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1 Introduction

Shear bands and faults are ubiquitous features of brittle rock deformation at a
variety of length scales. Despite the prevalence of these features, understanding
of their inception remains rudimentary. Laboratory experiments suggest a casual
association of localization of deformation (faulting) with peak stress, but more
detailed examination reveals that localization can precede or follow the peak.

Rudnicki and Rice (1975, hereafter abbreviated as RR) have suggested a the-
ory of the inception of localization as a bifurcation or nonuniqueness of the so-
lution for homogeneous deformation. They predict a strong dependence of local-
ization on deformation state. In particular, they predict that localization can occur
prepeak for deformation states near deviatoric pure shear and does not occur until
well after peak for axisymmetric compression. This prediction is roughly in ac-
cord with the true triaxial experiments of Mogi (1967, 1971). More recently, Ord
etal. (1991) and Wawersik et al. (1991) have reported observations of localization
prior to peak stress in plane strain experiments.

The predictions of RR depend strongly on the constitutive properties of the
rock and detailed comparison has been impeded by inadequate knowledge of those
properties. Even the idealized constitutive model used by RR requires knowledge
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of the evolution of the constitutive properties with inelastic deformation that is hiot
readily obtainable from the typical axisymmetric compression test. Although it is
conceptually advantageous to consider inelastic deformation at fixed mean stress,
the mean stress changes throughout the axisymmetric compression test,

In this paper, we present a synthesis of a number of axisymmetric compres-
sion tests to extract a detailed implementation of the constitutive framework used
by RR. The resulting constitutive relation is then used to predict the response for
plane strain. Conditions for localization of deformation derived by RR are evalu-
ated for both plane strain and axisymmetric compression.

2 Theoretical Background

2.1 Constitutive Framework

The constitutive framework used here is that of RR who generalized the type of
relation used for metal plasticity. In particular, they included pressure dependence
of the yield condition and inelastic volume change.

The yield condition is the surface in the space of stress components o; that is
the boundary of those stress states for which the response is elastic; for those stress
states on the yield surface, the response is inelastic. In general, the yield surface is
not fixed but evolves with one or more parameters that characterize accumulated
inelastic (or plastic) deformation. It will be convenient to decompose the stress
into a deviatoric part s;; and a mean normal contribution o

gij = 8ij + 0d;; (M

where §;; (= 1,if i = 7, =0,if i # §) is the Kronecker delta, 0 = (1/3)oxs, and
the repeated subscript implies summation. Plastic strain increments are similarly
decomposed

1
def-’j = defj + gé,-j de? (2)
The yield condition is assumed to be of the following form
7:_]‘(0.’,7?) =0 (3)
where 7 =, /1s; ~;, and the accumulated plastic shear strain
t
= / 2e%;€%.dt 4)
0



is the sole parameter used to keep track of the history of inelastic deformation. (The
superposed dot indicates the derivative with respect to time or any monotonically
increasing parameter). The requirement that the stress state remain on the yield

surface for continuing inelastic deformation is the consistency condition:
d7 — pdo — hdi? = 0 (5)

where u(0,37) = 0f/00is a friction coefficient, and h(c,5?) = 0f/077is a
plastic hardening modulus.

Expressions for the plastic portion of the strain increments are specified by the
flow rule

ar

de?. = dA 6
4= oo (6)
where ' = 7 — ¢(0.4”) is the plastic potential function and d) > 0. Taking the
deviatoric part of (6) and substituting for the plastic potential yields
3 .. ’
de?. = d\ 2 7
€ 57 (7)

Using (7) in (4) reveals that d\ = d3” and the inelastic volume strain can be
written as

de? = —B dyP (8)

where 3(o,%?) = dg/0o (and the minus sign appears because stresses and strains
are taken to be positive in compression). From the consistency condition, the
increment in accumulated plastic shear strain is given by

dyp = T kdo ~ ©
h(a,7?)

Since dy? > 0, (9) applies for increments tending to make d7 > pdo (h > 0); for

increments tending to make d7 < pdo(h > 0), d3° = 0, and the material

unloads elastically. Substituting the definitions for ¥ and &, and recombining the

deviatoric and volumetric plastic strain increments yields

1 /sy 1 s 1
(lf?j = -}: <# - 5,3 5{1‘) (2—: - g/.t Jkl) doyy (10)
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Figure 1: Geometric interpretation of the parameters A (a) and B and p (b). The
slope of the vector (de?, d37) is —f3.

