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Abstract 

This paper introduces a parallel multigrid method for solving elliptic partial dif­

ferential equations. This method combines two other methods, both of which arc 

popular methods under research today. One of the methods is a multigrid method, 

essentially a sequential method. The other is a parallel domain decomposition 

method, a variation on the Schwarz alternating procedure. 

Each method is explained individually, before the combined method is explained. 

The combined method is then compared to each of the individual methods, demon­

strating the superiority of the combined method over each of its parent methods. 

As a model problem Poisson's equation is used. 

The computer on which the various methods were tested is an Alliant FX/8, 

a shared memory multiprocessor machine having 8 processors which can be run 

simultaneously in executing parallel code. 
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Chapter 1 

Introduction 

Boundary value problems for elliptic partial differential equations are of major 

importance in computational physics and engineering. They occur, among other 

places, in the areas of fluid dynamics, electrodynamics, stationary heat and mass 

transport (diffusion), statics, and reactor physics ( neutron transport) [1). 

Most numerical methods for solving such problems involve a discretization of 

the problem using a finite-dimensional approximation space, followed by a numer­

ical procedure to solve ( or approximate) the resulting very large system of linear 

equations. 

Many of the methods that have been used to solve such large systems have been 

in existence even longer than computer technology ( eg. Jacobi, Gauss-Seidel, and 

successive over relaxation methods [2, 3) ). 

1 



2 CHAPTER 1. INTRODUCTION 

Since the inception of the computer, there have been enormous gains in the 

computational speed of large system solvers. These increases are due mainly to 

technological advances in electronic circuitry and component fabrication. Hardware 

performance increases, however, are physically limited by the speed of light, a factor 

which has caused a leveling off of gains in performance in recent. years. Furthermore, 

despite the development of faster circuits, even on today's fastest computers, solving 

very large systems can require hundreds of hours of CPU time. 

Two directions are currently being explored for potential solutions to this prob­

lem. The first involves the development of significantly new sequential algorithms 

running on traditional von Neumann single processor architectures. The second in­

volves the development of parallel numerical algorithms to be run on multiprocessor 

architectures. 

I have investigated both of these directions as part of the background research 

for my thesis. I have designed and implemented an algorithm that contains elements 

from both of these areas. I have restricted my attention to one principle algorithm 

from each area. The sequential algorithm I have been working with is a multigrid 

method. The parallel algorithm is a parallel domain decomposition method, a 

variation on the Schwarz alternating procedure. 

Both of these algorithms, as well as the combined algorithm, requires the use of 

one of the more basic iterative methods for solving a matrix equation. The basic 
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method I have used in each of the three algorithms is the Gauss-Seidel method. I 

also use the Gauss-Seidel method in comparing the relative efficiency of the three 

algorithms. 

All algorithms implemented for this thesis were developed and run on an Alliant 

FX/8 computer. 

1.1 The Alliant FX/8 

The Alliant FX/8 computer is a shared memory multiprocessor. The architecture 

of this system is represented in figure 1.1 [4]. The computational power of this 

system resides in the 8 computational elements ( CEs ). Each CE is a CMOS gate 

array implementation of a full scalar architecture, with additional hardware for 

IEEE floating point operations, vector operations, concurrency control, and virtual 

memory support. In vector mode, each CE executes floating point instructions at 

the peak rate of 11.8 million floating point operations per second (MFLOPS) for 

both single and double precision. All 8 CEs can be used concurrently to solve 

a single problem. Such a complex of 8 CEs can approach a performance level 

equal to 8 times the performance of a single CE for certain problems. Dedicated 

hardware on each CE is used to control the scheduling and synchronization of 

multiple CEs when used in a concurrent mode. There is also an expandable pool 

of interactive processors (IPs) that execute interactive user jobs and the operating 
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system. The IPs maintain system responsiveness and allow the CEs to concentrate 

on the computational-intensive portions of user applications. 
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CONCURRENCY 
CONTROL 
BUS 

