
~ 8
.
~

O
-

u
,

-
N

t'"

:)
oc

...

,
u

,
...

. 0
~

3

0
..

::!
.
z

:;;
:::

C

l
0

::::
-.

'<

0
C

l
::

,
-

C
l

~
~

C
l

t'"
:)

c.
.

g.
 . ::, .g

i
~i"

...
...

...
.

5·
 S

'
O

Q

-
.

~
Q

.....

. 3

p.
.

Q
I

<::
::-.

>

 §

N

(f
l

N

t'"
:)

~
~-

.....
..

(
)

•
(!

)

>
.

0
C

:
~
 y

i

~
~

--1
3

Q

....

0
...

..
::n

 3

(
)

(!
)

::r
 :

:,
(!

)
..

..
.

>
 Q.

,

3
:s

n

-
o

3

>
~

C

l)

~

--
1

m

:x

,

t.

t-1
 ~

~
~

...
..

tr
j

~
z

~
n

:::
:

tr
j

'-<

~

0
~

~
<

h

/
t
r
j

~
~

0
~

2.

0
~

~

•
tr

j

C:
 z

<

 ~
~

3
~

~
0

!O

z

n
>

e.

t-1

.....

~
~

~
>

e.
~

~

0
~
~

~
~

~
o

 ~ <tr

D
IS

C
L

A
IM

E
R

T
hi

s
re

po
rt

 w
as

 p
re

pa
re

d
as

 a
n

ac
co

un
t

of
 w

or
k

sp
on

so
re

d
by

 a
n

ag
en

cy
 o

f
th

e
U

ni
te

d
S

ta
te

s
G

ov
er

nm
en

t.
N

ei
th

er
 t

he
 U

ni
te

d
S

ta
te

s
G

ov
er

nm
en

t
no

r
an

y
ag

en
cy

 t
he

re
of

,
no

r
an

y
of

 t
he

ir

em
pl

oy
ee

s,
 m

ak
es

 a
ny

 w
ar

ra
nt

y,
 e

xp
re

ss
 o

r
im

pl
ie

d,
 o

r
as

su
m

es
 a

ny
 l

eg
al

 l
ia

bi
li

ty
 o

r
re

sp
on

si
­

bi
li

ty
 f

or
 t

he
 a

cc
ur

ac
y,

 c
om

pl
et

en
es

s,
 o

r
us

ef
ul

ne
ss

 o
f

an
y

in
fo

rm
at

io
n,

 a
pp

ar
at

us
,

pr
od

uc
t,

or

pr
oc

es
s

di
sc

lo
se

d,
 o

r
re

pr
es

en
ts

 t
ha

t
its

 u
se

 w
ou

ld
 n

ot
 i

nf
ri

ng
e

pr
iv

at
el

y
ow

ne
d

ri
gh

ts
.

R
ef

 er
­

en
ce

 h
er

ei
n

to
 a

ny
 s

pe
ci

fi
c

co
m

m
er

ci
al

 p
ro

du
ct

,
pr

oc
es

s,
 o

r
se

rv
ic

e
by

 t
ra

de
 n

am
e,

 t
ra

de
m

ar
k,

m

an
uf

ac
tu

re
r,

 o
r

ot
he

rw
is

e
do

es
 n

ot
 n

ec
es

sa
ri

ly
 c

on
st

it
ut

e
or

 i
m

pl
y

its
 e

nd
or

se
m

en
t,

re
co

m
­

m
en

da
ti

on
,

or
 f

av
or

in
g

by
 t

he
 U

ni
te

d
S

ta
te

s
G

ov
er

nm
en

t
or

 a
ny

 a
ge

nc
y

th
er

eo
f.

 T
he

 v
ie

w
s

an
d

op
in

io
ns

of

 a
ut

ho
rs

ex

pr
es

se
d

he
re

in

do

no
t

ne
ce

ss
ar

ily

st
at

e
or

re

fl
ec

t
th

os
e

of
 t

he

U
ni

te
d

S
ta

te
s

G
ov

er
nm

en
t

or
 a

ny
 a

ge
nc

y
th

er
eo

f.

m

~

~

~

i~
>

,..

..
re

~

~
 =

n
,...

.
~

=

~
tT

1
~

6
[

ti
) n ::i
.

"'O

f
o

~
H

Q
..

,-
..

.
.....

en

g-
=

 =-
-~

~
0

.
~

.
~

~

~

0
.....

(T

j
...

,
tr1

.
.

>-
--

r"
't
~

..
~

.
~·

~

~
~

o
C

:::
,c

n=

~

~·
~

=
 ,....

0
,..

...

....
.._

,
re

r:J

'J
~

,..
..

=

::;

~

~

~·

~

~
ro

<

.~

~

H

~

~

)
-
\

ro

=

 ~·
\J

:)

=
 ~

Q
..

0
0

\J

:)

,....
 ~· ~ ~

d rJ
l f:;
' ;:

r::
C

l
....

0
.... 0

tz:
1

(
)

=

\0

~

n
0

~

I
....

0
I

&8

e

0
0

1

~
Q

-..

J
w

\0

\0

e
~

t,

,.
)

.....

\0

CX
>

(
)

Y
I

,
W

IJ:a

o
~

ffi
C

X)

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

A Parallel Multigrid Method For Solving
Elliptic Partial Differential Equations

By

THEODORE E. FERRETTA
B.S. (California State University, Hayward) 1981
M.S. (California State University, Hayward) 1984

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

Ill

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Committee in Charge

1989

-1-

Abstract

This paper introduces a parallel multigrid method for solving elliptic partial dif­

ferential equations. This method combines two other methods, both of which arc

popular methods under research today. One of the methods is a multigrid method,

essentially a sequential method. The other is a parallel domain decomposition

method, a variation on the Schwarz alternating procedure.

Each method is explained individually, before the combined method is explained.

The combined method is then compared to each of the individual methods, demon­

strating the superiority of the combined method over each of its parent methods.

As a model problem Poisson's equation is used.

The computer on which the various methods were tested is an Alliant FX/8,

a shared memory multiprocessor machine having 8 processors which can be run

simultaneously in executing parallel code.

11

Acknowledgements

I am sincerely grateful to my thesis advisor, Garry Rodrigue, for his guidance and

encouragement throughout this investigation. In addition, a special thanks goes

to both Pat Fitch and Peter Linz for serving on my thesis committee. Finally,

the members of the Applied Mathematics Group at Lawrence Livermore National

Laboratory deserve a thank you for providing me the time and encouragement to

complete this endeavor.

111

Contents

Abstract

Acknowledgements

1 Introduction

1.1 The Alliant FX/8 .

2 Elliptic Partial Differential Equations

2.1 Classification of Partial Differential Equations

2.2 Boundary Value Problems

2.3 A Physical Interpretation

3 Discretization of an Elliptic PDE

3.1 Obtaining a Difference Equation

3.2 Matrix Form of a Difference Equation

4 Methods For Solving Difference Equations

4.1 Direct vs. Iterative Methods

4.2 The Jacobi and Gauss-Seidel Methods

4.3 Convergence of Iterative Methods .

5 A Sequential M ultigrid Method

IV

...
lll

IV

1

3

6

6

8

10

12

12

15

18

18

21

22

31

S.l Residual Correction Iterative Methods ...

5.2 A Coarse Grid Residual Correction Scheme

5.3 Smoothing the High Frequency Error

5.4 Increasing the Convergence Rate For Lower Frequencies

5.5 A Two-Grid M ultigrid Method

5.6 A Full M ultigrid Method

6 A Parallel Domain Decomposition Method

6.1 The Schwarz Alternating Principle

6.2 A Parallel Schwarz Method

6.3 Numerical Schwarz Methods .

7 A Parallel M ultigrid Method

7.1 The Algorithm

8 Conclusion

·- V -

32

34

37

40

41

43

49

50

54

62

67

67

71

Chapter 1

Introduction

Boundary value problems for elliptic partial differential equations are of major

importance in computational physics and engineering. They occur, among other

places, in the areas of fluid dynamics, electrodynamics, stationary heat and mass

transport (diffusion), statics, and reactor physics (neutron transport) [1).

Most numerical methods for solving such problems involve a discretization of

the problem using a finite-dimensional approximation space, followed by a numer­

ical procedure to solve (or approximate) the resulting very large system of linear

equations.

Many of the methods that have been used to solve such large systems have been

in existence even longer than computer technology (eg. Jacobi, Gauss-Seidel, and

successive over relaxation methods [2, 3)).

