values of parameters for which analyses were done. The 95% confidence coefficients (CCs) were calculated and where possible, average values were compared with applicable guidelines, criteria, or standards as a means of evaluating the impact of effluent releases on environmental concentrations. Some averages have been rounded and reported to only two significant digits.

Results which may be negative (values less than instrument background) are reported. Using this system, apparent decreases may be attributed to the reporting of negative values and the subsequent inclusion of these data into the averaging. For radionuclides measured by gamma spectroscopy, such as  $^{60}\text{Co}$  and  $^{137}\text{Cs}$ , the program software is not designed for the calculation of negative values and thus "less than" values are being reported for these radionuclides. Modification of the program software to allow for the calculation of negative values for radionuclides determined by gamma spectroscopy is currently underway.

Results that are below the analytical detection limit are expressed as "less than" (<). In computing average values, less than results are assigned the detection limit. The average value is expressed as less than the computed value when at least one of the samples for the period is less than the detection limit.

## AIR

Most gaseous wastes from ORNL are released to the atmosphere through stacks. Radioactivity may be present in gaseous waste streams as a solid (particulates), as an absorbable gas (iodine), or as a nonabsorbable species (noble gas). Gaseous wastes that may contain radioactivity are processed to reduce the radioactivity to acceptable levels before they are discharged. In addition to monitoring stack effluents, atmospheric concentrations of materials occurring in the general environment around ORNL, the Oak Ridge Reservation, and the vicinity are monitored continuously by an air monitoring network of 24 stations. Relative locations of these stations are shown in Figures 1 and 2. These air monitoring stations are categorized into three groups according to their geographical locations:

- (1) The ORNL perimeter air monitoring network (ORNL PAMs) consists of stations 3, 7, 9, 21, and 22. These stations are located at or near the ORNL boundary (shown in Figure 1). Previously, stations 21 and 22 were used only for external gamma radiation measurements; there was no sampling equipment. However, sampling equipment was installed at station 22 and this station began operating in March 1987. Sampling equipment has now been installed at Station 21 and this station began operating in March 1988.
- (2) The DOE Oak Ridge reservation network (Reservation PAMs) consists of stations 8, 23, 31, 33, 34, 36, and 40-46 (Figure 1). Stations 31 through 45 have the capability to perform both sampling and continuous monitoring. Station 46 is currently being redeveloped to collect real-time data.
- (3) The remote air monitoring network (RAMs) consists of stations 51-53 and 55-57. These stations are located within a 120 km radius of ORNL outside the DOE Oak Ridge Reservation (Figure 2).

At each real-time monitoring station, there are monitors for five radiation parameters (gross alpha, gross beta, iodine, gross gamma, and noble gas), a rain gauge, and three process sensors that are used to calculate the volume of the sample collected. A central processor collects 10-minute average readings and transmits the data to a VAX computer for further analysis and reporting. The central processor checks the values against alarm limits. All alarms are reported to a printer as they occur. The primary purpose of the monitoring system is to determine if radiation levels on the Reservation are above background levels. If radiation levels appear to be higher than normal, additional sampling can be initiated to provide quantitative measures of concentrations in the atmosphere. In addition, sampling is done at each station to quantify levels of iodine, gross alpha, and gross beta. The real-time monitoring system is the only measure of noble gases in the area.

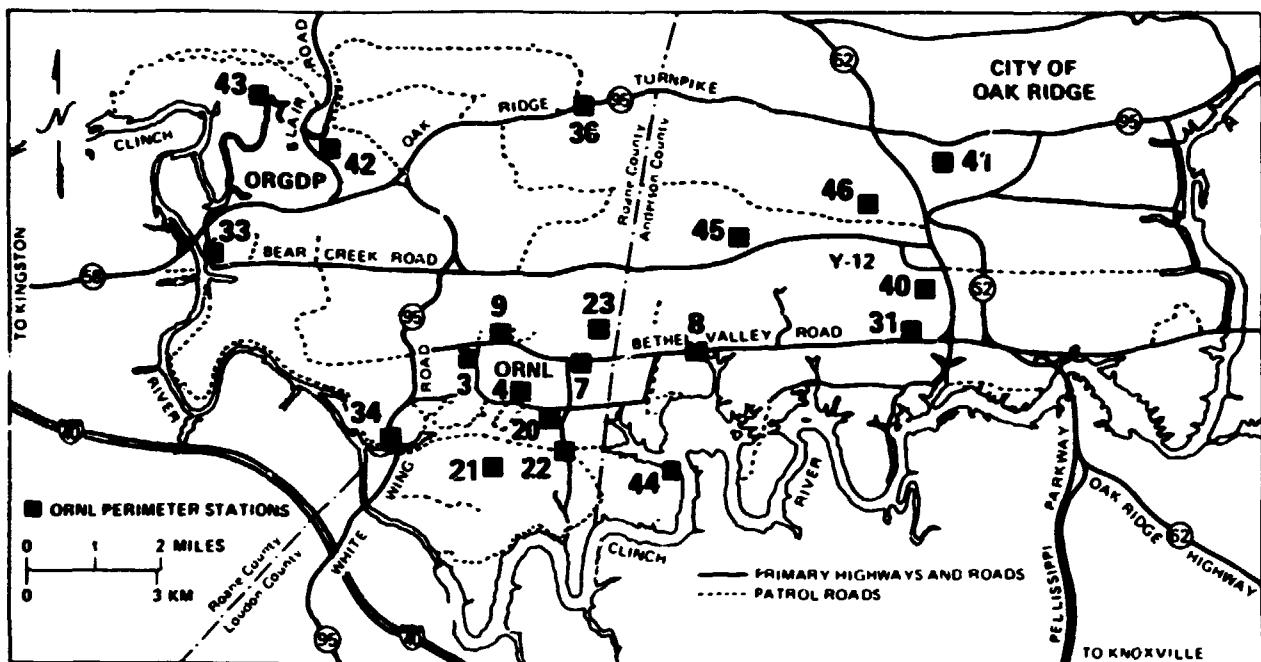



Fig. 1. Location map of the ORNL perimeter and Oak Ridge Reservation air monitoring stations.

ORNL-DWG 86-9187R6

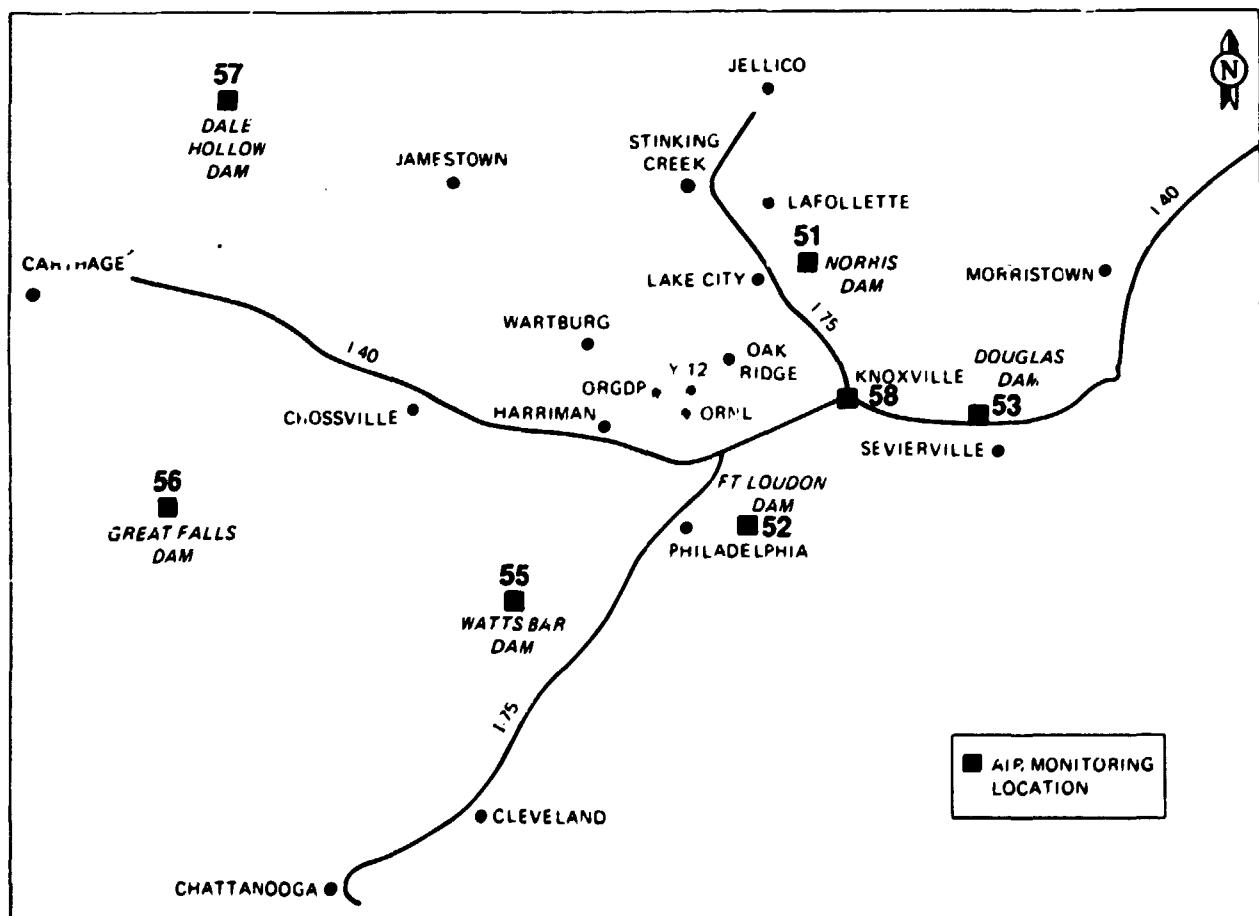



Fig. 2. Location map of the remote air monitoring stations

Airborne radioactive particulates are collected weekly by pumping a continuous flow of air through a paper filter and then through a charcoal cartridge. The filter papers are collected and analyzed weekly for gross alpha and gross beta activities. To minimize artifacts from short-lived radionuclides, the filter papers are analyzed 3-4 days after collection. The airborne  $^{131}\text{I}$  is collected weekly using a cartridge that is packed with activated charcoal. The charcoal cartridges are analyzed within 24 hours after collection. The initial and final dates, time on and off, and flowrates are recorded when a sampler is mounted or removed. The total volume of air which flowed through the sampler at each station is calculated using this information. The flowrates at stations 3-45 are set between 1.5 and 3.0 CFM to minimize artifacts from extremely high or low flowrates. The concentration of radionuclides in air is calculated by dividing the total activity per sample by the total volume of air.

Monthly (January-March) concentrations of gross alpha, gross beta, and atmospheric  $^{131}\text{I}$  are summarized in Tables 1-9. Instrument background concentrations of  $^{131}\text{I}$ , gross alpha, and gross beta have been subtracted from the measured concentrations in Tables 1-9. Negative values represent concentrations below the instrument background level. Beginning with the third quarter of 1986, a new counter has been used for analyzing weekly gross alpha and gross beta activities on filter papers. This new instrument gives a higher efficiency and is more sensitive. This improvement in sensitivity has significantly lowered the maximum and minimum values for gross alpha and minimum values for gross beta (Tables 1-6).

There appears to be little or no alpha activity at any of the stations during this quarter.

The average beta activity at the RAMs was slightly higher than the average at the other two networks. All values were within the normal background range for East Tennessee.

The charcoal samples collected weekly at the air monitoring stations showed no significant differences in iodine concentrations from the fourth quarter of 1987 (Tables 7-9). There were no significant differences in iodine concentrations at either of the two monitoring networks from January to March 1988.

Monthly samples for atmospheric tritium are routinely collected from ORNL PAM stations 3, 7, and Reservation PAM station 8. Samples were not collected at ORNL PAM station 7 this period because the station is currently being upgraded and was therefore not operational during the first quarter. Atmospheric tritium in the form of water vapor is removed from the air by silica gel. The silica gel is heated in a distillation flask to remove the moisture and the distillate is counted in a liquid scintillation counter. The concentration of tritium in the air is calculated by dividing total activity accumulated per month by total volume of air sampled. A quarterly summary of the atmospheric tritium concentrations is presented in Table 10. Tritium concentrations in air showed no significant differences from the past three years' values.

Table 1. Long-lived gross alpha activity in air

January 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |             |               |                     |
|---------------------------------------------|----------------|---------------------------------|-------------|---------------|---------------------|
|                                             |                | Max                             | Min         | Av            | 95% cc <sup>a</sup> |
| <b>ORNL PAM Stations<sup>b</sup></b>        |                |                                 |             |               |                     |
| 3                                           | 4              | 5.2                             | -5.2        | -1.3          | 5.0                 |
| 7                                           | 4              | 5.2                             | 0           | 1.3           | 2.6                 |
| 9                                           | 4              | 5.2                             | -5.2        | 0             | 4.2                 |
| 22                                          | 4              | 4.1                             | -5.2        | -0.26         | 3.8                 |
| <b>Network summary</b>                      | <b>16</b>      | <b>5.2</b>                      | <b>-5.2</b> | <b>-0.065</b> | <b>1.8</b>          |
| <b>Reservation PAM Stations<sup>b</sup></b> |                |                                 |             |               |                     |
| 8                                           | 4              | 5.2                             | 0           | 1.3           | 2.6                 |
| 23                                          | 4              | 36                              | -5.2        | 7.8           | 19                  |
| 31                                          | 4              | 10                              | 0           | 2.6           | 5.2                 |
| 33                                          | 4              | 5.2                             | 0           | 1.3           | 2.6                 |
| 34                                          | 4              | 5.2                             | -5.2        | 0             | 4.2                 |
| 36                                          | 4              | 6.5                             | 0           | 1.6           | 3.2                 |
| 40                                          | 4              | 5.2                             | -5.8        | -1.4          | 5.1                 |
| 41                                          | 4              | 4.7                             | -5.2        | -0.13         | 4.0                 |
| 42                                          | 4              | 5.2                             | -5.2        | 0.52          | 4.4                 |
| 43                                          | 4              | 5.2                             | 0           | 1.4           | 2.5                 |
| 44                                          | 4              | 5.2                             | -5.2        | 0             | 4.2                 |
| 45                                          | 4              | 62                              | 0           | 16            | 31                  |
| 46                                          | 4              | 2.1                             | -5.2        | -0.39         | 33                  |
| <b>Network summary</b>                      | <b>52</b>      | <b>62</b>                       | <b>-5.8</b> | <b>2.3</b>    | <b>2.9</b>          |
| <b>RAM Stations<sup>c</sup></b>             |                |                                 |             |               |                     |
| 51                                          | 4              | 1.8                             | 0           | 0.44          | 0.89                |
| 52                                          | 3              | 0                               | -6.0        | -3.5          | 3.6                 |
| 53                                          | 4              | 2.7                             | 0           | 0.66          | 1.3                 |
| 55                                          | 2              | 0                               | -6.6        | -3.3          | 6.6                 |

Table 1. (continued)

January 1988

| Location        | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |      |       |                     |
|-----------------|----------------|---------------------------------|------|-------|---------------------|
|                 |                | Max                             | Min  | Av    | 95% cc <sup>a</sup> |
| 56              | 4              | 0                               | -4.1 | -1.3  | 1.9                 |
| 57              | 4              | 1.0                             | -2.6 | -0.39 | 1.5                 |
| Network summary | 21             | 2.7                             | -6.6 | -0.93 | 1.1                 |
| Overall summary | 89             | 62                              | -6.6 | 1.1   | 1.8                 |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 1.

<sup>c</sup>See Figure 2.

Table 2. Long-lived gross alpha activity in air

February 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |             |             |                     |
|---------------------------------------------|----------------|---------------------------------|-------------|-------------|---------------------|
|                                             |                | Max                             | Min         | Av          | 95% cc <sup>a</sup> |
| <b>ORNL PAM Stations<sup>b</sup></b>        |                |                                 |             |             |                     |
| 3                                           | 5              | 0                               | -6.0        | -4.2        | 2.2                 |
| 7                                           | 5              | -1.8                            | -5.2        | -4.2        | 1.2                 |
| 9                                           | 5              | 0                               | -4.8        | -1.1        | 1.9                 |
| 22                                          | 5              | 0                               | -3.0        | -0.99       | 1.1                 |
| <b>Network summary</b>                      | <b>20</b>      | <b>0</b>                        | <b>-6.0</b> | <b>-2.6</b> | <b>1.0</b>          |
| <b>Reservation PAM Stations<sup>b</sup></b> |                |                                 |             |             |                     |
| 8                                           | 5              | 0                               | -5.4        | -2.2        | 2.1                 |
| 23                                          | 5              | 0                               | -5.2        | -2.9        | 2.0                 |
| 31                                          | 5              | 1.4                             | -5.2        | -1.7        | 2.3                 |
| 33                                          | 5              | 0.45                            | -6.0        | -2.4        | 2.4                 |
| 34                                          | 5              | 0.45                            | -3.6        | -1.5        | 1.5                 |
| 36                                          | 5              | 0                               | -7.6        | -3.8        | 2.8                 |
| 40                                          | 5              | -1.0                            | -6.7        | -5.1        | 2.2                 |
| 41                                          | 5              | -2.1                            | -5.2        | -3.3        | 1.1                 |
| 42                                          | 5              | 4.2                             | -5.2        | -2.6        | 3.5                 |
| 43                                          | 5              | -1.6                            | -5.3        | -3.3        | 1.6                 |
| 44                                          | 5              | -2.6                            | -6.0        | -4.4        | 1.2                 |
| 45                                          | 5              | 4.5                             | -5.2        | -2.2        | 3.5                 |
| 46                                          | 5              | 0                               | -12         | -4.8        | 4.1                 |
| <b>Network summary</b>                      | <b>65</b>      | <b>4.5</b>                      | <b>-12</b>  | <b>-3.1</b> | <b>0.68</b>         |
| <b>RAM Stations<sup>c</sup></b>             |                |                                 |             |             |                     |
| 51                                          | 5              | 11                              | 0           | 3.1         | 5.2                 |
| 52                                          | 4              | -1.7                            | -5.5        | -3.4        | 2.3                 |
| 53                                          | 5              | 7.0                             | -0.67       | 1.9         | 3.5                 |
| 55                                          | 5              | 0.95                            | -6.0        | -3.2        | 3.1                 |

Table 2. (continued)

February 1988

| Location        | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |      |      |                     |
|-----------------|----------------|---------------------------------|------|------|---------------------|
|                 |                | Max                             | Min  | Av   | 95% cc <sup>a</sup> |
| 56              | 2              | 7.9                             | -2.8 | 2.6  | 11                  |
| 57              | 5              | 6.9                             | -3.9 | 1.1  | 3.9                 |
| Network summary | 26             | 11                              | -6.0 | 0.18 | 1.9                 |
| Overall summary | 111            | 11                              | -12  | -2.3 | 0.65                |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 1.

<sup>c</sup>See Figure 2.

Table 3. Long-lived gross alpha activity in air

March 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |            |            |                     |
|---------------------------------------------|----------------|---------------------------------|------------|------------|---------------------|
|                                             |                | Max                             | Min        | Av         | 95% cc <sup>a</sup> |
| <b>ORNL PAM Stations<sup>b</sup></b>        |                |                                 |            |            |                     |
| 3                                           | 4              | 4.1                             | 1.6        | 2.5        | 1.2                 |
| 7                                           | 2              | 3.1                             | 2.1        | 2.6        | 1.0                 |
| 9                                           | 4              | 5.2                             | 2.6        | 3.8        | 1.1                 |
| 21                                          | 2              | 6.8                             | 4.8        | 5.8        | 2.0                 |
| 22                                          | 4              | 4.1                             | 1.3        | 2.7        | 1.2                 |
| <b>Network summary</b>                      | <b>16</b>      | <b>6.8</b>                      | <b>1.3</b> | <b>3.3</b> | <b>0.76</b>         |
| <b>Reservation PAM Stations<sup>b</sup></b> |                |                                 |            |            |                     |
| 8                                           | 4              | 5.2                             | 2.1        | 3.6        | 1.3                 |
| 23                                          | 4              | 5.2                             | 2.1        | 3.8        | 1.3                 |
| 31                                          | 4              | 5.7                             | 3.1        | 4.4        | 1.2                 |
| 33                                          | 4              | 7.8                             | 3.1        | 4.7        | 2.1                 |
| 34                                          | 4              | 5.6                             | 2.9        | 4.5        | 1.2                 |
| 36                                          | 4              | 7.2                             | 2.7        | 4.8        | 2.0                 |
| 40                                          | 4              | 6.8                             | 3.1        | 4.1        | 1.8                 |
| 41                                          | 4              | 7.0                             | 3.4        | 4.9        | 1.6                 |
| 42                                          | 4              | 4.6                             | 1.6        | 3.2        | 1.4                 |
| 43                                          | 4              | 7.6                             | 4.2        | 5.6        | 1.5                 |
| 44                                          | 4              | 4.1                             | 2.1        | 3.4        | 0.90                |
| 45                                          | 4              | 6.3                             | 3.1        | 5.1        | 1.4                 |
| 46                                          | 4              | 5.1                             | 3.3        | 4.2        | 0.72                |
| <b>Network summary</b>                      | <b>52</b>      | <b>7.8</b>                      | <b>1.6</b> | <b>4.3</b> | <b>0.41</b>         |
| <b>RAM Stations<sup>c</sup></b>             |                |                                 |            |            |                     |
| 51                                          | 4              | 6.3                             | 1.3        | 4.5        | 2.3                 |
| 52                                          | 4              | 14                              | 3.5        | 7.8        | 6.4                 |
| 53                                          | 4              | 7.3                             | 4.1        | 6.0        | 1.5                 |
| 55                                          | 4              | 6.6                             | 2.9        | 4.8        | 1.5                 |

Table 3. (continued)

March 1988

| Location        | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |      |     |                     |
|-----------------|----------------|---------------------------------|------|-----|---------------------|
|                 |                | Max                             | Min  | Av  | 95% cc <sup>a</sup> |
| 56              | 4              | 3.6                             | -2.5 | 1.6 | 2.8                 |
| 57              | 4              | 5.8                             | 3.0  | 4.6 | 1.2                 |
| Network summary | 23             | 14                              | -2.5 | 4.8 | 1.2                 |
| Overall summary | 91             | 14                              | -2.5 | 4.2 | 0.42                |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 1.

<sup>c</sup>See Figure 2.