Figure 1.1: The Alliant FX/8 
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Chapter 2 

Elliptic Partial Differential 

Equations 

2.1 Classification of Partial Differential Equations 

A partial differential equation (pde} is an equation 

F(x, y, ... , u, Ux, Uy, ... , Uxx, Uxy, ... ) = 0 (2.1) 

involving more than one independent variable x, y, ... , a function u of these variables, 

and the partial derivatives ux, uy, ... , Uxx, Uxy, ... of the function. The equation is 

is called linear if the unknown function and its partial derivatives appear, at most, 

to the first. dc~rcc. The order of the equation is the onln of the partial d<~rivativc 

of highest order appearing in the equation. 

G 



2.1. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS n 

' 

For example, the most general second-order linear partial differential equation 

defined on a two-dimensional region n, with boundary r is 

auxx + 2buxy + CUyy + hux + kuy + eu + J = 0 (2.2) 

where a, b, c, h, k, e, fare functions of x and y. This equation is called 

• elliptic if ac - b2 > 0, 

• hyperbolic if ac - b2 < 0, and 

• parabolic if ac - b2 = 0. 

If a, b, c, h, k, and e are all constants we have a second order linear partial differ­

ential equation with constant coefficients. Such an equation, by a linear change in 

coordinates, can always be reduced into one of three normal forms which correspond 

to the three types of equations referred to above: 

• elliptic if the form is Uxx + Uyy + ,u = - J, 

• hyperbolic if the form is Uxx - Uyy + ,u = - f, and 

• parabolic if the form is Uxx + Uy = - f, 

where , is a constant with one of the values -1, 0, or 1. In the elliptic form, with 

, = 0, we have what is known as Poisson's equation, 

Uxx + 'Uyy = - f, (2.3) 
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which is also written as 

~u = -f. (2.4) 

If we also have f = 0, we have Laplace's equation, 

Uxx + Uyy = 0, (2.5) 

which is also written as 

~u = 0. (2.6) 

As model problems we shall use both Laplace's equation and Poisson's equation 

with different functions f. 

2.2 Boundary Value Problems 

Any equation, other than the differential equation itself, which a solution of the 

differential equation is required to satisfy is called an auxiliary condition for the 

equation. Auxiliary conditions may involve undetermined constants or functions. 

A set of auxiliary conditions is called appropriate for the differential equation if 

there exists one and only one function which satisfies both the differential equation 

and the auxiliary conditions. 

Because of the physical interpretation associated with an elliptic partial differen-

tial equation the most natural auxiliary conditions associated with such an equation 
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arc boundary conditions. There are three basic types of boundary value conditions: 

the Dirichlet, Neumann, and Robins conditions. 

Using Laplace's equation as an example, we give three representative boundary 

value problems. First of all, the Dirichlet problem is given by 

~u = 0 on n (2.7) 

u = <P on r = boundary(n) 

where ¢ is a known function defined on the boundary r of n. Next, we have the 

Neumann problem, 

~u = 0 on n 

au= <P 
av on r = boundary(n) 

(2.8) 

where ~~ denotes the outward normal derivative on the boundary. Lastly, we have 

the Robins problem in which the auxiliary condition is a linear combination of the 

previous two, 

~u = 0 on n 

Hu - + hu = <P on r = boundary(n) av 

where h is a constant greater than zero. 

(2.9) 

We will be working exclusively with Dirichlet conditions on our model problems. 
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2.3 A Physical Interpretation 

As an illustration of the physical interpretation associated with an elliptic boundary 

value problem consider the Dirichlet problem, equation (2. 7). We may interpret the 

solution u as the equilibrium temperature distribution in a uniform heat-conducting 

body occupying the domain n, when the temperature distribution on the boundary 

r of the body is kept fixed. On the basis of this physical model, it is reasonable to 

assume that the problem has a solution if n is a finite reasonably shaped domain 

and if the function ef; is reasonably smooth. That the solution is unique follows, for 

if u1 and u2 were both solutions of (2. 7), then v = u 1 - u 2 would be a solution to 

~v = 0 on n (2.10) 

V = 0 on f = boundary(n). 

