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Abstract

This paper introduces a parallel multigrid method for solving elliptic partial dif-
ferential equations. This method combines two other methods, both of which are
popular methods under research today. One of the methods is a multigrid method,
essentially a sequential method. The other is a parallel domain decomposition
method, a variation on the Schwarz alternating procedure.

Each method is explained individually, before the combined method is explained.
The combined method is then compared to each of the individual methods, demon-
strating the superiority of the combined method over each of its parent methods.

As a model problem Poisson’s equation is used.

The computer on which the various methods were tested is an Alliant FX/8,
a shared memory multiprocessor machine having 8 processors which can be run

simultaneously in executing parallel code.
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Chapter 1

Introduction

Boundary value problems for elliptic partial differential equations are of major
importance in computational physics and engineering. They occur, among other
places, in the areas of fluid dynamics, electrodynamics, stationary heat and mass

transport (diffusion), statics, and reactor physics (neutron transport) [1].

Most numerical methods for solving such problems involve a discretization of
the problem using a finite-dimensional approximation space, followed by a numer-
ical procedure to solve (or approximate) the resulting very large system of linear

equations.

Many of the methods that have been used to solve such large systems have been
in existence even longer than computer technology (eg. Jacobi, Gauss-Seidel, and
successive over relaxation methods {2, 3]).

1



2 CHAPTER 1. INTRODUCTION

Since the inception of the computer, there have been enormous gains in the
computational speed of large system solvers. These increases are due mainly to
technological advances in electronic circuitry and component fabrication. Hardware
performance increases, however, are physically limited by the speed of light, a factor
which has caused a leveling off of gains in performance in recent ycars. Furthermore,
despite the development of faster circuits, even on today’s fastest computers, solving

very large systems can require hundreds of hours of CPU time.

Two directions are currently being explored for potential solutions to this prob-
lem. The first involves the development of significantly new sequential algorithms
running on traditional von Neumann single processor architectures. The second in-
volves the development of parallel numerical algorithms to be run on multiprocessor

architectures.

I have investigated both of these directions as part of the background research
for my thesis. I have designed and implemented an algorithm that contains elements
from both of these areas. I have restricted my attention to one principle algorithm
from each area. The sequential algorithm I have been working with is a multigrid
method. The parallel algorithm is a parallel domain decomposition method, a

variation on the Schwarz alternating procedure.

Both of these algorithms, as well as the combined algorithm, requires the use of

one of the more basic iterative methods for solving a matrix equation. The basic
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method I have used in cach of the three algorithms is the Gauss-Seidel method. I
also use the Gauss-Seidel method in comparing the relative efficiency of the three
algorithms.

All algorithms implemented for this thesis were developed and run on an Alliant

FX/8 computer.

1.1 The Alliant FX/8

The Alliant FX/8 computer is a shared memory multiprocessor. The architecture
of this system is represented in figure 1.1 [4]. The computational power of this
system resides in the 8 computational elements (CEs). Each CE is a CMOS gate
array implementation of a full scalar architecture, with additional hardware for
IEEE floating point operations, vector operations, concurrency control, and virtual
memory support. In vector mode, each CE executes floating point instructions at
the peak rate of 11.8 million floating point operations per second (MFLOPS) for
both single and double precision. All 8 CEs can be used concurrently to solve
a single problem. Such a complex of 8 CEs can approach a performance level
equal to 8 times the performance of a single CE for certain problems. Dedicated
hardware on each CE is used to control the scheduling and synchronization of
multiple CEs when used in a concurrent mode. There is also an expandable pool

of interactive processors (IPs) that execute interactive user jobs and the operating
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system. The IPs maintain system responsiveness and allow the CEs to concentrate

on the computational-intensive portions of user applications.
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Chapter 2

Elliptic Partial Differential

Equations

2.1 Classification of Partial Differential Equations
A partial differential equation (pde) is an equation
F(xvy,--'au:urauy’“'aurxaurya'-') =0 (21)

involving more than one independent variable x, y,..., a function u of these variables,
and the partial derivatives ug, 4y, ..., Uzz, Ugy, ... of the function. The equation is
is called linear if the unknown function and its partial derivatives appear, at most,
to the first degree. The order of the equation is the order of the partial derivative
of highest order appearing in the equation.

6



2.1. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 7

For example, the most general second-order linear partial differential equation

defined on a two-dimensional region 2, with boundary T' is
gy + 2bugy + cuyy + huy + kuy + eu+ f =0 (2.2)
where a, b, ¢, h, k, e, f are functions of x and y. This equation is called
o elliptic if ac — b? > 0,
o hyperbolic if ac — b? < 0, and
e parabolic if ac — b = 0.

If a, b, ¢, h, k, and e are all constants we have a second order linear partial differ-
ential equation with constant coeflicients. Such an equation, by a linear change in
coordinates, can always be reduced into one of three normal forms which correspond

to the three types of equations referred to above:
o clliptic if the form is u,, + uyy +yu = —f,
o hyperbolic if the form is uz; — uyy, + yu = —f, and
o parabolic if the form is u,; + uy, = —f,

where v is a constant with one of the values -1, 0, or 1. In the elliptic form, with

v = 0, we have what is known as Poisson’s equation,

Uz + Uyy = —f, (2.3)
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which is also written as

Au = —f. (2.4)

If we also have f = 0, we have Laplace’s equation,
Ugy + Uyy = 0, (25)

which is also written as

Au = 0. (2.6)

As model problems we shall use both Laplace’s equation and Poisson’s equation

with different functions f.

2.2 Boundary Value Problems

Any equation, other than the differential equation itself, which a solution of the
differential equation is required to satisfy is called an auziliary condition for the
equation. Auxiliary conditions may involve undetermined constants or functions.
A set of auxiliary conditions is called appropriate for the differential equation if
there exists one and only one function which satisfies both the differential equation
and the auxiliary conditions.

Because of the physical interpretation associated with an elliptic partial differen-

tial equation the most natural auxiliary conditions associated with such an equation
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arc boundary conditions. There are threec basic types of boundary value conditions:
the Dirichlet, Neumann, and Robins conditions.

Using Laplace’s equation as an example, we give three representative boundary

value problems. First of all, the Dirichlet problem is given by

u=¢ on I =boundary(Q)

where ¢ 1s a known function defined on the boundary T' of . Next, we have the

Neumann problem,

Au=0 on (2.8)

% =¢ on I = boundary(f2)

where g—ﬁ denotes the outward normal derivative on the boundary. Lastly, we have

the Robins problem in which the auxiliary condition is a linear combination of the

previous two,

Au = on (2.9)

— +hu=¢ on T = boundary(Q?)

where h is a constant greater than zero.