1

2 CHAPTER 1. INTRODUCTION

Since the inception of the computer, there have been enormous gains in the

computational speed of large system solvers. These increases are due mainly to

technological advances in electronic circuitry and component fabrication. Hardware

performance increases, however, are physically limited by the speed of light, a factor

which has caused a leveling off of gains in performance in recent. years. Furthermore,

despite the development of faster circuits, even on today's fastest computers, solving

very large systems can require hundreds of hours of CPU time.

Two directions are currently being explored for potential solutions to this prob­

lem. The first involves the development of significantly new sequential algorithms

running on traditional von Neumann single processor architectures. The second in­

volves the development of parallel numerical algorithms to be run on multiprocessor

architectures.

I have investigated both of these directions as part of the background research

for my thesis. I have designed and implemented an algorithm that contains elements

from both of these areas. I have restricted my attention to one principle algorithm

from each area. The sequential algorithm I have been working with is a multigrid

method. The parallel algorithm is a parallel domain decomposition method, a

variation on the Schwarz alternating procedure.

Both of these algorithms, as well as the combined algorithm, requires the use of

one of the more basic iterative methods for solving a matrix equation. The basic

1.1. THE ALLIANT FX/8 3

method I have used in each of the three algorithms is the Gauss-Seidel method. I

also use the Gauss-Seidel method in comparing the relative efficiency of the three

algorithms.

All algorithms implemented for this thesis were developed and run on an Alliant

FX/8 computer.

1.1 The Alliant FX/8

The Alliant FX/8 computer is a shared memory multiprocessor. The architecture

of this system is represented in figure 1.1 [4]. The computational power of this

system resides in the 8 computational elements (CEs). Each CE is a CMOS gate

array implementation of a full scalar architecture, with additional hardware for

IEEE floating point operations, vector operations, concurrency control, and virtual

memory support. In vector mode, each CE executes floating point instructions at

the peak rate of 11.8 million floating point operations per second (MFLOPS) for

both single and double precision. All 8 CEs can be used concurrently to solve

a single problem. Such a complex of 8 CEs can approach a performance level

equal to 8 times the performance of a single CE for certain problems. Dedicated

hardware on each CE is used to control the scheduling and synchronization of

multiple CEs when used in a concurrent mode. There is also an expandable pool

of interactive processors (IPs) that execute interactive user jobs and the operating

4 CHAPTER 1. INTRODUCTION

system. The IPs maintain system responsiveness and allow the CEs to concentrate

on the computational-intensive portions of user applications.

1.1. THE ALLIANT FX/8

CONCURRENCY
CONTROL
BUS

Figure 1.1: The Alliant FX/8

5

Chapter 2

Elliptic Partial Differential

Equations

2.1 Classification of Partial Differential Equations

A partial differential equation (pde} is an equation

F(x, y, ... , u, Ux, Uy, ... , Uxx, Uxy, ...) = 0 (2.1)

involving more than one independent variable x, y, ... , a function u of these variables,

and the partial derivatives ux, uy, ... , Uxx, Uxy, ... of the function. The equation is

is called linear if the unknown function and its partial derivatives appear, at most,

to the first. dc~rcc. The order of the equation is the onln of the partial d<~rivativc

of highest order appearing in the equation.

G

2.1. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS n

'

For example, the most general second-order linear partial differential equation

defined on a two-dimensional region n, with boundary r is

auxx + 2buxy + CUyy + hux + kuy + eu + J = 0 (2.2)

where a, b, c, h, k, e, fare functions of x and y. This equation is called

• elliptic if ac - b2 > 0,

• hyperbolic if ac - b2 < 0, and

• parabolic if ac - b2 = 0.

If a, b, c, h, k, and e are all constants we have a second order linear partial differ­

ential equation with constant coefficients. Such an equation, by a linear change in

coordinates, can always be reduced into one of three normal forms which correspond

to the three types of equations referred to above:

• elliptic if the form is Uxx + Uyy + ,u = - J,

• hyperbolic if the form is Uxx - Uyy + ,u = - f, and

• parabolic if the form is Uxx + Uy = - f,

where , is a constant with one of the values -1, 0, or 1. In the elliptic form, with

, = 0, we have what is known as Poisson's equation,

Uxx + 'Uyy = - f, (2.3)

8 CHAPTER 2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

which is also written as

~u = -f. (2.4)

If we also have f = 0, we have Laplace's equation,

Uxx + Uyy = 0, (2.5)

which is also written as

~u = 0. (2.6)

As model problems we shall use both Laplace's equation and Poisson's equation

with different functions f.

2.2 Boundary Value Problems

Any equation, other than the differential equation itself, which a solution of the

differential equation is required to satisfy is called an auxiliary condition for the

equation. Auxiliary conditions may involve undetermined constants or functions.

A set of auxiliary conditions is called appropriate for the differential equation if

there exists one and only one function which satisfies both the differential equation

and the auxiliary conditions.

Because of the physical interpretation associated with an elliptic partial differen-

tial equation the most natural auxiliary conditions associated with such an equation

2.2. BOUNDARY VALUE PROBLEMS 9

arc boundary conditions. There are three basic types of boundary value conditions:

the Dirichlet, Neumann, and Robins conditions.

Using Laplace's equation as an example, we give three representative boundary

value problems. First of all, the Dirichlet problem is given by

~u = 0 on n (2.7)

u = <P on r = boundary(n)

where ¢ is a known function defined on the boundary r of n. Next, we have the

Neumann problem,

~u = 0 on n

au= <P
av on r = boundary(n)

(2.8)

where ~~ denotes the outward normal derivative on the boundary. Lastly, we have

the Robins problem in which the auxiliary condition is a linear combination of the

previous two,

~u = 0 on n

Hu - + hu = <P on r = boundary(n) av

where h is a constant greater than zero.

(2.9)

We will be working exclusively with Dirichlet conditions on our model problems.

10 CHAPTER 2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

2.3 A Physical Interpretation

As an illustration of the physical interpretation associated with an elliptic boundary

value problem consider the Dirichlet problem, equation (2. 7). We may interpret the

solution u as the equilibrium temperature distribution in a uniform heat-conducting

body occupying the domain n, when the temperature distribution on the boundary

r of the body is kept fixed. On the basis of this physical model, it is reasonable to

assume that the problem has a solution if n is a finite reasonably shaped domain

and if the function ef; is reasonably smooth. That the solution is unique follows, for

if u1 and u2 were both solutions of (2. 7), then v = u 1 - u 2 would be a solution to

~v = 0 on n (2.10)

V = 0 on f = boundary(n).

So v could be interpreted as the equilibrium temperature in n when the boundary

r is kept at a temperature of zero. From the physical model it is easily seen that v

must be identically zero inn. Therefore u 1 = u 2 and the solution is unique. Hence,

the auxiliary conditions for this partial differential equation are appropriate.

As a second illustration consider Poisson's equation with Dirichlet conditions:

1:1. u = - J on n (2.11)

U = <P 011 f = boundary(n).

In this case, we again interpert u as the equilibrium temperature distribution in n

2.3. A PHYSICAL INTERPRETATION 11

when there is a known distribution of sources in n.

Chapter 3

Discretization of an Elliptic PDE

3.1 Obtaining a Difference Equation

As an illustrative example we will now consider the numerical solution for Poisson's

equation with Dirichlet boundary conditions on the unit square. That is

- ~ U = f on n = (0, 1) X (0, 1) (3.1)

u = cp on r = boundary(n).