Minus signs in (10 are the result of choosing compressive stress to be positive,
opposite to the choice made in RR. The total strain increment is the sum of (10)
and an elastic increment. For isotropic elasticity the latter is:

1 v
defJ = Z—G <d0’;]‘ - H—ydakk&j> (1 1)

where G'is the shear modulus and v is Poisson’s ratio. Figure 1a shows the ge-
ometric interpretation of & in a sketch of the shear stress versus shear strain at
constant mean stress. Figure 1b shows that p is the local slope of the yield sur-
face in the space 7 versus o and that the plastic strain increment vector (de?, d¥P)
would be perpendicular to the yield surface if 3, the negative of the ratio of the
volume and shear plastic strain increments, were equal to p.

2.2 Shear Localization

RR proposed that faulting could be described as bifurcation from homogeneous
deformation. That is, they examined the conditions for which non-uniform de-
formation in a planar band was an alternative to homogeneous deformation. For-
mation of the band was required to be consistent with a continuous velocity field

and equations expressing continuing equilibrium. These requirements result in a
condition depending on the parameters of the constitutive relation and the orien-
tation of the band. Then RR determined the orientation of the band for which this
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condition is first met. For the constitutive framework introduced in the preced-
ing section, this condition can be expressed as a critical value of the hardening
modulus at which localization is first possible. The result is

2
%'r_zé(_llt_lfy))(ﬂ_#)z_é(l-}-u) [N+%(ﬁ+,u)} (12)

where ;1, 8, GG and v are as defined earlier and IV is the negative of the intermediate

principal deviatoric stress divided by 7. (As discussed in more detail by RR, the
expression (12) neglects terms of order 7/G; typically, these are small.)

The parameter V specifies the deviatoric stress state and ranges from —1//3
for axisymmetric extension, through 0 for deviatoric pure shear to 1/+/3 for ax-
isymmetric compression, using the convention that compressive stress is positive.
The maximum value of k., occurs for N = —(8 + p)/3 and is positive if u # S.
RR evaluate the condition (12) for various constant values of N, u, and 3, as have
a number of others, but, in general, these parameters evolve during a program of
loading. In general, the value of IV evolves during plane strain, but for an incom-
pressible material, N = 0 during plane strain. For N = —f/3, the intermediate
principal value of the inelastic strain rate is zero and, to the neglect of elastic
strains, this corresponds to plane strain.

3 Implementation for Tennessee Marble

To implement the constitutive framework, it is necessary to choose a specific yield
function f(5?,0) and plastic potential g(c, §7) (or, equivalently, the dependence
of the dilatancy factor on o and 4?). A form that is tractable, yet suffices to
describe the Tennessee marble data adequately, is the following:

7 =170+ f1i(3%.0) + f2(0) (13)
where
~P
fi(5.0) = (ho + heo)75(0) arctan (?87(_0)_) — hoo 7P (14)
and
fa(o) = po min(a, oo) (15)



represents the initial yield surface and its mean stress dependence. In (13-15),

70, ho, heo, pio. and og are positive constants. The normalizing strain vy3(o) is
assumed to depend linearly on the mean stress

7%6(7) = Y00 + Yo1(o/ 7o) (16)

In the fitting procedure we actually used the slightly different form Fo1 = Yo1/0o.
Because ay is a fitted parameter, this form must be used in reproducing the data
fit to get the same functional relationship.

The hardening modulus and friction coefficient can be derived using (13) and
the expressions following (5). The results are

- hO + hoo
h(-l” ) = - h'OO
T (o)
(7", 0) = j1yH(op — o) a7

1y ot hos) {t (L_) IR0 }

o %)) 147 /42 (o))

where H(s) is the Heaviside step function. Because h(0,0) = ho, rather than
becoming unbounded, the slope of the shear stress versus shear strain curve (at
constant o) is discontinuous at 7 = 0. In reality, the transition from purely
elastic behavior is smooth but this feature of the model is inconsequential.

