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Abstract ,

By an electromagnetic incompressible two fluid model describing both ion temper­

ature gradient drift modes (rji modes) and resistive interchange modes (<7 modes), a 

new type of rji mode is studied in cylindrical geometry including magnetic shear and 

an averaged curvature of Heliotron/Torsatron. This 77,■ mode is destabilized by the 

coupling to the unstable g mode. Finite plasma pressure beta increases the growth 

rate of this mode and the radial mode width also increases with plasma pressure beta 

indicating large anomalous transport in the Heliotron/Torsatron configuration. The 

transport from rji mode exceeds that from resistive g when the mean-free-path exceeds 

the machine circumference. For plasma beta above two to three times the Suydam 

limit the m = 1/n = 1 growth rate increases from the 777 mode value to the MHD 

value.
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I. Introduction

Recently ECRH heating experiments1 in the Heliotron E showed that the ion temperature 

did not increase when the electron density increased at constant heating power, although the 

power input to the ions from the electrons was strongly enhanced. Since the electron density 

profile is fairly flat in the outside region and the 77; parameter is probably larger than one, 

the anomalous ion thermal transport driven by the rji modes is a good candidate to explain 

this result. In this work we demonstrate that the rji modes are also destabilized by the bad 

average curvature, and that they couple to the g modes in the Heliotron/Torsatron. This 

means that the ion heat transport becomes anomalous due to the 77,- mode turbulence, when 

77, becomes large. The difference between these two modes comes from the electron dynam­

ics. For the 77,- modes the electrons satisfy the adiabatic (Boltzmann) relation, njn0 ~ e(plTe 

in the regime of kj| Vje > cui/e,-, and for the g modes the electrons behave isothermally, 

n/riQ — (a;*/cj)(ecp/Te) in the regime of &jj < u;i/et-. Here n and (p are the density and 

electric potential perturbations,' respectively, and &|| is a typical parallel wavenumber, u a 

characteristic frequency and vei the electron-ion collision frequency. Hence, the mode struc­

ture in a collisional plasma with both magnetic shear and bad average magnetic curvature 

will be strongly affected by the force driving the g mode in the inner region (sufficiently close 

to the rational surface &|| = 0) and by the force driving the 77,- mode in the outer region in 

the case of 77^ > 1. We find that the 77,- mode is further destabilized by the coupling to the 

resistive g mode in the sheared slab model.2 Cordey et al.3 studied a similar situation in the 

levitron configuration and showed that the coupling between the rji mode and the g mode 

produces a single, strongly destabilized mode in the electrostatic limit.

Here we study the coupling of the rji mode to the resistive g mode in the cylindrical 

plasma with both magnetic shear and curvature of the Heliotron/Torsatron magnetic field, 

which is an extension of the slab model analysis showing a new type of the rji mode.2 Two



types of eigenmodes occur in the system for the same parameters and mode numbers: one 

mode is radially localized and the other mode is radially global. Both the mode localized 

near the mode rational surface and the global mode (extending over the radius of the plasma) 

are studied. The global mode was not found in the slab model2; however, it seems similar to 

the nonlocal resistive drift waves obtained in the cylindrical plasma model of Heliotron E.4 

The mode with the larger growth rate is found to be the localized mode, but the global mode 

tends to have the larger 7( Ar)2 which measures the transport. Also, we investigate the effect 

of finite plasma pressure beta on this new t/,- mode in Heliotron/Torsatron by solving the 

two coupled second order differential eigenvalue equations for the electrostatic and parallel 

vector potentials.

Section II introduces the two component dissipative hydrodynamic equations we use to 

derive the two coupled second order differential equations for the electromagnetic stability 

problem. Numerical solutions are given in Sec. Ill for a cylindrical plasma of the Heliotron-E. 