Table 4. Long-lived gross beta activity in air

January 1988

| Location                              | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |     |     |                     |
|---------------------------------------|----------------|---------------------------------|-----|-----|---------------------|
|                                       |                | Max                             | Min | Av  | 95% cc <sup>a</sup> |
| ORNL PAM Stations <sup>b</sup>        |                |                                 |     |     |                     |
| 3                                     | 4              | 100                             | 26  | 56  | 34                  |
| 7                                     | 4              | 78                              | 47  | 65  | 16                  |
| 9                                     | 4              | 130                             | 78  | 100 | 21                  |
| 22                                    | 4              | 120                             | 83  | 100 | 17                  |
| Network summary                       | 16             | 130                             | 26  | 81  | 15                  |
| Reservation PAM Stations <sup>b</sup> |                |                                 |     |     |                     |
| 8                                     | 4              | 110                             | 52  | 83  | 31                  |
| 23                                    | 4              | 150                             | 41  | 91  | 46                  |
| 31                                    | 4              | 93                              | 57  | 76  | 15                  |
| 33                                    | 4              | 150                             | 73  | 110 | 31                  |
| 34                                    | 4              | 150                             | 78  | 110 | 34                  |
| 36                                    | 4              | 130                             | 69  | 110 | 29                  |
| 40                                    | 4              | 62                              | 46  | 54  | 6.9                 |
| 41                                    | 4              | 110                             | 62  | 87  | 26                  |
| 42                                    | 4              | 120                             | 52  | 100 | 36                  |
| 43                                    | 4              | 120                             | 62  | 95  | 26                  |
| 44                                    | 4              | 120                             | 57  | 87  | 29                  |
| 45                                    | 4              | 250                             | 88  | 150 | 68                  |
| 46                                    | 4              | 110                             | 36  | 71  | 35                  |
| Network summary                       | 52             | 250                             | 36  | 95  | 11                  |
| RAM Stations <sup>c</sup>             |                |                                 |     |     |                     |
| 51                                    | 4              | 170                             | 100 | 140 | 31                  |
| 52                                    | 3              | 140                             | 96  | 110 | 26                  |
| 53                                    | 4              | 210                             | 120 | 170 | 42                  |
| 55                                    | 2              | 73                              | 72  | 73  | 1.0                 |

Table 4. (continued)

January 1988

| Location        | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |     |     |                     |
|-----------------|----------------|---------------------------------|-----|-----|---------------------|
|                 |                | Max                             | Min | Av  | 95% cc <sup>a</sup> |
| 56              | 4              | 150                             | 29  | 110 | 55                  |
| 57              | 4              | 140                             | 52  | 99  | 38                  |
| Network summary | 21             | 210                             | 29  | 120 | 20                  |
| Overall summary | 89             | 250                             | 26  | 99  | 8.7                 |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 1.

<sup>c</sup>See Figure 2.

Table 5. Long-lived gross beta activity in air

February 1988

| Location                              | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |     |     |                     |
|---------------------------------------|----------------|---------------------------------|-----|-----|---------------------|
|                                       |                | Max                             | Min | Av  | 95% cc <sup>a</sup> |
| ORNL PAM Stations <sup>b</sup>        |                |                                 |     |     |                     |
| 3                                     | 5              | 52                              | 23  | 39  | 10                  |
| 7                                     | 5              | 73                              | 41  | 61  | 12                  |
| 9                                     | 5              | 86                              | 73  | 80  | 4.7                 |
| 22                                    | 5              | 100                             | 52  | 82  | 18                  |
| Network summary                       | 20             | 100                             | 23  | 65  | 9.7                 |
| Reservation PAM Stations <sup>b</sup> |                |                                 |     |     |                     |
| 8                                     | 5              | 67                              | 41  | 53  | 8.8                 |
| 23                                    | 5              | 73                              | 31  | 57  | 14                  |
| 31                                    | 5              | 120                             | 81  | 93  | 13                  |
| 33                                    | 5              | 120                             | 73  | 98  | 16                  |
| 34                                    | 5              | 110                             | 78  | 98  | 13                  |
| 36                                    | 5              | 130                             | 78  | 100 | 18                  |
| 40                                    | 5              | 74                              | 45  | 54  | 10                  |
| 41                                    | 5              | 91                              | 57  | 72  | 12                  |
| 42                                    | 5              | 73                              | 62  | 66  | 5.1                 |
| 43                                    | 5              | 120                             | 67  | 88  | 19                  |
| 44                                    | 5              | 73                              | 62  | 67  | 3.3                 |
| 45                                    | 5              | 95                              | 52  | 77  | 15                  |
| 46                                    | 5              | 100                             | 52  | 66  | 17                  |
| Network summary                       | 65             | 130                             | 31  | 76  | 5.4                 |
| RAM Stations <sup>c</sup>             |                |                                 |     |     |                     |
| 51                                    | 5              | 160                             | 110 | 140 | 20                  |
| 52                                    | 4              | 100                             | 54  | 82  | 30                  |
| 53                                    | 5              | 120                             | 94  | 110 | 11                  |
| 55                                    | 5              | 120                             | 17  | 57  | 37                  |

Table 5. (continued)

February 1988

| Location        | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |     |     |                     |
|-----------------|----------------|---------------------------------|-----|-----|---------------------|
|                 |                | Max                             | Min | Av  | 95% cc <sup>a</sup> |
| 56              | 2              | 120                             | 95  | 110 | 21                  |
| 57              | 5              | 140                             | 94  | 110 | 17                  |
| Network summary | 26             | 160                             | 17  | 100 | 15                  |
| Overall summary | 111            | 160                             | 17  | 79  | 5.4                 |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 1.

<sup>c</sup>See Figure 2.

Table 6. Long-lived gross beta activity in air

March 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |           |           |                     |
|---------------------------------------------|----------------|---------------------------------|-----------|-----------|---------------------|
|                                             |                | Max                             | Min       | Av        | 95% cc <sup>a</sup> |
| <b>ORNL PAM Stations<sup>b</sup></b>        |                |                                 |           |           |                     |
| 3                                           | 4              | 78                              | 31        | 48        | 20                  |
| 7                                           | 2              | 52                              | 52        | 52        | 0                   |
| 9                                           | 4              | 78                              | 62        | 69        | 6.5                 |
| 21                                          | 2              | 120                             | 96        | 110       | 20                  |
| 22                                          | 4              | 88                              | 57        | 71        | 13                  |
| <b>Network summary</b>                      | <b>16</b>      | <b>120</b>                      | <b>31</b> | <b>67</b> | <b>11</b>           |
| <b>Reservation PAM Stations<sup>b</sup></b> |                |                                 |           |           |                     |
| 8                                           | 4              | 57                              | 47        | 49        | 5.2                 |
| 23                                          | 4              | 88                              | 36        | 64        | 24                  |
| 31                                          | 4              | 100                             | 62        | 80        | 18                  |
| 33                                          | 4              | 120                             | 67        | 96        | 25                  |
| 34                                          | 4              | 99                              | 73        | 88        | 11                  |
| 36                                          | 4              | 100                             | 68        | 87        | 14                  |
| 40                                          | 4              | 75                              | 36        | 49        | 18                  |
| 41                                          | 4              | 68                              | 55        | 61        | 5.7                 |
| 42                                          | 4              | 78                              | 52        | 63        | 11                  |
| 43                                          | 4              | 99                              | 78        | 86        | 9.1                 |
| 44                                          | 4              | 73                              | 52        | 62        | 9.5                 |
| 45                                          | 4              | 89                              | 43        | 67        | 19                  |
| 46                                          | 4              | 96                              | 53        | 67        | 20                  |
| <b>Network summary</b>                      | <b>52</b>      | <b>120</b>                      | <b>36</b> | <b>71</b> | <b>5.6</b>          |
| <b>RAM Stations<sup>c</sup></b>             |                |                                 |           |           |                     |
| 51                                          | 4              | 100                             | 47        | 82        | 25                  |
| 52                                          | 3              | 180                             | 89        | 120       | 61                  |
| 53                                          | 4              | 180                             | 68        | 120       | 49                  |
| 55                                          | 4              | 110                             | 68        | 91        | 16                  |

Table 6. (continued)

March 1988

| Location        | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |     |    |                     |
|-----------------|----------------|---------------------------------|-----|----|---------------------|
|                 |                | Max                             | Min | Av | 95% cc <sup>a</sup> |
| 56              | 4              | 86                              | 56  | 75 | 13                  |
| 57              | 4              | 100                             | 70  | 87 | 15                  |
| Network summary | 23             | 180                             | 47  | 96 | 14                  |
| Overall summary | 91             | 180                             | 31  | 76 | 5.6                 |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 1.

<sup>c</sup>See Figure 2.

Table 7.  $^{131}\text{I}$  concentrations in air

January 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |             |             |                     |                          |
|---------------------------------------------|----------------|---------------------------------|-------------|-------------|---------------------|--------------------------|
|                                             |                | Max                             | Min         | Av          | 95% cc <sup>a</sup> | Percent DCG <sup>b</sup> |
| <b>ORNL PAM Stations<sup>c</sup></b>        |                |                                 |             |             |                     |                          |
| 3                                           | 4              | 2.1                             | -5.7        | -0.39       | 3.7                 | < 0.01                   |
| 7                                           | 4              | 6.3                             | -6.3        | 2.0         | 5.6                 | < 0.01                   |
| 9                                           | 4              | 2.0                             | -2.1        | -0.56       | 2.0                 | < 0.01                   |
| 22                                          | 4              | 4.2                             | -4.2        | 0.95        | 3.9                 | < 0.01                   |
| <b>Network summary</b>                      | <b>16</b>      | <b>6.3</b>                      | <b>-6.3</b> | <b>0.50</b> | <b>1.9</b>          | <b>&lt; 0.01</b>         |
| <b>Reservation PAM Stations<sup>c</sup></b> |                |                                 |             |             |                     |                          |
| 8                                           | 4              | 4.2                             | 0           | 2.1         | 1.7                 | < 0.01                   |
| 23                                          | 4              | 7.7                             | 2.1         | 5.6         | 2.4                 | < 0.01                   |
| 31                                          | 4              | 6.4                             | 0           | 2.6         | 3.2                 | < 0.01                   |
| 33                                          | 4              | 8.3                             | -2.1        | 3.5         | 4.5                 | < 0.01                   |
| 34                                          | 4              | 12                              | -6.3        | 4.0         | 8.1                 | < 0.01                   |
| 36                                          | 4              | 4.2                             | -2.6        | 0.92        | 3.8                 | < 0.01                   |
| 40                                          | 4              | 6.4                             | -2.1        | 2.6         | 3.6                 | < 0.01                   |
| 41                                          | 4              | 6.3                             | -3.8        | 1.7         | 5.4                 | < 0.01                   |
| 42                                          | 4              | 8.3                             | -4.2        | 2.1         | 5.4                 | < 0.01                   |
| 43                                          | 4              | 6.3                             | 0           | 3.0         | 2.7                 | < 0.01                   |
| 44                                          | 4              | 10                              | -4.2        | 4.5         | 6.3                 | < 0.01                   |
| 45                                          | 4              | 2.1                             | -4.2        | -0.49       | 3.1                 | < 0.01                   |
| 46                                          | 4              | 8.3                             | -6.3        | -0.98       | 6.4                 | < 0.01                   |
| <b>Network summary</b>                      | <b>52</b>      | <b>12</b>                       | <b>-6.3</b> | <b>2.4</b>  | <b>1.2</b>          | <b>&lt; 0.01</b>         |
| <b>Overall summary</b>                      | <b>68</b>      | <b>12</b>                       | <b>-6.3</b> | <b>2.0</b>  | <b>1.1</b>          | <b>&lt; 0.01</b>         |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>Percent DCG = maximum value x 100/derived concentration guide (DCG). The DCG for  $^{131}\text{I}$  is  $1.5 \times 10^{-2}$  Bq/L.

<sup>c</sup>See Figure 1.

Table 8.  $^{131}\text{I}$  concentrations in air

February 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |             |            |                     |                          |
|---------------------------------------------|----------------|---------------------------------|-------------|------------|---------------------|--------------------------|
|                                             |                | Max                             | Min         | Av         | 95% cc <sup>a</sup> | Percent DCG <sup>b</sup> |
| <b>ORNL PAM Stations<sup>c</sup></b>        |                |                                 |             |            |                     |                          |
| 3                                           | 5              | 5.7                             | 0           | 2.0        | 2.1                 | < 0.01                   |
| 7                                           | 5              | 6.3                             | -2.1        | 2.0        | 2.9                 | < 0.01                   |
| 9                                           | 5              | 3.8                             | -2.1        | 0.79       | 2.0                 | < 0.01                   |
| 22                                          | 5              | 9.5                             | 0           | 3.6        | 3.3                 | < 0.01                   |
| <b>Network summary</b>                      | <b>20</b>      | <b>9.5</b>                      | <b>-2.1</b> | <b>2.1</b> | <b>1.3</b>          | <b>&lt; 0.01</b>         |
| <b>Reservation PAM Stations<sup>c</sup></b> |                |                                 |             |            |                     |                          |
| 8                                           | 5              | 11                              | -4.2        | 2.6        | 5.1                 | < 0.01                   |
| 23                                          | 5              | 15                              | -1.8        | 5.8        | 5.5                 | < 0.01                   |
| 31                                          | 5              | 5.7                             | -4.7        | 0.48       | 4.5                 | < 0.01                   |
| 33                                          | 5              | 9.0                             | -2.0        | 3.3        | 4.2                 | < 0.01                   |
| 34                                          | 5              | 4.2                             | -5.7        | 0.39       | 3.8                 | < 0.01                   |
| 36                                          | 5              | 10                              | -2.6        | 6.0        | 4.7                 | < 0.01                   |
| 40                                          | 5              | 16                              | 0           | 6.8        | 5.7                 | < 0.01                   |
| 41                                          | 5              | 6.3                             | -4.2        | 1.1        | 3.9                 | < 0.01                   |
| 42                                          | 5              | 2.0                             | -5.5        | -1.6       | 2.8                 | < 0.01                   |
| 43                                          | 5              | 4.7                             | -4.2        | 0.73       | 3.3                 | < 0.01                   |
| 44                                          | 5              | 10                              | -4.4        | 1.5        | 5.2                 | < 0.01                   |
| 45                                          | 5              | 0                               | -6.3        | -2.4       | 2.1                 | < 0.01                   |
| 46                                          | 5              | 13                              | 0           | 4.3        | 5.1                 | < 0.01                   |
| <b>Network summary</b>                      | <b>65</b>      | <b>16</b>                       | <b>-6.3</b> | <b>2.2</b> | <b>1.3</b>          | <b>&lt; 0.01</b>         |
| <b>Overall summary</b>                      | <b>85</b>      | <b>16</b>                       | <b>-6.3</b> | <b>2.2</b> | <b>1.0</b>          | <b>&lt; 0.01</b>         |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>Percent DCG = maximum value  $\times 100/\text{derived concentration guide (DCG)}$ . The DCG for  $^{131}\text{I}$  is  $1.5 \times 10^{-2}$  Bq/L.

<sup>c</sup>See Figure 1.

Table 9.  $^{131}\text{I}$  Iodine concentrations in air

March 1988

| Location                                    | No. of Samples | Concentration ( $10^{-8}$ Bq/L) |      |       |                     |                          |
|---------------------------------------------|----------------|---------------------------------|------|-------|---------------------|--------------------------|
|                                             |                | Max                             | Min  | Av    | 95% cc <sup>a</sup> | Percent DCG <sup>b</sup> |
| <b>ORNL PAM Stations<sup>c</sup></b>        |                |                                 |      |       |                     |                          |
| 3                                           | 4              | 5.7                             | -5.7 | -0.49 | 4.8                 | < 0.01                   |
| 7                                           | 2              | 5.7                             | 2.0  | 3.9   | 3.8                 | < 0.01                   |
| 9                                           | 4              | 9.5                             | -3.8 | -0.46 | 6.7                 | < 0.01                   |
| 21                                          | 2              | 2.6                             | 0    | 1.3   | 2.6                 | < 0.01                   |
| 22                                          | 4              | 7.2                             | 0    | 3.7   | 3.3                 | < 0.01                   |
| Network summary                             | 16             | 9.5                             | -5.7 | 1.3   | 2.3                 | < 0.01                   |
| <b>Reservation PAM Stations<sup>c</sup></b> |                |                                 |      |       |                     |                          |
| 8                                           | 4              | 2.0                             | -2.0 | 0.98  | 2.0                 | < 0.01                   |
| 23                                          | 4              | 7.7                             | 0    | 3.9   | 3.5                 | < 0.01                   |
| 31                                          | 4              | 11                              | -5.7 | 2.4   | 7.7                 | < 0.01                   |
| 33                                          | 4              | 3.3                             | -3.8 | -0.95 | 3.3                 | < 0.01                   |
| 34                                          | 4              | 6.5                             | -3.9 | 1.8   | 4.7                 | < 0.01                   |
| 36                                          | 4              | 8.0                             | -2.5 | 3.3   | 4.4                 | < 0.01                   |
| 40                                          | 4              | 7.6                             | 0    | 4.0   | 3.1                 | < 0.01                   |
| 41                                          | 4              | 9.6                             | -4.1 | 2.0   | 6.5                 | < 0.01                   |
| 42                                          | 4              | 2.5                             | -6.4 | -0.49 | 4.1                 | < 0.01                   |
| 43                                          | 4              | 5.1                             | -7.2 | -0.52 | 5.1                 | < 0.01                   |
| 44                                          | 4              | 5.7                             | -2.0 | 1.9   | 3.5                 | < 0.01                   |
| 45                                          | 4              | 2.3                             | -2.0 | 0.093 | 1.8                 | < 0.01                   |
| 46                                          | 4              | 0                               | -6.1 | -3.1  | 2.6                 | < 0.01                   |
| Network summary                             | 52             | 11                              | -7.2 | 1.2   | 1.2                 | < 0.01                   |
| Overall summary                             | 68             | 11                              | -7.2 | 1.2   | 1.0                 | < 0.01                   |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>Percent DCG = maximum value x 100/derived concentration guide (DCG). The DCG for  $^{131}\text{I}$  is  $1.5 \times 10^{-2}$  Bq/L.

<sup>c</sup>See Figure 1.

Table 10. Tritium activity in air

January - March 1988

| Location <sup>a</sup> | No. of Samples | Concentration ( $10^{-4}$ Bq/L) |     |     |                     |        | Percent DCG <sup>c</sup> |
|-----------------------|----------------|---------------------------------|-----|-----|---------------------|--------|--------------------------|
|                       |                | Max                             | Min | Av  | 95% cc <sup>b</sup> |        |                          |
| 3                     | 3              | 3.7                             | 3.1 | 3.5 | 0.36                | 0.010  |                          |
| 8                     | 3              | 3.4                             | 2.0 | 2.5 | 0.90                | 0.0091 |                          |
| Overall summary       | 6              | 3.7                             | 2.0 | 3.0 | 0.63                | 0.010  |                          |

<sup>a</sup>See Figure 1.<sup>b</sup>95% confidence coefficient about the average of more than two samples.<sup>c</sup>Percent DCG = maximum x 100/derived concentration guide (DCG). The DCG for tritium is 3.7 Bq/L. This assumes that 50% of the tritium is absorbed through the skin.

Air filters are composited quarterly from ORNL PAMs (stations 3, 7, 9, 21, and 22), Reservation PAMs (excluding stations 34, 36, 40, 41, 45, and 46), RAMs (stations 51-53 and 55-57), and from individual stations (34, 36, 40, 41, 45 and 46) and are analyzed for specific radionuclides. The results are in Tables 11 through 13. No  $^{60}\text{Co}$  was detected on any of the quarterly air filters.

Table 11. Long-lived radioactivity in composited air filters from individual stations

January - March 1988

| Analysis              | Concentration ( $10^{-10}$ Bq/L) |                          |            |                          |            |                          |
|-----------------------|----------------------------------|--------------------------|------------|--------------------------|------------|--------------------------|
|                       | Location <sup>a</sup>            |                          |            |                          |            |                          |
|                       | Station 34                       | Percent DCG <sup>b</sup> | Station 36 | Percent DCG <sup>b</sup> | Station 40 | Percent DCG <sup>b</sup> |
| <sup>60</sup> Co      | < 110                            | < 0.01                   | < 130      | < 0.01                   | < 120      | < 0.01                   |
| <sup>137</sup> Cs     | < 55                             | < 0.01                   | < 79       | < 0.01                   | < 61       | < 0.01                   |
| <sup>238</sup> Pu     | 0.66                             | < 0.01                   | -7.9       | < 0.01                   | -46        | < 0.01                   |
| <sup>239</sup> Pu     | -3.5                             | < 0.01                   | -5.5       | < 0.01                   | -5.7       | < 0.01                   |
| <sup>228</sup> Th     | 39                               | 0.26                     | 45         | 0.30                     | 3.6        | 0.024                    |
| <sup>230</sup> Th     | 85                               | 0.46                     | 93         | 0.50                     | 83         | 0.45                     |
| <sup>232</sup> Th     | 8.4                              | 0.23                     | 18         | 0.49                     | 19         | 0.51                     |
| Total Sr <sup>c</sup> | 110                              | < 0.01                   | 17         | < 0.01                   | 3.6        | < 0.01                   |
| <sup>234</sup> U      | 48                               | 0.14                     | 170        | 0.51                     | 130        | 0.39                     |
| <sup>235</sup> U      | 20                               | 0.054                    | 28         | 0.076                    | 52         | 0.14                     |
| <sup>238</sup> U      | 34                               | 0.092                    | 26         | 0.070                    | 56         | 0.15                     |

<sup>a</sup>See Figures 1 and 2.

<sup>b</sup>Percent DCG = value x 100/derived concentration guide (DCG).  
 The DCG for <sup>60</sup>Co is  $3.0 \times 10^{-3}$  Bq/L; <sup>137</sup>Cs is  $1.5 \times 10^{-2}$  Bq/L;  
<sup>238</sup>Pu is  $1.5 \times 10^{-6}$  Bq/L; <sup>239</sup>Pu is  $1.5 \times 10^{-6}$  Bq/L;  
<sup>228</sup>Th is  $1.5 \times 10^{-6}$  Bq/L; <sup>230</sup>Th is  $1.9 \times 10^{-6}$  Bq/L;  
<sup>232</sup>Th is  $3.7 \times 10^{-7}$  Bq/L; <sup>234</sup>U is  $3.3 \times 10^{-6}$  Bq/L;  
<sup>235</sup>U is  $3.7 \times 10^{-6}$  Bq/L; and <sup>238</sup>U is  $3.7 \times 10^{-6}$  Bq/L.

<sup>c</sup>Total radioactive Sr = (<sup>89</sup>Sr + <sup>90</sup>Sr).