At peak shear stress, h = 0 and from (17) the equivalent plastic strain at peak
shear stress (57 ), is found to be

74(0) = VVhol (). 1s)

Note that because the equivalent plastic shear strain at peak shear stress depends
on the mean stress. the locus of the peak shear stress in the 7 vs. o plane is not a

yield surface as is commonly assumed. The peak shear stress, for constant mean
stress, is given by

T =7 +To (19)
where
70 =10 + 50 {(ho + hoo) arctan v/(ho/hoy) — hoo\/m}
and
T = pH(oy - o) + [%] {(ho + hao) arctan v/(ho/hug) — hoo\/m} .
(20)



Figure 2 illustrates the graphical interpretation of the parameters. Figure 2a
sketches the shear stress 7 as a function of the equivalent plastic shear strain 37 for
constant values of the mean stress o. Figure 2b sketches yield surfaces (surfaces
of constant 4*) in the T vs. o plane.

An expression for the dilatancy factor was developed by writing the accumu-
lated plastic volume strain as €? = E(3?, ). Because ¢? depends on stress path, it
cannot, in general. be represented in a functional form such as this. The introduc-
tion of E is, however, simply a device for representing the data for the particular
stress path of axisymmetric compression and only the increments of plastic strain
enter the constitutive formulation. An increment of inelastic volume strain is given
by

OF 0FE

47" + ——d
TR @1

The negative of the coefficient in the first term is the dilatancy factor. (Note that
E is related to the flow potential by dg/dc = —0E/935”.) The second term rep-
resents inelastic compaction, that is, inelastic volume strain due to mean stress.
Here this term is deleted since the RR formulation assumes that all inelastic vol-
ume change is related to inelastic shearing. A more general representation would
include a term representing inelastic compaction, although there is no reason to
expect that the coefficients of the two terms can necessarily be expressed as partial
derivatives of a single function. A form of the function E(

gammaP, o) suggested by the data is

de? =

E(r97,0) = [Bos — B(0/00)|7° + (Beo — Bo)c(o) arctan {i} (22)

c(o)
where
(o) = o — {0 /a0) (23)
and By. 8., o, ¢;. and B are constants. The dilatancy factor is given by
B(o.5) = —B(0/o0) + oo — P = o 24)

1+ (37/ [co — c1(a/00)})?

Thus, the dilatancy factor at 37 = 0 is o — B(o/opand 8 approaches 8., —
B(o/ao) as %7 — oo. Figures 3a and 3b sketch 3 and ¢? = E as a function of

P for two values of mean stress. Numerical values for these coefficients are in
Table 1.



Figure 2: Key parameters used to model the dependence of 4 and & on 7, (a) and
o (b).

4 Determination of Model Parameters

Determining the model parameters is a several step process, beginning with ac-
quisition of a data set, determining 7, o, 47 and €” and finally fitting the model pa-
rameters to the processed data set. Experimental results from conventional triaxial
tests on 5 cm diameter cylinders of Tennessee marble were analyzed to obtain 77
and €. The elastic strains were removed by using a least squares fitting pro-
cess to simultaneously determine G and v from the initial portions of the loading
curves. Although G and v change with inelastic deformation, the change is small
for Tennessee marble and was neglected here (see Table 1 for values). Twelve
experiments, conducted at confining pressures from 0 to 100 MPa, were analyzed
to produce a data set consisting of values for 7, o, 3* and e?. Our goal was to find
values for the model parameters listed in Table 1 which would minimize a suitable
measure of the difference between the experimental and modeled values for 7 and
€?. A simplex algorithm was used to solve the minimization problem.

Although the downhill simplex method is not a particularly efficient algorithm,
it is appealing for solving minimization problems because it is easy to implement,
requires no differentiation and readily allows inclusion of constraints. Nelder and
Mead (1965) first described the downhill simplex method, but a more accessible
reference may be Numerical Recipes (Press et al., 1986, pp. 289). A simplex
in two dimensions is a triangle (three vertices), in three dimensions a tetrahe-
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Figure 3: 3 us a function of 4, (a) and parameters used in the model (b)

dron (four vertices) and so on to an object with N+1 vertices in N dimensions
corresponding to the N unknowns of the minimization problem. Each vertex cor-
responds to an N-tuple of possible values for the sought-after set of parameters
that minimize the appropriate measure of error. In our problem, the unknowns
are the 12 parameters listed in Table 1. The error function to be minimized was
the L2 norm of the difference between the experimental values of 7 or ¢® and
the corresponding values calculated from Equations 13 and 22. The procedure
was implemented with the constraint that @ < /3, the slope of the T versus o
trajectory in a conventional triaxial test.