So v could be interpreted as the equilibrium temperature in n when the boundary 

r is kept at a temperature of zero. From the physical model it is easily seen that v 

must be identically zero inn. Therefore u 1 = u 2 and the solution is unique. Hence, 

the auxiliary conditions for this partial differential equation are appropriate. 

As a second illustration consider Poisson's equation with Dirichlet conditions: 

1:1. u = - J on n (2.11) 

U = <P 011 f = boundary(n). 

In this case, we again interpert u as the equilibrium temperature distribution in n 
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when there is a known distribution of sources in n. 



Chapter 3 

Discretization of an Elliptic PDE 

3.1 Obtaining a Difference Equation 

As an illustrative example we will now consider the numerical solution for Poisson's 

equation with Dirichlet boundary conditions on the unit square. That is 

- ~ U = f on n = ( 0, 1) X ( 0, 1) (3.1) 

u = cp on r = boundary(n). 

We first superimpose a grid G of horizontal and vertical lines over n with uniform 

spacing h = ~' where n is an integer. That is, 

G = {(xi, Yj)lxi = ih, Yj = jh, h = .!:., 0 < i,j < n, i and j integers}. (3.2) 
n 

We wish to determine approximate values of u( xi, Yj) at each of the grid points 

(xi, Yj) of G. For notational convenience we will use Ui,j = u(xi, yi). One standard 

12 
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approach to accomplish this end begins with the use of Taylor expansions in two 

variables. Expanding in the x direction we obtain 

u. . - u. . h aui,j h 
2 

a
2
ui,j h

3 
a3ui,j h

4 
8

4
ui,j . . . (3.3) 

t+l,J - t,J + ax + 2 8x2 + 6 8x3 + 24 8x4 + 

and 

u· . = u·. _ h aui,j h
2 

8
2
ui,j _ h

3 
a3ui,j h

4 
8

4
ui,j _ .... 

i-l,J t,J ax + 2 8x2 6 8x3 + 24 8x4 
(3.4) 

Summing (3.3) and (3.4) and rearranging we obtain 

tJ tJ 82
u· · 1 [ h4 84

u· · ] 
- 8x2 = h2 2ui,j - Ui+I,j - Ui-1,j + 24 8x4 +... . (3.5) 

Then, expanding in the y direction we obtain 

a l 2 82 h3 83 1 4 84 
u. . - u. . h u i,j _i __!:_0_ - __!:_0_ _i __!:_0_ ... 

i,i+i - '·1 + ay + 2 ay2 + 6 ay3 + 24 8y4 + (3.6) 

and 

8u·. h2 8 2u·. h3 8 3u·. h4 8 4u·. 
U· · 1 = U· · - h-1

-'1 + ___ i_,J - ___ i_,J + ___ i_,J - ·... (3.7) 
t,J- t,J 8y 2 8y2 6 8y3 24 8y4 

Summing (3.6) and (3.7) and rearranging we obtain 

tJ tJ 82u·. 1 [ h4 a4u·. ] 
- ay2 = h,2 2ui,j - Ui,j+1 - 'lli,j-1 + 

24 
ay4 +. '. · (3.8) 

Finally, summing (3.5) and (3.8), we obtain 

- __ i_,J + __ i_,J 

[
82

u· · 82
u· ·] 

8y2 8x 2 

1 
h2 [4ui,j - Ui+1,j - Ui-1,j - Ui,j+1 - Ui,j-1] (3.9) 

+- __ i_,J + __ i_,J + .... h 2 
[ 84

u · · 84 
U · · ] 

24 8x4 8y4 
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Dropping terms involving h2 and higher orders of hand substituting the right hand 

side of (3.9) into (3.1) we obtain a discrete analog of Poisson's equation 

4ui,j - Ui+1,j - Ui-1,j - Ui,j+t - Ui,j-1 h2f·. 
i,J (3.10) 

with the associated boundary conditions 

Ui O = (pi 0 for 0 < i < n, , , 

Ui n = (pin for 0 < i < n, 
' ' 

Uo,j = c/Jo,j for 0 < j < n, and 

Un,j = <Pn,j for 0 < j < n. 