Table 12. Long-lived radioactivity in composited air filters from individual stations

January - March 1988

| Analysis              | Concentration ( $10^{-10}$ Bq/L) |                          |            |                          |            |                          |
|-----------------------|----------------------------------|--------------------------|------------|--------------------------|------------|--------------------------|
|                       | Location <sup>a</sup>            |                          |            |                          |            |                          |
|                       | Station 41                       | Percent DCG <sup>b</sup> | Station 45 | Percent DCG <sup>b</sup> | Station 46 | Percent DCG <sup>b</sup> |
| $^{60}\text{Co}$      | < 110                            | < 0.01                   | < 110      | < 0.01                   | < 130      | < 0.01                   |
| $^{137}\text{Cs}$     | < 69                             | < 0.01                   | < 56       | < 0.01                   | < 63       | < 0.01                   |
| $^{238}\text{Pu}$     | -1.6                             | < 0.01                   | 0.33       | < 0.01                   | -0.51      | < 0.01                   |
| $^{239}\text{Pu}$     | 0.46                             | < 0.01                   | -1.8       | < 0.01                   | -0.13      | < 0.01                   |
| $^{228}\text{Th}$     | 37                               | 0.25                     | 29         | 0.20                     | 24         | 0.16                     |
| $^{230}\text{Th}$     | 36                               | 0.19                     | 33         | 0.18                     | 23         | 0.12                     |
| $^{232}\text{Th}$     | 11                               | 0.30                     | 9.0        | 0.24                     | 14         | 0.38                     |
| Total Sr <sup>c</sup> | -1.1                             | < 0.01                   | 48         | < 0.01                   | 46         | < 0.01                   |
| $^{234}\text{U}$      | 33                               | 0.099                    | 220        | 0.66                     | 190        | 0.57                     |
| $^{235}\text{U}$      | 4.6                              | 0.012                    | 110        | 0.30                     | 82         | 0.22                     |
| $^{238}\text{U}$      | 18                               | 0.049                    | 600        | 1.6                      | 80         | 0.22                     |

<sup>a</sup>See Figures 1 and 2.

<sup>b</sup>Percent DCG = value x 100/derived concentration guide (DCG).

The DCG for  $^{60}\text{Co}$  is  $3.0 \times 10^{-3}$  Bq/L;  $^{137}\text{Cs}$  is  $1.5 \times 10^{-2}$  Bq/L;  
 $^{238}\text{Pu}$  is  $1.5 \times 10^{-6}$  Bq/L;  $^{239}\text{Pu}$  is  $1.5 \times 10^{-6}$  Bq/L;  
 $^{228}\text{Th}$  is  $1.5 \times 10^{-6}$  Bq/L;  $^{230}\text{Th}$  is  $1.9 \times 10^{-6}$  Bq/L;  
 $^{232}\text{Th}$  is  $3.7 \times 10^{-7}$  Bq/L;  $^{234}\text{U}$  is  $3.3 \times 10^{-6}$  Bq/L;  
 $^{235}\text{U}$  is  $3.7 \times 10^{-6}$  Bq/L; and  $^{238}\text{U}$  is  $3.7 \times 10^{-6}$  Bq/L.

<sup>c</sup>Total radioactive Sr =  $(^{89}\text{Sr} + ^{90}\text{Sr})$ .

Table 13. Long-lived radioactivity in composited air filters from air monitoring networks

January - March 1988

| Analysis              | Concentration ( $10^{-10}$ Bq/L) |                          |                  |                          |       |                          |
|-----------------------|----------------------------------|--------------------------|------------------|--------------------------|-------|--------------------------|
|                       | Location <sup>a</sup>            |                          |                  |                          |       |                          |
|                       | ORNL PAMs                        | Percent DCG <sup>b</sup> | Reservation PAMs | Percent DCG <sup>b</sup> | RAMs  | Percent DCG <sup>b</sup> |
| $^{60}\text{Co}$      | < 26                             | < 0.01                   | < 16             | < 0.01                   | < 19  | < 0.01                   |
| $^{137}\text{Cs}$     | < 24                             | < 0.01                   | < 14             | < 0.01                   | 25    | < 0.01                   |
| $^{238}\text{Pu}$     | 0.71                             | < 0.01                   | 0.45             | < 0.01                   | 0.74  | < 0.01                   |
| $^{239}\text{Pu}$     | -0.24                            | < 0.01                   | -1.1             | < 0.01                   | -0.29 | < 0.01                   |
| $^{228}\text{Th}$     | 13                               | 0.088                    | 10               | 0.068                    | 14    | 0.095                    |
| $^{230}\text{Th}$     | 8.7                              | 0.047                    | 11               | 0.059                    | 11    | 0.059                    |
| $^{232}\text{Th}$     | 6.6                              | 0.18                     | 7.3              | 0.20                     | 8.8   | 0.24                     |
| Total Sr <sup>c</sup> | 0                                | < 0.01                   | 8.3              | < 0.01                   | 13    | < 0.01                   |
| $^{234}\text{U}$      | 32                               | 0.096                    | 51               | 0.15                     | 46    | 0.14                     |
| $^{235}\text{U}$      | 16                               | 0.043                    | 9.5              | 0.026                    | 3.1   | < 0.01                   |
| $^{238}\text{U}$      | 18                               | 0.049                    | 72               | 0.19                     | 11    | 0.030                    |

<sup>a</sup>See Figures 1 and 2.

<sup>b</sup>Percent DCG = value x 100/derived concentration guide (DCG).  
 The DCG for  $^{60}\text{Co}$  is  $3.0 \times 10^{-3}$  Bq/L;  $^{137}\text{Cs}$  is  $1.5 \times 10^{-2}$  Bq/L;  
 $^{238}\text{Pu}$  is  $1.5 \times 10^{-6}$  Bq/L;  $^{239}\text{Pu}$  is  $1.5 \times 10^{-6}$  Bq/L;  
 $^{228}\text{Th}$  is  $1.5 \times 10^{-6}$  Bq/L;  $^{230}\text{Th}$  is  $1.9 \times 10^{-6}$  Bq/L;  
 $^{232}\text{Th}$  is  $3.7 \times 10^{-7}$  Bq/L;  $^{234}\text{U}$  is  $3.3 \times 10^{-6}$  Bq/L;  
 $^{235}\text{U}$  is  $3.7 \times 10^{-6}$  Bq/L; and  $^{238}\text{U}$  is  $3.7 \times 10^{-6}$  Bq/L.

<sup>c</sup>Total radioactive Sr = ( $^{89}\text{Sr}$  +  $^{90}\text{Sr}$ ).

## EXTERNAL GAMMA RADIATION

External gamma radiation measurements are made to determine if routine radioactive effluents from ORNL are increasing external gamma radiation levels significantly above normal background.

Average gamma radiation measurements are collected at 10-minute intervals at ORNL and perimeter air monitoring stations (PAMS), except for stations 9, 21-23, and 46 (Fig. 1). From these data, hourly averages are computed. Table 14 summarizes the valid hourly measurements for the first quarter of 1988. Typical values for cities in the United States are usually between 50 and 200 nGy/h according to the recent issues of EPA Environmental Radiation Data. The most recent value for Knoxville, published in these EPA quarterly reports (EPA 1987), was 177 nGy/h for the second quarter of 1987. All of the values given in Table 14 are close to the range of background values as given above, except for LAM 4 which is located very close to the Process Waste Treatment Plant and treatment ponds. Values for station 4 are about ten times that of the typical background value, which is to be expected considering the location of that particular monitor.

Previously, external gamma radiation data was collected quarterly at the sites along the Clinch River (Fig. 3). These readings are not being published in this report due to problems in the analysis of the data.

ORNL-DWG 86-9214R2

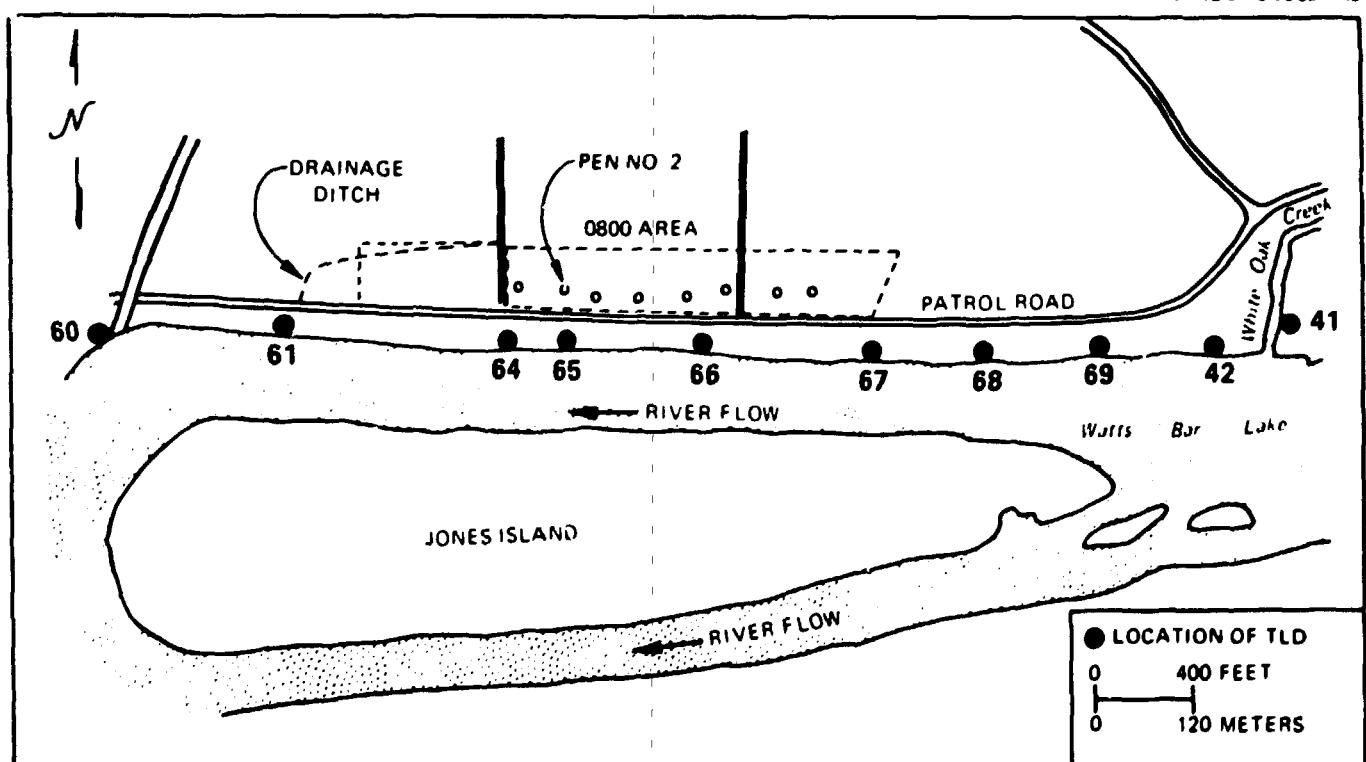



Fig. 3 Location map of TLDs along the Clinch River

**Table 14. External gamma radiation measurements at ORNL and reservation perimeter air monitoring stations**

**January - March 1988**

| Location                                    | No. of samples <sup>a</sup> | Concentration (nGy/h) |           |            |
|---------------------------------------------|-----------------------------|-----------------------|-----------|------------|
|                                             |                             | Max                   | Min       | Av         |
| <b>ORNL PAM Stations<sup>b</sup></b>        |                             |                       |           |            |
| 3                                           | 1788                        | 107                   | 62        | 69         |
| 4                                           | 2020                        | 2708                  | 60        | 1713       |
| 7                                           | 2123                        | 211                   | 60        | 89         |
| 20                                          | 2151                        | 125                   | 78        | 86         |
| <b>Network summary</b>                      | <b>8082</b>                 | <b>2708</b>           | <b>60</b> | <b>490</b> |
| <b>Reservation PAM Stations<sup>b</sup></b> |                             |                       |           |            |
| 8                                           | 1972                        | 115                   | 67        | 72         |
| 31                                          | 2139                        | 145                   | 70        | 80         |
| 33                                          | 2145                        | 123                   | 76        | 83         |
| 34                                          | 1525                        | 121                   | 85        | 99         |
| 36                                          | 2152                        | 102                   | 70        | 75         |
| 40                                          | 1310                        | 200                   | 72        | 83         |
| 41                                          | 2154                        | 78                    | 61        | 65         |
| 42                                          | 1805                        | 237                   | 66        | 75         |
| 43                                          | 1845                        | 107                   | 59        | 68         |
| 44                                          | 2153                        | 106                   | 61        | 72         |
| 45                                          | 1434                        | 119                   | 66        | 70         |
| <b>Network summary</b>                      | <b>20634</b>                | <b>237</b>            | <b>59</b> | <b>76</b>  |

<sup>a</sup>Real-time readings were collected at all stations at 10-minute intervals. The number of samples indicate the total number of valid hourly averages during the quarter.

<sup>b</sup>See Figure 1.

## MATER

The ORNL site is drained by two main streams, White Oak Creek (WOC) and Melton Branch. With the exception of two small discharges from the 7600 area which discharge to Melton Hill Lake, all ORNL effluents discharge to these two streams or their tributaries. White Oak Creek flows through Bethel Valley where Fifth Creek, First Creek, and the Northwest Tributary enter it. White Oak Creek continues through a gap in Chestnut Ridge into Melton Valley where it is joined by Melton Branch, which drains Melton Valley. White Oak Creek empties into White Oak Lake, which is controlled by White Oak Dam (WOD), and is the last monitoring/sampling point before effluents leave the ORNL site. The majority of the drainage or liquid effluent from ORNL flows into the Clinch River by way of White Oak Creek (WOC). The Clinch River flows southwest from Virginia to its mouth near Kingston, Tennessee, where it joins with the Tennessee River. Process effluents discharged to these streams are handled in a number of ways which include: treatment (PWTP, Coal Yard Runoff), holding basins (190 ponds, HFIR/TRU ponds), and direct discharge to the stream. Sanitary effluent is discharged to White Oak Creek after treatment at the Sewage Treatment Plant. Below WOD, WOC is affected by water levels in the Clinch River which are controlled by Melton Hill Dam, shown in Figure 4.

Surveillance of the water environment consists of the collection of surface water samples and effluent samples required under the National Pollutant Discharge Elimination System (NPDES) permit. Samples are analyzed for radionuclides and nonradioactive chemicals.

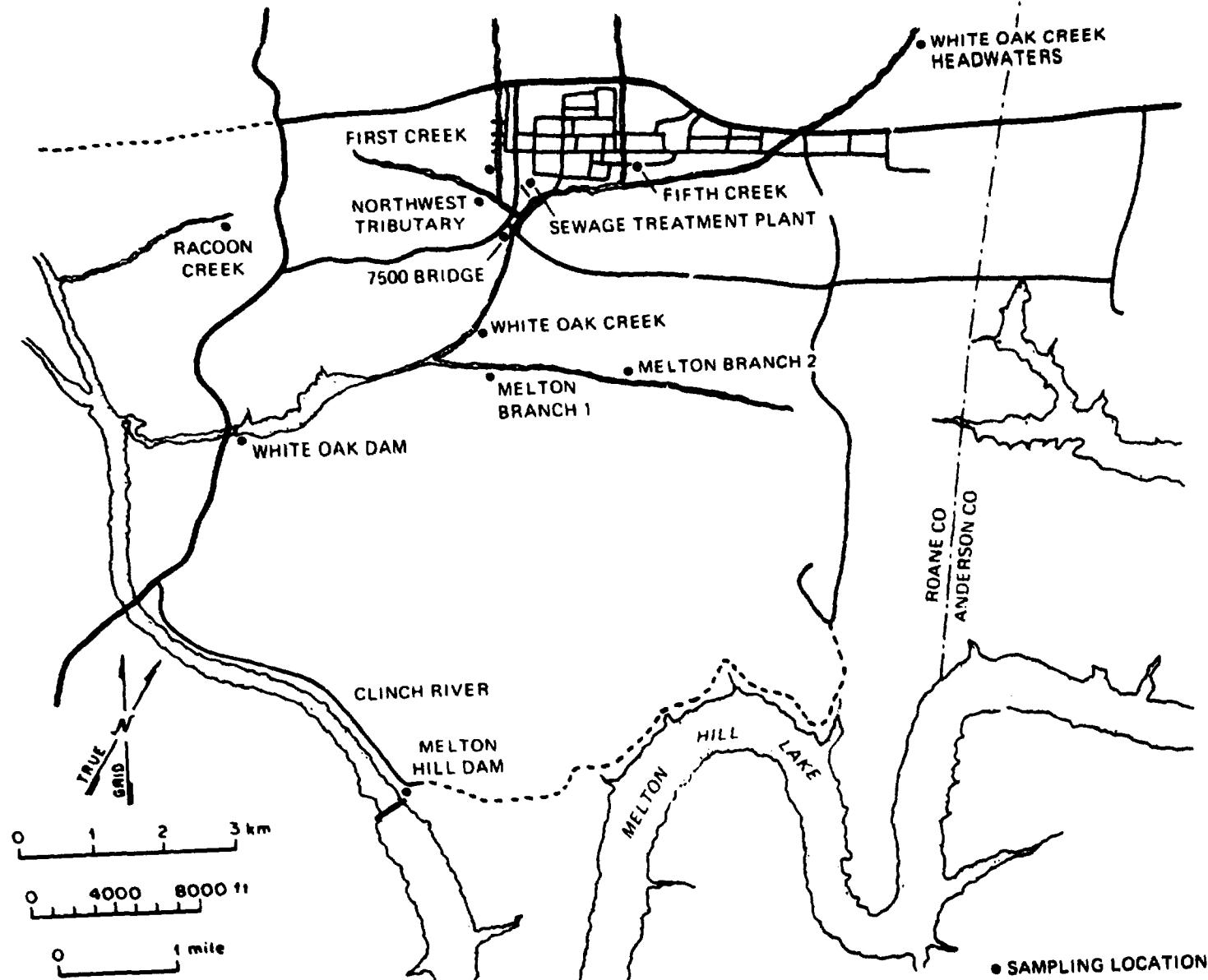



Fig. 4 Location map of ORNL streams  
and sampling stations

### Surface Water

White Oak Creek (WOC) drains an area of 17 km<sup>2</sup> in Bethel and Melton Valleys and is the largest stream flowing through ORNL. Run-off from sites at ORNL reaches WOC either directly or via one of its tributaries. After entering Melton Valley, WOC is joined by its major tributary, Melton Branch (MB), at WOC kilometer 2.49. White Oak Dam (WOD), located one kilometer above the mouth of WOC, forms White Oak Lake and serves as a point for monitoring flow and discharges of contaminants from the ORNL site. Because facilities located near these creeks may discharge material to the creeks, sampling and analysis of the processes and their discharges are included in this section. ORNL's nonradiological sampling of these areas are those specified in the NPDES permit (see following section). This section is limited to a discussion of the radiological sampling that is performed by ORNL. Major discharges to WOC include: (1) treated domestic (sanitary) waste from the Sewage Treatment Plant (STP); (2) cooling tower blowdown; (3) cooling water from various sources; (4) surface drainage from the main Laboratory area, including drainage from Solid Waste Storage Areas 3, 4, and 6; (5) discharges from the process waste collection (190 ponds) and process waste treatment plant (3544); and (6) discharges from process building areas. Major discharges to MB include discharges from Solid Waste Storage Area 5, blowdown from the recirculating cooling water system at the High Flux Isotope Reactor (HFIR), and discharges from the 7900 waste pond system.

To determine discharges of radionuclides from ORNL processes, flow and concentration data from ORNL streams were recorded. Water samples were collected regularly from the following stations: 1500 area, 190 Ponds, First Creek, 2000 area, Acid Neutralization Facility (3518), Process Waste Treatment Plant (3544), Fifth Creek, 7500 Bridge, Melton Branch 1 (MB1), Melton Branch 2 (MB2), Melton Hill Dam, Northwest Tributary (NWT), High Flux Isotope Reactor (HFIR), Raccoon Creek, STP, TRU Ponds, WOC, White Oak Creek Headwaters, and WOD (Figs. 4 and 5). Real-time monitoring was performed at MB, WOC, and WOD. The parameters monitored include pH, dissolved oxygen, turbidity, conductivity, temperature, flow, beta and gamma activity (in cpm), and a gamma spectrum at WOD. The samples collected and analyzed daily at 7500 Bridge were used as an early warning of discharges of radioactivity from ORNL processes. Radiological monitoring at stations in the 1500 area, 190 Ponds, 3518, and 3544 was initiated in February 1987 to comply with the requirements of the National Pollutant Discharge Elimination System (NPDES) Radiological Monitoring Plan.

Water samples are picked up weekly at Kingston and ORGDP (Gallaher) water treatment plants and are analyzed quarterly for radionuclides (Fig. 6). For comparison, samples are collected daily from the ORNL potable water system (tap water) in Building 45005 and analyzed quarterly for radio-nuclides. In addition, flow proportional samples are collected weekly from Melton Hill Dam and analyzed quarterly for radionuclides (Fig. 6). This sampling location, on the Clinch River, is above ORNL's discharge point to the Clinch River and serves as a local background or reference station for ORNL.