We first superimpose a grid G of horizontal and vertical lines over n with uniform

spacing h = ~' where n is an integer. That is,

G = {(xi, Yj)lxi = ih, Yj = jh, h = .!:., 0 < i,j < n, i and j integers}. (3.2)
n

We wish to determine approximate values of u(xi, Yj) at each of the grid points

(xi, Yj) of G. For notational convenience we will use Ui,j = u(xi, yi). One standard

12

3.1. OBTAINING A DIFFERENCE EQUATION 13

approach to accomplish this end begins with the use of Taylor expansions in two

variables. Expanding in the x direction we obtain

u. . - u. . h aui,j h
2

a
2
ui,j h

3
a3ui,j h

4
8

4
ui,j . . . (3.3)

t+l,J - t,J + ax + 2 8x2 + 6 8x3 + 24 8x4 +

and

u· . = u·. _ h aui,j h
2

8
2
ui,j _ h

3
a3ui,j h

4
8

4
ui,j _

i-l,J t,J ax + 2 8x2 6 8x3 + 24 8x4
(3.4)

Summing (3.3) and (3.4) and rearranging we obtain

tJ tJ 82
u· · 1 [h4 84

u· ·]
- 8x2 = h2 2ui,j - Ui+I,j - Ui-1,j + 24 8x4 +... . (3.5)

Then, expanding in the y direction we obtain

a l 2 82 h3 83 1 4 84
u. . - u. . h u i,j _i __!:_0_ - __!:_0_ _i __!:_0_ ...

i,i+i - '·1 + ay + 2 ay2 + 6 ay3 + 24 8y4 + (3.6)

and

8u·. h2 8 2u·. h3 8 3u·. h4 8 4u·.
U· · 1 = U· · - h-1

-'1 + ___ i_,J - ___ i_,J + ___ i_,J - ·... (3.7)
t,J- t,J 8y 2 8y2 6 8y3 24 8y4

Summing (3.6) and (3.7) and rearranging we obtain

tJ tJ 82u·. 1 [h4 a4u·.]
- ay2 = h,2 2ui,j - Ui,j+1 - 'lli,j-1 +

24
ay4 +. '. · (3.8)

Finally, summing (3.5) and (3.8), we obtain

- __ i_,J + __ i_,J

[
82

u· · 82
u· ·]

8y2 8x 2

1
h2 [4ui,j - Ui+1,j - Ui-1,j - Ui,j+1 - Ui,j-1] (3.9)

+- __ i_,J + __ i_,J + h 2
[84

u · · 84
U · ·]

24 8x4 8y4

14 CHAPTER 3. DISCRETIZATION OF AN ELLIPTIC PDE

Dropping terms involving h2 and higher orders of hand substituting the right hand

side of (3.9) into (3.1) we obtain a discrete analog of Poisson's equation

4ui,j - Ui+1,j - Ui-1,j - Ui,j+t - Ui,j-1 h2f·.
i,J (3.10)

with the associated boundary conditions

Ui O = (pi 0 for 0 < i < n, , ,

Ui n = (pin for 0 < i < n,
' '

Uo,j = c/Jo,j for 0 < j < n, and

Un,j = <Pn,j for 0 < j < n.

Such a discrete analog of a differential equation is called a finite difference equation.

3.2. MATRIX FORM OF A DIFFER.ENCE EQUATION 15

3.2 Matrix Form of a Difference Equation

From (3.10) and (3.11), we obtain a system of (n-1)2 linear equations, one equation

for each grid point in G. Expressed in matrix form we have

(3.11)

where

B -I

-I B -I

A= (3.12)

-I B -I

-I B

is an (n-1)2 x (n-1)2 matrix,

4 -1 1

-1 4 -1 1

B= and I=

-1 4 -1 1

-1 4 1

16 CHAPTER 3. DISCRETIZATION OF AN ELLIPTIC PDE

are (n - 1) x (n - 1) matrices, where I is an identity matrix.

U= and f =

are (n - 1) x (n - l) component vectors, where

Ui,l

Ui,2

each Ui = and each fi =

Ui,n-1

are (n - 1) component vectors. Each ui and fi correspond to the values of u and f

associated with the ith column of the grid G.

h=

is an (n - 1) x (n - 1) component vector which represents the boundary conditions

3.2. MATRIX FORM OF A DIFFERENCE EQUATION

of the problem, with each bi an (n - 1) component vector, where

</>0,1 + </>1,0

</>0,2

<Po,3

</>o,n-2

</>o,n-1 + </>1,n

and, for i = 2, ... , n - 2,

0

0

0

<f>n-1,0 + </>n,1

<Pn,2

</>n,3

<Pn,n-2

<Pn,n-1 + <Pn-1,n

17

Chapter 4

Methods For Solving Difference

Equations

4.1 Direct vs. Iterative Methods

In solving a matrix equation

Ax =c, (4.1)

where A is an n x n nonsingular matrix and c E ~n, there are two general classifi­

cations of methods.

The first type of method, a direct method, is most often used when the matrix

A is dense, that is, when the components of A are mostly nonzero.

18

4.1. DIRECT VS. ITERATIVE METHODS

A direct method yields a solution in a fixed number of steps, assuming computa­

tions without roundoff errors. The basic method of this type is Gaussian Elimina­

tion. Roughly speaking, this is the method of solving a system of linear equations

by successively eliminating unknowns by judiciously adding multiples of one row to

another. It is such an approach a student is usually introduced to when they see

matrices for the first time. More specifically, by a sequence of adding multiples of

one equation to another, system (4.1) is reduced to an equivalent upper triangular

system

Ux=g, (4.2)

where U is an upper triangular matrix. System (4.2) can then be easily solved by a

simple process called back substitution. For further elaboration on this method see

Stoer and Bulirsch's book [5].

When using a direct method the matrix A must generally be stored in the main

memory of the computer in order to efficiently solve the system. Hence, memory

storage limitation is a significant factor to consider when attempting to solve a large

problem using such a method.

Among the problems usually considered too large for a direct method are the

matrix problems that result from the discretization of partial differential equations.

For example, consider equation (3.10) and its matrix form (3.11). \Vith a uniform

grid spacing of h = 6
1
4 , the number of elements of the grid G is 632 = 3969. That is

20 CHAPTER 4. METHODS FOR SOLVING DIFFERENCE EQUATIONS

matrix equation (3.11) is a system of 3969 equations. Thus the number coefficients

in the associated matrix A is 39692 = 15,752,961.

The second type of method, an iterative method, is most useful when the ma­

trix A is sparse, that is, when the components of A are mostly zero, and when the

nonzero coefficients form a special pattern making it possible, by using a simple for­

mula, to generate the coefficients of A as they are needed. Fortunately, the numerical

solution of a partial differential equation meets both of these conditions. Consider

the previous example of the system where the matrix A contained 15, 752, 961 coef­

ficients. Only 19595 of these coefficients are nonzero, the other 15,733,366 are zero.

That is, approximately 99.9 percent of the coefficients are zero. Also the matrix

A is completely characterized by equation (3.10), a relatively simple equation, of

the previous chapter. The fact that A meets these two conditions eliminates what

would otherwise mean a prohibitive use of storage space in main memory.

An iterative method to solve equation (4.1) begins with an initial approxima­

tion x(0) to the solution x, and generates a sequence of vectors { x(k)} k=:o which

converge to x. Most iterative methods involves converting the system Ax = c into

an equivalent system of the form

x = Tx + d. (4.3)

After selection the initial approximation x(0), the sequence of approximate solutions

4.2. THE JACOBI AND GAUSS-SEIDEL METHODS 21

is generated by

(4.4)

In the next section we will introduce two classical iterative methods, the Jacobi

method and the Gauss-Seidel method. It is the Gauss-Seidel method that we will

use as a basic building block for the more sophisticated iterative methods that we

be discussing in later chapters.

4.2 The Jacobi and Gauss-Seidel Methods

The Jacobi iterative method consists of solving the ith equation in Ax = c for Xi,

to obtain

1 (i-1 n)
x· - - - '°"'a··x· - '°"' a··x· + c· t - L- tJ J L- tJ J t

aii j=l j=i+1

(4.5)

for each i = 1, ... , n,

and then generating each x!k+l) from x!k) for k ~ 0 by

(4.6)

for each i = 1, ... , n.

The Jacobi method can be expressed in the matrix form, x(k+l) = Tx(k) + d, by

splitting the matrix A into a diagonal part, D, a strictly lower triangular part, L,

and a strictly upper triangular part, U. Thus we have

Ax=(D-L-U)x=c, (4.7)

22 CHAPTER 4. METHODS FOR SOLVING DIFFERENCE EQUATIONS

which can be rewritten as

X = n-1 (L + U)x + n-1c. (4.8)

This leads us to the Jacobi method expressed in matrix form

(4.0)

The Gauss-Seidel iterative method offers a potential improvement over the Ja­

cobi method. In the Jacobi method, to compute xik+l), for each i > 1, the com­

ponents of x(k) are used. Since x~k+l), ... , xtt1
) have already been computed and

are supposedly a better approximation to the actual solutions, x 1 , ... , Xi-I than

x~k), ... , x~~\, it seems reasonable to compute xik+I) using these most recently calcu-

lated values. This gives us

(4.10)

which can be expressed in matrix form as

(4.11)

4.3 Convergence of Iterative Methods

To be of any use an iterative method must generate a sequence of approximations

that converges. In this section, we will briefly discuss the convergence of iterative

methods and their associated convergence rates. Most of this material has been

4.3. CONVERGENCE OF ITERATIVE lvIETHODS 23

condensed from the work by Varga [2]. For a more complete presentation see this

reference.