To begin the process, N+1 starting vectors are chosen that define the vertices
of the initial simplex in the N-dimensional space of unknowns. At each vertex, the
error function is evaluated, by calculating the value of 7 for the several hundred
experimental data points, using the experimental values of 7* and ¢ and the N-
tuple of parameter values that are the vertex coordinates. Then the simplex shape
is modified to move it towards regions of the parameter space that give lower
values for the error functions. The simplest movement is away from the vertex
with the highest value of the error function, accomplished by reflecting that vertex
across to the other side of the simplex. In two dimensions the process is easily
visualized as an amoeba-like series of stretchings, contractions and crawling that
moves the triangular simplex as a whole towards smaller and smaller error values.
When a minimum lies within the simplex, further movement ceases to lower the
error and a series of contractions are instituted that shrink the simplex until some
specified convergence criterion is met. There is no guarantee that the minimum
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Parameter | Value

G 30GPa

v 0.30

ho 68.27 GPa
hoo 0.62GPa
o0 3.84 x 10_5
o1 3.61 x 10~
0o 68.57 M Pa
To 34.72 M Pa
o 0.43

P 1.49

Co 2.37 x 10~
C1 3.71 x 102
B 3.32 x 102

Table 1: Numerical Values of Coefficients

is not just a local minimum, so it is standard practice to restart the simplex at
different regions of the parameter space to determine whether the same minimum
is found.

Two separate minimizations were carried out: one to obtain the parameters
necessary to describe the hardening modulus and the friction coefficient and the
other for the parameters in the model of the dilatancy parameter. As Figures 2
and 3 show, the parameters could be found by choosing values from individual
tests at special points. However, fitting all of the triaxial test data avoided overem-
phasizing any onc test or portion of a test. Another approach would have been to
model the hardening modulus, friction factor and dilatancy parameter directly.
This would have required differentiating the experimental stress-strain curves,
which would inevitably produce a noisy data set to be fit. By modeling 7 and
¢” as functions of 4” and o, we were able to carry out the differentiations required
to obtain A, u. and .3 on smooth analytic functions.

Once determined, the parameters in Table 1 can be used to calculate the re-
sponse for different stress paths by substituting the expressions for x, 2 and A into
(10) and numerically integrating. A comparison of experiment and calculations
for all of the fitted triaxial tests is shown in Figure 4. This comparison confirms the
suitability of the forms adopted for I" (6) and F (22). Calculations were checked
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by comparing the results from a direct integration of Equation 10 with the out-
put from a radial return algorithm. Care was required in the direct integration to
keep the stress on the yield surface. Frequent correction steps had to be included
to eliminate a tendency to wander away from the yield surface. Once properly
corrected, the agrcement between the two solution algorithms was excellent.
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Figure 4: Comparison of experimental results used to derive the model parameters
with the stresses and strains calculated from using the fitted parameters.

Calculated yield surfaces for several values of 4”7 are shown in Figure 5a and
shear stress versus shear strain at several values of mean stress are shown in Figure
5b. Also shown in Figure 5a is the peak stress as a function of mean stress. As dis-
cussed earlier, the curve of peak stress cuts across the yield surfaces (not shown)
and, hence, is not itself a yield surface. This result is not model-dependent, as any
model that predicts the observed plastic shear strains would give essentially the
same result. Since the peak stress is, in general, neither a yield surface nor the
stress at which localization occurs, the prominence given this parameter may be
more due to its ease of observation than any fundamental significance.
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Figure 5: Results of modeling yield surfaces (a) and shear stress as a function of
plastic shear strain 4 at constant mean stress (b). The curve marked 77eek /7o in
(a) shows peak stress as a function of o. From numerical results the locus of peak
stresses crosses the yield surfaces, indicating that peak stresses do not constitute
a yield surface.