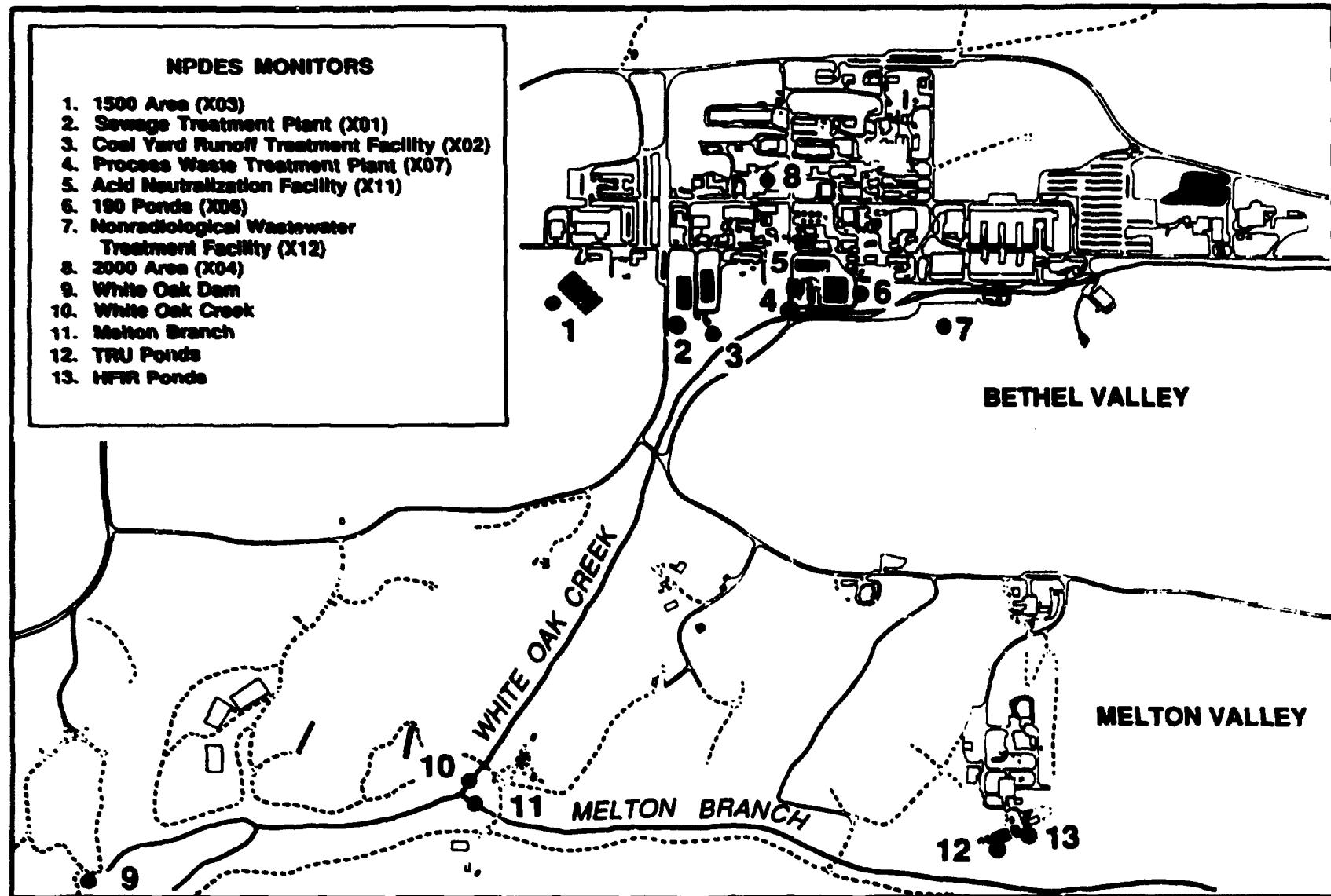



Fig 5 Location map of NPDES monitoring points

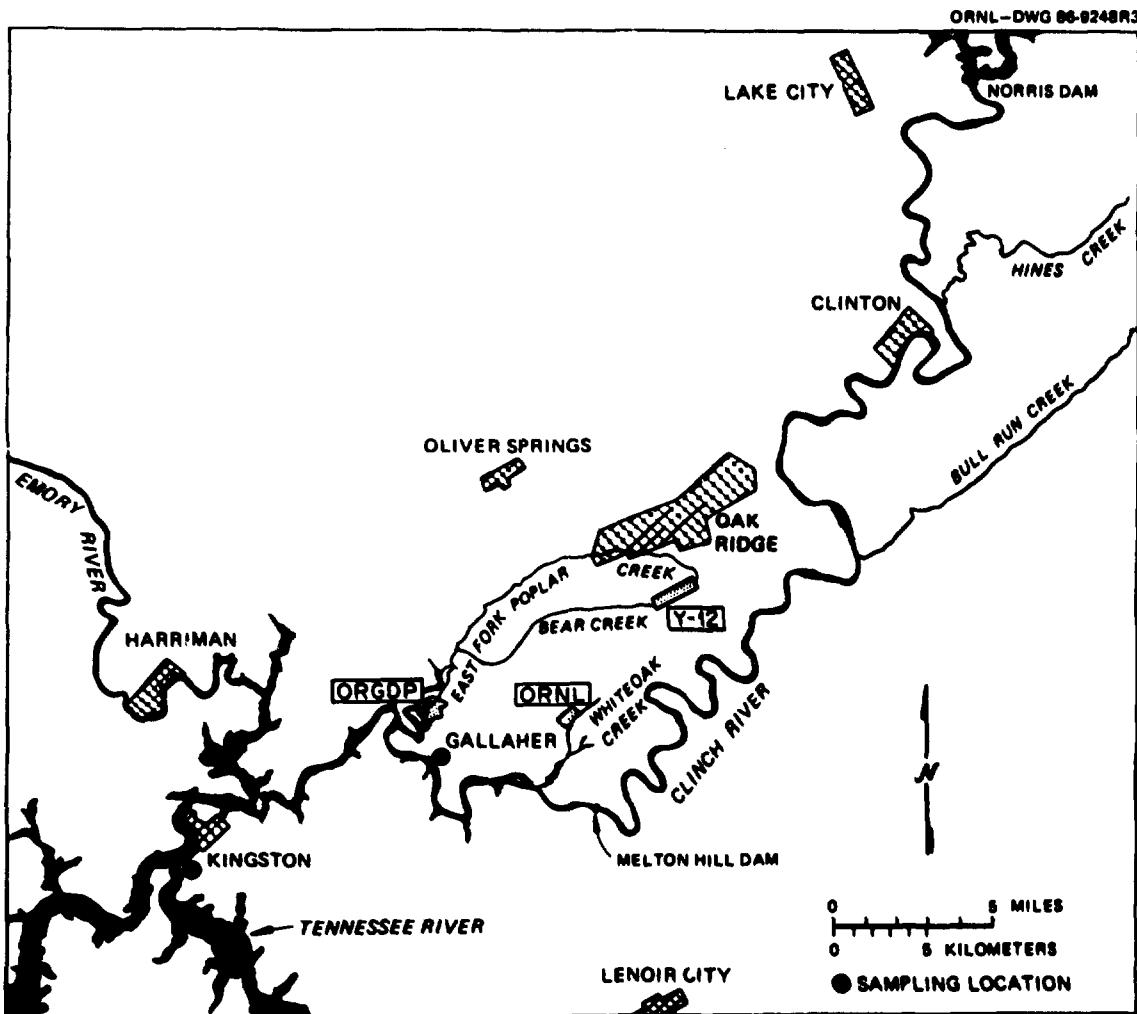



Fig. 6 Location map of Gallaher and Kingston sampling points

Table 15 summarizes the sampling and analysis frequencies, the parameters analyzed, and the type of sample collected at each of these stations. Summaries of radionuclide concentrations are presented in Tables 16-18. All determinations for "total Sr" are for total radioactive strontium which is the sum of  $^{89}\text{Sr}$  and  $^{90}\text{Sr}$ . The 95% confidence coefficients about the average values have not been presented for stations with less than three samples.

No  $^{60}\text{Co}$  or  $^{137}\text{Cs}$  were detected at any of the stations downstream from ORNL (Gallaher and Kingston) or in the ORNL tap water samples (Table 16). These were not detected in any of the quarterly samples for 1987. Concentrations of other radionuclides at the downstream locations were similar to the fourth quarter of 1987.

Cobalt-60 concentrations in Melton Branch (as measured at Melton Branch 2) were significantly lower during the last two quarters than previous quarters because there was no discharge from the HFIR ponds for several months (Table 19). These ponds appear to be the source of most of the  $^{60}\text{Co}$  in Melton Branch.

The highest total radioactive Sr concentrations observed during this quarter were in First Creek with values ranging from 12 to 19 Bq/L (Table 17). Total radioactive Sr concentrations in Melton Branch 1 and Raccoon Creek ranged from 12 to 13 Bq/L and 1.5 to 1.6 Bq/L, respectively. At the Melton Hill Dam background station, total radioactive Sr ranged from 0.0055 to 0.11 Bq/L. Most of the total radioactive strontium appears to be coming from the main ORNL plant area (4500 complexes), the 2000 area, and a smaller portion from the 3000 area. Unlike the  $^{60}\text{Co}$  and  $^{137}\text{Cs}$  discharges, which are primarily process related, the total radioactive strontium releases are more diffuse and are probably the result of surface runoff rather than discharges from process facilities.

Concentrations of tritium are highest (57,000 to 94,000 Bq/L) at the Melton Branch 1 station, which is believed to be due to releases from SWSA 5. Characterization of SWSA 5, particularly the  $^3\text{H}$  releases, is one of the highest priorities of the Remedial Investigation Feasibility Study (RI/FS) subcontract.

Flows in the Clinch river (as measured at Melton Dam) and in WOC (as measured at WOD) and the ratios of these flows, are presented in Table 19. The average ratios presented in the table were calculated weekly and averaged for the month. The effect of a prolonged shortage of precipitation is evident in the flow of the Clinch River. Flow values are appreciably less than for the first quarter of 1987, as are the ratios of the Clinch River flow to the White Oak Creek flow.

Table 15. Summary of collection and analysis frequencies of surface and tap water samples

| Station                                 | Parameter                                                                                                                                  | Collection frequency | Type              | Analysis frequency |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|
| 190 Ponds                               | Gamma scan, gross alpha, gross beta                                                                                                        | Weekly               | Flow Proportional | Monthly            |
| 1500 Area, 3518                         | Gross alpha, gross beta                                                                                                                    | Weekly               | Flow Proportional | Monthly            |
| 2000 Area, STP                          | Gamma scan, gross beta, Total Sr <sup>a</sup>                                                                                              | Weekly               | Flow Proportional | Monthly            |
| 3544                                    | Gross alpha, gross beta, gamma scan, Total Sr <sup>a</sup>                                                                                 | Weekly               | Flow Proportional | Monthly            |
| 7500 Bridge                             | Gamma scan, Total Sr <sup>a</sup>                                                                                                          | Daily                | Time Proportional | Daily              |
| 7500 Bridge, MB1, WOC, MB2              | Gamma scan, Total Sr <sup>a</sup> , <sup>3</sup> H                                                                                         | Weekly               | Flow Proportional | Monthly            |
| First Creek, Fifth Creek, Raccoon Creek | Gamma scan, Total Sr <sup>a</sup>                                                                                                          | Weekly               | Grab              | Monthly            |
| Gallaher, Kingston                      | <sup>3</sup> H, <sup>60</sup> Co, <sup>137</sup> Cs, gamma scan, gross alpha, gross beta, Pu, Total Sr <sup>a</sup> , U                    | Weekly               | Grab              | Quarterly          |
| HFIR Ponds                              | Gamma scan, gross alpha, gross beta                                                                                                        | After Discharge      | Flow Proportional | Monthly            |
| Melton Hill Dam                         | <sup>241</sup> Am, <sup>244</sup> Cm, <sup>60</sup> Co, <sup>137</sup> Cs, gross alpha, Pu, Th, U, Total Sr <sup>a</sup> , <sup>3</sup> H, | Weekly               | Flow Proportional | Quarterly          |
| NWT                                     | Gamma scan, Total Sr <sup>a</sup>                                                                                                          | Weekly               | Flow Proportional | Monthly            |
| ORNL Tap                                | <sup>60</sup> Co, <sup>137</sup> Cs, gross alpha, gross beta, Pu, Total Sr <sup>a</sup> , U                                                | Daily                | Grab              | Quarterly          |
| ORR                                     | <sup>60</sup> Co, <sup>137</sup> Cs, gross alpha, gross beta                                                                               | After Discharge      | Flow Proportional | Monthly            |

Table 15. (continued)

| Station        | Parameter                                                                                                                                          | Collection frequency | Type              | Analysis frequency |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|
| WOC Headwaters | $^{241}\text{Am}$ , $^{244}\text{Cm}$ , $^{60}\text{Co}$ ,<br>$^{137}\text{Cs}$ , gross alpha, Total<br>Sr <sup>a</sup> , $^3\text{H}$ , Pu, Th, U | Weekly               | Grab              | Monthly            |
| WOD            | $^{241}\text{Am}$ , $^{244}\text{Cm}$ , $^{60}\text{Co}$ ,<br>$^{137}\text{Cs}$ , gross beta, Pu,<br>Total Sr <sup>a</sup> , $^3\text{H}$          | Weekly               | Flow Proportional | Weekly             |
| TRU Ponds      | Gross beta                                                                                                                                         | After Discharge      | Flow Proportional | Monthly            |

<sup>a</sup> Total radioactive Sr ( $^{89}\text{Sr}$  +  $^{90}\text{Sr}$ ).

Table 16. Quarterly summary of radionuclide concentrations in surface streams and tap water

January - March

| Radionuclide                       | Concentration<br>(Bq/L) |
|------------------------------------|-------------------------|
| <b>Gallaher<sup>a</sup></b>        |                         |
| <sup>60</sup> Co                   | < 0.030                 |
| <sup>137</sup> Cs                  | < 0.030                 |
| Gross alpha                        | 0.034                   |
| Gross beta                         | 0.20                    |
| Total Pu <sup>b</sup>              | < 0.00011               |
| Total Sr <sup>c</sup>              | 0.059                   |
| <sup>3</sup> H                     | 64                      |
| <sup>234</sup> U                   | 0.0057                  |
| <sup>235</sup> U                   | 0.00017                 |
| <sup>236</sup> U                   | 0.0000055               |
| <sup>238</sup> U                   | 0.0036                  |
| <b>Kingston<sup>a</sup></b>        |                         |
| <sup>60</sup> Co                   | < 0.010                 |
| <sup>137</sup> Cs                  | < 0.010                 |
| Gross alpha                        | 0.0030                  |
| Gross beta                         | 0.040                   |
| Total Pu <sup>b</sup>              | < 0.00011               |
| Total Sr <sup>c</sup>              | 0.0070                  |
| <sup>3</sup> H                     | 6.4                     |
| <sup>234</sup> U                   | 0.0027                  |
| <sup>235</sup> U                   | 0.000083                |
| <sup>236</sup> U                   | 0.000017                |
| <sup>238</sup> U                   | 0.0015                  |
| <b>Melton Hill Dam<sup>a</sup></b> |                         |
| <sup>60</sup> Co                   | < 0.010                 |
| <sup>137</sup> Cs                  | < 0.010                 |
| Gross alpha                        | 0.0010                  |
| Gross beta                         | 0.059                   |
| Total Pu <sup>b</sup>              | < 0.00011               |
| Total Sr <sup>c</sup>              | 0.0030                  |
| <sup>234</sup> U                   | 0.0065                  |
| <sup>235</sup> U                   | 0.00019                 |
| <sup>236</sup> U                   | 0.0000037               |
| <sup>238</sup> U                   | 0.0038                  |

Table 16. (continued)

January - March

| Radionuclide          | Concentration<br>(Bq/L) |
|-----------------------|-------------------------|
| ORNL Tap Water        |                         |
| $^{60}\text{Co}$      | < 0.010                 |
| $^{137}\text{Cs}$     | < 0.010                 |
| Gross alpha           | 0.017                   |
| Gross beta            | 0.090                   |
| Total Pu <sup>b</sup> | < 0.00011               |
| Total Sr <sup>c</sup> | 0.0030                  |
| $^{234}\text{U}$      | 0.0036                  |
| $^{235}\text{U}$      | 0.00010                 |
| $^{236}\text{U}$      | < 0.0000029             |
| $^{238}\text{U}$      | 0.0021                  |

<sup>a</sup>See Figure 6.<sup>b</sup>Total Pu ( $^{239}\text{Pu} + 240\text{Pu}$ ).<sup>c</sup>Total radioactive Sr ( $^{89}\text{Sr} + 90\text{Sr}$ ).

Table 17. Radionuclide concentrations in water around ORNL

January - March

| Radionuclide             | No. of Samples | Concentration (Bq/L) |        |        |                     |
|--------------------------|----------------|----------------------|--------|--------|---------------------|
|                          |                | Max                  | Min    | Av     | 95% cc <sup>a</sup> |
| 1500 Area <sup>b</sup>   |                |                      |        |        |                     |
| Gross alpha              | 3              | 0.50                 | 0.0    | 0.17   | 0.33                |
| Gross beta               | 3              | 1.8                  | 0.34   | 1.0    | 0.85                |
| 190 Ponds <sup>b</sup>   |                |                      |        |        |                     |
| <sup>60</sup> Co         | 3              | < 0.30               | < 0.10 | < 0.20 | 0.12                |
| <sup>137</sup> Cs        | 3              | 0.61                 | 0.49   | 0.54   | 0.071               |
| Gross alpha              | 3              | 2.2                  | 0.030  | 0.83   | 1.4                 |
| Gross beta               | 3              | 2.8                  | 1.8    | 2.3    | 0.58                |
| First Creek <sup>c</sup> |                |                      |        |        |                     |
| <sup>60</sup> Co         | 3              | < 0.20               | < 0.10 | < 0.13 | 0.067               |
| <sup>137</sup> Cs        | 3              | < 0.20               | < 0.10 | < 0.13 | 0.067               |
| Total Sr <sup>d</sup>    | 3              | 19                   | 12     | 15     | 4.1                 |
| 2000 Area <sup>b</sup>   |                |                      |        |        |                     |
| <sup>60</sup> Co         | 3              | < 0.20               | < 0.20 | < 0.20 | 0.0                 |
| <sup>137</sup> Cs        | 3              | < 0.20               | < 0.20 | < 0.20 | 0.0                 |
| Gross beta               | 3              | 1.9                  | 0.0    | 0.66   | 1.2                 |
| Total Sr <sup>d</sup>    | 3              | 0.080                | -0.010 | 0.043  | 0.055               |
| 3518 <sup>b</sup>        |                |                      |        |        |                     |
| Gross alpha              | 3              | 0.40                 | 0.0    | 0.24   | 0.25                |
| Gross beta               | 3              | 1.5                  | 0.0    | 0.70   | 0.87                |

Table 17. (continued)

January - March

| Radionuclide             | No. of Samples | Concentration (Bq/L) |        |        |                     |
|--------------------------|----------------|----------------------|--------|--------|---------------------|
|                          |                | Max                  | Min    | Av     | 95% cc <sup>a</sup> |
| 3544 <sup>b</sup>        |                |                      |        |        |                     |
| <sup>60</sup> Co         | 3              | 4.8                  | 3.8    | 4.3    | 0.58                |
| <sup>134</sup> Cs        | 2              | 0.79                 | 0.48   | 0.64   | 0.31                |
| <sup>137</sup> Cs        | 3              | 150                  | 75     | 110    | 44                  |
| <sup>152</sup> Eu        | 1              | 2.1                  | 2.1    | 2.1    | N/A                 |
| Gross alpha              | 3              | 2.9                  | 0.38   | 1.6    | 1.5                 |
| Gross beta               | 3              | 130                  | 80     | 110    | 29                  |
| Total Sr <sup>d</sup>    | 3              | 0.16                 | 0.020  | 0.087  | 0.081               |
| Fifth Creek <sup>c</sup> |                |                      |        |        |                     |
| <sup>60</sup> Co         | 3              | < 0.30               | < 0.10 | < 0.17 | 0.13                |
| <sup>137</sup> Cs        | 3              | < 0.20               | < 0.10 | < 0.13 | 0.067               |
| Total Sr <sup>d</sup>    | 3              | 1.9                  | 1.4    | 1.6    | 0.29                |
| 7500 Bridge <sup>c</sup> |                |                      |        |        |                     |
| <sup>60</sup> Co         | 3              | < 0.70               | < 0.20 | < 0.40 | 0.31                |
| <sup>137</sup> Cs        | 3              | 4.7                  | 1.9    | 3.4    | 1.6                 |
| Total Sr <sup>d</sup>    | 3              | 2.9                  | 1.7    | 2.5    | 0.80                |
| <sup>3</sup> H           | 3              | 110                  | 67     | 87     | 25                  |
| HFIR <sup>b</sup>        |                |                      |        |        |                     |
| <sup>60</sup> Co         | 1              | 370                  | 370    | 370    | N/A                 |
| <sup>137</sup> Cs        | 1              | < 1.0                | < 1.0  | < 1.0  | N/A                 |
| <sup>152</sup> Eu        | 1              | 18                   | 18     | 18     | N/A                 |
| <sup>154</sup> Eu        | 1              | 27                   | 27     | 27     | N/A                 |
| <sup>155</sup> Eu        | 1              | 21                   | 21     | 21     | N/A                 |
| Gross alpha              | 1              | 1.0                  | 1.0    | 1.0    | N/A                 |
| Gross beta               | 1              | 490                  | 490    | 490    | N/A                 |

Table 17. (continued)

January - March

## Concentration (Bq/L)

| Radionuclide                                  | No. of Samples | Max      | Min      | Av      | 95% cc <sup>a</sup> |
|-----------------------------------------------|----------------|----------|----------|---------|---------------------|
| <b>White Oak Creek Headwaters<sup>c</sup></b> |                |          |          |         |                     |
| <sup>241</sup> Am                             | 3              | 0.0010   | -0.18    | -0.060  | 0.12                |
| <sup>244</sup> Cm                             | 3              | -0.00020 | -0.15    | -0.050  | 0.10                |
| <sup>60</sup> Co                              | 3              | < 0.30   | < 0.20   | < 0.23  | 0.067               |
| <sup>137</sup> Cs                             | 3              | < 0.20   | < 0.10   | < 0.17  | 0.067               |
| Gross alpha                                   | 3              | 0.51     | 0.0      | 0.21    | 0.31                |
| <sup>238</sup> Pu                             | 3              | 0.0010   | -0.00070 | 0.00017 | 0.00098             |
| <sup>239</sup> Pu                             | 3              | 0.0040   | -0.0013  | 0.00057 | 0.0034              |
| Total Sr <sup>d</sup>                         | 3              | 0.033    | -0.070   | -0.0090 | 0.062               |
| <sup>3</sup> H                                | 3              | 31       | -6.0     | 10      | 22                  |
| <b>Melton Branch 1<sup>c</sup></b>            |                |          |          |         |                     |
| <sup>60</sup> Co                              | 3              | 0.95     | < 0.20   | < 0.57  | 0.43                |
| <sup>137</sup> Cs                             | 3              | 5.2      | < 0.10   | < 1.8   | 3.4                 |
| Total Sr <sup>d</sup>                         | 3              | 13       | 12       | 12      | 0.67                |
| <sup>3</sup> H                                | 3              | 94000    | 57000    | 76000   | 21000               |
| <b>Melton Branch 2<sup>c</sup></b>            |                |          |          |         |                     |
| <sup>60</sup> Co                              | 3              | 0.83     | 0.41     | 0.58    | 0.25                |
| <sup>137</sup> Cs                             | 3              | < 0.20   | < 0.20   | < 0.20  | 0.0                 |
| Total Sr <sup>d</sup>                         | 3              | 0.14     | 0.020    | 0.070   | 0.072               |
| <sup>3</sup> H                                | 3              | 630      | 230      | 420     | 230                 |
| <b>Melton Hill Dam<sup>c</sup></b>            |                |          |          |         |                     |
| <sup>241</sup> Am                             | 3              | 0.0020   | 0.0013   | 0.0016  | 0.00042             |
| <sup>244</sup> Cm                             | 3              | 0.0023   | 0.0      | 0.0011  | 0.0013              |
| <sup>60</sup> Co                              | 3              | < 0.30   | < 0.10   | < 0.20  | 0.12                |
| <sup>137</sup> Cs                             | 3              | < 0.20   | < 0.10   | < 0.13  | 0.067               |

Table 17. (continued)

January - March

| Radionuclide                        | No. of Samples | Concentration (Bq/L) |          |         |                     |
|-------------------------------------|----------------|----------------------|----------|---------|---------------------|
|                                     |                | Max                  | Min      | Av      | 95% cc <sup>a</sup> |
| Gross alpha                         | 3              | 0.080                | 0.0      | 0.027   | 0.053               |
| <sup>238</sup> Pu                   | 3              | 0.0010               | -0.00035 | 0.00022 | 0.00081             |
| <sup>239</sup> Pu                   | 3              | 0.044                | -0.0020  | 0.014   | 0.030               |
| Total Sr <sup>d</sup>               | 3              | 0.11                 | 0.0055   | 0.052   | 0.061               |
| <sup>3</sup> H                      | 3              | -1.0                 | -8.0     | -4.7    | 4.1                 |
| Northwest Tributary <sup>c</sup>    |                |                      |          |         |                     |
| <sup>60</sup> Co                    | 3              | < 0.30               | < 0.20   | < 0.23  | 0.067               |
| <sup>137</sup> Cs                   | 3              | < 0.20               | < 0.20   | < 0.20  | 0.0                 |
| Total Sr <sup>d</sup>               | 3              | 2.3                  | 1.6      | 1.9     | 0.41                |
| Raccoon Creek <sup>c</sup>          |                |                      |          |         |                     |
| <sup>60</sup> Co                    | 3              | < 0.20               | < 0.10   | < 0.13  | 0.067               |
| <sup>137</sup> Cs                   | 3              | 0.20                 | < 0.10   | < 0.14  | 0.064               |
| Total Sr <sup>d</sup>               | 3              | 1.6                  | 1.5      | 1.6     | 0.067               |
| Sewage Treatment Plant <sup>c</sup> |                |                      |          |         |                     |
| <sup>60</sup> Co                    | 6              | < 0.20               | < 0.10   | < 0.17  | 0.042               |
| <sup>137</sup> Cs                   | 6              | 0.20                 | < 0.10   | < 0.15  | 0.037               |
| Gross beta                          | 6              | 9.6                  | 7.4      | 8.6     | 0.82                |
| Total Sr <sup>d</sup>               | 6              | 4.3                  | 3.2      | 3.8     | 0.42                |
| TRU Ponds <sup>b</sup>              |                |                      |          |         |                     |
| Gross beta                          | 1              | 3.8                  | 3.8      | 3.8     | N/A                 |

Table 17. (continued)

January - March

| Radionuclide                       | No. of Samples | Concentration (Bq/L) |        |          |                     |
|------------------------------------|----------------|----------------------|--------|----------|---------------------|
|                                    |                | Max                  | Min    | Av       | 95% cc <sup>a</sup> |
| <b>White Oak Creek<sup>c</sup></b> |                |                      |        |          |                     |
| <sup>60</sup> Co                   | 3              | 2.5                  | < 0.20 | < 1.0    | 1.5                 |
| <sup>137</sup> Cs                  | 3              | 3.2                  | 0.12   | 2.1      | 2.0                 |
| Total Sr <sup>d</sup>              | 3              | 4.7                  | 4.4    | 4.6      | 0.18                |
| <sup>3</sup> H                     | 3              | 1600                 | 940    | 1300     | 410                 |
| <b>White Oak Dam<sup>c</sup></b>   |                |                      |        |          |                     |
| <sup>241</sup> Am                  | 13             | 0.011                | -0.045 | 0.0013   | 0.0080              |
| <sup>244</sup> Cm                  | 13             | 0.030                | -0.031 | 0.0065   | 0.0073              |
| <sup>60</sup> Co                   | 13             | 0.50                 | < 0.20 | < 0.35   | 0.042               |
| <sup>137</sup> Cs                  | 13             | 6.3                  | 0.63   | 1.8      | 0.87                |
| Gross beta                         | 13             | 16                   | 10     | 13       | 1.1                 |
| <sup>238</sup> Pu                  | 13             | 0.20                 | -0.14  | 0.0025   | 0.040               |
| <sup>239</sup> Pu                  | 13             | 0.015                | -0.030 | -0.00034 | 0.0060              |
| Total Sr <sup>d</sup>              | 13             | 6.6                  | 4.4    | 5.6      | 0.42                |
| <sup>3</sup> H                     | 13             | 14000                | 3700   | 10000    | 1700                |

<sup>a</sup>95% confidence coefficient about the average of more than two samples.