To begin we first define

e(k) = x(k) - x, for k 2:: 0, (4.12)

where e(k) is the error associated with x(k). In order to have convergence we want

lim e(k) = 0.
k-oo

(4.13)

Subtracting (4.3) from (4.4) we obtain

(4.14)

From here, by induction, we obtain

(4.15)

Hence, convergence will always occur, using this iterative method, if

lim Tk e(o) = 0,
k-oo

(4.16)

for any e(0
). This will occur if and only if

lim Tk = 0,
k-.oo

(4.17)

where O is the n x n zero matrix. If equation (4.17) holds for some matrix T we

say that T converges. If T represents an iterative method then we also say that the

iterative method converges.

Before proceeding further some definitions are required.

24 CHAPTER 4. METHODS FOR SOLVING DIFFERENCE EQUATIONS

definition 4.1 A vector norm on ?Rn is a function, II · II, from ?Rn into ?R such that

i) ll XII~ 0 for all XE ?Rn,

ii) 11 x ll= 0 if and only if x=O,

iii) II ax II= lal II x 11 for all a E ?R and x E ?Rn,

iv) II X +y ll~II XII+ II Y II for all x, YE ?Rn.

example 4.la: Let x E ?Rn. Then

is called the Euclidean or 12 norm of x.

example 4.lb: Let x E ?Rn. Then

11 x 11 oo = max { Ix i I : i = 1, 2, ... , n}

is called the 100 norm of x.

(4.18)

(4.19)

definition 4.2 Let T be an n x n matrix and II · II a vector norm on ?Rn. Then

{ II Tx ll n } II T II= sup II x II : x E ?R and x -/= 0 (4.20)

is called the induced matrix norm of T, relative to II · II-

definition 4.3 Let T be an n x n matrix with eigenvalues Ai, 1 ~ i ~ n. Then

p(T) = max { I Ai I : 1 ~ i ~ n} (4.21)

is called the spectral radius of T.

4.3. CONVEHGENCE OF ITERATIV£ M£'1'1IODS

We present, without proof, the following

Theorem 4.1 If T is an n x n complex matrix then

lim Tk = 0 if and only if p(T) < 1.
k-HX!

•) r-:
~J

(4.22)

So, the spectral radius gives us a useful criterion for determining if an iterative

method con verges.

The relationship between the induced matrix norm and the spectral radius of a

matrix T is expressed in the following

Theorem 4.2 If T is an n x n complex matrix then

p(T) ::; II T II . (4.23)

Therefore, if II T II< 1 the iterative method represented by T converges.

We now wish to briefly discuss methods for estimating the rate at which an

iterative method converges. Taking norms of both sides of equation (4.14) we have

11 e(k+l) 11 II Te(k) II

< 11 T 11 · 11 e (k) 11, for all k ~ 0.

If e<k) # 0 then we have the following

definition 4.4

is called a convergence factor for T.

II e(k+i) II
II e(k) II

(4.24)

(4.25)

26 CHAPTER 4. METHODS FOR SOLVING DIFFERENCE EQUATIONS

This factor is a measurement of the rate at which the error is being reduced 011

the kth iteration of the iterative process represented by T. II T II, being an upper

bound for this factor for all e and all k ~ 0, is often used to approximate the rate

at which the associated method converges. Another upper bound frequently used

for this purpose is the spectral radius, p(T). Furthermore, the closer II T II or p(T)

is to 1 the slower the method, while the closer II T I! or p(T) is to 0, the faster the

method.

As a representative example consider Poisson's equation on the unit square with

zero boundary conditions, that is

~ U = - f on n = (0, 1) X (0, 1) (4.26)

u = 0 on I'= boundary (n).

As a finite difference equation we will obtain

(4.27)

for O < i, j < n, with associated boundary conditions

Ui,O = Ui,n = Uo,j = Un,j = 0 (4.28)

for O < i, j < n, where h = l/n is the grid spacing. We can rewrite (4.27) as

(4.29)

4.3. CONVERGENCE OF ITERATIVE METHODS 27

This gives us the Jacobi iterative formula

(k+l) - 1 ((k) (k) (k) (k)) 1 2
ui,j - 4 ui+I,j + ui-l,j + ui,j+I + ui,j-l + 4h fi,j, (4.30)

which can expressed in matrix form as

(4.31)

We now will find the spectral radius of the matrix T. First, we will find a

complete set of eigenvalues for T. To determine an eigenvalue ,\ of T, we want an

(n - l) x (n - l) component vector v and a scalar ,\, such that

Tv = ,\v. (4.32)

This will be accomplished if we find v and ,\ such that

(4.33)

for O < i, j < n, and

Vi,O = Vi,n = Vo,j = Vn,j = Q (4.34)

for O < i,j < n. The conditions imposed by (4.33) and (4.34) are met if

. .
. p1rz . q1rJ

Vi · = sin - · sm -
'
1 n n

(4.35)

and

1 (prr q1r) A=- cos-+cos-,
2 n n

(4.36)

28 CHAPTER 4. METHODS FOR SOLVING DIFFERENCE EQUATIONS

where O < p, q < n. The maximum IAI occurs when p = q = l. Hence, we have

1 (1 · 7r 1 · 7T') p(T) = - cos -- + cos --
2 n n

and the iterative method converges.

7T'
=cos-< 1,

n
(4.37)

In a similar fashion one can examine the Gauss-Seidel method, which has a

matrix representation S = (D - L)-1 U. Here we wish to solve

Sw = µw. (4.38)

From here we obtain

(4.39)

and

2 1 (p7r q'lT') 2 µ=A=- cos-+cos- ,
4 n n

(4.40)

where O < p, q < n. The maximum lµI occurs when p = q = l. Hence, we have

1(1·7T' 1·7T')
2

7T' p(S) = - cos -- + cos -- = cos2
- < 1,

4 n n n
(4.41)

and this method also converges. Note however that p(S) < p(T) so the Jacobi

method must converge more slowly than the Gauss-Seidel method.

It is of interest to note that the larger n the closer the spectral radius of either

method is to 1. This means that the more accurate the discretization (i.e. the finer

the grid) the slower these two iterative methods converge.

4.3. CONVERGENCE OF ITERATIVE METHODS

It is also of interest that the spectral radius, is not always the best (i.e. smallest)

bound on the convergence factor.

To demonstrate this we return to equation (4.14) where, expanding e(k) as a

linear combination of the set V of eigenvectors, we obtain

T(L amvm)
VmEV

L amTVm

VmEV

L amAmVm

VmEV

Taking norms of both sides

So, we have

lle(k+l)II < llmax {l.-\ml: am=/: O} · e(k)I!

max{l.-\ml: am=/: O} · lle(k)II

(4.42)

(4.43)

(4.44)

Two observations are pertinent at this point. First of all, notice that the conver-

gence factor, and the resulting rate of convergence, is determined by the eigenvector

30 CHAPTER 4. METHODS FOR SOLVING DIFFERENCE EQUATIONS

components that make up e(k). Secondly, and more importantly for this thesis, for

any error vector e(k), different eigenvector components arc reduced at different rates.

For example, using the Jacobi method with n = 64, the eigenvector

. l7ri . 371" j
v· · = Sln - · Sln -

i,J 64 64 (4.45)

has a bound on its associated convergence factor of

A=- cos-+cos- ~0.994 1 (171" 371")
2 64 64

(4.46)

On the other hand, the eigenvector

. 297ri . 317l"j
v· ·=sin--· s1n--

1'1 64 64 (4.47)

has a bound on its associated convergence factor of

,\ = - cos - + cos - ~ 0.098 1 (2971" 3171")
2 64 64

(4.48)

Hence, one component is reduced significantly faster than the other. The multigrid

method, which is discussed in the next chapter, capitalizes on this very idea.

Chapter 5

A Sequential Multigrid Method

We have noted that the error at any step of an iterative method can be expressed

as a linear combination of eigenvectors. A difficulty associated with methods such

as the Gauss-Seidel and Jacobi methods is that certain eigenvector components of

this error are reduced at a significantly slower rate than other components. This

problem, demonstrated at the end of the previous chapter, results in an overall

slow rate of convergence for the method. The multigrid method, presented in this

chapter, augments a basic method, such as Gauss-Seidel or Jacobi, and alleviates

this problem.