Such a discrete analog of a differential equation is called a finite difference equation. 
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3.2 Matrix Form of a Difference Equation 

From (3.10) and (3.11), we obtain a system of (n-1)2 linear equations, one equation 

for each grid point in G. Expressed in matrix form we have 

(3.11) 

where 

B -I 

-I B -I 

A= (3.12) 

-I B -I 

-I B 

is an (n-1)2 x (n-1)2 matrix, 

4 -1 1 

-1 4 -1 1 

B= and I= 

-1 4 -1 1 

-1 4 1 
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are (n - 1) x (n - 1) matrices, where I is an identity matrix. 

U= and f = 

are ( n - 1) x ( n - l) component vectors, where 

Ui,l 

Ui,2 

each Ui = and each fi = 

Ui,n-1 

are ( n - 1) component vectors. Each ui and fi correspond to the values of u and f 

associated with the ith column of the grid G. 

h= 

is an (n - 1) x (n - 1) component vector which represents the boundary conditions 
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of the problem, with each bi an ( n - 1) component vector, where 

</>0,1 + </>1,0 

</>0,2 

<Po,3 

</>o,n-2 

</>o,n-1 + </>1,n 

and, for i = 2, ... , n - 2, 

0 

0 

0 

<f>n-1,0 + </>n,1 

<Pn,2 

</>n,3 

<Pn,n-2 

<Pn,n-1 + <Pn-1,n 

17 



Chapter 4 

Methods For Solving Difference 

Equations 

4.1 Direct vs. Iterative Methods 

In solving a matrix equation 

Ax =c, ( 4.1) 

where A is an n x n nonsingular matrix and c E ~n, there are two general classifi­

cations of methods. 

The first type of method, a direct method, is most often used when the matrix 

A is dense, that is, when the components of A are mostly nonzero. 

18 



4.1. DIRECT VS. ITERATIVE METHODS 

A direct method yields a solution in a fixed number of steps, assuming computa­

tions without roundoff errors. The basic method of this type is Gaussian Elimina­

tion. Roughly speaking, this is the method of solving a system of linear equations 

by successively eliminating unknowns by judiciously adding multiples of one row to 

another. It is such an approach a student is usually introduced to when they see 

matrices for the first time. More specifically, by a sequence of adding multiples of 

one equation to another, system ( 4.1) is reduced to an equivalent upper triangular 

system 

Ux=g, ( 4.2) 

where U is an upper triangular matrix. System ( 4.2) can then be easily solved by a 

simple process called back substitution. For further elaboration on this method see 

Stoer and Bulirsch's book [5]. 

When using a direct method the matrix A must generally be stored in the main 

memory of the computer in order to efficiently solve the system. Hence, memory 

storage limitation is a significant factor to consider when attempting to solve a large 

problem using such a method. 

Among the problems usually considered too large for a direct method are the 

matrix problems that result from the discretization of partial differential equations. 

For example, consider equation (3.10) and its matrix form (3.11). \Vith a uniform 

grid spacing of h = 6
1
4 , the number of elements of the grid G is 632 = 3969. That is 
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matrix equation ( 3.11) is a system of 3969 equations. Thus the number coefficients 

in the associated matrix A is 39692 = 15,752,961. 

