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Abstract

By an electromagnetic incompressible two fluid model describing both ion temper-
ature gradient drift modes (7; modes) and resistive interchange modes (g modes), a
new type of 1; mode is studied in cylindrical geometry including magnetic shear and
an averaged curvature of Heliotron/Torsatron. This 7; mode is destabilized by the
coupling to the unstable g mode. Finite plasma pressure beta increases the growth
rate of this mode and the radial mode width also increases with plasma pressure beta
indicating large anomalous transport in the Heliotron/Torsatron configuration. The
transport from 7; mode exceeds that from resistive g When the mean-free-path exceeds
the machine circumference. For plasma beta above two to three times the Suydam
limit the m = 1/n = 1 growth rate increases from the n; mode value to the MHD

value.
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I. Introduction

Recently ECRH heating experiments! in the Heliotron E showed that the ion temperature
did not increase when the electron density increased at constant heating power, although the
power input to the ions from the electrons was strongly enhanced. Since the electron density
profile is fairly flat in the outside region and the n; parameter is probably larger than one,
the anomalous ion thermal transport driven by the 7; modes is a good candidate to explain
this result. In this work we demonstrate that the n; modes are also destabilized by the bad
average curvature, and that they couple to the g modes in the Heliotron/Torsatron. This
means that the ion heat transport becomes anomalous due to the 7; mode turbulence, when
n; becomes large. The difference between these two modes comes from the electron dynam-
ics. For the n; modes the electrons satisfy the adiabatic (Boltzmann) relation, 72/n¢ ~ e@/T.
in the regime of kf v}, > wre, and for the g modes the electrons behave isothermally,
i/no = (wx/w)(e@/T.) in the regime of kffv7, < wv,;. Here 7i and @ are the density and
electric potential perturbations, respectively, and kj is a typical parallel wavenumber, w a
characteristic frequency and v.; the electron-ion collision frequency. Hence, the mode struc-
ture in a collisional plasma with both magnetic shear and bad average magnetic curvature
will be strongly affected by the force driving the ¢ mode in the inner region (sufficiently close
to the rational surface kj = 0) and by the force driving the 7; mode in the outer region in
the case of n; > 1. We find that the 7; mode is further destabilized by the coupling to the
resistive ¢ mode in the sheared slab model.? Cordey et al.® studied a similar situation in the
levitron configuration and showed that the coupling between the 7; mode and the g mode
produces a single, strongly destabilized mode in the electrostatic limit.

Here we study the coupling of the n; mode to the resistive ¢ mode in the cylindrical
plasma with both magnetic shear and curvature of the Heliotron/Torsatron magnetic field,

which is an extension of the slab model analysis showing a new type of the ; mode.? Two



types of eigenmodes occur in the system for the same parameters and mode numbers: one
mode is radially localized and the other mode is radially global. Both the mode localized
near the mode rational surface and the global mode (extending over the radius of the plasma)
are studied. The global mode was not found in the slab model?; however, it seems similar to
the nonlocal resistive drift waves obtained in the cylindrical plasma model of Heliotron E.*
The mode with the larger growth rate is found to be the localized mode, but the global mode
tends to have the larger v(Ar)? which measures the transport. Also, we investigate the effect
of finite plasma pressufe beta on this new 7; mode in Heliotron/Torsatron by solving the
two coupled second order differential eigenvalue equations for the electrostatic and parallel
vector potentials.

Section II introduces the two component dissipativé hydrodynamic equations we use to
derive the two coupled second order differential equations for the electromagnetic stability
problem. Numerical solutions are given in Sec. III for a cylindrical plasma of the Heliotron-E.

Conclusions are given in Sec. IV. .