31

32 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

5.1 Residual Correction Iterative Methods

In this section we introduce the basic idea of multigrid methods. We begin with

a discretized form of an elliptic partial differential on a grid Gh with uniform grid

spacing h,

(5.1)

We assume that fh incorporates both the right hand side of the difference equation

as well as the boundary conditions.

Before discussing the multigrid method we will introduce the more general idea

of a residual correction iterative methodology. Let u~k) be an approximation to the

solution uh of equation 5.1, obtained on the kth iteration of some iterative method.

The error et) associated with·uik) is given by

e(k) - u - u(k)
h - h h . (5.2)

The residual r~k) of u~k) is defined as

(5.3)

Notice that solving for eik) in the residual equation is equivalent to solving for uh

in the original equation (5.1), since

U - u(k) + e(k)
h - h h . (5.4)

Many iterative methods can be expressed in terms of approximations to the

residual equation. In these cases the ma.t.rix Ah is replaced by au approximation

5.1. RESIDUAL CORRECTION ITERATIVE METHODS 33

Ah such that A;;1 exists and the product of A;;1 and an arbitrary vector is easy to

compute. The solution e~k) of

(5.5)

yields a new approximation

(5.6)

to the solution of the original equation (5.1). Such a method as described above is

called a residual correction iterative method.

Expanding (5.6) we obtain

(5.7)

(k) + A- -1 (k)
uh h rh

(k) + A--1(f A (k)) uh h h - huh

(k) + A--1r A--1A (k)
uh h h - h uh

Hence, the matrix representing this iterative method is h - .. 4.;; 1 Ah and the error

associated with the method is

with a convergence factor

(k+i) - (I A--1A) (k)
eh - h - h h eh ,

II e~k+l) 11

11 e~k) II

< II h - A;; 1 Ah II .

(5.8)

(5.9)

34 CHAPTER 5. A SEQUENTIAL MULTIGR.ID METHOD

5.2 A Coarse Grid Residual Correction Scheme

In this section we introduce the simplest form of a multigrid method, a two-grid

method. In this method we use a second grid G 2h in addition to Ch. G 2 h has a

grid spacing twice the size as that of G h. Other sizes for grid spacing on the coarse

grid are possible but we have chosen the most convenient. Using this metho<l, the

correction term e~k) is obtained by solving the residual equation on G2h. That is,

we solve

(5.10)

where A2h is an appropriate coarse grid approximation to Ah, and e~~ and r~7/ are

coarse grid approximations to e~k) and r~k) respectively.

In order to move between grids we need two transfer operators

(5.11)

and

(5.12)

Ilh is used to restrict r~k) to G 2h, that is,

I 2h (k) (k)
h rh = r2h, (5.13)

and I;h is used to interpolate the correction term e1~ to Gh, that is,

I h -(k) -(k)
2he2h = eh · (5.14)

5.2. A COARSE GRID RESIDUAL CORRECTION SCHENIE 35

One iteration step can be summarized by the following sequence of steps:

2. transfer the residual to the coarse grid G2h: r~~ = Jlhrt),

3. solve the residual equation on G 2h: e~~ = A2lr~~,

5. compute new approximation: u1k+l) = u1k) + e1k).

So we have

(5.15)

(k) + Ih A--1 (k)
uh 2h 2h r2h

U (k) + Ih A--112h(f - A u(k))
h 2h 2h h h h h

u<k) Ih A--112h A u(k) + Ih .4-112hf
h - 2h 2h h h h 2h 2h h h

Thus we see that the iteration matrix for coarse grid correction is given by

(k+1) T (k)
eh = eh ' (5.16)

36 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

and the associated convergence factor is

II e~k+i) II
II e~k) II < II TII • (5.17)

A problem exists, however, with this method used alone. There can exist vh E

Gh such that ItiAhvh = 0. Hence Tvh = vh. So, we have II T 112:: 1 and the coarse

grid correction method does not converge. The difficulty lies in the fact that the

residual equation on the coarse grid

(5.18)

is not a good enough approximation to the residual equation on the fine grid

(5.19)

In particular, the problem is that certain components of e}.k) cannot be accurately

enough represented on the coarse grid G21i.

\Ve can be observe this by considering a case where Gh is a 64 x 64 grid, G21i is

a 32 x 32 grid, and e~k) is expressed as a linear combination of terms of the form

sin p1rih · sin q1r j h, (5.20)

where p and q are integers such that -32 < p, q < 32. That is,

31 31

e~k) = L L Cpq sin p1rih · sin q1rj h. (5.21)
p=-31 q=-31

Note that 011 grid G2h the only cmupoucuts of etk) wltich arc visible arc those such

that -16 < p, q < 16. The other components arc not visible. This phenomena is

5.3. SMOOTHING THE HIGH FREQUENCY ERROR 37

explained by Shannon's Theorem [6], the fundamental theorem of signal processing,

which tells us that the only terms that will be visible on a given grid will be those

that that contain only frequencies (p and q) that are less than one-half the frequency

n of the grid spacing.

Components of e~k) such that -16 < p, q < 16 are referred to as low frequency or

smooth error. Components outside this region, -32 < p, q ::;; -16 or 16 ::; p, q < 32,

are referred to as high frequency error. Hence, e~k) can be well approximated on a

grid G2 h only if it is primarily composed of smooth error, that is, its high frequency

components are small compared to its low frequency components.

5.3 Smoothing the High Frequency Error

A multigrid method uses coarse grid correction by first reducing the high frequency

error components. This is referred to as smoothing the error. Only after the error

has been smoothed is a coarse grid correction scheme performed.

It so happens that many iterative methods, such as the Gauss-Seidel and the

Jacobi methods, have the characteristic that they reduce high frequency error very

efficiently, in fact, much more efficiently than they reduce low frequency error. This

fact was demonstrated in the example at the end of the last chapter for the Jaco bi

method. In this example we saw that a high frequency term, where p == 29 and

q == 31, had an associated convergence factor of 0.098 while a low frequency term,

38 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

T--

Figure 5.1: low frequency

where p = 1 and q = 3, had an associated convergence factor of 0.994. As a further

illustration of this fact see the figures included in this chapter. In each figure we

show two graphs of cross sections of error terms on a 64 x 64 grid. Each cross

section is taken at i = 32. The higher and lower amplitude graphs represent the

same error term before and after three iterations of the Gauss-Seidel method. Figure

5.1 represents the effect of Gauss-Seidel method on low frequency error terms. The

higher amplitude graph represents

e = sin(171"ih) · sin(371"jh), (5.22)

while the lower amplitude graph represents

5 3
e = S3 (sin(l1rih) · sin(31rjh)], (5.23)

5.3. SMOOTHING THE HIGH FREQUENCY ERROR 39

Figure 5.2: high frequency

where S is the matrix representing one iteration of the Gauss-Seidel method and

h = 6\. Similarly, figure 5.2 represents the effect on high frequency error terms.

Here we have

e = sin(297rih) · sin(3l 7r j h) (5.24)

and

S3e = S3 (sin(297rih) · sin(3171" j h)] . (5.25)

Figure 5.3 shows the effect on a combination of two frequencies, where

e == sin(l7rih) · sin(31r j h) + sin(297rih) · sin(311r j h) (5.26)

and

S3e = S3 (sin(l 7rih) · sin(31r j h) + sin(291rih) · sin(3l 7rj h)]. (5.27)

40 CHAPTER ,5. A SEQUENTIAL MULTIGRID METHOD

Figure 5.3: mixed frequencies

Notice in these figures how significantly the higher frequency error is reduced with

only 3 iterations of the Gauss-Seidel method while the lower frequency error is

hardly affected.

5.4 Increasing the Convergence Rate For Lower

Frequencies

After reducing or ;Jmoothing the high frequency error, the remaining error can then

be transferred to the coarser grid. This transfer is now effective since the remaining

error is of low frequency and can reasonably be approximated on the coarser grid.

5.5. A TWO-GRID MULTIGRID METHOD 41

Moreover, transferring the low frequency error to the coarser grid has the desired

effect of increasing its frequency relative to the coarser grid. This makes the re­

maining error conveniently susceptible to further reduction using a method such as

Gauss-Seidel or Jacobi on the coarser grid.