We will be working exclusively with Dirichlet conditions on our model problems.
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2.3 A Physical Interpretation

As an illustration of the physical interpretation associated with an elliptic boundary
value problem consider the Dirichlet problem, equation (2.7). We may interpret the
solution u as the equilibrium temperature distribution in a uniform heat-conducting
body occupying the domain 2, when the temperature distribution on the boundary
T of the body is kept fixed. On the basis of this physical model, it is reasonable to
assume that the problem has a solution if §2 is a finite rcasonably shaped domain
and if the function ¢ is reasonably smooth. That the solution is unique follows, for

if u; and uy; were both solutions of (2.7), then v = u; — uy would be a solution to

Av=0 on (2.10)

v=0 on I =boundary(f).
So v could be interpreted as the equilibrium temperature in  when the boundary
I' is kept at a temperature of zero. From the physical model it is easily seen that v
must be identically zero in 2. Therefore u; = u; and the solution is unique. Hence,

the auxiliary conditions for this partial differential equation are appropriate.

As a second illustration consider Poisson’s equation with Dirichlet conditions:

Au=—f on Q (2.11)

u=¢ on I =boundary(Q).

In this case, we again interpert u as the equilibrium temperature distribution in
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when there is a known distribution of sources in 2.

11



Chapter 3

Discretization of an Elliptic PDE

3.1 Obtaining a Difference Equation

As an illustrative example we will now consider the numerical solution for Poisson’s

equation with Dirichlet boundary conditions on the unit square. That 1s
—Au=f on =(0,1)x(0,1) (3.1)
u=¢ on I =boundary(f2).

We first superimpose a grid G of horizontal and vertical lines over { with uniform

1

spacing h = —, where n is an integer. That is,

G = {(zi,y;)|zi =th,y; = jh,h = —,0 <14, < n, ¢ and J integers}. (3.2)
n

We wish to determine approximate values of u(z;,y;) at each of the grid points
(zi,y;) of G. For notational convenience we will usce u;; = u(x;,y;). One standard

12



3.1. OBTAINING A DIFFERENCE EQUATION

13

approach to accomplish this end begins with the use of Taylor expansions in two

variables. Expanding in the z direction we obtain

Bu,-,j h2 Bzui,j h3 33u,-,j h4 (9411,5,]'
o 2 Oz 6 JOz3 24 9zt

Uip1,j = Uij + R

and
Bui,j h2 Bzui,j h3 83u1-,,- h4 34ui,j
+ [  — —_—
Ox 2 Ozx? 6 Ox3 24 Oz*

Summing (3.3) and (3.4) and rearranging we obtain

82ui,j 1 h? 64?11'7]'
~ o2 T 13 2u; 5 — Uigr,; — Uiz + 32 B

Then, expanding in the y direction we obtain

n 7 aum- n h2 Bzu,-,j h3 33'&1'.,]' h4 8"‘u,~,j
U jp1 = U 5+ h—— + — — —
It ! Ay 2 Oy? 6 Oy 24 Oy*

and
Bui‘j h2 8214,',]' h3 63ui,]- h4 84’(,6,"]'

"By T2 a2 6 08 | 24 oyt

Uijo1 = Uiy — F
Summing (3.6) and (3.7) and rearranging we obtain

32%‘,) 1 9 LAY
o = B2 | SWhd T Yiger T Wi + 24 Ay

Finally, summing (3.5) and (3.8), we obtain

BQui‘j 1 321,6,',]'
| oy? dz?

—Aul(r“yj) =

1
=y uig = Uiy = oy — Ui = Ui

+h2 84ui,j 3411,',]' +
24 | Ox* oyt

+ .-

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Dropping terms involving A% and higher orders of & and substituting the right hand

side of (3.9) into (3.1) we obtain a discrete analog of Poisson’s equation

2
Yuij — Uigr,j — Uinly — Uijpr — Uijor = h7fi (3.10)

v (.T,‘, UJ) € G»
with the associated boundary conditions

Uip = ¢ip for 0 <1< n,
Uiy = @i for 0<i < nm,
up; = ¢o; for 0< j <mn, and

Un; = ¢n; for 0<j<n.

Such a discrete analog of a differential equation is called a finite difference equation.
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3.2 Matrix Form of a Difference Equation

From (3.10) and (3.11), we obtain a system of (n—1)? linear equations, one equation

for each grid point in G. Expressed in matrix form we have

Au=h*+b (3.11)
where
B -I
-I B -I
~-I B -I
-I B
is an (n — 1)? x (n — 1)? matrix,
4 -1 1
-1 4 -1 1
B = and I =
-1 4 -1 1
- 1
L Lo | L ]
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are (n — 1) x (n — 1) matrices, where I is an identity matrix.

uq f1

Uy f,

u=— u; and f = fs
U, fn—-l

are (n — 1) x (n — 1) component vectors, where

U1 fi,l

Ui 2 fi,z

each u; = Ui s and each f; = fia
Uin-1 fi,'n——l

are (n — 1) component vectors. Each u; and f; correspond to the values of u and f

associated with the 7" column of the grid G.
by

b,

b = b3

bn-—l

L

is an (n — 1) X (n — 1) component vector which represents the boundary conditions
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of the problem, with each b; an (n — 1) component vector, where

$01 + P10
bo,2
$o,3
bl =
¢0,’n—2
I $on-1+ 10
and, forz =2,...,n — 2,
b;

~

Pr-1,0 + Pnp1
¢n,2
¢n,3

3 bn—-l =
¢n,n~2
¢n,'n—1 + ¢n—1,n
di0
0
0
0
] ¢i,n _J




Chapter 4

Methods For Solving Difference

Equations

4.1 Direct vs. Iterative Methods

In solving a matrix equation

Ax =c, (4.1)

where A is an n X n nonsingular matrix and ¢ € R", there are two general classifi-

cations of methods.

The first type of method, a direct method, is most often used when the matrix
A is dense, that is, when the components of A are mostly nonzero.

18



4.1. DIRECT VS. ITERATIVE METHODS 19

A direct method yields a solution in a fixed number of steps, assuming computa-
tions without roundoff errors. The basic method of this type is Gaussian Elimina-
tion. Roughly speaking, this is the method of solving a system of linear equations
by successively eliminating unknowns by judiciously adding multiples of one row to
another. It is such an approach a student is usually introduced to when they see
matrices for the first time. More specifically, by a sequence of adding multiples of
one equation to another, system (4.1) is reduced to an equivalent upper triangular

system

Ux =g, (4.2)

where U is an upper triangular matrix. System (4.2) can then be easily solved by a
simple process called back substitution. For further elaboration on this method see
Stoer and Bulirsch’s book [5].

When using a direct method the matrix A must generally be stored in the main
memory of the computer in order to efficiently solve the system. Hence, memory
storage limitation is a significant factor to consider when attempting to solve a large

problem using such a method.

Among the problems usually considered too large for a direct method are the
matrix problems that result from the discretization of partial differential equations.
For example, consider equation (3.10) and its matrix form (3.11). With a uniform

grid spacing of h = X, the number of elements of the grid G is 63% = 3969. That is

647
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matrix equation (3.11) is a system of 3969 equations. Thus the number coefficients

in the associated matrix A is 3969% = 15,752, 961.