Conclusions are given in Sec. IV.
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II. Model Equations

We use incompressible two fluid equations to describe the coupling of the 77,- mode and 

the resistive g mode in the Heliotron/Torsatron. Using the normalizations e§fTe = cp, 

n,/no = n, Qci(ps/a)2t = t, r/a = r and zjR = z, we obtain the fluid model equations

— V5_(p + [y>, V^v?] + • [?,•, VX¥>]

= -^v“vi/1 + 7!r'i + n’n)

I **+1" ""■] = v»« - 7 §r - 7

^ + [<P,n] =-[<P~ n, ft] - eV||U||t- - j- V||Vl A

(1)

(2)

(3)
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where e = a/i?, p = />s/a, /?e = Sir noTe/Bq and z/e = Vei/Qce- In Eqs. (l)-(5), the convective 

nonlinearities are written using the Poisson bracket

d 1
[/,£] = V/x V^-z and Vnf = -^ + —[Vo-A,f]. (6)

The function ^ro(r) is the equilibrium magnetic flux function obtained from the helical mag­

netic fields which produce a rotational transform with the relation to a poloidal magnetic 

field Bp = z x V^q. The four-field equations with different normalization in the electrostatic 

limit are given in Ref. 2.

A. Equilibrium

The force Vf2(r) represents the averaged curvature of the magnetic field line due to the 

stellarator field. Since we have the average curvature without toroidicity we employ a cylin­

drical geometry where all equilibrium quantities no, and ft depend only on r. Then the 

magnetic flux function 'I'o and the average curvature term f) are related by

^o(r) = i r'i(r') dr' (7)Jo

and

Q(r) = ^r2t(r) + 2^ r'i(r') dr'j , (8)

where t(r) is a rotational transform, £ is the poloidal number, and N is the pitch number in 

Stellarator/Heliotron devices.



B. Fluctuation Energy Density and Transport

*
i

Equations (l)-(5) have an energy conservation relation in the case of z/e = 0 given by

d-f
atJ dv 2 (^-L^ + V-LPi)2 + 2 V\\i “l" 2 ”2 + 2^" ^'L "l" nPi = 0 . (9)

The nonlinear evolution of the instabilities with the invariant of Eq. (9) is for a future 

work. Here we give the background evolution or balance equations obtained from Eqs. (1)- 

(5) after averaging over the 6 — z dependence of the fluctuations. Using the notation / = 

(f(r,9,z))ez = /o,o(r) and adding the background sources and sinks, the ambient or mean 

field equations become

(rv„) + i Jt (n.(r, <)) = -rjr B/p +

dv\ 1 d
dt +rirr^ = F\\lp + nv\

dN \d
+ “ T" (rr) = dt r dr

(10)

dA 1 5 . „ . c2V r-,2 A
TyT H— -k~ (rFa) — — V A dt r dr 47t

The anomalous fluxes in Eqs. (10) are given by

dip d
n«(r, t) = r( veSvri) = ^ (V^ + Pi)

H||(r, t) = v\\8vrE = dQ
_ U|| dp

r

n dp
T(r,t) - n8vrE -------r du (ID

n , 3 —c----  3 Pi dlPQ<ir,t) = 1P,SvrB = --7w

A d
FA(r, t) = A8vre = -(p-n)
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where the radial transport velocities are the ion fluid velocity vri, the electron fluid velocity 

vre or the E x B velocity depending on the quantity being transported.

III. Linear Eigenmodes and their Stability

To examine the linear electromagnetic stability problem, we linearize Eqs. (l)-(5) assuming 

the perturbed quantities have the form of exp(—+ imQ — inz). Following earlier work5 

we derive the fluctuating parallel vector potential A\\ from a new potential *l> by writing 

Ay = b0 • V'0 which makes

E\\ = - VO •

Analysis in terms of <f> and •0 simplifies the equations and makes the MHD polarization 

ipm,n(r) - <f>m,n(r) easy to recognize.