5.5 A Two-Grid Multigrid Method

A basic two-grid multigrid method begins with the choice of the two grids to be

used. In the results presented in this section we have used a 64 x 64 and a 32 x 32

grid. As a model problem, for this algorithm and those to follow we are usmg

Example 4.3.1, that is we wish to solve Poisson's equation

6 U = - f on !1 = (0, 1) X (0, 1)

u = </> on r = boundary(n).

(5.28)

We first obtain a discretization of the problem on the fine grid, which we will express

as,

(5.29)

where h =
6
1
4

• We then proceed with the algorithm as follows:

42

ALGORITHM 5.1

(A Two-Grid Method)

step i:

CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

Set the iteration counter k at 0.

Guess u~o) as an approximation to uh.

step ii:

Repeat until 11 ut) - uh II ~ c, for some iteration k and some error tolerance c:

- Perform three Gauss-Seidel sweeps on Ahu~k) == fh.

- Transfer the residual to the coarse grid: r~~ == rrr~k).

We use injection for transferring the residual from the fine to the coarse grid.

- Approximate the solution to the coarse grid residual equation: A2he~~ = r~~.

This yields us e~~, a good approximation to e~~. We accomplish this with 30

iterations of Gauss-Seidel, using an initial guess e~t) = 0.

- Transfer the error term to the fine grid: e~k) = Ith et~.

We use bilinear interpolation to transfer the error term from the coarse to the

fine grid.

- Compute new approximation: u~k+i) = u~k) + e~k).

- Increment the iteration counter k.

5.G. A FULL MULTIGRID METHOD

step iii:

Perform three Gauss-Seidel sweeps on Ahuik) == fh.

This smooths out any high frequency error introduced on the final iteration by

the interpolation operator. D

One iteration of the multigrid method is called a V-cycle. If S is the matrix

representing one iteration of the basic smoothing iterative method then the matrix

representing one iteration (i.e. one V-cycle) of the two-grid multigrid method is

given by

S 12(I Jh A--1 12hA)S11
h h - 2h 2h h h h , (5.30)

where l1 and l2 are the numbers of iterations of the smoothing iterative method

that are applied before and after the coarse grid correction process. So, in matrix

form the algorithm can be expressed as

(5.31)

5.6 A Full Multigrid Method

A full multigrid method is a simple extension of the basic method. The idea is that

in solving the problem on the coarse level an even coarser level can be used. In fact,

an entire hierarchy of different size grids can be used.

44 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

One V-cycle for a full multigrid method can be defined recursively by

(5.32)

and

(5.33)

where p denotes the pth finest level and if q is the finest level then

(5.34)

We present an example of a three-grid multigrid method. Here the coarse grid

residual equation:

(k) (k)
A2he2h = r2h, (5.35)

is solved by computing the residual of this residual equation and transferring it to

an even coarser grid (a 16 x 16 grid). We use a slightly different notation to assist

us in explaining this method. We use rJ~) rather than r~~ to represent the first

residual computed on grid G2h. Similarly, we use u~~ rather than e~~ to represent

the error on grid G2h. We use r!!) to represent the second residual (ie. the residual

of the residual) computed on grid G4h. Similarly, we use ui~ to represent the error

on grid G4h· We then proceed with the algorithm as follows:

5.6. A FULL MULTIGRID METHOD

ALGORITHM 5.2

(A Three-Grid Method)

step i:

Set the iteration counter k at 0.

Guess ui0) as an approximation to uh.

step ii:

Repeat until llutk) - uhll :Sc, for some iteration k and some error tolerance c:

- Perform three Gauss-Seidel sweeps on Ah u~k) = fh.

45

- Perform three Gauss-Seidel sweeps on A 2hu~t) = rJZ), with initial guess ii~~ = 0.

C f (k) J4h (k) - ompute 4h = 2hr2h.

- Perform 30 Gauss-Seidel sweeps on A 4hui7! = rJ!l, with initial guess ui~ = 0.

C (k) (k) J2h (k)
- orrect U2h = U2h + 4h u4h .

- Perform three Gauss-Seidel sweeps on A 2h u~~ = rJZ), with initial guess fI~~.

- Correct u(k) - u(k) + Jh u(k)
h - h 2h 2h ·

- Increment the iteration counter k.

step iii:

Perform three Gauss-Seidel sweeps on Ahu~k) = fh. D

46 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

Table 5.1 at the end of this chapter shows some actual results using algorithms

5.1 and 5.2. For a comparison we also show results using a simple Gauss-Seidel

method. The stopping criteria we use is II u~k) - uh II~ c = 10-6
• In the table, k is

the number of iterations, and t is the cpu time in seconds.

For solving our model problem we see the speed of execution, relative to the

Gauss-Seidel method, increase by factors of ~~\0 = 2.9 and 1
4
6
1\

0 = 4.0 for algo­

rithms 5.1 and 5.2 respectively. There are two factors contributing to this improved

performance. First of all, as we have already discussed, when the problem is trans­

ferred to a coarser grid the lower frequency components of the error are increased,

relative to the coarser grid, resulting in an improved convergence rate for those

components. Secondly, a significant amount of the work of the multigrid algorithms

is performed on the coarser grids in executing Gauss-Seidel iterations for residual

equations.. Relative to the work required to perform a Gauss-Seidel iteration on

the fine grid Gh, a Gauss-Seidel iteration on G 2h requires only i of the work and

on G4h only /6 of the work.

Though initial studies introducing and investigating multigrid methods are cred­

ited to Fedorenka (7, 8] in 1962-64 and Bakvalow [9] in 1966, the recognition of the

efficiency and potential power of multigrid methods is due to A. Brandt [10] in 1976.

Since Brandt's original paper, multigrid methods have gradually become recognized

5.6. A FULL MULTIGRID METHOD 47

as offering significant possibilities in the area of numerical methods for partial differ­

ential equations [11]. For an introduction to multigrid methods the book by Briggs

[12] is very good. For a more complete treatment see the article by Stuben and

Trottenburg [11].

48 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD

Table 5.1: Sequential Multigrid and Gauss-Seidel Methods

method k t

Gauss-Seidel 6250 164

Algorithm 5.1 209 58.3

Algorithm 5.2 239 41

Chapter 6

A Parallel Domain Decomposition

Method

In the previous chapter we introduced an essentially sequential method that uti­

lized multiple grids in order to accelerate the convergence of a basic iterative method

(such as the Gauss-Seidel method). In this chapter we take a different approach

while continuing to use the same basic iterative method. Here, rather than attempt­

ing to increase the rate of convergence we break the problem up into a number of

subproblems and solve the subproblems simultaneously on multiple processors. In

this case, the convergence rate is not improved yet the execution speed is decreased

due to the use of multiprocessing.

49

50 CHAPTER 6. A PARALLEL DOMAIN DECO!vlPOSITION METHOD

A numerical parallel Schwarz method is an iterative method which involves de­

composing the domain over which a partial differential equation is to be solved into

multiple overlapping subdomains. The subdomains are then distributed over mul­

tiple processors. Then, using a standard iterative method, each processor works to

solve a smaller version of the original problem for the specific subdomains to which

that processor has been assigned. The processors work in parallel. Information ex­

changes between any two processors are primarily restricted to subdomain boundary

value approximations for the overlapping regions of their respective subdomains.

6.1 The Schwarz Alternating Principle

A nonparallel form of this domain decomposition method was originally proposed

in the 1860's by H. A. Schwarz for solving the Dirichlet problem for harmonic

functions [13]. In 1890, Picard, who called the method the "Schwarz Alternating

Procedure," used it to solve a nonlinear elliptic partial differential equation [14]. A

good description of the Schwarz alternating procedure can be found in the book by

Kantorovich and Krylow [15]. Numerical analogs to this method were developed by

K. Miller [16]. The suitability of variants of the method as parallel algorithms has

been explored in recent years by Kang [17] and Rodrigue and Simon [18, 19].

We will now introduce the sequential Schwarz alternating procedure, using two

6.1. THE SCHWARZ ALTERNATING PRINCIPLE 51

subdomains, to solve Poisson's equation

~U = -f on n = (0,1) X (0,1) (6.1)

u = <I> on r = boundary(n).