II. Model Equations

We use incompressible two fluid equations to describe the coupling of the 7; mode and
the resistive ¢ mode in the Heliotron/Torsatron. Using the normalizations e®/T, = o,

ni/ng = n, Qu(ps/a)*t =t, r/a =r and z/R = 2z, we obtain the fluid model equations
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where ¢ = a/R, p = ps/a, Be = 87 no T/ B2 and ve = vei/Qce. In Egs. (1)—(5), the convective

nonlinearities are written using the Poisson bracket

[f,9]=VfxVg-Z and V”fE—aa—z-*-B}-o—[\IJo—A,f]. (6)

The function ¥o(r) is the equilibrium magnetic flux function obtained from the helical mag-
netic fields which produce a rotational transform with the relation to a poloidal magnetic
field B, = 2 x V¥Uq. The four-field equations with different normalization in the electrostatic

limit are given in Ref. 2.
A. Equilibrium

The force V(r) represents the averaged curvature of the magnetic field line due to the
stellarator field. Since we have the average curvature without toroidicity we employ a cylin-
drical geometry where all equilibrium quantities ng, ¥y and 2 depend only on . Then the

magnetic flux function ¥y and the average curvature term §) are related by
Wo(r) = [ (") dr’ (7)
0

and

Qr) = N762 (r%(r) +2 /OT r'o(r') dr') , (8)

where «(r) is a rotational transform, ¢ is the poloidal number, and N is the pitch number in

Stellarator/Heliotron devices.



B. Fluctuation Energy Density and Transport
Equations (1)-(5) have an energy conservation relation in the case of v. = 0 given by

1
Qﬁe(VJ_A)2+npi =0. (9)

The nonlinear evolution of the instabilities with the invariant of Eq. (9) is for a future

0 1 s 1 1
a/dv [‘2' (Vio+ Vip:) +2U||,+ n? +

work. Here we give the background evolution or balance equations obtained from Egs. (1)-
(5) after averaging over the § — z dependence of the fluctuations. Using the notation f =
(f(r,8,2)),, = fopo(r) and adding the background sources and sinks, the ambient or mean

field equations become
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The anomalous fluxes in Eqgs. (10) are given by

— Op 0

HO(T7t) = 7'( ”Ue(S’U,-,') - aso 80 (30 + pl)

_ _ w9
H”(T, t) = v”(S’UTE = (99

e noe
F(r,t)-név,E———r 30 (11)
R S— )

Qi(r,t) = 5 PidvrE = —3 % a—?
Fy(r,t) = Abv,e = —é —8— (cp —n)



where the radial transport velocities are the ion fluid velocity v,;, the electron fluid velocity

vre or the E X B velocity depending on the quantity being transported.

ITI. Linear Eigenmodes and their Stability

To examine the linear electromagnetic stability problem, we linearize Egs. (1)-(5) assuming
the perturbed quantities have the form of exp(—iwt + imf — inz). Following earlier work®
we derive the fluctuating parallel vector potential A) from a new potential ¢ by writing

(%) Ay = b - Vi which makes
Ey=—iky(¢-4) .
Analysis in terms of ¢ and 1 simplifies the equations and makes the MHD polarization

Uma(r) = ¢ma(r) easy to recognize.

We obtain the following two coupled second order differential equations,
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with ve = Ve;/wee. In the limit of the electrostatic approximation, Eqs. (12) and (13) reduce

to

m2p?  Wapiwpe .
(W — wpi)p? V74 — 1 (W — wikpi) rf - ——+u
k2e? :
wke — wWpe + 1Y + I 5 (1 - w,..,,,)
wp w

+ (wpe — iy)) $=0 (14)

W — wWpe + 1Y)

In the slab geometry Eq. (14) was solved in Ref. 2 and shown that the n; mode is further
destabilized by the coupling to the resistive ¢ mode. Equation (14) in the cold ion limit
was studied in the cylindrical plasma by Sugama et al.* and it was found that there are two
branches of the unstable modes: one localized to the mode rational surface (identified there
as the resistive interchange modej and the other is a global eigenmode, not localized to-a
mode rational surface (the resistive drift wave).