The second type of method, an iterative method, is most useful when the ma-
trix A is sparse, that is, when the components of A are mostly zero, and when the
nonzero coeflicients form a special pattern making it possible, by using a simple for-
mula, to generate the coeflicients of A as they are needed. Fortunately, the numerical
solution of a partial differential equation meets both of these conditions. Consider
the previous example of the system where the matrix A contained 15,752,961 coef-
ficients. Only 19595 of these coefficients are nonzero, the other 15,733,366 are zero.
That is, approximately 99.9 percent of the coefficients are zero. Also the matrix
A 1s completely characterized by equation (3.10), a relatively simple equation, of
the previous chapter. The fact that A mecets these two conditions eliminates what

would otherwise mean a prohibitive use of storage space in main memory.

An iterative method to solve equation (4.1) begins with an initial approxima-
tion x(© to the solution x, and generates a sequence of vectors {x*)}2°  which
converge to X. Most iterative methods involves converting the system Ax = ¢ into

an equivalent system of the form

x =Tx +d. (4.3)

After selection the initial approximation x(9), the sequence of approximate solutions
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is generated by
xF+) = 7x®) 4 d. (4.4)
In the next section we will introduce two classical iterative methods, the Jacob:
method and the Gauss-Seidel method. It is the Gauss-Seidel method that we will

use as a basic building block for the more sophisticated iterative methods that we

be discussing in later chapters.

4.2 The Jacobi and Gauss-Seidel Methods

The Jacobs iterative method consists of solving the ith equation in Ax = c¢ for z;,
to obtain
r; = — | — Z(l,’j.’llj - Z a;; T + ¢ (45)
Qi j=1 i=itl
for each 1 =1,...,n,

and then generating each a:,(-k+1) from :vgk) for k > 0 by

) = — (— Yagel? — 3 ayal) + Ci) (4.6)
u j=1

1=1+1
foreach: =1,...,n.
The Jacobi method can be expressed in the matrix form, x*+1) = Tx*) 4+ d, by

splitting the matrix A into a diagonal part, D, a strictly lower triangular part, L,

and a strictly upper triangular part, U. Thus we have

Ax=(D-L-U)x=c, (4.7)
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which can be rewritten as
x =D L+U)x+ D 'e. (4.8)
This leads us to the Jacobi method expressed in matrix form
x* ) = p~YL + U)x® 4+ D'c. (4.9)

The Gauss-Seidel iterative method offers a potential improvement over the Ja-
cobi method. In the Jacobi method, to compute a:f-k“), for each ¢ > 1, the com-

(k+1)

ponents of x(¥) are used. Since z}" ' ", .. ,a;z(»f";l) have already been computed and

are supposedly a better approximation to the actual solutions, zi,...,z;_; than

k k) .
x& ), ey acg__)l, it seems reasonable to compute z

(k+1)

:

using these most recently calcu-

lated values. This gives us

1 ie1 n
) = = (— Yagal™ = 3 el + C¢) , (4.10)

G j=1 j=it1

which can be expressed in matrix form as

x*) — (D~ L)"'Ux® + (D - L)'c. (4.11)

4.3 Convergence of Iterative Methods

To be of any use an iterative method must generate a sequence of approximations
that converges. In this section, we will briefly discuss the convergence of iterative

methods and their associated convergence rates. Most of this material has been
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condensed from the work by Varga [2]. For a more complete presentation see this
reference.

To begin we first define
e® =x® _x for k>0, (4.12)
where e*) is the error associated with x(¥). In order to have convergence we want

lim e® = 0. (4.13)

k— oo

Subtracting (4.3) from (4.4) we obtain
et = Tel®, (4.14)
From here, by induction, we obtain
el®) = Tk for k> 0. (4.15)
Hence, convergence will always occur, using this iterative method, if

lim T*e® = 0, (4.16)

k— o0

for any e(®). This will occur if and only if

lim T* = O, (4.17)

k—co
where O is the n X n zero matrix. If equation (4.17) holds for some matrix T we
say that T converges. If T represents an iterative method then we also say that the
iterative method converges.

Before proceeding further some definitions are required.
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definition 4.1 A vector norm on R™ is a function, || - ||, from R™ into R such that
i) || x||> 0 for all x € R,

i) || x ||= 0 if and only if x=0,

ut) || ax ||= || || x || for all @ € R and x € R",

w) [[x +y IS x|+ [y || for allx, y € R".
example 4.1a: Let x € ®*. Then
n 1/2
| x [|]2= (Z Ixilz) (4.18)
=1

is called the Fuclidean or l, norm of x.

example 4.1b: Let x € R". Then

| X [loo= max{|z;| : i = 1,2,...,n} (4.19)
is called the I, norm of x.
definition 4.2 Let T be an n X n matriz and || - || a vector norm on R". Then
| Tx |
| T ||= sup =T X ER" and x #0 (4.20)
X

is called the induced matriz norm of T, relative to || - ||.

definition 4.3 Let T be an n X n matriz with eigenvalues X;, 1 <t <n. Then

p(T) = maz{|X|:1 <7< n} (4.21)

i called the spectral radius of T.
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(]

We present, without proof, the following
Theorem 4.1 If T is an n X n complex matriz then
Jim T* = O if and only if p(T) < 1. (4.22)

So, the spectral radius gives us a useful criterion for determining if an iterative
method converges.
The relationship between the induced matrix norm and the spectral radius of a

matrix T is expressed in the following
Theorem 4.2 IfT i3 an n x n complez matriz then
p(T) < IT|- (4.23)

Therefore, if || T' ||< 1 the iterative method represented by T' converges.
We now wish to briefly discuss methods for estimating the rate at which an

iterative method converges. Taking norms of both sides of equation (4.14) we have

eV = || Te® || (4.24)

< T -1 e™ |, for all £ > 0.

If et*) £ 0 then we have the following

definition 4.4

[ e®+1) |

L1 |} 4,925
Te® ] (4.25)

18 called a convergence factor for T.
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This factor i1s a measurement of the rate at which the error is being reduced on
the k'™ iteration of the iterative process represented by 7. || T ||, being an upper
bound for this factor for all e and all £ > 0, is often used to approximate the rate
at which the associated method converges. Another upper bound frequently used
for this purpose is the spectral radius, p(T'). Furtherinore, the closer || T || or p(T)
is to 1 the slower the method, while the closer || T || or p(T') is to 0, the faster the
method.

As a representative example consider Poisson’s equation on the unit square with

zero boundary conditions, that is

Au=—f on £2=(0,1)x(0,1) (4.26)

u=0 on I = boundary ().
As a finite difference equation we will obtain
duij — Uipr,j — Wingj — Uil — Uijo1 = R°fij, (4.27)
for 0 < 7,3 < n, with associated boundary conditions
Ui 0 = Uiy = Ug,; = Up,; = 0 (4.28)
for 0 < ¢,j < n, where h = 1/n is the grid spacing. We can rewrite (4.27) as

1
(Wigrj+ iy + Uijy1 + 1) + Zthi,ja (4.29)

W
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This gives us the Jacobi iterative formula

LD
z] -

k k 1
( $+)1.7 + uf )1 JJ +u; J)+1 + uz(J) 1) + thfi,j’ (4'30)

-p-l!-—ﬂ

which can expressed in matrix form as
u = DYL + U)u® 4+ D1RAH® = Tu®) 4 D-1R2 0, (4.31)