We begin by partitioning the domain n into two overlapping subdomains !11 and

will include part of the original boundary, ri n r, as well as a new part, called

a p3eudo-boundary, ri - r. See the figure below. Next, we solve the problem on

n2
r,,----~...._-........ ,

\. ___ 'yr ____ ,/

n1

Figure 6.1: n = n1 u n2 = (0, 1) X (0, 1)

subdomain n1 , using a guess '11 for the solution on the pseudo-boundary, r 1 - r. We

then solve the problem on subdomain n2 , using values we obtained in solving the

52 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION IvIETHOD

subdomain n1 problem as the boundary values on pseudo-boundary, r 2 - r. From

there we go back to subdomain f21 and solve the problem using updated values

for the pseudo-boundary r 1 - r, obtained from subclomain n2 . We continue to

alternate between the two subdomains in such a manner until the approximation is

close enough for our needs.

The algorithm can be described as follows:

ALGORITHM 6.1

(A Sequential Method Using Two Sub domains)

step i:

Divide domain n into two subdomains n1 and n2 , as described previously.

step ii:

step iii:

Initialize iteration counter k to 1.

Solve

u~k) cp on r 1 n r

(6.2)

G.l. THE SCHWAHZ ALT£UNATING I'IUNCIPLE 53

Then solve

(6.3)

u~k) cp on r 2 n r

step iv:

Repeat until llu~k) - ull S c on !11 and llu~k) - ull S c on !12 , for some iteration k

and some error tolerance c.

k=k+l.

Solve

Then solve

/}.·u (k)
2

u~k) cp on f 2 n f

(6.4)

(6.5)

54 CHAPTER 6. A PARALLEL DO!vIAIN DECOMPOSITION METHOD

step v:

L t - (k) n n d - (k) n e u = u 1 on H-1 - H-2 an u = u 2 on H 2 . D

Then llu - ull < c so u is a suitable approximation to 1t.

6.2 A Parallel Schwarz Method

Because of the dependency that the solution on one subdomain of Algorithm 6.1

has on the previous solution of the other subdomain, this algorithm is inherently

sequential. By breaking the domain into more than two subdomains we can use a

similar scheme and obtain a parallel method. The first parallel method we consider

uses 4 subdomains and 2 processors. See figure below.

6.2. A PARALLEL SCHWARZ METHOD

Figure 6.2: f2 = ut=l ni = (0, 1) x (0, 1)

The algorithm can be described as follows:

ALGORITHM 6.2

(A Parallel Method Using Four Subdomains and Two Processors)

step i:

Define two sequences of real numbers,

such that

55

(6.6)

56 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION METHOD

Then define

(6.8)

step ii:

Guess Ut = 'lPt on r1 - r,

and U3 == 'tp3 on I'3 - I'.

step iii:

Initialize iteration counter k to 1.

Solve

(6.9)

U ~ k) q> on I' 1 n r

on processor 1, while solving

(6.10)

(k)
U3 q> on r3 n r

on processor 2.

Then solve

(6.11)

6.2. A PARALLEL SCHWARZ METHOD 57

u~k) qJ on r 2 n r

on processor 1, while solving

(6.12)

on processor 2.

step iv:

Repeat until llui - ull ::; c on ni, for i = 1, 2, 3, 4, for any iteration k and for some

error tolerance c.

k=k+l.

Solve

(6.13)

u~k) q> on r I n r

on processor 1, while solving

(6.14)

58 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION METHOD

u~k) ¢ on r 3 n r

on processor 2.

Then solve

(6.15)

u~k) ¢ on r 2 n f

on processor 1, while solving

(6.lG)

on processor 2.

step v:

6.2. A PARALLEL SCHWARZ METHOD 50

- (k) and U = u 4 on D4. 0

Then llu - ull < c so fi is a suitable approximation to u.

We can generalize Algorithm 6.2 and obtain a parallel method which uses 2n

subdomains and n processors.

This algorithm can be described as follows:

ALGORITHM 6.3

(A Parallel Method Using 2n Sub domains and n Processors)

step i:

Define two sequences of real numbers,

such that

Then define

Di= (xti,xrJ X (0,1), for i = 1,···,2n.

step ii:

(6.17)

(6.18)

(6.19)

Guess ui = 1Pi on ri - r, for i = 1, 3, ... , 2n -1 (ie. guess boundary values on pseudo

boundaries for odd regions).

60 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION METHOD

step iii:

Initialize iteration counter k to 1.

For i = 1, 3, ... , 2n - 1, solve (in parallel on all n processors)

~u(k)
z -! on n l (G.20)

(k)
<P on ri n r U·

l

(k) 7J,. on cnn. U·
? 'Z

Then, for i = 2,4, ... , 2n - 2, solve (in parallel on n-1 processors)

~11,~k) -! on ni (G.21)

(k)
<P on ri n r U· i

(k) (k-1)
on ri n ni-1 U· ui-I i

u~k) (k-1) on ri n ni+i, i 7.\+1

while also solving (on the nth processor), for i = 2n

(k)
~U2n -! on n2n (G.22)

(k)
U2n ¢ on r2n n r

(k)
U2n

(k-1)
U2n-1 on r2n n fl2n-l·

(Note: Pseudo boundaries for even regions do not require an initial guess.)

6.2. A PARALLEL SCHWARZ METHOD Gl

step iv:

Repeat until llui - ull ~ E on each ni, i == 1, 2, ... , 2n, for some iteration k and for

some error tolerance c.

k==k+l.

Solve

(6.23)

on one processor, while also solving (on the remaining n-1 processors) for

i == 3, 5, ... , 2n - 1

~u~k)
1 -f on n-1 (6.24)

(k)
1> on ri n r U· t

(k) (k-1) on ri n ni-1 U· ui-1 1

(k) (k-1) on ri n ni+i· U· ui+I 1

Then solve, for i = 2, 4, ... , 2n - 2, (on n-1 processors)

(6.25)

62 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION METHOD

(k)
U·

i

(k)
U· i

(k) r n
Ui+l On i n Hi+l,

while solving (on the nth processor)

u~~ q> on r 2n n r

(k) (k) r n
U2n U2n-1 on 2n n H2n-1 ·

step v:

Let u = uik) on ni for i = 2, 4, ... , 2n,

- (k) n n
U = U1 on Ht - ,H2,

Then llu - ull < c sou is a suitable approximation to u.

6.3 Numerical Schwarz, Methods

(G.26)

For a numerical implementation of these Schwarz methods, the differential equation

on each subdomain ni for each iteration k becomes a finite difference or matrix

equation (as presented in Chapter 3), where each snhdomain becomes a snhgrid.

Thus for each subdomain ni and iteration k we have a subg;rid Gi and an associated

6.3. NUMERICAL SCHWARZ METHODS G3

matrix equation

(6.27)

where Ai is the matrix associated with the ith subdomain ni, c~k) is a vector incorpo-

rating the values of fi from ni, the boundary conditions from the original problem

(6.1), and the pseudo-boundary conditions obtained from neighboring solutions,

and u~k) are solutions to equations (6.27).

Of course, numerically we do not solve for each u~k) exactly but rather obtain

an approximation. In the numerical algorithm we use we have incorporated the

Gauss-Seidel method to obtain an approximation u~k) for each ni and iteration k

of the parallel Schwarz process.

As an initial vector vJ0
) for the Gauss-Seidel process on ni at the kth iteration

of the Schwarz process, we use

V
(O) -
1 -

(0)
V· = i

(k-1) n n
Ui-1 On Hin Hi-1

(k-1) n n n
Ui+l on Hi Hi+l,

64 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION METHOD

for i = 3, 5, ... , 2n - 1,

(0)
V· = t

for i = 2, 4, 6, ... , 2n - 2, and

V
(O) -
2n -

(k-1) n n
U2n On H2n - H2n-1 ·

Table 6.1 shows some actual computational results using the numerical version

of algorithm 6.3. In this case we have used 16 subdomains on 8 processors. The

number of iterations of Gauss-Siedel taken on each subdomain to approximate each

respective subdomain problem is given bys and a is the number of columns of grid

points in the overlapping region between two adjacent subdomains. Once a.gain,

as a stopping criteria we used II u~k) - uh II:::; E = 10-5
. We experimented with

different values for s and a. Our best results were obtained using s = 1 and a = 4,

indicating that for this version of the parallel Schwarz method run on a shared

memory machine, the best results are obtained when a minimum number (ie. 1) of

Gauss-Seidel iterations are performed on each subdomain problem and the overlap

between adjacent subdomains is maximal.

6.3. NUMERICAL SCHWARZ METHODS G5

In all cases we see a marked improvement over the basic Gauss-Seidel method.