In the collisionless limit, with the local approximation, Eqs. (12)-(13) are analyzed for the
tokamak case by Horton et al® and it was shown that as the plasma pressure (8) increases
the electrostatic ; mode is strongly coupled with the FLR-MHD mode. In Sec. III, numerical

solution of Eq. (14) is shown in Figs. 1-4 and the electromagnetic effect is shown in Fig. 5

by solving Egs. (12) and (13).

IV. ‘Numerical Results

Equations (12) and (13) are solved numerically for their eigenvalues and eigenfunctions using
the shooting method. The parameters for the calculation are ¢ = a/R = 0.1, p = p,/a =
0.02, the background density and pressure profile ng o pg ox exp(—2r?) such that n; = 1,

and the rotational transform profile of «(r) = 0.51 + 1.6972%, which is similar to that of
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Heliotron E.6 For these parameters, the resonant surface of the m = 1/n = 1 mode which
seems to be most dangerous mode in the Heliotron E is at ro = 0.61.

We use the numerical shooting method to find the eigenmodes due to the cylindrical
geometry and the two characteristic scale regions around the mode rational surface. The
inner most layer is defined by from the resistive diffusion of the electrons by z2 = v;(w —
u)De)/kl’I2 v? and the outer layer by the coupling to the ion acoustic waves with z? = w(w —

wWie )/ k,’f c%. Some analytic results from asymptotic matching are given in Ref. 2.

A. Electrostatic Limit

Figure 1 shows the growth rate of the mode with a radial node number of £ = 0,1,2 and the
global mode as a function of collision frequency ve(= vei/S2ce). Here g = 0 corresponds to the
slab n; mode, and g # 0 corresponds to the toroidal n; modes within the cylindrical model.
Both the global and the slab 7; mode show a weak destabilizing dependence on the collision
frequency. Increasing the collision frequency enhances the growth rate of the localized mode
driven by a bad magnetic curvature. When the collision frequency is small the mode with
a higher radial node number (£ = 2) has a larger growth rate, but as v, increases the £ = 0
mode has the largest growth rate. Also, the radial mode width of the localized ¢ = 0 mode
increases with collision frequency due to the coupling to the resistive g mode indicating a
stronger anomalous convective transport across the 1/1 rational surface. This tendency for
the radial mode width to increase with collisionality was already found in the slab model.?

Figure 2 shows the dependence of the growth rate on the average curvature of the He-
liotron/Torsatron. Parameters are the same as in Fig. 1 except now v, = ve;/wee = 5 x 1074
The growth rate of the global mode has a weak dependence on average curvature parameter
g. For the ¢ = 0, localized mode, the growth rate 4 increases when g > 0 and the effect of
the negative curvature is weak.

In Fig. 3 we change the ion temperature gradient 7; parameter. In the collisionless limit



(Fig. 3(a)), the threshold value is given by 7. ~ —1 which is the usual prediction of simple,
incompressible, fluid theory.” It was shown that improved fluid theory gives 7, ~ 2/3, which
is comparable with the kinetic theory.® When v, = 5 x 1074, (Fig. 3(b)), the growth rate is
enhanced by a factor of two-three, and the mode remains unstable at 7; = 5. = —1 due to
the coupling to the resistive ¢ mode. Also, the £ = 0 mode growth rate is dominant in the
resistive regime.

The effect of shear on the growth rate is shown in Fig. 4. There is a stabilizing effect for
the ¢ = 0 mode in the collisionless and collisional case, but the effect is weak. The radial
mode width depends strongly on shear with the mode width decreasing as the shear increases,

indicating a strong dependence on s of the anomalous transport. Turbulent transport theory

9,10 5,11

for the resistive ¢ mode™'® and the 7; mode®>!! give the anomalous transport rates for Q); =