<sup>b</sup>See Figure 5.

<sup>c</sup>See Figure 4.

<sup>d</sup>Total radioactive Sr (<sup>89</sup>Sr + <sup>90</sup>Sr).

Table 18. Radionuclide concentrations in water  
at the 7500 Bridge<sup>a</sup>

January - March

| Radionuclide          | No. of Samples | Concentration (Bq/L) |        |        |                     |
|-----------------------|----------------|----------------------|--------|--------|---------------------|
|                       |                | Max                  | Min    | Av     | 95% cc <sup>b</sup> |
| <b>January</b>        |                |                      |        |        |                     |
| <sup>60</sup> Co      | 20             | 0.91                 | < 0.20 | < 0.46 | 0.088               |
| <sup>137</sup> Cs     | 20             | 36                   | 2.0    | 9.4    | 4.0                 |
| Total Sr <sup>c</sup> | 20             | 6.3                  | 2.0    | 3.1    | 0.42                |
| <b>February</b>       |                |                      |        |        |                     |
| <sup>60</sup> Co      | 20             | 0.60                 | < 0.20 | < 0.33 | 0.046               |
| <sup>137</sup> Cs     | 20             | 13                   | 2.1    | 4.7    | 1.1                 |
| Total Sr <sup>c</sup> | 20             | 3.8                  | 1.9    | 2.5    | 0.20                |
| <b>March</b>          |                |                      |        |        |                     |
| <sup>60</sup> Co      | 23             | < 0.40               | < 0.10 | < 0.31 | 0.036               |
| <sup>137</sup> Cs     | 23             | 8.4                  | 1.5    | 3.6    | 0.67                |
| Total Sr <sup>c</sup> | 23             | 3.3                  | 1.6    | 2.4    | 0.21                |

<sup>a</sup>See Figure 4.

<sup>b</sup>95% confidence coefficient about the average  
of more than two samples.

<sup>c</sup>Total radioactive Sr (<sup>89</sup>Sr + <sup>90</sup>Sr).

Table 19. Flow for Clinch River and White Oak Creek

## January - March

| Month    | Flow ( $10^9$ L)          |                              |                            |
|----------|---------------------------|------------------------------|----------------------------|
|          | Clinch River <sup>a</sup> | White Oak Creek <sup>a</sup> | Average Ratio <sup>b</sup> |
| January  | 270                       | 1.00                         | 370                        |
| February | 210                       | 0.81                         | 290                        |
| March    | 100                       | 0.98                         | 120                        |

<sup>a</sup>See Figure 4.<sup>b</sup>Flow ratios for Clinch River and White Oak Creek are calculated daily and averaged for the month.

The total hourly flows at WOC, MB, and WOD were calculated by multiplying the average 10-minute flowrate (gallons per minute) transmitted via the real-time monitoring system by the number of minutes per hour. Low and high readings are recorded at WOC and MB while low, medium, and high flow readings are recorded at WOD.

Total flows per day at the STP are calculated by subtracting consecutive daily flow recorder readings and multiplying by a factor for conversion to million liters. The weekly flows are determined by averaging the total flows for the week and multiplying by the number of days in the week.

The discharges of radionuclides at WOD, MB1, and the STP are calculated by multiplying the concentration by the flow. At WOC, MB1 and the STP, a single flow proportional sample is analyzed monthly to estimate radionuclide concentrations. At WOD, weekly flow proportional samples are analyzed. At WOD, weekly radionuclide discharges are calculated by multiplying the weekly composite sample concentration by the total weekly flow. Monthly discharges of radionuclides at WOD are then calculated by averaging the weekly discharges and multiplying by the number of weeks per month (Tables 20-22). A flow weighted concentration at WOD for the month is calculated by dividing the total radionuclide discharge for the month by the total monthly flow (Tables 20-22).

Each average flow-weighted concentration is compared to a corresponding Derived Concentration Guide (DCG). A DCG, for water, is the concentration of a particular radionuclide for which a "reference man" under continuous exposure (ingestion) for one year would receive the most restrictive of (1) an effective dose equivalent of 1 mSv or (2) a dose equivalent of 50 mSv to any particular tissue (DOE draft order 5400.xx). In almost all cases the actual values are a small percentage of the corresponding DCGs. However, the percentages for strontium and tritium at Melton Branch 1 are higher. Tritium concentrations at Melton Branch 1 are typically near the corresponding DCG, and exceeded the DCG by 30% during March.

Table 20. Radionuclide concentrations and releases at ORNL  
January

| Radionuclide                              | Flow<br>(10 <sup>6</sup> L) | Discharge<br>(10 <sup>4</sup> Mega<br>Bq) | Average<br>Flow-Weighted<br>Concentration<br>(Bq/L) | Derived<br>Concentration<br>Guide (DCG)<br>(Bq/L) | Percent<br>of<br>DCG |
|-------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------|
| <b>Melton Branch 1<sup>a</sup></b>        |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 420                         | < 0.0084                                  | < 0.20                                              | 190                                               | 0.11                 |
| <sup>137</sup> Cs                         | 420                         | 0.22                                      | 5.2                                                 | 110                                               | 4.7                  |
| Total Sr <sup>c</sup>                     | 420                         | 0.54                                      | 13                                                  | 37                                                | 35                   |
| <sup>3</sup> H                            | 420                         | 2400                                      | 57000                                               | 74000                                             | 77                   |
| <b>Sewage Treatment Plant<sup>a</sup></b> |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 74                          | < 0.0015                                  | < 0.20                                              | 190                                               | 0.11                 |
| <sup>137</sup> Cs                         | 74                          | 0.0010                                    | 0.14                                                | 110                                               | 0.13                 |
| Gross beta                                | 74                          | 0.071                                     | 9.6                                                 | N/A                                               | N/A                  |
| Total Sr <sup>c</sup>                     | 74                          | 0.030                                     | 4.0                                                 | 37                                                | 11                   |
| <b>White Oak Creek<sup>a</sup></b>        |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 950                         | 0.24                                      | 2.5                                                 | 190                                               | 1.4                  |
| <sup>137</sup> Cs                         | 950                         | 0.611                                     | 0.12                                                | 110                                               | 0.11                 |
| Total Sr <sup>c</sup>                     | 950                         | 0.45                                      | 4.7                                                 | 37                                                | 13                   |
| <sup>3</sup> H                            | 950                         | 90                                        | 940                                                 | 74000                                             | 1.3                  |
| <b>White Oak Dam<sup>a, b</sup></b>       |                             |                                           |                                                     |                                                   |                      |
| <sup>241</sup> Am                         | 1100                        | 0.00098                                   | 0.0094                                              | 1.1                                               | 0.84                 |
| <sup>244</sup> Cm                         | 1100                        | 0.0021                                    | 0.020                                               | 2.2                                               | 0.92                 |
| <sup>60</sup> Co                          | 1100                        | 0.046                                     | 0.44                                                | 190                                               | 0.24                 |
| <sup>137</sup> Cs                         | 1100                        | 0.45                                      | 4.3                                                 | 110                                               | 3.9                  |
| Gross beta                                | 1100                        | 1.6                                       | 15                                                  | N/A                                               | N/A                  |
| <sup>238</sup> Pu                         | 1100                        | 0.012                                     | 0.11                                                | 1.5                                               | 7.5                  |
| <sup>239</sup> Pu                         | 1100                        | 0.0011                                    | 0.010                                               | 1.1                                               | 0.92                 |
| Total Sr <sup>c</sup>                     | 1100                        | 0.66                                      | 6.3                                                 | 37                                                | 17                   |
| <sup>3</sup> H                            | 1100                        | 880                                       | 8400                                                | 74000                                             | 11                   |

<sup>a</sup>See Figure 4.

<sup>b</sup>Concentration is a flow-weighted average of the weekly samples. Discharge is the total for the month.

<sup>c</sup>Total radioactive Sr (<sup>89</sup>Sr + <sup>90</sup>Sr).

Table 21. Radionuclide concentrations and releases at ORNL  
February

| Radionuclide                              | Flow<br>(10 <sup>6</sup> L) | Discharge<br>(10 <sup>4</sup> Mega<br>Bq) | Average<br>Flow-Weighted<br>Concentration<br>(Bq/L) | Derived<br>Concentration<br>Guide (DCG)<br>(Bq/L) | Percent<br>of<br>DCG |
|-------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------|
| <b>Melton Branch 1<sup>a</sup></b>        |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 120                         | < 0.0051                                  | < 0.41                                              | 190                                               | 0.22                 |
| <sup>137</sup> Cs                         | 120                         | < 0.029                                   | < 2.4                                               | 110                                               | 2.1                  |
| Total Sr <sup>c</sup>                     | 120                         | 0.15                                      | 12                                                  | 37                                                | 34                   |
| <sup>3</sup> H                            | 120                         | 840                                       | 68000                                               | 74000                                             | 92                   |
| <b>Sewage Treatment Plant<sup>a</sup></b> |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 69                          | < 0.00081                                 | < 0.12                                              | 190                                               | 0.063                |
| <sup>137</sup> Cs                         | 69                          | < 0.00075                                 | < 0.11                                              | 110                                               | 0.098                |
| Gross beta                                | 69                          | 0.054                                     | 7.8                                                 | N/A                                               | N/A                  |
| Total Sr <sup>c</sup>                     | 69                          | 0.023                                     | 3.3                                                 | 37                                                | 9.0                  |
| <b>White Oak Creek<sup>a</sup></b>        |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 670                         | < 0.050                                   | < 0.75                                              | 190                                               | 0.41                 |
| <sup>137</sup> Cs                         | 670                         | 0.16                                      | 2.4                                                 | 110                                               | 2.2                  |
| Total Sr <sup>c</sup>                     | 670                         | 0.31                                      | 4.6                                                 | 37                                                | 12                   |
| <sup>3</sup> H                            | 670                         | 91                                        | 1400                                                | 74000                                             | 1.8                  |
| <b>White Oak Dam<sup>a, b</sup></b>       |                             |                                           |                                                     |                                                   |                      |
| <sup>241</sup> Am                         | 810                         | -0.0011                                   | -0.014                                              | 1.1                                               | < 0.001              |
| <sup>244</sup> Cm                         | 810                         | -0.00046                                  | -0.0056                                             | 2.2                                               | < 0.001              |
| <sup>60</sup> Co                          | 810                         | < 0.024                                   | < 0.29                                              | 190                                               | 0.16                 |
| <sup>137</sup> Cs                         | 810                         | 0.095                                     | 1.2                                                 | 110                                               | 1.1                  |
| Gross beta                                | 810                         | 1.0                                       | 12                                                  | N/A                                               | N/A                  |
| <sup>238</sup> Pu                         | 810                         | -0.0020                                   | -0.024                                              | 1.5                                               | < 0.001              |
| <sup>239</sup> Pu                         | 810                         | -0.00013                                  | -0.0016                                             | 1.1                                               | < 0.001              |
| Total Sr <sup>c</sup>                     | 810                         | 0.40                                      | 4.9                                                 | 37                                                | 13                   |
| <sup>3</sup> H                            | 810                         | 940                                       | 12000                                               | 74000                                             | 16                   |

<sup>a</sup>See Figure 4.

<sup>b</sup>Concentration is a flow-weighted average of the weekly samples. Discharge is the total for the month.

<sup>c</sup>Total radioactive Sr (<sup>89</sup>Sr + <sup>90</sup>Sr).

Table 22. Radionuclide concentrations and releases at ORNL

March

| Radionuclide                              | Flow<br>(10 <sup>6</sup> L) | Discharge<br>(10 <sup>4</sup> Mega<br>Bq) | Average<br>Flow-Weighted<br>Concentration<br>(Bq/L) | Derived<br>Concentration<br>Guide (DCG)<br>(Bq/L) | Percent<br>of<br>DCG |
|-------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------|
| <b>Melton Branch 1<sup>a</sup></b>        |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 250                         | 0.024                                     | 0.95                                                | 190                                               | 0.52                 |
| <sup>137</sup> Cs                         | 250                         | < 0.0025                                  | < 0.10                                              | 110                                               | 0.090                |
| Total Sr <sup>c</sup>                     | 250                         | 0.30                                      | 12                                                  | 37                                                | 33                   |
| <sup>3</sup> H                            | 250                         | 2300                                      | 94000                                               | 74000                                             | 130                  |
| <b>Sewage Treatment Plant<sup>a</sup></b> |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 75                          | < 0.0015                                  | < 0.20                                              | 190                                               | 0.11                 |
| <sup>137</sup> Cs                         | 75                          | < 0.0015                                  | < 0.20                                              | 110                                               | 0.18                 |
| Gross beta                                | 75                          | 0.068                                     | 8.9                                                 | N/A                                               | N/A                  |
| Total Sr <sup>c</sup>                     | 75                          | 0.033                                     | 4.3                                                 | 37                                                | 12                   |
| <b>White Oak Creek<sup>a</sup></b>        |                             |                                           |                                                     |                                                   |                      |
| <sup>60</sup> Co                          | 670                         | < 0.027                                   | < 0.41                                              | 190                                               | 0.22                 |
| <sup>137</sup> Cs                         | 670                         | 0.22                                      | 3.2                                                 | 110                                               | 2.9                  |
| Total Sr <sup>c</sup>                     | 670                         | 0.30                                      | 4.5                                                 | 37                                                | 12                   |
| <sup>3</sup> H                            | 670                         | 110                                       | 1600                                                | 74000                                             | 2.2                  |
| <b>White Oak Dam<sup>a, b</sup></b>       |                             |                                           |                                                     |                                                   |                      |
| <sup>241</sup> Am                         | 960                         | 0.00030                                   | 0.0032                                              | 1.1                                               | 0.29                 |
| <sup>244</sup> Cm                         | 960                         | 0.00063                                   | 0.0068                                              | 2.2                                               | 0.31                 |
| <sup>60</sup> Co                          | 960                         | < 0.031                                   | < 0.33                                              | 190                                               | 0.18                 |
| <sup>137</sup> Cs                         | 960                         | 0.13                                      | 1.3                                                 | 110                                               | 1.2                  |
| Gross beta                                | 960                         | 1.4                                       | 15                                                  | N/A                                               | N/A                  |
| <sup>238</sup> Pu                         | 960                         | -0.00071                                  | -0.0076                                             | 1.5                                               | < 0.001              |
| <sup>239</sup> Pu                         | 960                         | -0.00022                                  | -0.0024                                             | 1.1                                               | < 0.001              |
| Total Sr <sup>c</sup>                     | 960                         | 0.53                                      | 5.7                                                 | 37                                                | 15                   |
| <sup>3</sup> H                            | 960                         | 840                                       | 9000                                                | 74000                                             | 12                   |

<sup>a</sup>See Figure 4.<sup>b</sup>Concentration is a flow-weighted average of the weekly samples. Discharge is the total for the month.<sup>c</sup>Total radioactive Sr (<sup>89</sup>Sr + <sup>90</sup>Sr).

## National Pollutant Discharge Elimination System (NPDES) Requirements

ORNL's current NPDES permit requires that ten point source outfalls be sampled prior to their discharge into receiving waters, or before mixing with any other wastewater stream. One of these points, the Nonradiological Wastewater Treatment Plant, will not be in operation until March of 1990. In addition, there are three sampling locations that are located in the streams as reference points or for additional information and one (ORR Resin Regeneration Facility) that was taken out of operation in December 1986. These thirteen sampling locations are shown in Figure 5. There are approximately 150 additional locations that include storm drains, parking lot and roof drains, cooling tower drains, storage area drains, condensate drains, untreated process drains, and miscellaneous facilities that are sampled less frequently than the point source outfalls or surface streams.

Quarterly summary statistics for the first quarter of 1988 are given for each sampling location in Tables 23 through 39. Monitoring of the ORR Resin Regeneration Facility is no longer required because the permitted operation has been discontinued.

Data collected for the NPDES permit are also summarized monthly for reporting to DOE and the State of Tennessee. These summaries are submitted to DOE in the Monthly Discharge Monitoring Reports and are available upon request. Noncompliances are provided in Tables 40 through 42. A brief summary of the noncompliances follows.

### January 1988

The pH noncompliances that were recorded at the Acid Neutralization Facility (X11) in January and February have been attributed to a combination of management and systems errors; an Energy Systems Quality Investigation Report (QIR) was filed addressing the situation. No discharge of noncompliant effluent from X11 is known to have occurred.

The chlorine noncompliance at the ORNL Sewage Treatment Plant (X01) was caused by a temporary malfunction of an automatic chlorine-control unit. The unit was promptly repaired and it functioned properly thereafter.

The Environmental Monitoring and Compliance (EMC) Department personnel were unable to determine the causes of two total suspended solids noncompliances at the Sewage Treatment Plant.

### February 1988

The dissolved oxygen (DO) noncompliance at the Sewage Treatment Plant (X01) was attributed to a temporary low DO excursion in the X01 effluent.

No explanation has been determined for the low pH noncompliance that occurred at the Process Waste Treatment Plant (X07). The condition has not reoccurred at X07.

Table 23. NPDES Discharge Point X01<sup>a</sup>

January - March 1988

| Parameter                     | No. of Samples | Concentration (mg/L) |           |                 |                     |
|-------------------------------|----------------|----------------------|-----------|-----------------|---------------------|
|                               |                | Max                  | Min       | Av              | 95% cc <sup>b</sup> |
| Ag                            | 3              | < 0.0036             | < 0.0036  | < 0.0036        | 0                   |
| BOD <sub>c</sub>              | 39             | 16                   | < 5.0     | 5.3             | 0.56                |
| Bromodichloromethane          | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| Cl                            | 39             | 0.65                 | 0.010     | 0.37            | 0.045               |
| Cyanide                       | 3              | < 0.0020             | < 0.0020  | < 0.0020        | 0                   |
| Cu                            | 3              | 0.0090               | < 0.0060  | 0.0072          | 0.0019              |
| DOD <sup>d</sup>              | 62             | 12                   | 4.7       | 8.6             | 0.26                |
| Downstream pH <sup>e</sup>    | 13             | 7.9                  | 7.4       | NA <sup>f</sup> | NA <sup>f</sup>     |
| Fecal coliform <sup>g,h</sup> | 39             | > 600                | < 1.0     | 19              | 31                  |
| Flow <sup>i</sup>             | 62             | 1.6                  | 0.33      | 0.64            | 0.035               |
| Hg                            | 3              | < 0.00020            | < 0.00020 | < 0.00020       | 0                   |
| NH <sub>4</sub> (As N)        | 39             | 0.95                 | 0.034     | 0.096           | 0.051               |
| Oil and grease                | 39             | 19                   | < 2.0     | 2.7             | 0.88                |
| pHe                           | 13             | 8.1                  | 6.8       | NA <sup>f</sup> | NA <sup>f</sup>     |
| Phenols                       | 3              | < 0.0020             | < 0.0010  | < 0.0013        | 0.00067             |
| Trichloroethylene             | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| TSS <sup>j</sup>              | 39             | 58                   | 2.0       | 8.0             | 3.8                 |
| Zn                            | 3              | 0.080                | 0.054     | 0.069           | 0.016               |

<sup>a</sup>Sewage Treatment Plant, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Biological oxygen demand.<sup>d</sup>Dissolved oxygen.<sup>e</sup>Expressed in standard units; average not applicable.<sup>f</sup>NA = not applicable.<sup>g</sup>Expressed in colonies per 100 mL.<sup>h</sup>Geometric mean.<sup>i</sup>Measured in millions of gallons per day.<sup>j</sup>Total suspended solids.