We now will find the spectral radius of the matrix 7. First, we will find a
complete set of eigenvalues for T. To determine an eigenvalue A of T, we want an

(n—1) x (n — 1) component vector v and a scalar A, such that
Tv = Av. (4.32)
This will be accomplished if we find v and A such that

Av;

1y =

(Uz+1 \J + Vi1 7 + Uy J+1 + U!] 1) (4'33)

.MH

for 0 <7,j < n, and

Vi = Vi = Upj = Up; =0 (4.34)

for 0 < 7,j < n. The conditions imposed by (4.33) and (4.34) are met if

v; ; = sin Pt -sin L2 (4.35)
n n

and

1
A= > (cos PT 4 cos —ql) , (4.36)
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where 0 < p, ¢ < n. The maximum |A| occurs when p = ¢ = 1. Hence, we have

1 1. 1
o(T) = = (cos z + cos W) = cos— < L, (4.37)
2 n 7 n

and the iterative method converges.
In a similar fashion one can examine the Gauss-Seidel method, which has a

matrix representation S = (D — L)~'U. Here we wish to solve

Sw = pw. (4.38)
From here we obtain
wij = [A[*v;; = |\ sin 2 sin 22 (4.39)
n n
and
1 2
p=xN==z (cos il + cosglr-) \ (4.40)
4 n n

where 0 < p, ¢ < n. The maximum |g| occurs when p = ¢ = 1. Hence, we have

1 1- 1.m\?
p(S) = - (cos " 4 cos W) = cos? = < 1, (4.41)
n n n

and this method also converges. Note however that p(S) < p(T) so the Jacobi
method must converge more slowly than the Gauss-Seidel method.

It is of interest to note that the larger n the closer the spectral radius of either
method is to 1. This means that the more accurate the discretization (i.c. the finer

the grid) the slower these two iterative methods converge.
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It is also of interest that the spectral radius, is not always the best (i.e. smallest)
bound on the convergence factor.
To demonstrate this we return to equation (4.14) where, expanding e*) as a

linear combination of the set V of eigenvectors, we obtain

etl) = Te® (4.42)

= T( Z amvm)
Vm€V
= Z am TV,

VmEV
= Z AmAm Vi
Vm€EV
< > max{|[An]:am # 0} anVnm
Vi€V
= max{|A\.|:an #0} - Z A Vom
Vm€V

= max{|An|: am #0}-e®
Taking norms of both sides

[e®]| < ||max {[An] : am # 0} - e®)]| (4.43)
= max{|An]|: an # 0} - ”e(k)H

So, we have

o)

K= W < max{|An]| : @, # 0} (4.44)

Two observations are pertinent at this point. First of all, notice that the conver-

gence factor, and the resulting rate of convergence, is determined by the eigenvector
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components that make up e{*). Secondly, and more importantly for this thesis, for
any error vector e¥), different eigenvector components arc reduced at different rates.

For example, using the Jacobi method with n = 64, the eigenvector

. 1lm . 3my
v;,j = sin —- - sin —— (4.45)
64 64

has a bound on its associated convergence factor of

A~1< LU 3”)~0994 (4.46
=3 cos64 cos64 ~ 0. .46)

On the other hand, the eigenvector

2971 317y
v;; = sin T sin (4.47)
’ 64 64

has a bound on its associated convergence factor of

P ( 29m 31”) 0.098 (4.48)
= — | COS — —_— ~ 0. .
2\ P61 T 61

Hence, one component is reduced significantly faster than the other. The multigrid

method, which is discussed in the next chapter, capitalizes on this very idea.



Chapter 5

A Sequential Multigrid Method

We have noted that the error at any step of an iterative method can be expressed
as a lincar combination of eigenvectors. A difficulty associated with methods such
as the Gauss-Seidel and Jacobi methods is that certain eigenvector components of
this error are reduced at a significantly slower rate than other components. This
problem, demonstrated at the end of the previous chapter, results in an overall
slow rate of convergence for the method. The multigrid method, presented in this
chapter, augments a basic method, such as Gauss-Seidel or Jacobi, and alleviates
this problem.

31
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5.1 Residual Correction Iterative Methods

In this section we introduce the basic idea of multigrid methods. We begin with
a discretized form of an elliptic partial differential on a grid G, with uniform grid
spacing h,
Ay =1, (5.1)
We assume that f}, incorporates both the right hand side of the difference equation
as well as the boundary conditions.
Before discussing the multigrid method we will introduce the more general idea
of a residual correction iterative methodology. Let ugk) be an approximation to the
solution u, of equation 5.1, obtained on the k™ iteration of some iterative method.

(k)

The error e, associated with'ugk)

1s given by

eﬁf’ =u — uy’). (5.2)
The residual rgk) of ugzk) is defined as
r) = Al = 4, — 40l = £, — 4,ulV. (5.3)
(k)

Notice that solving for e, in the residual equation is equivalent to solving for u,

in the original equation (5.1), since
uy = ugk) + egk). (5.4)

Many iterative methods can be expressed in terms of approximations to the

residual equation. In these cases the matrix A4y is replaced by an approximation
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Ay, such that A;! exists and the product of A;' and an arbitrary vector is easy to

compute. The solution égk) of

Al = rlH) (5.5)
yields a new approximation
ul ) = u® 4 & (5.6)

to the solution of the original equation (5.1). Such a method as described above is
called a residual correction iterative method.
Expanding (5.6) we obtain
u;LkH) = uglk) + éflk) (5.7)
= u? + A"
= up) + A7 (fu — Apuf?)
= u 4+ 47, — A7 Aul
= (I — A7 Anul?) + A7,
Hence, the matrix representing this iterative method is I, — A;' A, and the error

associated with the method is

eh ! = (I — A" An)el?, (58)
with a convergence factor
Lei™ | ~
< | In— A7 AL - (5.9)

k
e |
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5.2 A Coarse Grid Residual Correction Scheme

In this section we introduce the simplest form of a multigrid method, a two-grid
method. In this method we use a second grid G, in addition to G,. Gy, has a
grid spacing twice the size as that of G),. Other sizes for grid spacing on the coarse
grid are possible but we have chosen the most convenient. Using this method, the

correction term eflk) is obtained by solving the residual equation on Gi;. That is,

we solve

Ayl =rlY (5.10)
where Ay, is an appropriate coarse grid approximation to Ay, and égi) and rgl,? are
coarse grid approximations to égk) and rﬁlk) respectively.