We obtain the following two coupled second order differential equations,

uj u>

,2 _2

4
i

- »y||
LJ — u>De + iiy\\ 

, UDe

at

to2p2 us

OJ
(12)

m
+ -rV> = ^

W\\

2 kit2 u - uDe + ii/\\
k2f2k\\£

(jj2p2 UJ

where

- 1-

U*e
UJ

— ) if;
UJ

Vf = -
Id d
r dr dr

, k\\(r) = m i{r) - n , v\\ =
kit2

(13)

m dfl
uDe = --Z- = mg 

r ar
m 1

^*e =------r rn
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with ue = veilu>ce. In the limit of the electrostatic approximation, Eqs. (12) and (13) reduce 

to

(uj -u*pi)p2V;<t> - < (w - UJ*pi)
m2p2

UJ
+ lv\\

I
+ (<^£>e — ^||

cu*e — uj£>e + iu\\ +
k?,t
up*

1 - u*pi
u

u — uDe + zV|| ► ^ = 0 (14)

In the slab geometry Eq. (14) was solved in Ref. 2 and shown that the 77,■ mode is further 

destabilized by the coupling to the resistive g mode. Equation (14) in the cold ion limit 

was studied in the cylindrical plasma by Sugama et al.4 and it was found that there are two 

branches of the unstable modes: one localized to the mode rational surface (identified there 

as the resistive interchange mode) and the other is a global eigenmode, not localized to a 

mode rational surface (the resistive drift wave).

In the collisionless limit, with the local approximation, Eqs. (12)-(13) are analyzed for the 

tokamak case by Horton et al.5 and it was shown that as the plasma pressure (j3) increases 

the electrostatic 77, mode is strongly coupled with the FLR-MHD mode. In Sec. Ill, numerical 

solution of Eq. (14) is shown in Figs. 1-4 and the electromagnetic effect is shown in Fig. 5 

by solving Eqs. (12) and (13).

IV. 'Numerical Results

Equations (12) and (13) are solved numerically for their eigenvalues and eigenfunctions using 

the shooting method. The parameters for the calculation are £ = a/R = 0.1, p = ps/a = 

0.02, the background density and pressure profile n0 oc po oc exp(—2r2) such that rji = 1, 

and the rotational transform profile of L(r) = 0.51 + 1.69 r2-5, which is similar to that of

7



Heliotron E.6 For these parameters, the resonant surface of the m = 1/n = 1 mode which 

seems to be most dangerous mode in the Heliotron E is at ro = 0.61.

We use the numerical shooting method to find the eigenmodes due to the cylindrical 

geometry and the two characteristic scale regions around the mode rational surface. The 

inner most layer is defined by from the resistive diffusion of the electrons by = vei(u> —

^De)/^[|2 ue and the outer layer by the coupling to the ion acoustic waves with xf = u>(u; — ,

cuj^e)/kj? c2s. Some analytic results from asymptotic matching are given in Ref. 2.
i

A. Electrostatic Limit

Figure 1 shows the growth rate of the mode with a radial node number of ^ = 0,1, 2 and the 

global mode as a function of collision frequency ve{=- vei/Q,ce). Here <7 = 0 corresponds to the 

slab rji mode, and <7^0 corresponds to the toroidal r/,- modes within the cylindrical model.

Both the global and the slab r/i mode show a weak destabilizing dependence on the collision 

frequency. Increasing the collision frequency enhances the growth rate of the localized mode 

driven by a bad magnetic curvature. When the collision frequency is small the mode with 

a higher radial node number (T = 2) has a larger growth rate, but as i/e increases the € = 0 

mode has the largest growth rate. Also, the radial mode width of the localized £ = 0 mode 

increases with collision frequency due to the coupling to the resistive g mode indicating a 

stronger anomalous convective transport across the 1/1 rational surface. This tendency for 

the radial mode width to increase with collisionality was already found in the slab model.2

Figure 2 shows the dependence of the growth rate on the average curvature of the He­

liotron/Torsatron. Parameters are the same as in Fig. 1 except now ue = vei/u>ce = 5 x 10-4. •

The growth rate of the global mode has a weak dependence on average curvature parameter 

g. For the £ = 0, localized mode, the growth rate 7 increases when # > 0 and the effect of 

the negative curvature is weak.