Table 24. NPDES Discharge Point X02a

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |        |                     |
|----------------------------|----------------|----------------------|----------|--------|---------------------|
|                            |                | Max                  | Min      | Av     | 95% cc <sup>b</sup> |
| Ag                         | 13             | 0.030                | < 0.0024 | 0.0061 | 0.0041              |
| As                         | 13             | 0.078                | < 0.018  | 0.038  | 0.0094              |
| Cd                         | 13             | 0.0030               | < 0.0012 | 0.0014 | 0.00028             |
| Cr                         | 13             | 0.024                | < 0.0036 | 0.0069 | 0.0031              |
| Cu                         | 13             | 0.012                | < 0.0018 | 0.0061 | 0.0014              |
| Downstream pH <sup>c</sup> | 62             | 9.0                  | 6.9      | NAd    | NAd                 |
| Fe                         | 13             | 0.44                 | 0.012    | 0.11   | 0.064               |
| Flow <sup>e</sup>          | 62             | 0.0099               | 0        | 0.0020 | 0.00059             |
| Mn                         | 13             | 0.034                | 0.0032   | 0.019  | 0.0044              |
| Ni                         | 13             | 0.036                | < 0.0036 | 0.0064 | 0.0049              |
| Oil and grease             | 13             | 4.0                  | < 2.0    | 2.4    | 0.43                |
| Pb                         | 13             | 0.12                 | < 0.018  | 0.033  | 0.015               |
| pH <sup>c</sup>            | 62             | 8.1                  | 6.4      | NAd    | NAd                 |
| Se                         | 13             | 0.12                 | < 0.024  | 0.040  | 0.014               |
| SO <sub>4</sub>            | 3              | 1300                 | 900      | 1100   | 230                 |
| Temperature <sup>f</sup>   | 3              | 20                   | 16.4     | 19     | 2.5                 |
| TSS <sup>g</sup>           | 13             | 9.0                  | < 5.0    | 6.0    | 0.75                |
| Zn                         | 13             | 0.091                | < 0.0018 | 0.017  | 0.015               |

<sup>a</sup>Coal Yard Runoff Facility, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Expressed in standard units; average not applicable.<sup>d</sup>NA = not applicable.<sup>e</sup>Measured in millions of gallons per day.<sup>f</sup>Measured in degrees centigrade.<sup>g</sup>Total suspended solids.

Table 25. NPDES Discharge Point X03<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Max    | Min      | Concentration (mg/L)<br>Av | 95% cc <sup>b</sup> |
|----------------------------|----------------|--------|----------|----------------------------|---------------------|
| As                         | 5              | 0.036  | < 0.018  | 0.027                      | 0.0081              |
| Cd                         | 5              | 0.0020 | < 0.0012 | 0.0014                     | 0.00029             |
| Cr                         | 5              | 0.0097 | < 0.0036 | 0.0050                     | 0.0024              |
| Cu                         | 5              | 0.087  | 0.010    | 0.030                      | 0.029               |
| Downstream pH <sup>c</sup> | 13             | 8.5    | 7.6      | NAd                        | NAd                 |
| Fe                         | 5              | 0.22   | 0.069    | 0.13                       | 0.071               |
| Flow <sup>e</sup>          | 3              | 0.052  | 0.0053   | 0.024                      | 0.029               |
| Ni                         | 5              | 0.0090 | < 0.0036 | 0.0049                     | 0.0021              |
| Oil and grease             | 5              | 3.0    | < 2.0    | 2.4                        | 0.49                |
| P                          | 5              | 1.1    | 0.40     | 0.78                       | 0.23                |
| Pb                         | 5              | 0.030  | < 0.018  | 0.023                      | 0.0057              |
| pH <sup>c</sup>            | 13             | 7.9    | 7.3      | NAd                        | NAd                 |
| Temperature <sup>f</sup>   | 5              | 20.1   | 3.0      | 7.0                        | 6.6                 |
| TOC <sup>g</sup>           | 5              | 11     | 2.6      | 5.1                        | 3.0                 |
| TSS <sup>h</sup>           | 5              | 5.0    | < 2.0    | 4.4                        | 1.2                 |
| Zn                         | 5              | 0.22   | 0.065    | 0.11                       | 0.056               |

<sup>a</sup>1500 area, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Expressed in standard units; average not applicable.<sup>d</sup>N/A = not applicable.<sup>e</sup>Measured in millions of gallons per day.<sup>f</sup>Measured in degrees centigrade.<sup>g</sup>Total organic carbon.<sup>h</sup>Total suspended solids.

Table 26. NPDES Discharge Point X04<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |          |                     |
|----------------------------|----------------|----------------------|----------|----------|---------------------|
|                            |                | Max                  | Min      | Av       | 95% cc <sup>b</sup> |
| Ag                         | 6              | 0.078                | < 0.0036 | 0.021    | 0.024               |
| As                         | 6              | 0.060                | < 0.018  | 0.032    | 0.013               |
| Cd                         | 6              | < 0.0030             | < 0.0012 | < 0.0015 | 0.00067             |
| Cr                         | 6              | 0.024                | < 0.0036 | 0.0089   | 0.0079              |
| Cu                         | 6              | 0.017                | 0.0069   | 0.011    | 0.0029              |
| Downstream pH <sup>c</sup> | 13             | 8.0                  | 7.0      | NAd      | NAd                 |
| Flow <sup>e</sup>          | 3              | 0.027                | 0.00084  | 0.010    | 0.017               |
| Ni                         | 6              | 0.036                | < 0.0036 | 0.0090   | 0.011               |
| Oil and grease             | 6              | 3.0                  | < 2.0    | 2.2      | 0.33                |
| P                          | 6              | 0.50                 | 0.20     | 0.30     | 0.10                |
| Pb                         | 6              | 0.12                 | < 0.018  | 0.040    | 0.032               |
| pH <sup>c</sup>            | 13             | 8.1                  | 6.9      | NAd      | NAd                 |
| Temperature <sup>f</sup>   | 2              | 20                   | 9.8      | 15       | 10                  |
| TOC <sup>g</sup>           | 6              | 5.7                  | 1.5      | 2.6      | 1.3                 |
| TSS <sup>h</sup>           | 6              | < 5.0                | < 5.0    | < 5.0    | 0                   |
| Zn                         | 6              | 0.12                 | 0.067    | 0.091    | 0.014               |

<sup>a</sup>2000 area, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Expressed in standard units; average not applicable.<sup>d</sup>N/A - not applicable.<sup>e</sup>Measured in millions of gallons per day.<sup>f</sup>Measured in degrees centigrade.<sup>g</sup>Total organic carbon.<sup>h</sup>Total suspended solids.

Table 27. NPDES Discharge Point X06<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |         |                     |
|----------------------------|----------------|----------------------|----------|---------|---------------------|
|                            |                | Max                  | Min      | Av      | 95% cc <sup>b</sup> |
| As                         | 6              | 0.060                | < 0.018  | 0.032   | 0.013               |
| Cd                         | 6              | 0.089                | < 0.0012 | 0.017   | 0.029               |
| Cr                         | 6              | 0.024                | < 0.0036 | 0.011   | 0.0061              |
| Cu                         | 6              | 0.085                | 0.031    | 0.049   | 0.017               |
| Downstream pH <sup>c</sup> | 13             | 8.1                  | 6.5      | NAD     | NAD                 |
| Flow <sup>e</sup>          | 3              | 0.15                 | 0.15     | 0.15    | 0.0033              |
| Ni                         | 6              | 0.036                | < 0.0036 | < 0.010 | 0.010               |
| Oil and grease             | 6              | 4.0                  | < 2.0    | 2.7     | 0.84                |
| Pb                         | 6              | 0.12                 | < 0.018  | 0.043   | 0.031               |
| pH <sup>c</sup>            | 13             | 8.0                  | 6.5      | NAD     | NAD                 |
| Se                         | 6              | < 0.12               | < 0.024  | < 0.046 | 0.030               |
| SO <sub>4</sub>            | 6              | 29                   | 25       | 27      | 1.0                 |
| Temperature <sup>f</sup>   | 2              | 20                   | 4.8      | 13      | 15                  |
| TOC <sup>g</sup>           | 6              | 18                   | 2.6      | 5.9     | 4.9                 |
| TSS <sup>h</sup>           | 6              | 6.0                  | < 5.0    | 5.2     | 0.33                |
| Zn                         | 6              | 0.098                | 0.063    | 0.081   | 0.011               |

<sup>a</sup>3539/40 ponds, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Expressed in standard units; average not applicable.<sup>d</sup>NA - not applicable.<sup>e</sup>Measured in millions of gallons per day.<sup>f</sup>Measured in degrees centigrade.<sup>g</sup>Total organic carbon.<sup>h</sup>Total suspended solids.

Table 28. NPDES Discharge Point X07<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |         |                     |
|----------------------------|----------------|----------------------|----------|---------|---------------------|
|                            |                | Max                  | Min      | Av      | 95% cc <sup>b</sup> |
| Ag                         | 6              | 0.030                | < 0.0036 | 0.0084  | 0.0087              |
| As                         | 6              | 0.060                | < 0.018  | 0.031   | 0.014               |
| Cd                         | 6              | 0.0030               | < 0.0012 | 0.0016  | 0.00057             |
| Cr                         | 6              | 0.024                | < 0.0036 | 0.0079  | 0.0066              |
| Cu                         | 6              | 0.012                | < 0.0060 | 0.0078  | 0.0018              |
| Downstream pH <sup>c</sup> | 13             | 8.2                  | 6.2      | NAd     | NAd                 |
| Flow <sup>e</sup>          | 62             | 0.19                 | 0.00020  | 0.031   | 0.010               |
| Ni                         | 6              | 0.036                | < 0.0036 | 0.0094  | 0.011               |
| NO <sub>3</sub>            | 6              | 5.0                  | < 5.0    | 5.0     | 0                   |
| Oil and grease             | 6              | 4.0                  | < 2.0    | 2.5     | 0.68                |
| Pb                         | 6              | < 0.12               | < 0.018  | < 0.039 | 0.033               |
| pH <sup>c</sup>            | 13             | 8.4                  | 3.5      | NAd     | NAd                 |
| SO <sub>4</sub>            | 6              | 200                  | 140      | 170     | 20                  |
| Temperature <sup>f</sup>   | 2              | 20                   | 7.4      | 14      | 13                  |
| TOC <sup>g</sup>           | 6              | 3.7                  | 1.7      | 2.5     | 0.57                |
| TSS <sup>h</sup>           | 6              | < 5.0                | < 2.0    | < 4.5   | 1.0                 |
| TTO <sup>i</sup>           | 6              | 0.16                 | 0        | 0.042   | 0.057               |
| Zn                         | 6              | 0.012                | < 0.0018 | 0.0050  | 0.0041              |

<sup>a</sup>Process Waste Treatment Plant (3544), ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Expressed in standard units; average not applicable.<sup>d</sup>NAd = not applicable.<sup>e</sup>Measured in millions of gallons per day.<sup>f</sup>Measured in degrees centigrade.<sup>g</sup>Total organic carbon.<sup>h</sup>Total suspended solids.<sup>i</sup>Total toxic organics.

Table 29. NPDES Discharge Point X08<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |          |
|----------------------------|----------------|----------------------|----------|----------|
|                            |                | Max                  | Min      | Av       |
| As                         | 1              | < 0.036              | < 0.036  | < 0.036  |
| Cd                         | 1              | < 0.0012             | < 0.0012 | < 0.0012 |
| Cr                         | 1              | < 0.0036             | < 0.0036 | < 0.0036 |
| Cu                         | 1              | 0.014                | 0.014    | 0.014    |
| Downstream pH <sup>b</sup> | 1              | 7.5                  | 7.5      | NAC      |
| Flow <sup>d</sup>          | 1              | 0.0010               | 0.0010   | 0.0010   |
| Ni                         | 1              | < 0.0036             | < 0.0036 | < 0.0036 |
| NO <sub>3</sub>            | 1              | < 5.0                | < 5.0    | < 5.0    |
| Oil and grease             | 1              | 4.0                  | 4.0      | 4.0      |
| Pb                         | 1              | < 0.030              | < 0.030  | < 0.030  |
| pH <sup>c</sup>            | 1              | 7.2                  | 7.2      | NAC      |
| SO <sub>4</sub>            | 1              | 26                   | 26       | 26       |
| Temperature <sup>e,f</sup> | 0              |                      |          |          |
| TOC <sup>g</sup>           | 1              | 2.8                  | 2.8      | 2.8      |
| TSS <sup>h</sup>           | 1              | < 5.0                | < 5.0    | < 5.0    |
| Zn                         | 1              | 0.12                 | 0.12     | 0.12     |

<sup>a</sup>TRU waste basins, ORNL.<sup>b</sup>Expressed in standard units; average not applicable.<sup>c</sup>N/A - not applicable.<sup>d</sup>Measured in millions of gallons per day.<sup>e</sup>Measured in degrees centigrade.<sup>f</sup>Not taken.<sup>g</sup>Total organic carbon.<sup>h</sup>Total suspended solids.

Table 30. NPDES Discharge Point X09<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |          |
|----------------------------|----------------|----------------------|----------|----------|
|                            |                | Max                  | Min      | Av       |
| As                         | 1              | < 0.018              | < 0.018  | < 0.018  |
| Cd                         | 1              | 0.0021               | 0.0021   | 0.0021   |
| Cr                         | 1              | 0.0066               | 0.0066   | 0.0066   |
| Cu                         | 1              | 0.043                | 0.043    | 0.043    |
| Downstream pH <sup>b</sup> | 1              | 7.5                  | 7.5      | NAC      |
| Flow <sup>d</sup>          | 1              | 0.0042               | 0.0042   | 0.0042   |
| Ni                         | 1              | < 0.0036             | < 0.0036 | < 0.0036 |
| NO <sub>3</sub>            | 1              | < 5.0                | < 5.0    | < 5.0    |
| Oil and grease             | 1              | 3.0                  | 3.0      | 3.0      |
| Pb                         | 1              | < 0.018              | < 0.018  | < 0.018  |
| pH <sup>c</sup>            | 1              | 7.9                  | 7.9      | NAC      |
| SO <sub>4</sub>            | 1              | 34                   | 34       | 34       |
| Temperature <sup>e</sup>   | 1              | 20                   | 20       | 20       |
| TOC <sup>f</sup>           | 1              | 6.3                  | 6.3      | 6.3      |
| TSS <sup>g</sup>           | 1              | 5.0                  | 5.0      | 5.0      |
| Zn                         | 1              | 0.056                | 0.056    | 0.056    |

<sup>a</sup>HFIR waste basins, ORNL.<sup>b</sup>Expressed in standard units; average not applicable.<sup>c</sup>N/A - not applicable.<sup>d</sup>Measured in millions of gallons per day.<sup>e</sup>Measured in degrees centigrade.<sup>f</sup>Total organic carbon.<sup>g</sup>Total suspended solids.

Table 31. NPDES Discharge Point X11<sup>a</sup>

January - March 1988

| Parameter                  | No. of Samples | Concentration (mg/L) |          |         |                     |
|----------------------------|----------------|----------------------|----------|---------|---------------------|
|                            |                | Max                  | Min      | Av      | 95% cc <sup>b</sup> |
| As                         | 6              | 0.060                | 0.026    | 0.043   | 0.011               |
| Cd                         | 6              | 0.0030               | < 0.0012 | 0.0017  | 0.00061             |
| Cr                         | 6              | 0.024                | 0.0041   | 0.0099  | 0.0063              |
| Cu                         | 6              | 0.085                | 0.0082   | 0.027   | 0.024               |
| Downstream pH <sup>c</sup> | 13             | 8.6                  | 6.2      | NAd     | NAd                 |
| Flow <sup>e</sup>          | 3              | 0.038                | 0.026    | 0.031   | 0.0076              |
| Ni                         | 6              | 0.036                | 0.0051   | 0.013   | 0.0099              |
| NO <sub>3</sub>            | 13             | 9.4                  | < 5.0    | 5.3     | 0.68                |
| Oil and grease             | 6              | 7.0                  | < 2.0    | 3.2     | 1.7                 |
| P                          | 6              | 4.2                  | 1.3      | 3.4     | 0.91                |
| Pb                         | 6              | 0.12                 | < 0.018  | < 0.039 | 0.033               |
| pH <sup>c</sup>            | 13             | 8.1                  | 1.6      | NAd     | NAd                 |
| SO <sub>4</sub>            | 13             | 3400                 | 39       | 1600    | 470                 |
| Temperature <sup>f</sup>   | 6              | 20                   | 0        | 16      | 7.8                 |
| TOC <sup>g</sup>           | 13             | 8.7                  | 3.5      | 5.9     | 0.92                |
| TSS <sup>h</sup>           | 6              | 42                   | 10       | 23      | 9.5                 |
| Zn                         | 6              | 0.84                 | 0.25     | 0.63    | 0.17                |

<sup>a</sup>3518 Acid Neutralization Facility, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Expressed in standard units; average not applicable.<sup>d</sup>NAd = not applicable.<sup>e</sup>Measured in millions of gallons per day.<sup>f</sup>Measured in degrees centigrade.<sup>g</sup>Total organic carbon.<sup>h</sup>Total suspended solids.

Table 32. NPDES Discharge Point X13<sup>a</sup>

January - March 1988

| Parameter                 | No. of Samples | Concentration (mg/L) |           |                 |                     |
|---------------------------|----------------|----------------------|-----------|-----------------|---------------------|
|                           |                | Max                  | Min       | Av              | 95% cc <sup>b</sup> |
| Ag                        | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| Al                        | 3              | 0.25                 | 0.15      | 0.21            | 0.061               |
| As                        | 3              | < 0.036              | < 0.018   | < 0.024         | 0.012               |
| BOD <sub>5</sub>          | 3              | < 5.0                | < 5.0     | < 5.0           | 0                   |
| Cd                        | 3              | < 0.0020             | < 0.0020  | < 0.0020        | 0                   |
| Chloroform                | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| Cl                        | 13             | 0.010                | < 0.010   | 0.010           | 0                   |
| Conductivity <sup>d</sup> | 3              | 340                  | 300       | 310             | 27                  |
| Cr                        | 3              | < 0.0036             | < 0.0036  | < 0.0036        | 0                   |
| Cu                        | 3              | < 0.0060             | < 0.0060  | < 0.0060        | 0                   |
| DO <sup>e</sup>           | 13             | 11                   | 8.0       | 9.7             | 0.60                |
| F                         | 3              | < 1.0                | < 1.0     | < 1.0           | 0                   |
| Fe                        | 3              | 0.20                 | 0.17      | 0.18            | 0.018               |
| Flow <sup>f</sup>         | 62             | 41                   | 0.36      | 1.7             | 1.3                 |
| Hg                        | 3              | < 0.00005            | < 0.00005 | < 0.00005       | 0                   |
| Mn                        | 3              | 0.11                 | 0.068     | 0.086           | 0.025               |
| NH <sub>4</sub> (as N)    | 3              | 7.2                  | 0.060     | 2.7             | 4.5                 |
| Ni                        | 3              | < 0.0036             | < 0.0036  | < 0.0036        | 0                   |
| NO <sub>3</sub>           | 3              | < 5.0                | < 5.0     | < 5.0           | 0                   |
| Oil and grease            | 13             | 3.0                  | < 2.0     | 2.2             | 0.21                |
| P                         | 3              | 0.70                 | < 0.10    | 0.33            | 0.37                |
| Pb                        | 3              | < 0.0040             | < 0.0040  | < 0.0040        | 0                   |
| PCB                       | 3              | < 0.00050            | < 0.00050 | < 0.00050       | 0                   |
| pH <sup>g</sup>           | 3              | 8.0                  | 8.0       | NA <sup>h</sup> | NA <sup>h</sup>     |
| Phenols                   | 3              | < 0.0020             | < 0.0010  | < 0.0013        | 0.00067             |
| SO <sub>4</sub>           | 3              | 32                   | 27        | 30              | 3.1                 |
| TDS <sup>i</sup>          | 3              | 240                  | 180       | 200             | 37                  |
| Temperature <sup>j</sup>  | 3              | 8.9                  | 1.6       | 5.0             | 4.3                 |
| TOC <sup>k</sup>          | 3              | 1.9                  | 1.9       | 1.9             | 0                   |
| Trichloroethylene         | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| TSS <sup>l</sup>          | 3              | 12                   | < 5.0     | 7.3             | 4.7                 |
| Turbidity <sup>m</sup>    | 3              | 30                   | 5.0       | 13              | 17                  |

Table 32. (continued)

January - March 1988

| Parameter | No. of Samples | Concentration (mg/L) |          |        |                     |
|-----------|----------------|----------------------|----------|--------|---------------------|
|           |                | Max                  | Min      | Av     | 95% cc <sup>b</sup> |
| Zn        | 3              | 0.0065               | < 0.0018 | 0.0049 | 0.0031              |

<sup>a</sup>Melton Branch, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Biological oxygen demand.<sup>d</sup>Expressed in  $\mu\text{hos}/\text{cm}$ .<sup>e</sup>Dissolved oxygen.<sup>f</sup>Measured in millions of gallons per day.<sup>g</sup>Expressed in standard units; average not applicable.<sup>h</sup>NA - not applicable.<sup>i</sup>Total dissolved solids.<sup>j</sup>Measured in degrees centigrade.<sup>k</sup>Total organic carbon.<sup>l</sup>Total suspended solids.<sup>m</sup>Measured in Jackson turbidity units.