5 Localization Under Axisymmetric Compression

Using the constitutive relations described earlier, we have examined the localiza-
tion criterion (Equation 12) for axisymmetric compression tests. Figure 6 shows
the evolution of the hardening modulus (17) and of the critical hardening modulus
needed for localization (12) for the cases oy = 033 = 5 and 20 MPa. Results for
other confining stresses are similar: the hardening modulus decreases but never
becomes sufficiently negative to equal the critical value. The minimum attainable
value of & in the constitutive model is negative (—Ah,, see Equation (17)), as is

the critical value predicted for localization. However, A, is predicted to be a sub-
stantial fraction of the elastic shear modulus G, exceeding the possible values for
h.

As discussed by RR (and by Rice (1976)), the strongly negative values of A,
predicted for localization in axisymmetric compression are related to the overly
stiff response of a smooth yield surface model to the abrupt change in the pattern
of deformation required for localization. Essentially, localization into a planar
band is similar to a plane-strain mode of deformation; when the pre-localization
field is axisymmetric, the formation of a band requires an abrupt change in the
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Figure 6: Calculation of the critical hardening modulus and the material harden-
ing modulus, plotted as a function of normalized plastic shear strain for triaxial
load paths at confining pressures o9 = 033 = 5 and 20 MPa, showing that the

localization criterion is never met. The calculation was done using G = 30 GPa
andv = 0.3 '

ratio of components of inelastic strain increments. RR note that the overly stiff
response to this abrupt change predicted by smooth yield surface models is allevi-
ated by models that have a vertex at the current stress point. This class is predicted
for a wide range of microstructural models (Hill, 1967) and evidence for the for-
mation of a yield surface vertex has been observed in compression-torsion tests
on Tennessee marble (Olsson, 1992). Because post-test examination of the sam-
ples revealed localization, in the form of through-going fractures, it appears that a
more elaborate constitutive formulation, possibly including a yield surface with a
corner. is needed to accurately predict localization in axisymmetric compression.

6 Simulations of Plane Strain

We have also used the constitutive relation to simulate-the results of a plane strain
test (zero strain in the z, direction) with constant in-plane compressive stress
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(033 = 20 MPa). Results for the stresses, o11 and oy, versus e;; are shown in
Figure 7. Dashed lines are the results obtained from the model and solid lines
are experimental data. Note that the hardening in plane strain is augmented, by

comparison with that in axisymmetric compression, because of the more rapid
increase of mean stress in plane strain.
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Figure 7: Comparison of the calculated (dashed lines) and experimental (solid
lines) stresses as a function of total strain e; for a plane strain test on Tennessee
marble. Using the convention that compressive stress is positive, o, and 09 are
the maximum and intermediate compressive stresses, respectively.

Modeling reproduced the stresses quite well. Note that the test included un-
loading loops (the small ticks off the main load line) that were not included in
the modeling. Model calculations were extended to much higher values than were
observed, in order to reach predicted localizaton. Experimental data indicate a
nearly linear response of o5, as would be expected if the material remained elas-
tic. Figure 8 confirms that, experimentally, elastic strain along the out-of-plane
axis was small. Because total strain e,y = €32 + €5, = 0 was constrained to be
exactly zero (plane strain), €5, = —¢2,. Thus a small elastic strain component
implies an equally small plastic strain component of opposite sign. In contrast
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to the experimental results, the modeled results for ey, in Figure 8 show a large
compressive, elastic strain, and thus a large, extensive, plastic strain.

The discrepancy appears to be caused by the way in which dilatancy is mod-
eled (Equation (8)): An increment of inelastic deviatoric strain, in any direction,
contributes to d3” and causes equal increments of inelastic normal strain in all
directions. In actuality, dilatancy in the z,-direction is likely to be suppressed
because shearing occurs principally in the ;-z3 plane and because the opening
of microcracks in the z,- direction is opposed by the increasing normal stress in
this direction. Inclusion of this effect would require an anisotropic model and

indicates the difficulties of constructing a constitutive model from (even many)
results for a single deformation state.
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Figure 8: Comparison of calculated (dashed lines) and experimental (solid lines)

elastic strains vs oy, for a plane strain test on Tennessee marble. The in-plane

strain components (¢, and ¢%,) were well described by the model, but the out-of-
plane component (¢,) was not.