In order to move between grids we need two transfer operators
I?h G, — Gy, (5.11)

and

Igh : Gy — Gy, (5.12)
I2h . d . (k) .
i 1s used to restrictr,’ to Gy, that is,
h (K k
i =rxfy), (5.13)
and I}, is used to interpolate the correction term égl,? to G, that is,

e — &, (5.14)
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One iteration step can be summarized by the following sequence of steps:

1. compute the residual on the fine grid Gp: rflk) =f, — Ahugk),

2. transfer the residual to the coarse grid Gap: rg',? = I}":hrik),

3. solve the residual equation on Gyp: égﬁ) = fi;hl rgﬁ),

Ih ~ (k)

4. transfer error term to the fine grid Gj: eh =13 é

5. compute new approximation: u}(LLk’Ll) = ugk) + éslk)

So we have

a) g ® 4 g (5.15)
= ol 4zl

= (k) + IhAZhr "

= ul? 4 1 A7 e

= ul) + 1 A Mg, — Apu))

= ul® A AulY) I8 ALk,

= (I — LA TR Al + I8 A1 120,

Thus we see that the iteration matrix for coarse grid correction is given by

= (I, — IthA 112" 4},), the error associated with the method is

e* ) — Tel®, (5.16)
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and the associated convergence factor is

k
| etV ||

— < |IT|. (5.17)
k —
e |
A problem exists, however, with this method used alone. There can exist v, €
G, such that I?"4,v, = 0. Hence T'v), = v;,. So, we have || T ||> 1 and the coarse

grid correction method does not converge. The difficulty lics in the fact that the

residual equation on the coarse grid
Ayl = pl), (5.18)
is not a good enough approximation to the residual equation on the fine grid
Aheglk) = rgk). (5.19)

In particular, the problem is that certain components of eslk) cannot be accurately

enough represented on the coarse grid Gy,.
We can be observe this by considering a case where G, is a 64 X 64 grid, Gy, is

a 32 x 32 grid, and egk) is expressed as a linear combination of terms of the form
sin prth - singnyh, (5.20)

where p and ¢ are integers such that —32 < p,q < 32. That is,
. 31 31
egl ) = > Y cpgsinpmih - singmjh. (5.21)

p=—31 ¢g=-31

e that on grid Gy, the only components of e;”’ which are visible are those such
Note that on grid G, tl 1 1 ts of EL) hicl bl tl 1

that —16 < p,q < 16. The other components are not visible. This phenomena 1s
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explained by Shannon’s Theorem [6], the fundamental theorem of signal processing,
which tells us that the only terms that will be visible on a given grid will be those
that that contain only frequencies (p and ¢) that are less than one-half the frequency
n of the grid spacing.

Components of eff’ such that —16 < p, ¢ < 16 are referred to as low frequency or
smooth error. Components outside this region, —32 < p,q < —16 or 16 < p,q < 32,
are referred to as high frequency error. Hence, egk) can be well approximated on a

grid Gy, only if it is primarily composed of smooth error, that is, its high frequency

components are small compared to its low frequency components.

5.3 Smoothing the High Frequency Error

A multigrid method uses coarse grid correction by first reducing the high frequency
error components. This is referred to as smoothing the error. Only after the error
has been smoothed 1s a coarse grid correction scheme performed.

It so happens that many iterative methods, such as the Gauss-Seidel and the
Jacobi methods, have the characteristic that they reduce high frequency error very
efficiently, in fact, much more efficiently than they reduce low frequency error. This
fact was demonstrated in the example at the end of the last chapter for the Jacobi
method. In this example we saw that a high frequency term, where p = 29 and

¢ = 31, had an associated convergence factor of 0.098 while a low frequency term,
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1 i A

Figure 5.1: low frequency
where p = 1 and ¢ = 3, had an associated convergence factor of 0.994. As a further
illustration of this fact see the figures included in this chapter. In each figure we
show two graphs of cross sections of error terms on a 64 x 64 grid. Each cross
section is taken at ¢ = 32. The higher and lower amplitude graphs represent the
same error term before and after three iterations of the Gauss-Seidel method. Figure
5.1 represents the effect of Gauss-Seidel method on low frequency error terms. The

higher amplitude graph represents
e = sin(1mih) - sin(37jh), (5.22)
while the lower amplitude graph represents

S%e = S®[sin(17ih) - sin(37jh)], (5.23)
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r ’l'I'I’l’l'lyl’i'l’l'l’lvl‘

1

Figure 5.2: high frequency
where S is the matrix representing one iteration of the Gauss-Seidel method and
h = . Similarly, figure 5.2 represents the effect on high frequency error terms.
Here we have

e = sin(29mih) - sin(317jh) (5.24)

and

S%e = S°[sin(297ih) - sin(31mjh)). (5.25)
Figure 5.3 shows the effect on a combination of two frequencies, where
e = sin(1nzh) - sin(37jh) + sin(297h) - sin(317jh) (5.26)

and

S%e = S[sin(17ih) - sin(37jh) + sin(297ih) - sin(31mjh)]. (5.27)
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| 'l'l

Wv‘

'
i
!,W

Figure 5.3: mixed frequencies

Notice in these figures how significantly the higher frequency error is reduced with
only 3 iterations of the Gauss-Seidel method while the lower frequency error is

hardly affected.

5.4 Increasing the Convergence Rate For Lower
Frequencies

After reducing or smoothing the high frequency error, the remaining error can then
be transferred to the coarser grid. This transfer is now effective since the remaining

error is of low frequency and can reasonably be approximated on the coarser grid.
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Morecover, transferring the low frequency error to the coarser grid has the desired
effect of increasing its frequency relative to the coarser grid. This makes the re-
maining error conveniently susceptible to further reduction using a method such as

Gauss-Seidel or Jacobi on the coarser grid.

5.5 A Two-Grid Multigrid Method

A basic two-grid multigrid method begins with the choice of the two grids to be
used. In the results presented in this section we have used a 64 x 64 and a 32 x 32
grid. As a model problem, for this algorithm and those to follow we are using

Example 4.3.1, that is we wish to solve Poisson’s equation

Ayu=—f on =(0,1)x(0,1) (5.28)

u=¢ on I = boundary(Q).

We first obtain a discretization of the problem on the fine grid, which we will express

as

Apup = fi, (5.29)

where h = 2. We then proceed with the algorithm as follows:
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ALGORITHM 5.1

(A Two-Grid Method)
step i:
Set the iteration counter k at O.

0 . .
Guess usl) as an approximation to u.

step ii:
Repeat until ||ugk) — u|| < e, for some iteration &k and some error tolerance e:
— Perform three Gauss-Seidel sweeps on Ahu,gk) =f}.

— Compute the residual: rgk) = A, uﬁk) — f.

— Transfer the residual to the coarse grid: rg];) = Iﬁhrgk).

We use injection for transferring the residual from the fine to the coarse grid.

— Approximate the solution to the coarse grid residual equation: Aghey;) = r(;l).

This yields us ég’;), a good approximation to eg};l). We accomplish this with 30

. . . . ey k
iterations of Gauss-Seidel, using an initial guess egh) = 0.

) — Ih ~(k)

— Transfer the error term to the fine grid: é;lk 2h€ap -

We use bilinear interpolation to transfer the error term from the coarse to the

fine grid.