Table 33. NPDES Discharge Point X14<sup>a</sup>

January - March 1988

| Parameter                 | No. of Samples | Concentration (mg/L) |           |                 |                     |
|---------------------------|----------------|----------------------|-----------|-----------------|---------------------|
|                           |                | Max                  | Min       | Av              | 95% cc <sup>b</sup> |
| Ag                        | 3              | 0.0050               | 0.0050    | 0.0050          | 0                   |
| Al                        | 3              | 1.3                  | 0.28      | 0.77            | 0.59                |
| As                        | 3              | < 0.036              | < 0.018   | < 0.024         | 0.012               |
| BOD <sup>c</sup>          | 3              | < 5.0                | < 5.0     | < 5.0           | 0                   |
| Cd                        | 3              | < 0.0020             | < 0.0020  | < 0.0020        | 0                   |
| Chloroform                | 3              | 0.0080               | 0.0050    | 0.0063          | 0.0018              |
| Cl                        | 13             | 0.12                 | < 0.010   | 0.018           | 0.017               |
| Conductivity <sup>d</sup> | 3              | 390                  | 300       | 350             | 52                  |
| Cr                        | 3              | 0.0047               | < 0.0036  | 0.0040          | 0.00073             |
| Cu                        | 3              | 0.015                | < 0.0060  | 0.011           | 0.0053              |
| DO <sup>e</sup>           | 13             | 11                   | 8.8       | 9.7             | 0.40                |
| F                         | 3              | 1.2                  | 1.0       | 1.1             | 0.13                |
| Fe                        | 3              | 1.3                  | 0.23      | 0.76            | 0.62                |
| Flow <sup>f</sup>         | 62             | 43                   | 3.1       | 6.7             | 1.8                 |
| Hg                        | 3              | 0.00010              | < 0.00005 | 0.000083        | 0.000033            |
| Mn                        | 3              | 0.10                 | 0.028     | 0.066           | 0.042               |
| NH <sub>4</sub> (as N)    | 3              | 0.17                 | 0.070     | 0.11            | 0.061               |
| Ni                        | 3              | < 0.0036             | < 0.0036  | < 0.0036        | 0                   |
| NO <sub>3</sub>           | 3              | < 5.0                | < 5.0     | < 5.0           | 0                   |
| Oil and grease            | 13             | 3.0                  | < 2.0     | 2.1             | 0.15                |
| P                         | 3              | 0.40                 | 0.30      | 0.33            | 0.067               |
| Pb                        | 3              | < 0.0040             | < 0.0040  | < 0.0040        | 0                   |
| PCB                       | 3              | < 0.00050            | < 0.00050 | < 0.00050       | 0                   |
| pH <sup>g</sup>           | 3              | 8.1                  | 8.0       | NA <sup>h</sup> | NA <sup>h</sup>     |
| Phenols                   | 3              | < 0.0020             | < 0.0010  | < 0.0013        | 0.00067             |
| SO <sub>4</sub>           | 3              | 55                   | 44        | 49              | 6.4                 |
| TDS <sup>i</sup>          | 3              | 240                  | 230       | 240             | 3.5                 |
| Temperature <sup>j</sup>  | 3              | 13                   | 8.3       | 11              | 2.9                 |
| TOC <sup>k</sup>          | 3              | 2.3                  | 2.0       | 2.2             | 0.18                |
| Trichloroethylene         | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| TSS <sup>l</sup>          | 3              | 15                   | < 5.0     | 9.3             | 5.9                 |
| Turbidity <sup>m</sup>    | 3              | 20                   | 15        | 18              | 3.1                 |

Table 33. (continued)

January - March 1988

| Parameter | No. of Samples | Concentration (mg/L) |       |       |                     |
|-----------|----------------|----------------------|-------|-------|---------------------|
|           |                | Max                  | Min   | Av    | 95% cc <sup>b</sup> |
| Zn        | 3              | 0.076                | 0.037 | 0.062 | 0.025               |

<sup>a</sup>White Oak Creek, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Biological oxygen demand.<sup>d</sup>Expressed in  $\mu$ hos/cm.<sup>e</sup>Dissolved oxygen.<sup>f</sup>Measured in millions of gallons per day.<sup>g</sup>Expressed in standard units; average not applicable.<sup>h</sup>NA - not applicable.<sup>i</sup>Total dissolved solids.<sup>j</sup>Measured in degrees centigrade.<sup>k</sup>Total organic carbon.<sup>l</sup>Total suspended solids.<sup>m</sup>Measured in Jackson turbidity units.

Table 34. NPDES Discharge Point X15<sup>a</sup>

January - March 1988

| Parameter                 | No. of Samples | Concentration (mg/L) |           |                 |                     |
|---------------------------|----------------|----------------------|-----------|-----------------|---------------------|
|                           |                | Max                  | Min       | Av              | 95% cc <sup>b</sup> |
| Ag                        | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| Al                        | 3              | 1.1                  | 0.39      | 0.73            | 0.41                |
| As                        | 3              | < 0.036              | < 0.018   | < 0.024         | 0.012               |
| BOD <sub>c</sub>          | 3              | < 5.0                | < 5.0     | < 5.0           | 0                   |
| Cd                        | 3              | < 0.0020             | < 0.0020  | < 0.0020        | 0                   |
| Chloroform                | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| Cl                        | 13             | 0.10                 | < 0.010   | 0.017           | 0.014               |
| Conductivity <sup>d</sup> | 3              | 400                  | 350       | 380             | 31                  |
| Cr                        | 3              | 0.016                | < 0.0036  | 0.011           | 0.0075              |
| Cu                        | 3              | 0.0069               | < 0.0060  | 0.0066          | 0.00060             |
| DO <sup>e</sup>           | 13             | 12                   | 7.1       | 9.8             | 0.69                |
| F                         | 3              | 1.0                  | 1.0       | 1.0             | 0                   |
| Fe                        | 3              | 0.94                 | 0.36      | 0.68            | 0.34                |
| Flow <sup>f</sup>         | 62             | 84                   | 3.6       | 9.4             | 3.1                 |
| Hg                        | 3              | 0.00010              | < 0.00005 | 0.000067        | 0.000033            |
| Mn                        | 3              | 0.073                | 0.038     | 0.056           | 0.020               |
| NH <sub>4</sub> (as N)    | 3              | 0.096                | 0.070     | 0.082           | 0.015               |
| Ni                        | 3              | < 0.0036             | < 0.0036  | < 0.0036        | 0                   |
| NO <sub>3</sub>           | 3              | < 5.0                | < 5.0     | < 5.0           | 0                   |
| Oil and grease            | 13             | 4.0                  | < 2.0     | 2.5             | 0.43                |
| P                         | 3              | 0.20                 | 0.20      | 0.20            | 0                   |
| Pb                        | 3              | < 0.0040             | < 0.0040  | < 0.0040        | 0                   |
| PCB                       | 3              | < 0.00050            | < 0.00050 | < 0.00050       | 0                   |
| pH <sup>g</sup>           | 3              | 8.4                  | 8.1       | NA <sup>h</sup> | NA <sup>h</sup>     |
| SO <sub>4</sub>           | 3              | 49                   | 46        | 47              | 1.8                 |
| TDS <sup>i</sup>          | 3              | 250                  | 210       | 230             | 24                  |
| Temperature <sup>j</sup>  | 3              | 8.3                  | 1.6       | 4.8             | 3.9                 |
| TOC <sup>k</sup>          | 3              | 2.3                  | 2.2       | 2.2             | 0.067               |
| Tri-oroethylene           | 3              | < 0.0050             | < 0.0050  | < 0.0050        | 0                   |
| TSS <sup>l</sup>          | 3              | 13                   | < 5.0     | 8.0             | 5.0                 |
| Turbidity <sup>m</sup>    | 3              | 30                   | 8.0       | 23              | 15                  |

Table 34. (continued)

January - March 1987

| Parameter | No. of Samples | Concentration (mg/L) |       |       |                     |
|-----------|----------------|----------------------|-------|-------|---------------------|
|           |                | Max                  | Min   | Av    | 95% cc <sup>b</sup> |
| Zn        | 3              | 0.024                | 0.012 | 0.019 | 0.0074              |

<sup>a</sup>White Oak Dam, ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Biological oxygen demand.<sup>d</sup>Expressed in  $\mu$ hos/cm.<sup>e</sup>Dissolved oxygen.<sup>f</sup>Measured in millions of gallons per day.<sup>g</sup>Expressed in standard units; average not applicable.<sup>h</sup>NA - not applicable.<sup>i</sup>Total dissolved solids.<sup>j</sup>Measured in degrees centigrade.<sup>k</sup>Total organic carbon.<sup>l</sup>Total suspended solids.<sup>m</sup>Measured in Jackson turbidity units.

Table 35. NPDES miscellaneous source VC7002<sup>a</sup>

January - March 1988

| Parameter                   | No. of Samples | Concentration (mg/L) |        |                 |                     |
|-----------------------------|----------------|----------------------|--------|-----------------|---------------------|
|                             |                | Max                  | Min    | Av              | 95% cc <sup>b</sup> |
| BOD <sup>c</sup>            | 3              | < 5.0                | < 5.0  | < 5.0           | 0                   |
| Downstream pH <sup>d</sup>  | 3              | 7.8                  | 7.7    | NA <sup>e</sup> | NA <sup>e</sup>     |
| Fecal coliform <sup>f</sup> | 3              | 1.0                  | < 1.0  | 1.0             | 0                   |
| Oil and grease              | 3              | < 2.0                | 2.0    | < 2.0           | 0                   |
| pH <sup>d</sup>             | 3              | 7.7                  | 7.5    | NA <sup>e</sup> | NA <sup>e</sup>     |
| Phenols                     | 3              | 0.0060               | 0.0010 | 0.0030          | 0.0031              |
| TSS <sup>g</sup>            | 3              | 19                   | < 5.0  | 13              | 8.3                 |

<sup>a</sup>Vehicle and Equipment Cleaning Facility, Building 7002.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Biological oxygen demand.<sup>d</sup>Expressed in standard units; average not applicable.<sup>e</sup>NA - not applicable.<sup>f</sup>Expressed in colonies per 100 mL.<sup>g</sup>Total suspended solids.

Table 36. NPDES cooling towers<sup>a</sup>

January - March 1988

| Parameter                | No. of Samples | Concentration (mg/L) |        |       |                     |
|--------------------------|----------------|----------------------|--------|-------|---------------------|
|                          |                | Max                  | Min    | Av    | 95% cc <sup>b</sup> |
| Cl <sup>c</sup>          | 0              |                      |        |       |                     |
| Cr                       | 6              | 0.021                | 0.0036 | 0.011 | 0.0056              |
| Cu                       | 6              | 0.35                 | 0.0060 | 0.14  | 0.11                |
| Flow <sup>d</sup>        | 6              | 0.13                 | 0.0011 | 0.026 | 0.041               |
| Temperature <sup>e</sup> | 6              | 27                   | 10     | 18    | 5.1                 |
| Zn                       | 6              | 0.79                 | 0.081  | 0.45  | 0.21                |

<sup>a</sup>Cooling towers 1505, 2539, 3026, 3517, 4509, and 6000.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Not taken.<sup>d</sup>Measured in millions of gallons per day.<sup>e</sup>Measured in degrees centigrade.

Table 37. NPDES miscellaneous outfalls

January - March 1988

| Parameter                  | Concentration (mg/L) |
|----------------------------|----------------------|
|                            | Location             |
|                            | EF7002 <sup>a</sup>  |
| Downstream pH <sup>c</sup> | 7.7                  |
| Oil and grease             | < 2.0                |
| pH <sup>c</sup>            | 7.5                  |

<sup>a</sup>Vehicle and Equipment Maintenance Facility,  
Building 7002.

<sup>b</sup>Central Steam Plant, Building 2519.

<sup>c</sup>Expressed in standard units.

Table 38. NPDES discharge point: category II outfalls<sup>a</sup>

January - March 1988

| Parameter                | No. of Samples | Concentration (mg/L) |         |                 |                     |
|--------------------------|----------------|----------------------|---------|-----------------|---------------------|
|                          |                | Max                  | Min     | Av              | 95% cc <sup>b</sup> |
| Flow <sup>c</sup>        | 44             | 0.17                 | 0.00013 | 0.036           | 0.016               |
| Oil and grease           | 44             | 11                   | 2.0     | 3.0             | 0.58                |
| pH <sup>d</sup>          | 44             | 8.2                  | 5.3     | NA <sup>e</sup> | NA <sup>e</sup>     |
| Temperature <sup>f</sup> | 44             | 60                   | 9.7     | 17              | 2.7                 |
| TSS                      | 44             | 770                  | 5.0     | 70              | 46                  |

<sup>a</sup>ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Measured in millions of gallons per day.<sup>d</sup>Expressed in standard units; average not applicable.<sup>e</sup>NA = not applicable.<sup>f</sup>Measured in degrees centigrade.

Table 39. NPDES discharge point: category III outfalls<sup>a</sup>

January - March 1988

| Parameter         | No. of Samples | Concentration (mg/L) |         |                 |                     |
|-------------------|----------------|----------------------|---------|-----------------|---------------------|
|                   |                | Max                  | Min     | Av              | 95% cc <sup>b</sup> |
| Flow <sup>c</sup> | 23             | 0.22                 | 0.00072 | 0.034           | 0.023               |
| pH <sup>d</sup>   | 23             | 8.7                  | 7.4     | NA <sup>e</sup> | NA <sup>e</sup>     |

<sup>a</sup>ORNL.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Measured in millions of gallons per day.<sup>d</sup>Standard units; average not applicable.<sup>e</sup>NA = not applicable.

Table 40. NPDES noncompliances

January 1988

| <u>Station</u>                          | <u>Parameter</u>         | <u>Concentration (mg/L)</u> | <u>Permit Limit (mg/L)</u> |
|-----------------------------------------|--------------------------|-----------------------------|----------------------------|
|                                         |                          | <u>Daily Maximum</u>        |                            |
| Sewage Treatment Plant (X01)            | Biological oxygen demand | 38.3 <sup>a</sup>           | 26.2 <sup>a</sup>          |
| Sewage Treatment Plant (X01)            | Total suspended solids   | 58                          | 45                         |
| Sewage Treatment Plant (X01)            | Total suspended solids   | 138.8 <sup>a</sup>          | 39.2 <sup>a</sup>          |
| Sewage Treatment Plant (X01)            | Total suspended solids   | 57                          | 45                         |
| Sewage Treatment Plant (X01)            | Total suspended solids   | 139.7 <sup>a</sup>          | 39.2 <sup>a</sup>          |
| Sewage Treatment Plant (X01)            | Total suspended solids   | 33.5 <sup>a,b</sup>         | 26.2 <sup>a,b</sup>        |
| Sewage Treatment Plant (X01)            | Residual chlorine        | 0.65                        | 0.5                        |
| 3518 Acid Neutralization Facility (X11) | pH                       | 1.6 <sup>c,d</sup>          | 6.0 <sup>c,d</sup>         |

<sup>a</sup>Loading (Kg/d).<sup>b</sup>Monthly average.<sup>c</sup>Standard units.<sup>d</sup>Minimum.<sup>e</sup>Daily minimum.<sup>f</sup>Colonies per 100 mL.<sup>g</sup>Maximum.<sup>h</sup>Degrees centigrade.

Table 41. NPDES noncompliances

February 1988

| Station                                 | Parameter              | Concentration (mg/L) | Permit Limit (mg/L) |
|-----------------------------------------|------------------------|----------------------|---------------------|
|                                         |                        | Daily Maximum        |                     |
| Sewage Treatment Plant (X01)            | Dissolved oxygen       | 5.5e                 | 6.0e                |
| Process Waste Treatment Plant (X07)     | pH                     | 3.5c,d               | 6.0c,d              |
| 3518 Acid Neutralization Facility (X11) | pH                     | 4.6c,d               | 6.0c,d              |
| 3518 Acid Neutralization Facility (X11) | pH                     | 2.3c,d               | 6.0c,d              |
| Category II Outfall 202                 | Total suspended solids | 184                  | 50                  |
| Category II Outfall 204                 | Total suspended solids | 109                  | 50                  |
| Category II Outfall 206                 | Total suspended solids | 141                  | 50                  |
| Category II Outfall 209                 | Total suspended solids | 88                   | 50                  |
| Category II Outfall 213                 | Total suspended solids | 542                  | 50                  |
| Category II Outfall 216                 | Total suspended solids | 766                  | 50                  |
| Category II Outfall 224                 | Total suspended solids | 127                  | 50                  |
| Category II Outfall 225                 | Total suspended solids | 454                  | 50                  |

Table 41. (continued)

February 1988

| Station                 | Parameter              | <u>Concentration (mg/L)</u> | Permit Limit (mg/L) |
|-------------------------|------------------------|-----------------------------|---------------------|
|                         |                        | Daily Maximum               |                     |
| Category II Outfall 243 | Total suspended solids | 124                         | 50                  |
| Category II Outfall 224 | Total suspended solids | 66                          | 50                  |
| Category II Outfall 283 | Total suspended solids | 90                          | 50                  |

<sup>a</sup>Loading (Kg/d).<sup>b</sup>Monthly average.<sup>c</sup>Standard units.<sup>d</sup>Minimum.<sup>e</sup>Daily minimum.<sup>f</sup>Colonies per 100 mL.<sup>g</sup>Maximum.<sup>h</sup>Degrees centigrade.

Table 42. NPDES noncompliances

March 1988

| <u>Station</u>               | <u>Parameter</u>  | <u>Concentration (mg/L)</u> | <u>Permit Limit (mg/L)</u> |
|------------------------------|-------------------|-----------------------------|----------------------------|
|                              |                   | <u>Daily Maximum</u>        |                            |
| Sewage Treatment Plant (X01) | Residual chlorine | 0.6                         | 0.5                        |
| Sewage Treatment Plant (X01) | Dissolved oxygen  | 4.7 <sup>e</sup>            | 6.0 <sup>e</sup>           |
| Sewage Treatment Plant (X01) | Fecal coliform    | > 600 <sup>f</sup>          | 400 <sup>f</sup>           |
| Sewage Treatment Plant (X01) | Oil and grease    | 19                          | 15                         |
| Sewage Treatment Plant (X01) | Oil and grease    | 48.9 <sup>a</sup>           | 13.1 <sup>a</sup>          |
| Steam Plant (SP2519)         | pH                | 9.8 <sup>c,g</sup>          | 9.0 <sup>g</sup>           |
| Steam Plant (SP2519)         | Temperature       | 41.1 <sup>h</sup>           | 38 <sup>h</sup>            |

<sup>a</sup>Loading (Kg/d).<sup>b</sup>Monthly average.<sup>c</sup>Standard units.<sup>d</sup>Minimum.<sup>e</sup>Daily minimum.<sup>f</sup>Colonies per 100 mL.<sup>g</sup>Maximum.<sup>h</sup>Degrees centigrade.

The total suspended solids noncompliances that were recorded at several Category II outfalls (storage area and parking lot drains) during rainfall were attributed to the fact that many Category II outfalls only flow during rain events; therefore, the resulting effluent often contained the first-flush of accumulated dust and other particulate matter from the area drained by the outfalls.

March 1988

The dissolved oxygen and fecal coliform bacteria noncompliances that were detected at X01 were attributed to the high rainfall event (two inches) that resulted in a temporary excess inflow to X01. The two violations were attributed to the incomplete treatment that the wastewater received during the high inflow condition. Corrective measures have been implemented, including adjustment of the level of X01 effluent aeration may have.

The chlorine level noncompliance that occurred at X01 has been attributed to the possible occurrence of a temporary, high chlorine excursion at the time EMC personnel were measuring effluent chlorine at X01. No operational or equipment problems occurred at X01 at the time.

The pH and temperature exceedances recorded at the ORNL steam plant are currently unavoidable, due to the routing of a portion of the existing wastewater piping at that facility. An investigation is in progress, exploring possible piping and/or treatment alternatives to correct the situation.

The oil and grease violation that occurred at the Sewage Treatment Plant was investigated; however, no clear reason for the incident was determined.

## METEOROLOGICAL PROCESSES

The ORNL meteorological system consists of three towers (A, B, and C) with sensors mounted at two levels (10 and 30 meters) for Towers A and B, and three levels (10, 30, and 100 meters) for Tower C. Locations of meteorological towers at ORNL are shown in Figure 7. Data from the sensors are acquired, stored, edited, and formatted by a data collection system consisting of a central processor and remote data logger. One-minute vector averages of wind velocity are calculated in the conventional way and retained for twenty-four hours. These velocities are processed into fifteen-minute averages using a procedure that avoids the unrealistically low windspeed values obtained when appreciable winds of nearly opposite direction are vector averaged in the conventional way. This alternative averaging procedure involves calculating a unit vector to represent the direction of each one-minute wind velocity, finding the vector average of those unit vectors, scaling that average to a unit vector, and multiplying the result by the mean (scalar) windspeed. A similar calculation is used to convert the fifteen-minute averages into hourly averages. The fifteen-minute averages are retained for one day and the hourly averages, from which the wind roses in Figure 8-14 are obtained, are stored for at least one year and eventually archived.

Examination of quarterly wind roses reveal that the prevailing winds are split into two directions that are 180° apart: one prevailing direction is from the SW to WSW sector and the other prevailing direction is from the NE to E:E sector. The winds are strongly aligned along these directions because of the channeling effect induced by the ridge and valley structure of the area. Another feature observed from the wind roses is that the wind speeds increase with height (tower level) at each of the towers. On the average, the wind speeds can be expected to increase steadily from ground level to 100 meters.