Evolution of the constitutive parameters A, her, B and p as a function of AP

during the course of the plane strain test is shown in Figure 9. Values resulting
from the integration of the model (10) are shown as dashed lines. An alternative
approach is to calculate 5?, ¢, and o from the test data and then, using Equations
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Figure 9: Comparison of calculated (dashed lines) and experimental (solid lines)

values of h, h,,., B and # as a function of 4” for a plane strain test on Tennessee
marble.

12, 17 and 24, calculate A, her, B and i directly (solid lines). Values obtained this
way are, in a sense, the experimental values, to be compared with the model values
obtained by integration. Agreement was quite good over the range of plastic shear
strain reached in the experiment. At the end of the experimental loading, discussed
in detail below, h/G was still positive at about 0.2, while A, was negative and

decreasing. The dilatancy parameter B increased by about a factor of 3 from 0.4

to about 1.2, while the friction parameter, after an initial sharp increase from near
zero, remained relatively constant at 0.5.

The test was conducted using servo-hydraulic control of the load frame to
maintain the strain rate constant for ess, the strain in the minimum compresive
stress direction, ensuring that stability was maintained as localization was occur-
ring. As a result, it was possible to observe what we interpreted to be the oc-
currence of localization; oy, the maximum compressive stress began to decrease
spontaneously (unload) as es3 continued to increase (see enlarged portion of Fig-
ure 7.) This implies the onset of a process that caused the strain rate in the min-
imum compressive stress (3) direction to increase rapidly. Only by reducing o,
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and thus its contribution to és3, under the automatic control of the servo-hydraulic
system, was it possible to maintain the specified strain rate. Localization is the
likely cause of the change in behavior that occurred at ¢;; = 285 MPa.

This observation is compared with the prediction of localization made by plot-
ting the evolution of the hardening modulus (divided by G) and the evolution of
the critical hardening modulus (given by (12)) against 77 (Figures 9 and enlarged
in 10). Model results indicate that the critical hardening modulus was initially
negative but increased during the test, resulting in the satisfaction of the localiza-
tion criterion A = h,. when the decreasing h = h,. = 0. This is in contrast
to the case for axisymmetric compression where it was found that the predicted
localization criterion required a large negative A.

The evolution of k., is due to changes of x,  and the deviatoric stress state
parameter, .\, which is plotted against the total axial strain in Figure 11. At the
onset of loading, NV = 0.15 as required for the elastic solution to plane strain

loading. During the test, N evolves toward axisymmetric compression and then
back towards pure shear (N = 0).
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Figure 10: From modeling, localization is predicted to occur for plane strain con-
ditions when &t = h, = —2.5 x 10~ (dashed lines) at 3» = 0.0117. This is
significantly different from the experimental results (solid lines) which were in-
terpreted to show localization at approximately A = 0.2.
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Figure 11: Evolution of N during the course of a plane strain test as a function of
€11, the strain along the maximum compressive stress axis, showing the evolution
towards an axisymmetric stress state and back towards pure shear.

It is misleading to draw conclusions about the sign of A from the local shape of
stress-strain curves at localization as was done by Ord et. al, 1991, They argued
that the observation of localization during increasing stress implied that A was
positive, i.e. that localization had occurred “pre-peak”. This argument is only
valid for constant mean stress tests. For a constant mean stress test (c=0h=0
implies that the peak shear stress and the peak of the stress-strain curves has been
reached. In the case where o is not constant, which includes most commonly
performed tests, it is not possible to determine the sign of 4 at any given point by
examining stress-strain curves. For example, as Figure 12 shows, at the predicted
localization point (3% = 0.0117), the shear stress is still increasing, even though
h = —2.5 x 107 is already slightly negative (see Figure 10). Only by a detailed
calculation, similar to the one carried out here, can the value of A be determined,
allowing an assessment of whether localization occurred for positive or negative
h, that is, in the hardening or softening regime.

A simpler, constructed example, devoid of the computational complexity, serves
to illuminate this important point; localization can be predicted to occur under ris-
ing load, i.e.. the slope of o}, vs. € is positive, even when A < 0. In particular,
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Figure 12: Comparison of calculated (dashed lines) and experimental (solid lines)
plastic strains vs 47 for a plane strain test on Tennessee marble. As a result of
changing mean stress, the stress-strain curve appears to show hardening, even
though s was already slightly negative, in the softening regime.

because of the rapid increase of mean stress in the plane strain test, it is possible

for h to be negative while the slope of o7 Vs €5 is positive. Such an example is
shown in Figure 13.