In Fig. 3 we change the ion temperature gradient 77,- parameter. In the collisionless limit
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(Fig. 3(a)), the threshold value is given by rjc ~ —1 which is the usual prediction of simple, 

incompressible, fluid theory.7 It was shown that improved fluid theory gives r]c ~ 2/3, which 

is comparable with the kinetic theory.8 When z/e = 5 x 10-4, (Fig. 3(b)), the growth rate is 

enhanced by a factor of two-three, and the mode remains unstable at rji = r}c = —1 due to 

the coupling to the resistive g mode. Also, the ^ = 0 mode growth rate is dominant in the 

resistive regime.

The effect of shear on the growth rate is shown in Fig. 4. There is a stabilizing effect for 

the £ — 0 mode in the collisionless and collisional case, but the effect is weak. The radial 

mode width depends strongly on shear with the mode width decreasing as the shear increases, 

indicating a strong dependence on s of the anomalous transport. Turbulent transport theory 

for the resistive g mode9,10 and the rji mode5,11 give the anomalous transport rates for =

| 8vrE — —riiXidp/dr in Eq. (11) for resistive g as

xr_5 = ^V^p
47T s2 \LpRCj - "ei Pe

LI
Lj jp

(15)

where j3p is the poloidal s = rq'/q = qR/Ls is the shear parameter, Ls is the scale length 

of shear, R is the major radius, q = 2n/l is the safety factor and Rc is the radius of curvature 

and for the r/,- mode in the weak shear-strong toroidicity branch5

Ps L3 cT'
efi.

(16)

and for the strong shear-weak toroidicity branch11 as

(IT)

For all modes formulas (15)-(17) indicate that strong magnetic shear is the most effective 

mechansim for controlling the transport in both the collisional and collisionless regimes. 

The scaling from Eq. (15) is Xr~3 ~ nT~x!'1 B/~2 L2S L~l R~l compared with the collisionless 

scaling Xm ~ T^2 B~l Ls R^1^2 L~3^2 for (16). With increasing T2/ne ~ Amfp/i? the

9



collisionless transport from Eqs. (16) and (17) quickly exceeds the collisional transport from 

Eq. (15).

B. High Beta Electromagnetic Stability

Electromagnetic effect from finite plasma pressure beta on the growth rate is shown in Fig. 5 

for both the collisionless and collisional case. As increases, both the growth rate increases 

and the radial mode width increases, implying large 7(Ar)2 which measures the anomalous 

transport. This destabilizing effect of the finite pressure is different from the tokamak case 

where the finite beta effect is related to ballooning modes; here, for the Heliotron/Torsatron, 

the pressure limit appears to be related to the Suydam criterion for the interchange mode 

in cylindrical plasma. For the same model configuration as used in Fig. 5, Sugama and 

Wakatani12 find that the Suydam instability appears for /?(0) > /3crit = 0.016 and the growth 

rate becomes substantial for 0(0) ~ 2/?crjt = 0.03. It is noted that the Suydam criterion also 

indicates the existence of low-m mode interchange instabilities with the 1/1 mode growth 

rate at about O.67 (Suydam) when 0 = 0.03 according to Ref. 12.

Dominguez et al.13 also show in toroidal stability theory that the Mercier criterion gives 

0 = 0.016 for the resonant surface ofm = l/n = l using the numerical MHD toroidal equi­

librium. Thus our cylindrical approximation appears good for the electromagnetic 77; mode 

analysis.

We find that the eigenfunction ij) increases from zero at /?e = 0 to 7/7,1 ~ f ^i.i at 0e — 0.01 

to the MHD polarization with 7/7,1 (r) ~ </'i,i(^) at 0e = 0.02.