In particular, for s = l and a = 4 we see the speed of execution, again relative to

the Gauss-Seidel method, increase by a factor of \6
2\

0 = 7.4.

66 CHAPTER 6. A PARALLEL DOMAIN DECOMPOSITION METHOD

Table 6.1: A Parallel Schwarz Method

s = l s=3 s = 10 s = 20

k t k t k t k t

O'. = 0 6250 24.2 2250 25.6 1000 37.7 850 64

O'. = 2 4800 25.6 1700 26.8 550 28.8 350 36.6

O'. = 4 3250 22.2 1100 22.2 350 23.5 200 26.8

Chapter 7

A Parallel Multigrid Method

7.1 The Algorithm

In chapters 5 and 6 we have presented two methods, one sequential the other parallel,

that serve to enhance more basic iterative methods such as the Gauss-Seidel and

Jacobi methods. In this chapter, we introduce a further improvement by combining

the two-grid multigrid method and the parallel Schwarz method. The idea is to

take our two-grid sequential multigrid method and use the parallel Schwarz method

in place of the basic Gauss-Seidel method. The algorithm is as follows:

67

68 CHAPTER 7. A PARALLEL MULTIGRID METHOD

ALGORITHM 7.1

To solve

~u=-f on !1=(0,l)x(0,1)

u = q> on r,

we begin by discretizing the problem thus obtaining the matrix equation

We then proceed as follows:

step i:

Initialize iteration counter k to 0.

Guess u~o) as an approximation to uh.

step ii:

Repeat until 11 u~ - uh II :s; E, for some iteration k and some error tolerance E.

(7.1)

(7.2)

- Perform three parallel Schwarz iterations on Ahu~k) = fh (ie. this is algorithm

6.3 with k = 3). The method used on each subdomain is s iterations of the Gauss­

Seidel method.

- Compute the residual on the fine grid Ch: r~k) = fh - Ahu~k).

- Transfer the residual to the coarse grid G2h: r~J! = I1:hr~k).

- Perform thirty parallel Schwarz iterations on the coarse grid to obtain a good

7.1. THE ALGORITHM G9

approximation to the solution to the coarse grid residual equation

(7.3)

This yields e2h, a good approximation to e 2h.

- Transfer error term to the fine grid Gh: e~k) = Ithe~~-

- Compute new approximation: u~k+l) = u~k) + e~k).

- Increment the iteration counter k.

step iii:

Perform three final parallel Schwarz iterations on Ahu~k) = fh, as was done in step

ii. This reduces high frequency error introduced during the final interpolation. D

Table 7.1 shows some computational results using this algorithm. As with the

parallel Schwarz method of the previous chapter, the number of iterations of Gauss­

Siedel taken on each subdomain to approximate each respective subdomain problem

is given bys and a is the number of columns of grid points in the overlapping region

between two adjacent subdomains. Also, as before, as a stopping criteria we used

II u~k) - llh II::; c = 10-6
.

70 CHAPTER 7. A PARALLEL MULTIGRID METHOD

Table 7.1: A Parallel Multigrid Method

s = l s=3 s = 10 s = 20

k t k t k t k t

O:'. = 0 237 12.5 102 14.6 68 31.6 64 58.9

Q'. = 2 189 12.8 82 15.6 50 30.9 41 50.4

Q'. = 4 112 9.29 54 12.7 34 26.3 26 40.1

Chapter 8

Conclusion

In performing the research for this paper I explored two significantly different it­

erative algorithms, one essentially sequential and the other essentially parallel, for

solving elliptic partial differential equations. Both algorithms serve to significantly

enhance a more basic traditional method, in this case the Gauss-Seidel method.

The sequential multigrid method uses one or more coarser grids to accelerate

the convergence of a basic method such as Gauss-Seidel. The multigrid approach

is to address the problem, associated with the basic method, that low frequency

error components are reduced at a much slower rate than those of higher frequency.

By transferring these low frequency components to a coarser grid their frequencies,

relative to the coarser grid, are increased. Then the basic method can be employed

to more rapidly reduce this part of the error. The use of coarser grids is also helpful

71

72 CHAPTER 8. CONCLUSION

because the data representing the problem is significantly reduced on the coarser

grids making iterations of the basic method that much faster.

The parallel Schwarz method takes advantage of the fact that, in methods such

as Gauss-Seidel, the update of any grid point of Gh is independent of all but its

immediate neighboring grid points. Thus, using a machine such as the Alliant FX/8,

the workload can be judiciously distributed over multiple processors, realizing a

significant increase in the speed of execution.

I combined these two methods into the parallel multigrid method presented

in Algorithm 7.1. This algorithm capitalizes on both of the previous approaches.

The use of a coarser grid is used to improve the rate of convergence while multiple

processors are used to distribute the workload. Whereas, our best execution speeds,

relative to the speed of the Gauss-Seidel method, were 1
4~\

0 = 4.0 and 1
26;2° = 7.4

for the sequential multigrid and parallel Schwarz methods, respectively, the best

results using the combined method showed a relative speed of 1
9~ 9° = 17.6. As in

the pure parallel Schwarz method, the best results were obtained using s = 1 and

a= 4. Table 8.1 summarizes these results.

One may view the parallel multigrid method as a parallel enhancement of the

essentially sequential multigrid method or as a multigrid enhancement of a parallel

Schwarz method. It is not unusual to find a sequential method, which contains po­

tcntia1ly parallel sections of code, enhanced hy placin.c; it in a. parallel cuvirom1wnt.

73

What is unusual though is to find such a highly parallel method such as the Schwarz

method enhanced by placing it in an inherently sequential environment.

74 CHAPTER 8. CONCLUSION

Table 5.1: Relative Speeds of Execution

method time factor

Gauss-Seidel 164.0 1.0

sequential multigrid 41.0 4.0

parallel Schwarz 22.2 7.4

parallel multigrid 9.29 17.6

Bibliography

[1] T. Meis and U. Marcowitz, Numerical Solution of Partial Differential Equa­
tions, Springer-Verlag, New York, 1981.

[2] R. Varga, Matrix Iterative Analysis, Prentice-Hall,Inc., New Jersey, 1962.

[3] D. Young, Iterative Solutions of Large Linear Systems, Academic Press,Inc.,
New York, 1971.

[4] Alliant Computer Systems Corporation, PX/Series Product Summary, 1971.

[5] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag,
New York, 1980.

[6] A. Oppenheim and R. Schafer, Digital Signal Processing, Prentice Hall, New
Jersey, 1975.

[7] R. P. Fedorenko, A relaxation method for solving elliptic difference equations,
U .S.S.R. Comp. Math. and Math. Physics, 1 no. 5, 1962.

[8] R. P. Fedorenko, The speed of convergence of an iterative process, U.S.S.R.
Comp. Math. and Math. Physics, 4 no. 3, 1964.

[9] N. S. Bakhvalow, On the convergence of a relaxation method with natural con­
straints on the elliptic operator, U .S.S.R. Comp. Math. and Math. Physics, 6

no. 5, 1966.

[10] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Mathe­
matics of Computation, Volume 31, No. 138, April 1977.

[11] K. Stuben and U. Trottenberg, Multigrid methods: fundamental algorithms,
model problem analysis and applications, Multigrid Methods, Springer-Verlag,
Berlin, 1982.

[12] W. Briggs, A Multigrid Tutorial, SIAM, 1987.

75

76 BIBLIOGRAPHY

[13] H. A. Schwarz, Uber einen Grenzubergang durch alternirendes Verfahren, Ges.
Math. Abhandlungen, Bd. 1,Berlin, 1890.

[14] E. Picard, Memoir sur la theorie des equations S'llX derivees partielles et la
methode des approximations successive.'J, J. Math. Pures et Appl., ser. 4,6,
1980.

(15] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis,
P. Noordhoff, Ltd., Groningen, Nederlands, 1958.

[16] K. Miller, Numerical analogs to the Schwarz alternating proccd'llre, N umerischc
Mathematik 7, 1965.

[17] Kang Lishan, The Schwarz algorithm, Wuhan University Journal, 1981.

[18] G. Rodrigue and J. Simon, A generalization of the numerical Schwarz algo­
rithm, Proceedings of the 6th International Conference of Comp. Math. in
Appl. Sci. and Eng., INRIA, Dec. 1983.

[19) G. Rodrigue, Inner/outer iterative methods and numerical Schwarz algorithms,
Parallel Computing 2, North Holland, 1985.