2 pi bv,p ~ —n; X;dp/dr in Eq. (11) for resistive g as

2 2 2
T~g9 _ c 77 /67) r ~ a2 L3
Xio = 4w s? (L,,RC) = Vei Pe (L,,Rc) (13)

where £3, is the poloidal 8, s = rq’/q = ¢R/L, is the shear parameter, L, is the scale length

of shear, R is the major radius, ¢ = 27/« is the safety factor and R, is the radius of curvature

and for the n; mode in the weak shear-strong toroidicity branch®

. L T,
X?, g ( p-’ 38 ) ( € ) (16)
23] \eBy
and for the strong shear-weak toroidicity branch!! as
, T; —4 L7,
w=(g5) () == () :
© = \In/ \eB) TP\, (17)

For all modes formulas (15)-(17) indicate that strong magnetic shear is the most effective
mechansim for controlling the transport in both the collisional and collisionless regimes.
The scaling from Eq. (15) is X"™9 ~ nT; Y2 B;7? L2 L' R compared with the collisionless

scaling X" ~ T3/2 B! Bt' Ly R;Y/? L;3/? for (16). With increasing T2/n. ~ Amgp/R the



collisionless transport from Eqs. (16) and (17) quickly exceeds the collisional transport from

Eq. (15).
B. High Beta Electromagnetic Stability

Electromagnetic effect from finite plasma pressure beta on the growth rate is shown in Fig. 5
for both the collisionless and collisional case. As 8 increases, both the growth rate increases
and the radial mode width increases, implying large v(Ar)? which measures the anomalous
transport. This destabilizing effect of the finite pressure is different from the tokamak case
where the finite beta effect is related to ballooning modes; here, for the Heliotron/Torsatron,
the pressure limit appears to be related to the Suydam criterion for the interchange mode
in cylindrical plasma. For the same model configuration as used in Fig. 5, Sugama and
Wakatani!? find that the Suydam instability appears for 8(0) > Bis = 0.016 and the growth
rate becomes substantial for 4(0) R 2Baic = 0.03. It is noted that the Suydam criterion also
indicates the existence of low-m mode interchange instabilities with the 1/1 mode growth
rate at about 0.6y (Suydam) when 8 = 0.03 according to Ref. 12.

Dominguez et al.'® also show in toroidal stability theory that the Mercier criterion gives
B = 0.016 for the resonant surface of m = 1/n = 1 using the numerical MHD toroidal equi-
librium. Thus our cylindrical approximation appears good for the electromagnetic 7; mode
analysis.

We find that the eigenfunction v increases from zero at 8, = 0to ;1 ~ % é1,1 at B = 0.01
to the MHD polarization with ¥, 1(r) =~ ¢;1(r) at B = 0.02.

Finally we find that the compressibility effect on the new 7; modes is not important,
except near marginal stability for finite g case as demonstrated in Ref. 2. For other low-m
n; mode cases such as m = 3/n = 2 and m = 5/n = 3 no essential difference appears from

the present m = 1/n =1 study.
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V. Conclusions

The stability analysis of the radial eigenmode equations presented here shows that there is
a new type of n; mode which is further destabilized by the coupling to the resistive g modes
in the Heliotron/Torsatron system. Both the localized and the global modes are found
to be unstable in the cylindrical plasma. Including the electromagnetic component of the
electromagnetic fields further enhances the growth rate of this new »; mode implying that the
instability becomes stronger with auxiliary heating in the high density plasma. We conclude
that the n; mode is a good candidate to explain the anomalous ion thermal transport in the
Heliotron E experiments. In view of these stability results we are proceeding to the nonlinear

studies of the turbulence governed by Eqgs. (1)-(5).
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Figure Captions

2
1. Growth rate v in units of € &;- versus collisionality ve;/Qee.
a

A

2 versus average curvature g (arbitrary unit) for ve;/Qce =
a

2. Growth rate « in units of ),

5 x 1074

2

3. Growth rate 4 in units of p_;
a

limit (a) and ve;/Qee =5 x 107* (b).

versus ion temperature gradient n; for collisionless

A

4. Growth rate v in units of ; = versus shear parameter s (arbitrary unit).
a

A

> versus plasma pressure 3 for £ = 0 mode.
a

5. Growth rate v in units of
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