(k) 4 «(k)

EIHI) —ul? 4 &,

— Compute new approximation: u

— Increment the iteration counter k.
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step iii:
Perform three Gauss-Seidel sweeps on Ahugk) =f,.
This smooths out any high frequency error introduced on the final iteration by

the interpolation operator. O

One iteration of the multigrid method is called a V-cycle. If S is the matrix
representing one iteration of the basic smoothing iterative method then the matrix
representing one iteration (i.e. one V-cycle) of the two-grid multigrid method is
given by

SP(In — I Ai I A4)S), (5.30)

where [} and [, are the numbers of iterations of the smoothing iterative method
that are applied before and after the coarse grid correction process. So, in matrix

form the algorithm can be expressed as

[SP(In — I Ag I AR) SR (5.31)

5.6 A Full Multigrid Method

A full multigrid method is a simple extension of the basic method. The idea is that
in solving the problem on the coarse level an even coarser level can be used. In fact,

an entire hierarchy of different size grids can be used.
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One V-cycle for a full multigrid method can be defined recursively by
T, = Sk (I, - LAG'IPA,)Sh, (5.32)

and

T, = S2(I, - I_,(I,_, — T A TP A,)Sh, (5.33)

where p denotes the p** finest level and if ¢ is the finest level then
A, = A, (5.34)

We present an example of a three-grid multigrid method. Here the coarse grid

residual equation:

Agpelt) = ¢b), (5.35)

is solved by computing the residual of this residual equation and transferring it to

an even coarser grid (a 16 x 16 grid). We use a slightly different notation to assist

us 1n explaining this method. We use fz(,]:) rather than rg,? to represent the first

residual computed on grid G,;,. Similarly, we use ug];l) rather than egl;) to represent

the error on grid G,),. We use fi:) to represent the second residual (ie. the residual
(k)

of the residual) computed on grid Gy4;,. Similarly, we use uy; to represent the error

on grid G4;. We then proceed with the algorithm as follows:
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ALGORITHM 5.2

(A Three-Grid Method)
step i:

Set the iteration counter k at 0.

0 . .
Guess ug) as an approximation to uy.

step ii:

. k . .
Repeat until Hu}l ) _ u;|| < e, for some iteration k¥ and some error tolerance e:

— Perform three Gauss-Seidel sweeps on Ahugk) = f},.

— Compute fz(ﬁ) = I,r‘;hrglk).

— Perform three Gauss-Seidel sweeps on Aghugl;) = fé,’:), with initial guess ﬁg’,? = 0.
— Compute £y = I,
— Perform 30 Gauss-Seidel sweeps on A4hugﬁ) = if), with initial guess uih) 0.

— Correct ugh) = (k) + Iz,}:uy,?

(k) k)

— Perform three Gauss-Seidel sweeps on Ajpuy, = féh , with initial guess i1,
— Correct u( ) = uh + IHu ‘2’,‘3
— Increment the iteration counter k.

step 1ii:

Perform three Gauss-Seidel sweeps on Ahu( ) =f,. O
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Table 5.1 at the end of this chapter shows some actual results using algorithms
5.1 and 5.2. For a comparison we also show results using a simple Gauss-Seidel
method. The stopping criteria we use is || ugk) —uy, ||< e = 107°. In the table, k is

the number of iterations, and ¢ is the cpu time in seconds.

For solving our model problem we see the speed of execution, relative to the
Gauss-Seidel method, increase by factors of 15—2%0 = 2.9 and %% = 4.0 for algo-
rithms 5.1 and 5.2 respectively. There are two factors contributing to this improved
performance. First of all, as we have already discussed, when the problem is trans-
ferred to a coarser grid the lower frequency components of the error are increased,
relative to the coarser grid, resulting in an improved convergence rate for those
components. Secondly, a significant amount of the work of the multigrid algorithms
is performed on the coarser grids in executing Gauss-Seidel iterations for residual
equations.. Relative to the work required to perform a Gauss-Seidel iteration on

the fine grid Gy, a Gauss-Seidel iteration on G, requires only % of the work and

on Gy, only TIE of the work.

Though initial studies introducing and investigating multigrid methods are cred-
ited to Fedorenka (7, 8] in 1962-64 and Bakvalow [9] in 1966, the recognition of the
efficiency and potential power of multigrid methods is due to A. Brandt [10] in 1976.

Since Brandt’s original paper, multigrid methods have gradually become recognized
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as offering significant possibilities in the area of numerical methods for partial differ-
ential equations [11]. For an introduction to multigrid methods the book by Briggs
[12] is very good. For a more complete treatment see the article by Stuben and

Trottenburg [11].
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Table 5.1: Sequential Multigrid and Gauss-Seidel Methods

method k t

Gauss-Seidel 6250 | 164

Algorithm 5.1 || 209 | 58.3

Algorithm 5.2 || 239 | 41




Chapter 6

A Parallel Domain Decomposition

Method

In the previous chapter we introduced an essentially sequential method that uti-
lized multiple grids in order to accelerate the convergence of a basic iterative method
(such as the Gauss-Seidel method). In this chapter we take a different approach
while continuing to use the same basic iterative method. Here, rather than attempt-
ing to increase the rate of convergence we break the problem up into a number of
subproblems and solve the subproblems simultaneously on multiple processors. In
this case, the convergence rate is not improved yet the execution speed is decreased
due to the use of multiprocessing.

49
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A numerical parallel Schwarz method is an iterative method which involves de-
composing the domain over which a partial differential equation is to be solved into
multiple overlapping subdomains. The subdomains are then distributed over mul-
tiple processors. Then, using a standard iterative method, each processor works to
solve a smaller version of the original problem for the specific subdomains to which
that processor has been assigned. The processors work in parallel. Information ex-
changes between any two processors are primarily restricted to subdomain boundary

value approximations for the overlapping regions of their respective subdomains.

6.1 The Schwarz Alternating Principle

A nonparallel form of this domain decomposition method was originally proposed
in the 1860’s by H. A. Schwarz for solving the Dirichlet problem for harmonic
functions {13]. In 1890, Picard, who called the method the “Schwarz Alternating

> used it to solve a nonlinear elliptic partial differential equation [14]. A

Procedure,’
good description of the Schwarz alternating procedure can be found in the book by
Kantorovich and Krylow [15]. Numerical analogs to this method were developed by
K. Miller [16]. The suitability of variants of the method as parallel algorithms has

been explored in recent years by Kang [17] and Rodriguc and Simon [18, 19].

We will now introduce the sequential Schwarz alternating procedure, using two
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subdomains, to solve Poisson’s equation

Au = —f on Q=(0,1)x(0,1) (6.1)

u = ¢ on I =boundary(f).

We begin by partitioning the domain §2 into two overlapping subdomains €2, and
22 such that @ = QU2 Let 0 = z;, < z;, < z,, < z,, = 1. Then define
= (zy,2,)x(0,1) and Q, = (zy,, z,,) X (0,1). The boundary of each subdomain
will include part of the original boundary, I'; N T', as well as a new part, called

a pseudo-boundary, I'; — I'. See the figure below. Next, we solve the problem on

2
A

Figure 6.1: 2 =Q; UQ; =(0,1) x (0,1)

subdomain 2,, using a guess ¥ for the solution on the pseudo-boundary, I'; = I'. We

then solve the problem on subdomain ,, using values we obtained in solving the
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subdomain §2; problem as the boundary values on pseudo-boundary, I'; — I". From
there we go back to subdomain §2; and solve the problem using updated values
for the pseudo-boundary I'y — I, obtained from subdomain €2;. We continue to
alternate between the two subdomains in such a manner until the approximation is

close enough for our needs.