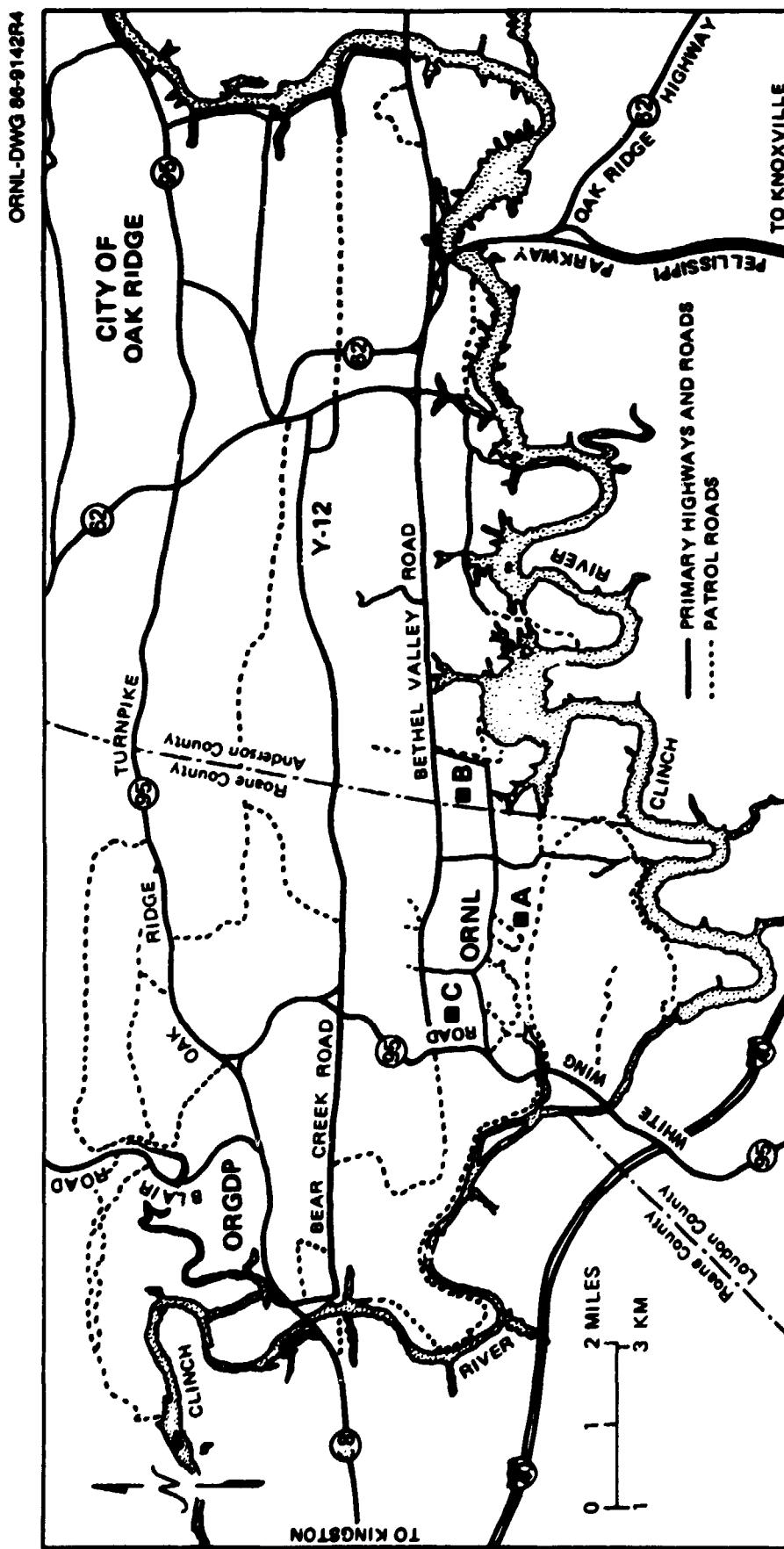



Fig. 7. Locations of meteorological towers at ORNL

ORNL-DWG 88-11357  
with 57.9% of possible data

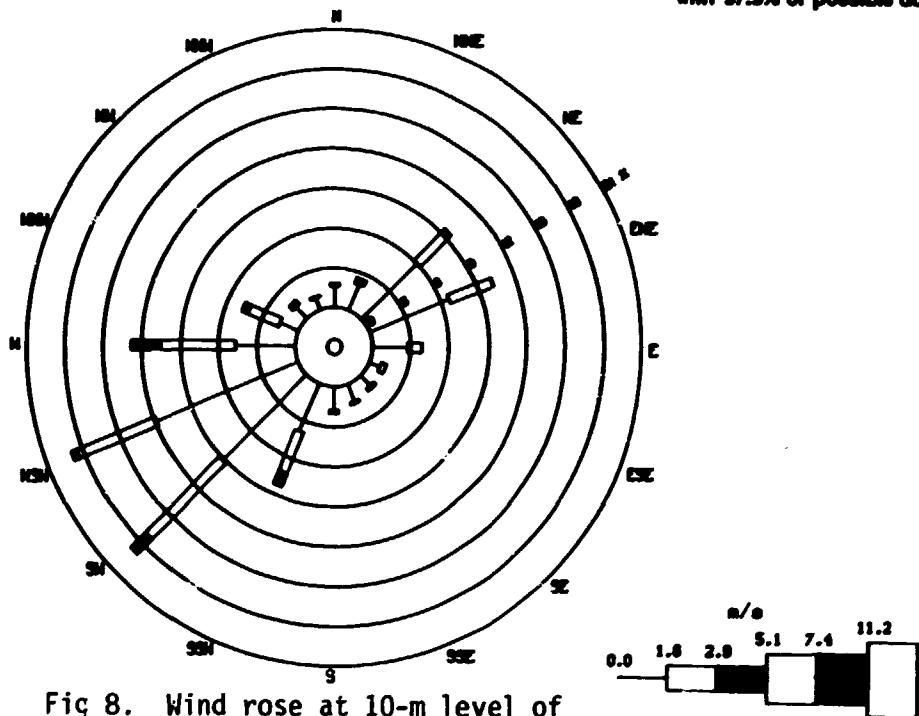



Fig. 8. Wind rose at 10-m level of meteorological tower A, January-March 1988

ORNL-DWG 88-11358  
with 98.2% of possible data

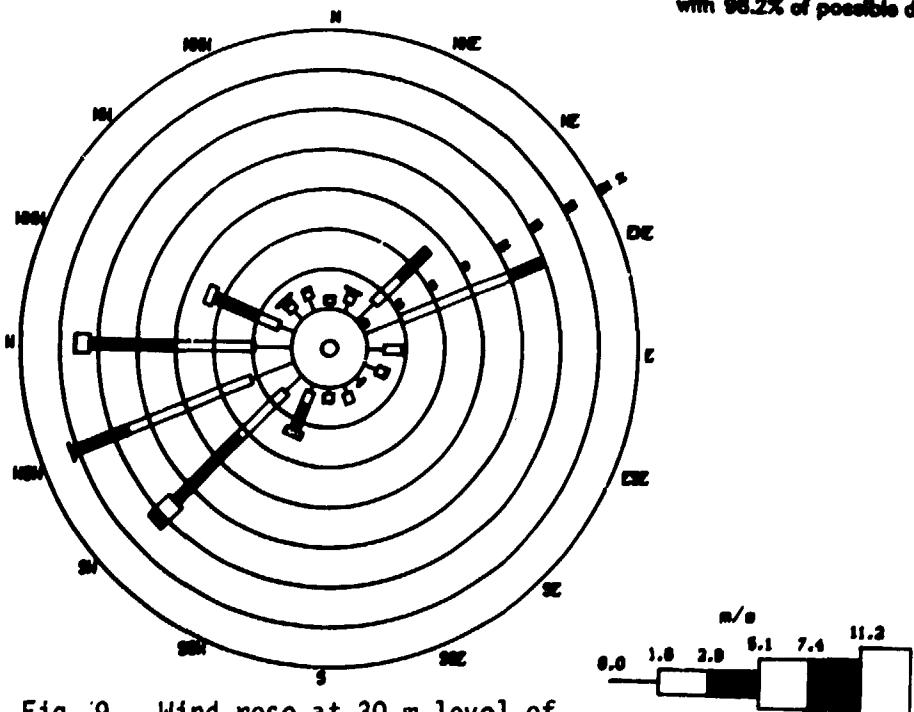



Fig. 9. Wind rose at 30-m level of meteorological tower A, January-March 1988

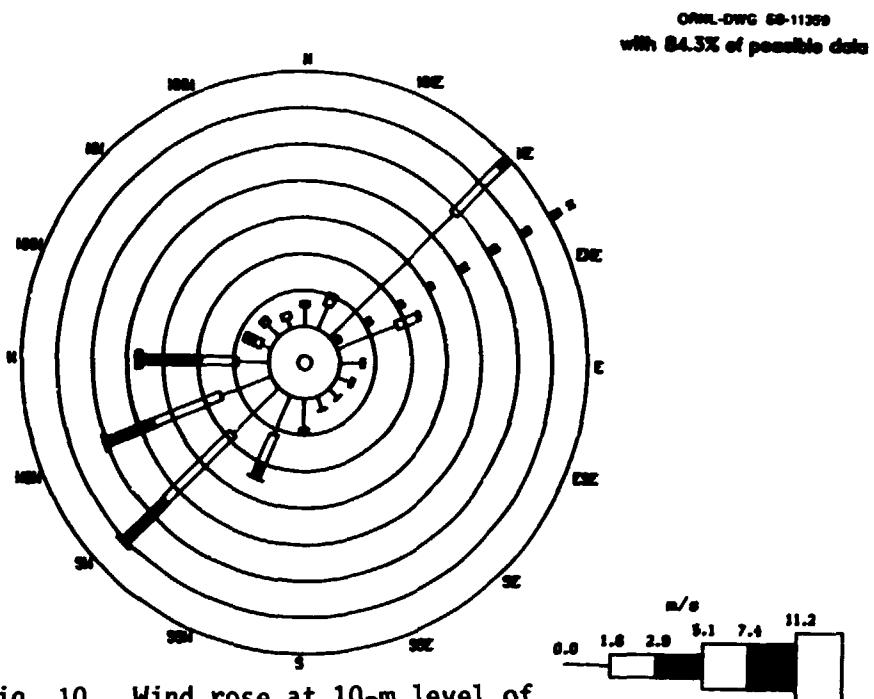



Fig. 10. Wind rose at 10-m level of meteorological tower B, January-March 1988

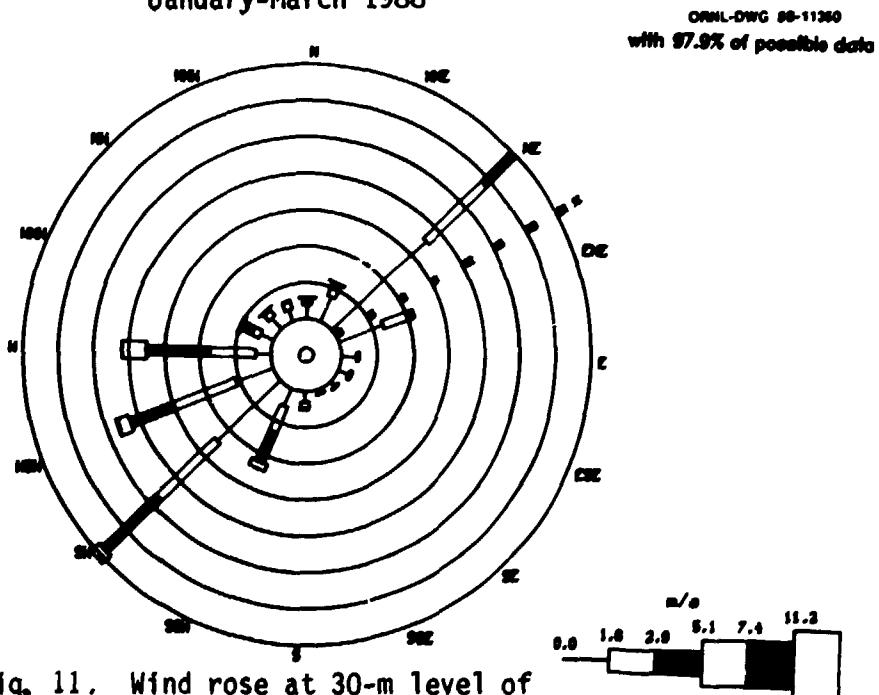



Fig. 11. Wind rose at 30-m level of meteorological tower B, January-March 1988

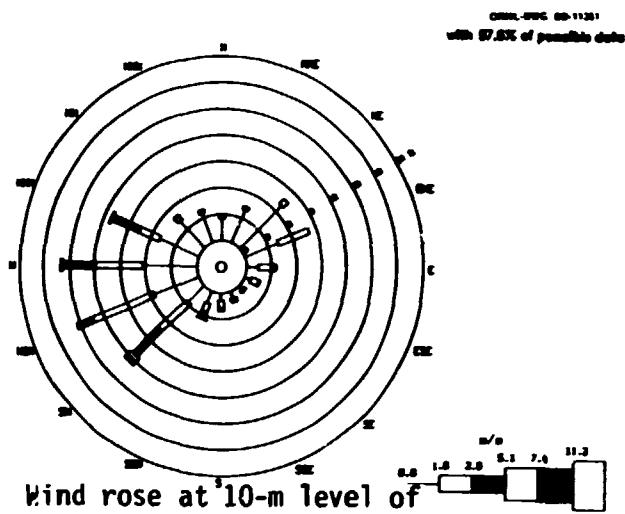



Fig. 12. Wind rose at 10-m level of meteorological tower C, January-March 1988

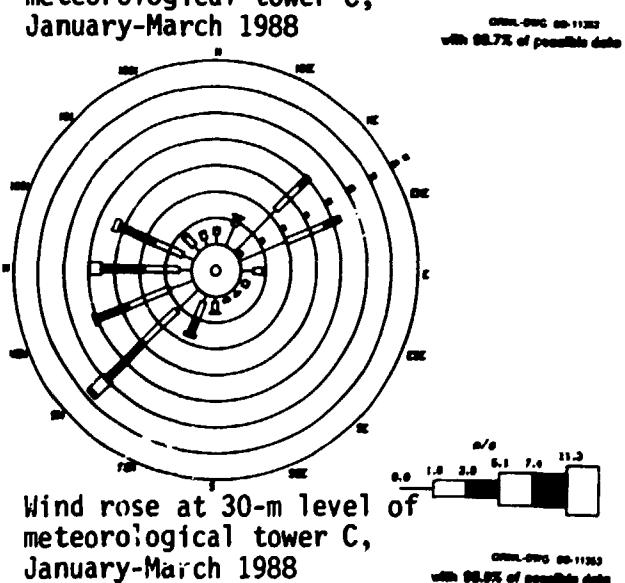



Fig. 13. Wind rose at 30-m level of meteorological tower C, January-March 1988

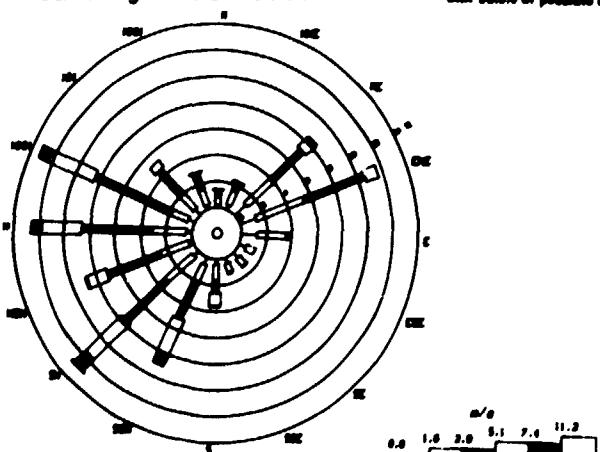



Fig. 14. Wind rose at 100-m level of meteorological tower C, January-March 1988

## BIOLOGICAL MONITORING

### Milk

Raw milk from five locations and one dairy within a radius of 80 km of Oak Ridge is monitored for  $^{131}\text{I}$  and total radioactive Sr. Samples are collected every two weeks from the stations located near the Oak Ridge area (Fig. 15). Three other stations are more remote with respect to the Oak Ridge facilities and are usually sampled semiannually (Fig. 16). None of the remote stations were sampled during this period. At station 7, the cow had a calf, so no milk samples were collected. Samples were analyzed for  $^{131}\text{I}$  by gamma spectroscopy and for total radioactive Sr by chemical separation and low-level beta counting. The results (Table 43 and 44) are compared with intake guidelines specified by the Federal Radiation Council.

During the last quarter of 1987, the software program on the Nuclear Data Analyzer for computing the lower limits of detection for the analysis of  $^{131}\text{I}$  in milk was updated. The old system used a value of  $< .08 \text{ Bq/L}$  for the detection limit while the new one uses  $< 0.1 \text{ Bq/L}$ . This assumes that the milk samples are brought into the laboratory in the afternoon and are counted the same night. Because  $^{131}\text{I}$  has such a short half-life (8.04 d), it quickly decays and the precision of the result decreases. Therefore, detection limits of 0.2 or greater may be observed in the data for this quarter.

Concentrations of total radioactive Sr are shown in Table 44. The average concentration of total radioactive Sr at all stations in the immediate Oak Ridge area was  $0.12 \text{ Bq/L}$ . This concentration is not significantly different than the average for the fourth quarter of 1987 ( $0.25 \text{ Bq/L}$ ). All total radioactive Sr results are within Range I of the FRC guidelines.

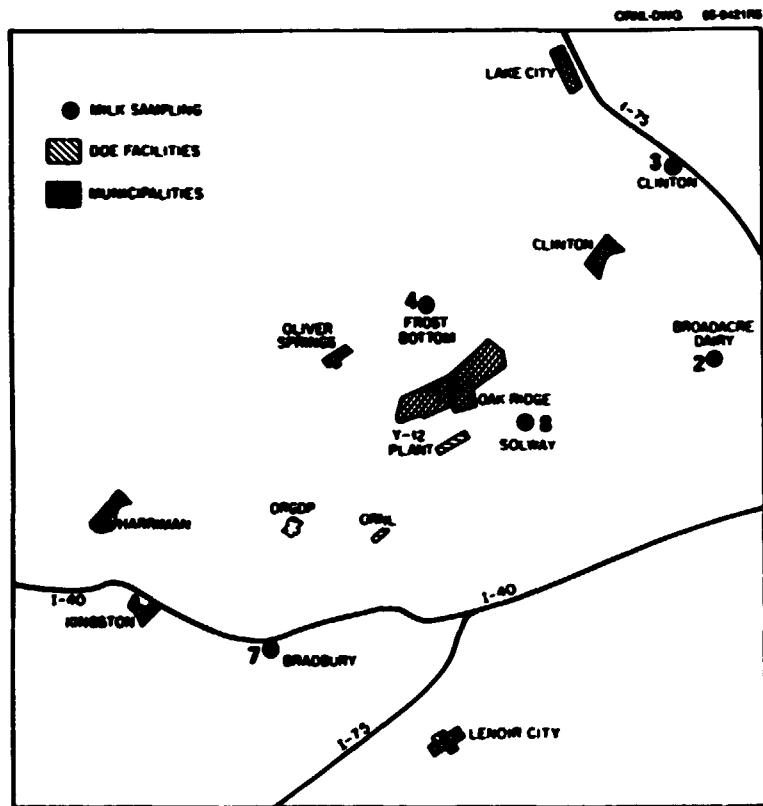



Fig. 15. Locations of milk sampling stations near the Oak Ridge facilities

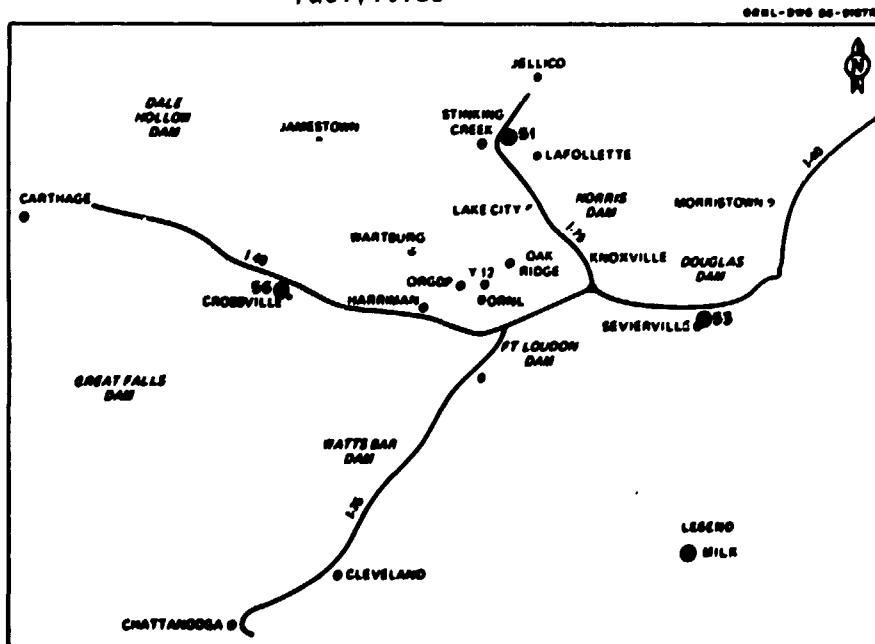



Fig. 16. Locations of milk sampling stations remote from the Oak Ridge facilities

Table 43. Concentrations of  $^{131}\text{I}$  in milk<sup>a</sup>

January - March 1988

| Station                               | No. of Samples | Concentration (Bq/L) |                  |                  |                    | Percent of guideline <sup>c</sup> |
|---------------------------------------|----------------|----------------------|------------------|------------------|--------------------|-----------------------------------|
|                                       |                | Max                  | Min              | Av               | 95%cc <sup>b</sup> |                                   |
| <b>Immediate Environs<sup>d</sup></b> |                |                      |                  |                  |                    |                                   |
| 2                                     | 7              | < 0.20               | < 0.10           | < 0.13           | 0.029              | 34                                |
| 3                                     | 6              | < 0.20               | < 0.10           | < 0.13           | 0.032              | 34                                |
| 4                                     | 7              | < 0.20               | < 0.10           | < 0.12           | 0.028              | 32                                |
| 8                                     | 7              | < 0.20               | < 0.10           | < 0.13           | 0.031              | 36                                |
| <b>Network summary</b>                | <b>27</b>      | <b>&lt; 0.20</b>     | <b>&lt; 0.10</b> | <b>&lt; 0.12</b> | <b>0.014</b>       | <b>34</b>                         |

<sup>a</sup>Raw milk samples; Station 2 is a dairy.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Percent of applicable FRC standard assuming 1 L/d intake:  
Range I, 0 - 0.37 Bq/L, adequate surveillance required to confirm calculated intakes.<sup>d</sup>See Figure 15.

Table 44. Concentrations of total radioactive Sr in milk<sup>a</sup>

January - March 1988

| Station                   | No. of Samples | Concentration (Bq/L) |        |       |                    | Percent of guideline <sup>c</sup> |
|---------------------------|----------------|----------------------|--------|-------|--------------------|-----------------------------------|
|                           |                | Max                  | Min    | Av    | 95%cc <sup>b</sup> |                                   |
| <b>Immediate Environs</b> |                |                      |        |       |                    |                                   |
| 2                         | 7              | 0.25                 | 0.010  | 0.092 | 0.066              | 12                                |
| 3                         | 6              | 0.15                 | 0.041  | 0.094 | 0.039              | 13                                |
| 4                         | 7              | 0.44                 | -0.022 | 0.17  | 0.12               | 24                                |
| 8                         | 7              | 0.35                 | -0.030 | 0.13  | 0.094              | 18                                |
| Network summary           | 27             | 0.44                 | -0.030 | 0.12  | 0.043              | 17                                |

<sup>a</sup>Raw milk samples; Station 2 is a dairy.<sup>b</sup>95% confidence coefficient about the average.<sup>c</sup>Percent of applicable FRC standard assuming 1 L/d intake:  
Range I, 0 - 0.74 Bq/L, adequate surveillance required to  
confirm calculated intakes.<sup>d</sup>See Figure 15.

## REFERENCES

Environmental Protection Agency (EPA), 1987. Environmental Radiation Data, Report 50. (April 1987 - June 1987). Eastern Environmental Radiation Facility, Montgomery, Alabama, pp 33.

INTERNAL DISTRIBUTION

1. L. D. Bates
2. J. B. Berry
3. T. J. Blasing
4. H. L. Boston
5. R. B. Clapp
6. D. R. Cunningham
- 7-10. K. L. Daniels
11. I. V. Darling
12. S. B. Garland
13. P. Y. Goldberg
14. B. M. Horwedel
15. D. D. Huff
16. C. G. Jones
17. R. G. Jordan
18. D. C. Kocher
19. F. C. Kornegay
20. L. C. Lasher
21. J. M. Loar
22. L. W. Long
23. I. L. McCollough
24. L. E. McNeese
25. M. E. Mitchell
26. J. B. Murphy
27. T. E. Myrick
28. C. E. Nix
29. F. R. O'Donnell
30. W. F. Ohnesorge
31. A. E. Osborne-Lee
32. R. K. Owenby
33. J. G. Rogers
34. P. S. Rohwer
35. T. H. Row
36. M. J. Sale
37. T. F. Scanlan
38. C. B. Scott
39. W. K. Simon
40. J. R. Stokely
41. J. H. Swanks
42. F. G. Taylor
43. J. D. Taylor
44. J. R. Trabalka
45. V. L. Turner
46. C. K. Valentine
47. L. D. Voorhees
48. D. M. Walls
49. J. B. Watson
50. R. S. Wiltshire
51. D. A. Wolfe

**INTERNAL DISTRIBUTION (continued)**

- 52. Lab Records - RC
- 53. Central Research Library
- 54. Document Reference Section
- 55. ORNL Patent Office

**EXTERNAL DISTRIBUTION**

- 56. B. J. Davis, Environmental Protection Division, Environment, Safety, and Health, Department of Energy, Oak Ridge Operations
- 57. H. W. Hibbitts, Environmental Protection Division, Environment, Safety, and Health, Department of Energy, Oak Ridge Operations
- 58. Office of Assistant Manager for Energy Research and Development, DOE-ORO
- 59-60. Technical Information Center, Oak Ridge, Tennessee