Finally we find that the compressibility effect on the new 77,- modes is not important, 

except near marginal stability for finite g case as demonstrated in Ref. 2. For other low-m 

rji mode cases such as m = 3/tz = 2 and m = 5/n = 3 no essential difference appears from 

the present m = 1/n = 1 study.

10



V. Conclusions

The stability analysis of the radial eigenmode equations presented here shows that there is 

a new type of 77,- mode which is further destabilized by the coupling to the resistive g modes 

in the Heliotron/Torsatron system. Both the localized and the global modes are found 

to be unstable in the cylindrical plasma. Including the electromagnetic component of the 

electromagnetic fields further enhances the growth rate of this new rji mode implying that the 

instability becomes stronger with auxiliary heating in the high density plasma. We conclude 

that the r/, mode is a good candidate to explain the anomalous ion thermal transport in the 

Heliotron E experiments. In view of these stability results we are proceeding to the nonlinear 

studies of the turbulence governed by Eqs. (l)-(5).

Acknowledgments

This work was partially supported by the U.S. Department of Energy Contract No. DE- 

FG05-80ET-53088. One of the authors (BGH) acknowledges Professor M. Wakatani for his 

support in my visit to the Plasma Physics Lab., Kyoto University, during the course of this 

work.

11



References

1. H. Zushi, M. Sato, 0. Motojima, S. Sudo, T. Mutoh, K. Kondo, H. Kaneko, T. 

Mizunehi, H. Okada, Y. Takeiri, F. Sano, A. liyoshi, and K. Uo, Nucl. Fusion 28, 

1801 (1988).

2. M. Yagi, M. Wakatani, H. Sugama, B.-G. Hong, and W. Horton, J. Phys. Soc. Jpn. 

12, 4265 (1989).

3. J.G. Cordey, E.M. Jones, and E.H. Start, Nucl. Fusion 20, 459 (1980).

4. H. Sugama, M. Wakatani, and A. Hasegawa, Phys. Fluids 31, 1601 (1988).

5. W. Horton, D.-I. Choi, and B.-G. Hong, Phys. Fluids 26, 1461 (1983).

6. J.H. Harris, 0. Motojima, H. Kaneko, S. Besshou, H. Zushi, M. Wakatani, F. Sano, S. 

Sudo, A. Sasaki, K. Kondo, M. Sato, T. Mutoh, T. Mizuguchi, M. lima, T. Obiki, A. 

liyoshi, and K. Uo, Phys. Rev. Lett. 53, 2242 (1984).

7. W. Horton, D.-I. Choi, and W.M. Tang, Phys. Fluids 24, 1077 (1981).

8. B.-G. Hong, W. Horton, and D.-I. Choi, Plasma Physics and Controlled Fusion 31, 

1291 (1989).

9. S. Hamaguchi, Phys. Fluids Bl, 1416 (1989).

10. M. Yagi, M. Wakatani and K.C. Shaing, J. Phys. Soc. Jpn. 57, 117 (1988).

11. S. Hamaguchi and W. Horton, IFSR#383 (1989), to appear in Phys. Fluids B (1990).

12. H. Sugama and M. Wakatani, J. Phys. Soc. Jpn. 58, 1128 (1989).

13. N. Dominguez, J.-N. Leboeuf, B.A. Carreras, and V.E. Lynch, Nucl. Fusion 29, 2079 

(1989).

12



Figure Captions

1. Growth rate 7 in units of f2ct Hr versus collisionality r'ei/na1

2. Growth rate 7 in units of flC4- versus average curvature <7 (arbitrary unit) for veilVtce =

5 x IQ-4.
2

3. Growth rate 7 in units of ^7 versus ion temperature gradient rji for collisionless
az

limit (a) and veil£tce = 5 x 10-4 (b).

P24. Growth rate 7 in units of 0ct- Hr versus shear parameter s (arbitrary unit).
a2

p25. Growth rate 7 in units of flct- —7 versus plasma pressure f3 for £ = 0 mode.
a2
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