The algorithm can be described as follows:

ALGORITHM 6.1

(A Sequential Method Using Two Subdomains)

step 1i:

Divide domain 2 into two subdomains ; and €, as described previously.
step ii:

Guess u; = ¢ on I'; N §,.

step iii:

Initialize iteration counter k to 1.

Solve

Augk) = —f on (6.2)
W = ¢ on IynT

u; . = ¥ on I'1NQ,.
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Then solve

A = —f on Q, (6.3)
ugk) = ¢ on I'yNT
ugk) = ugk) on Fg N \Ql .

step iv:
Repeat until Hu(lk) —ull € e on Q, and ||ugk) — u|| € € on Q,, for some iteration k

and some error tolerance e.

k=k+1.
Solve
Aul® = —f on (6.4)
ugk) = ¢ on Ih'NT
ugk) = ugk_l) on ['1NKQ,.
Then solve
AuY = —f on Q, (6.5)

u(zk) = ¢ on I';NT

ugk) = ugk) on I';NE,.
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step v:

Let 1 = ugk) on §; — 2y and @ = w$®) on Q, 0O

Then ||& — u]| < € so @ is a suitable approximation to .

6.2 A Parallel Schwarz Method

Because of the dependency that the solution on one subdomain of Algorithm 6.1
has on the previous solution of the other subdomain, this algorithm is inherently
sequential. By breaking the domain into more than two subdomains we can use a
similar scheme and obtain a parallel method. The first parallel method we consider

uses 4 subdomains and 2 processors. See figure below.
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Q? Q4

Figure 6.2: Q = Ui, &% =(0,1) x (0,1)

The algorithm can be described as follows:

ALGORITHM 6.2

(A Parallel Method Using Four Subdomains and Two Processors)
step i:

Define two sequences of real numbers,

{zr}icr and {z.}i,

such that

0=$(’<$12§$r1<1‘13 er2<1'14$$r3<$7-4=1.

(6.6)

(6.7)
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Then define

Q; = (zy;,zr,) x(0,1), for 1 =1,2,3,4.

step ii:
Guess u; = ¢, on I'y — T,
and uz = 3 on I'y — T

step iii:

Initialize iteration counter & to 1.

Solve

on processor 1, while solving

Augk)
(k)

Ug

u

on processor 2.

Then solve

Augk)

—f o1 Ql

¢ on Fl Nne

Yy on 1N,

—f on Q3

¢ on I'snT

Y3 on 3N,
—f on €

(6.8)

(6.9)

(6.10)

(6.11)
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on processor 1, while solving

Augk)

P

P

on processor 2.

step 1v:

¢ on FgﬂP
ugk) on I'; Ny

ugk) on [';NQ;,

—f on 94 (612)
¢ on F4 Nnr

U‘-gk) on F4 N Qg,

Repeat until ||u; — u|| < e on Q, for i = 1,2,3,4, for any iteration k and for some

error tolerance €.
k=Fk-+1.

Solve

(k)

on processor 1, while solving

Augk)

—f on £, (6.13)
¢ on I''NT

ugk_l) on I'yN§,,

—f on €3 (6.14)
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on processor 2.

Then solve

on processor 1, while solving

Auf,’“’

(%)

Uy

u(k)

on processor 2.
step v:
Let @ = ugk) on 2 — Q,,

)

. k
U= ug on {1,

Ttgk) on Qg - (Qg U Q‘|),

i

U

¢ on I'snT
ugk'l) on Fg N Qg

ugk'l) on I'3NQy,

—f on 4
¢ on IynT

ugk) on ['yNQs,

(6.15)

(6.16)
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and @ = ugk) on ;. O

Then ||% — u|| < € so @ is a suitable approximation to .

We can generalize Algorithm 6.2 and obtain a parallel method which uses 2n

subdomains and n processors.

This algorithm can be described as follows:

ALGORITHM 6.3

(A Parallel Method Using 2n Subdomains and n Processors)
step 1:

Define two sequences of real numbers,

{z}2 and {z,}i,

such that

O=a, <z, <y, <73 L2, <+ < TY, Ty, < Ty, = 1.

Then define

Q = (zy,2,) x(0,1), for 1=1,---,2n.

step 1i:

(6.17)

(6.18)

(6.19)

Guess u; = ¢, on I'; - T, fori = 1,3,...,2n — 1 (ie. guess boundary values on pseudo

boundaries for odd regions).
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step iii:
Initialize iteration counter k£ to 1.

For:=1,3,...,2n — 1, solve (in parallel on all n processors)

Augk) = —f on (6.20)
ufk) = ¢ on I'inT

L Y, on I[N

1

Then, for : = 2,4, ...,2n — 2, solve (in parallel on n-1 processors)

A = —f on o (6.21)

uF = ¢ on I'nT

ugk) = uz(-I:l) on I',N§,_,;

ul(-k) = ul(_’:l) on [;,NQ,,

while also solving (on the n'* processor), for 1 = 2n

Augi) = —f on g, (6.22)
ugi) = ¢ on I['y,nT
(k) (k-1)

Ug Uy, on [y Ny,

(Note: Pseudo boundarics for even regions do not require an initial guess.)
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step iv:

Repeat until ||u; — u|| < e on each ©;, 1 = 1,2, ..., 2n, for some iteration k and for
some error tolerance e.

k=k+1.

Solve

A = —f on @ (6.23)
u(lk) = ¢ on I'NT
ugk) = uékq) on I} N,

on one processor, while also solving (on the remaining n-1 processors) for

i =3,5..,2n~1

A = —f on @ (6.24)
) ¢ on I;NT
ugk) = ugﬁl) on N4

’U,I(-k) = UE_I:_II) on F,‘ﬂQi_H.

Then solve, for ¢ = 2,4, ...,2n — 2, (on n-1 processors)

Au® = —f on @ (6.25)

ki

ugk) = ¢ on I;NT
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ufk) = u(-f)l on I';NQ_,

]

ugk) = ui(-i)l on I';NQiy,

while solving (on the n'* processor)

Aug, = _f on {2y, (626)
ugﬁ) = ¢ on Ip,NT
”g:l) = ugl:z)—l on [y NQopy.

step v:

Let @ = uf-k) on §; for 1 = 2,4,...,2n,
= ugk) on 2y — §2,,

and @ = u® on Q; — (1 UQy), O

i

Then ||& — u|| < € so & is a suitable approximation to u.

6.3 Numerical Schwarz Methods

For a numerical implementation of these Schwarz methods, the differential equation
on each subdomain §2; for each iteration & becomes a finite difference or matrix
equation (as presented in Chapter 3), where cach subdomain becomes a subgrid.

Thus for each subdomain £2; and iteration k& we have a subgrid G; and an associated
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matrix equation
A = ¥, (6.27)

(k)

where A; is the matrix associated with the :* subdomain €;, ¢;" is a vector incorpo-

rating the values of f; from Q;, the boundary conditions from the original problem

(6.1), and the pseudo-boundary conditions obtained from neighboring solutions,

(k)

and u; ’ are solutions to equations (6.27).

) exactly but rather obtain

Of course, numerically we do not solve for each u,(-k
an approximation. In the numerical algorithm we use we have incorporated the
Gauss-Seidel method to obtain an approximation ﬁgk) for each ; and iteration k
of the parallel Schwarz process.