Here, the yield condition is given by
T=1—002G3 - 0.7¢ (25)

In addition, it is assumed that # = 0 and the lateral confining stress is zero. Thus,

h has the constant value —G/50, and y has the constant value 0.7. The resulting
pure shear response (constant ¢) is bilinear: an elastic portion with slope G until
the shear stress reaches 7, followed by a descending portion with slope —G/49.
Similarly, the modeled axial stress versus axial strain response in axisymmetric
compression is also bilinear. For Poisson’s ratio v = 0.2, the slope is £ = 2.4G,
until the axial stress reaches 575/+/3, and then the slope is —12G/115.

For plane strain, however, the response is nonlinear. As shown in Figure 13a,
even though A = —G//50 < 0 as soon as inelastic deformation occurs, the curve

19



of oy, vs. €;; continues to rise until peak load (indicated by the triangle). In this
example, h../G = 0.0653 for deviatoric pure shear (N = 0) and —0.3127 for
axisymmetric compression. Thus, localization is predicted to occur for deviatoric

pure shear but not for axisymmetric compression. For plane strain, A,, /G evolves

with deformation (Figure 13b) because of the changing value of N (Figure 13c).
Localization is predicted to occur at the point indicated by the box, when he has
risen to equal the constant value of h = —G//50 (Figure 13b). The increase of the
critical value of k., in this case is due entirely to the evolution of the deviatoric
stress state from near axisymmetric compression (N = 1/ V/3), for which A,
is very negative, towards deviatoric pure shear (N = 0),for which A, is less
negative. Thus, observation of localization under rising load in plane strain does
not necessarily mean that 4 is positive.

7 Conclusion

Beginning from experimental data for axisymmetric compressive testing on Ten-
nessee marble, we determined all the parameters required for the RR theory of
localization as a function of plastic shear strain and mean stress. Numerical tech-
niques were used to integrate the incremental plastic strain expressions for com-
parison with original axisymmetric test data and for prediction of the results of
plane strain tests. A feature that emerges from the data analysis is that the peak
stress is not a yield surface as is conventionally assumed. This result is model-
independent; it will be the case whenever the data indicate that the inelastic strain
at peak stress depends on the mean stress.

In addition to the basic calculations of stress and strain, predictions of the lo-
calization criterion were made and compared with experimental results. Under
axisymmetric loading, localization is observed to occur post-peak in experiments
as is predicted by the bifurcation theory. The predicted values of A required for
localization are, however, so negative that the modeled axisymmetric tests never
reached the localization criterion. A more sophisticated treatment, including the
effects of vertices on the yield surface, appears to be necessary to predict accu-
rately the strain (or hardening modulus) at localization in the axisymmetric case
(Rudnicki and Rice, 1975).

Localization was predicted to occur when (h = 0) for the plane strain test
(é22 = 0) that was modeled. The predicted localization stress was significantly
higher than the experimental observation of spontaneous unloading (decreasing
o11) that we interpreted to coincide with the formation of a shear zone. Results of
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modeling the test and from a simpler, constructed example, show that the sign of
h, the hardening modulus cannot be determined from examination of the stress-
strain curves. An important prediction of RR is the possibility of pre-peak (A > 0)
localization. Testing this prediction in plane strain requires the use of a model to
calculate A.

Modeling captured the behavior of 011, 022, €11 and ezz well, but did not do as
well with e;5. The poor prediction of the out-of-plane strain behavior is attributed
to an over prediction of €}, due to absence of anisotropy in the model.
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Figure 13: An example showing that A can be negative at localization under plane
strain conditions while the apparent hardening in positive. (a) Curve of axial stress
(o11) vs. axial strain (e;;) for plane strain loading, continues to rise until the peak
stress (triangle) even though A/G = —0.02. Localization (square) is predicted
occur when h,. /G rises to equal A/G = —0.02. (b) Evolution of A, is due to
evolution of V' (c) toward pure shear (V = 0).
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