As an initial vector vfo) for the Gauss-Seidel process on §; at the k* iteration
of the Schwarz process, we use
ugk—l) on Q;—Q,
v§°’ = ﬁ

ugk"l) on 2,9,

u7Y on N

vfo) = uﬁk“” on  Q; — (21 Uiy1)

uz('i;l) on 2;NQ,
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fort=3,5,...,2n — 1,

o™ on N,

VO

U,Sk—l) on € — (o1 UQit)

Ug:)l on 2;NQi,
for2=2,4,6,...,2n — 2, and

uyﬁt)——l on QQn n 52271,—1
) _

Van

k-1
Ugn) on Qop — ony.

Table 6.1 shows some actual computational results using the numerical version
of algorithm 6.3. In this case we have used 16 subdomains on 8 processors. The
number of iterations of Gauss-Siedel taken on each subdomain to approximate each
respective subdomain problem is given by s and « is the number of columns of grid
points in the overlapping region between two adjacent subdomains. Once again,
as a stopping criteria we used || ugk) —uy ||[< e = 107%. We experimented with
different values for s and «. Our best results were obtained using s = 1 and a = 4,
indicating that for this version of the parallel Schwarz method run on a shared
memory machine, the best results are obtained when a minimum number (ie. 1) of
Gauss-Seidel iterations are performed on each subdomain problem and the overlap

between adjacent subdomains is maximal.
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In all cases we see a marked improvement over the basic Gauss-Seidel method.
In particular, for s = 1 and o = 4 we see the speed of execution, again relative to

the Gauss-Seidel method, increase by a factor of %Q =T4.
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Table 6.1: A Parallel Schwarz Method

a =0 [ 6250 | 24.2 || 2250 | 25.6 || 1000 | 37.7 || 850 | 64

a =2 |4800 | 25.6 || 1700 | 26.8 || 550 | 28.8 || 350 | 36.6

a =4[ 3250 [ 22.2 || 1100 | 2

X}
bo

350 | 23.5 || 200 | 26.8




Chapter 7

A Parallel Multigrid Method

7.1 The Algorithm

In chapters 5 and 6 we have presented two methods, one sequential the other parallel,
that serve to enhance more basic iterative methods such as the Gauss-Seidel and
Jacobi methods. In this chapter, we introduce a further improvement by combining
the two-grid multigrid method and the parallel Schwarz method. The idea is to
take our two-grid sequential multigrid method and use the parallel Schwarz method

in place of the basic Gauss-Seidel method. The algorithm is as follows:

67
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ALGORITHM 7.1

To solve

Au=—f on Q=(0,1)x(0,1) (7.1)

we begin by discretizing the problem thus obtaining the matrix equation

Ahuhth on Gh. (72)

We then proceed as follows:

step 1:

Initialize iteration counter k to 0.
(0)

Guess u;,’ as an approximation to uy.

step ii:

Repeat until ||uf — u,|| < e, for some iteration k and some error tolerance .
— Perform three parallel Schwarz iterations on Ahuik) = f, (ie. this is algorithm
6.3 with £ = 3). The method used on each subdomain is s iterations of the Gauss-
Seidel method.
— Compute the residual on the fine grid Gy: rgf) =f, — Ahugk).

(k)

— Transfer the residual to the coarse grid Gop: 13, = I, ,;fhrglk).

— Perform thirty parallel Schwarz iterations on the coarse grid to obtain a good
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approximation to the solution to the coarse grid residual equation
Asnezn = Taa. (7.3)

This yields €34, a good approximation to ezs.
— Transfer error term to the fine grid Gy: égk) = Ié‘hég?.
— Compute new approximation: ugkﬂ) = u;lk) + égk) .
— Increment the iteration counter k.
step iii:

(%)

Perform three final parallel Schwarz iterations on Apu;’ = {3, as was done in step

ii. This reduces high frequency error introduced during the final interpolation. O

Table 7.1 shows some computational results using this algorithm. As with the
parallel Schwarz method of the previous chapter, the number of iterations of Gauss-
Siedel taken on each subdomain to approximate each respective subdomain problem
is given by s and « is the number of columns of grid points in the overlapping region
between two adjacent subdomains. Also, as before, as a stopping criteria we used

| ul® =, ||< e = 10-C.
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Table 7.1: A Parallel Multigrid Method

s=1 s=3 s =10 s =20
k t k t k t k|t
a=0|237[12.5] 102 | 14.6 || 68 | 31.6 || 64 | 58.9
a=2|189]128 | 82 | 15.6 || 50 | 30.9 || 41 | 50.4
a=41112 [ 9.29 || 54 | 12.7 |[ 34 | 26.3 || 26 | 40.1




Chapter 8

Conclusion

In performing the research for this paper I explored two significantly different it-
erative algorithms, one essentially sequential and the other essentially parallel, for
solving elliptic partial differential equations. Both algorithms serve to significantly

enhance a more basic traditional method, in this case the Gauss-Seidel method.

The sequential multigrid method uses one or more coarser grids to accelerate
the convergence of a basic method such as Gauss-Seidel. The multigrid approach
is to address the problem, associated with the basic method, that low frequency
error components are reduced at a much slower rate than those of higher frequency.
By transferring these low frequency components to a coarser grid their frequencies,
relative to the coarser grid, are increased. Then the basic method can be employed
to more rapidly reduce this part of the error. The use of coarser grids is also helpful
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because the data representing the problem is significantly reduced on the coarser

grids making iterations of the basic method that much faster.

The parallel Schwarz method takes advantage of the fact that, in methods such
as Gauss-Seidel, the update of any grid point of G, is independent of all but its
immediate neighboring grid points. Thus, using a machine such as the Alliant FX/8,
the workload can be judiciously distributed over multiple processors, realizing a

significant increase in the speed of execution.

I combined these two methods into the parallel multigrid method presented
in Algorithm 7.1. This algorithm capitalizes on both of the previous approaches.
The use of a coarser grid is used to improve the rate of convergence while multiple
processors are used to distribute the workload. Whereas, our best execution speeds,
relative to the speed of the Gauss-Seidel method, were % = 4.0 and —156%-;20 =174
for the sequential multigrid and parallel Schwarz methods, respectively, the best
results using the combined method showed a relative speed of 122 = 17.6. As in

the pure parallel Schwarz method, the best results were obtained using s = 1 and

o = 4. Table 8.1 summarizes these results.

One may view the parallel multigrid method as a parallel enhancement of the
essentially sequential multigrid method or as a multigrid enhancement of a parallel
Schwarz method. It is not unusual to find a sequential method, which contains po-

tentially parallel sections of code, enhanced by placing it in a parallel environment.



What is unusual though is to find such a highly parallel method such as the Schwarz

method enhanced by placing it in an inherently sequential environment.
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Table 5.1: Relative Speeds of Execution

method time | factor
Gauss-Seidel 164.0 | 1.0
sequential multigrid | 41.0 | 4.0
parallel Schwarz 22.2 7.4
parallel multigrid 9.29 | 17.6
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