The second type of method, an iterative method, is most useful when the ma­

trix A is sparse, that is, when the components of A are mostly zero, and when the 

nonzero coefficients form a special pattern making it possible, by using a simple for­

mula, to generate the coefficients of A as they are needed. Fortunately, the numerical 

solution of a partial differential equation meets both of these conditions. Consider 

the previous example of the system where the matrix A contained 15, 752, 961 coef­

ficients. Only 19595 of these coefficients are nonzero, the other 15,733,366 are zero. 

That is, approximately 99.9 percent of the coefficients are zero. Also the matrix 

A is completely characterized by equation (3.10), a relatively simple equation, of 

the previous chapter. The fact that A meets these two conditions eliminates what 

would otherwise mean a prohibitive use of storage space in main memory. 

An iterative method to solve equation ( 4.1) begins with an initial approxima­

tion x(0) to the solution x, and generates a sequence of vectors { x(k)} k=:o which 

converge to x. Most iterative methods involves converting the system Ax = c into 

an equivalent system of the form 

x = Tx + d. ( 4.3) 

After selection the initial approximation x(0), the sequence of approximate solutions 
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is generated by 

( 4.4) 

In the next section we will introduce two classical iterative methods, the Jacobi 

method and the Gauss-Seidel method. It is the Gauss-Seidel method that we will 

use as a basic building block for the more sophisticated iterative methods that we 

be discussing in later chapters. 

4.2 The Jacobi and Gauss-Seidel Methods 

The Jacobi iterative method consists of solving the ith equation in Ax = c for Xi, 

to obtain 

1 ( i-1 n ) 
x· - - - '°"'a··x· - '°"' a··x· + c· t - L- tJ J L- tJ J t 

aii j=l j=i+1 

( 4.5) 

for each i = 1, ... , n, 

and then generating each x!k+l) from x!k) for k ~ 0 by 

(4.6) 

for each i = 1, ... , n. 

The Jacobi method can be expressed in the matrix form, x(k+l) = Tx(k) + d, by 

splitting the matrix A into a diagonal part, D, a strictly lower triangular part, L, 

and a strictly upper triangular part, U. Thus we have 

Ax=(D-L-U)x=c, (4.7) 
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which can be rewritten as 

X = n-1 (L + U)x + n-1c. ( 4.8) 

This leads us to the Jacobi method expressed in matrix form 

( 4.0) 

The Gauss-Seidel iterative method offers a potential improvement over the Ja­

cobi method. In the Jacobi method, to compute xik+l), for each i > 1, the com­

ponents of x(k) are used. Since x~k+l), ... , xtt1
) have already been computed and 

are supposedly a better approximation to the actual solutions, x 1 , ... , Xi-I than 

x~k), ... , x~~\, it seems reasonable to compute xik+I) using these most recently calcu-

lated values. This gives us 

(4.10) 

which can be expressed in matrix form as 

( 4.11) 

4.3 Convergence of Iterative Methods 

To be of any use an iterative method must generate a sequence of approximations 

that converges. In this section, we will briefly discuss the convergence of iterative 

methods and their associated convergence rates. Most of this material has been 
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condensed from the work by Varga [2]. For a more complete presentation see this 

reference. 

To begin we first define 

e(k) = x(k) - x, for k 2:: 0, ( 4.12) 

where e(k) is the error associated with x(k). In order to have convergence we want 

lim e(k) = 0. 
k-oo 

( 4.13) 

Subtracting ( 4.3) from ( 4.4) we obtain 

(4.14) 

From here, by induction, we obtain 

( 4.15) 

Hence, convergence will always occur, using this iterative method, if 

lim Tk e(o) = 0, 
k-oo 

( 4.16) 

for any e(0
). This will occur if and only if 

lim Tk = 0, 
k-.oo 

( 4.17) 

where O is the n x n zero matrix. If equation ( 4.17) holds for some matrix T we 

say that T converges. If T represents an iterative method then we also say that the 

iterative method converges. 

Before proceeding further some definitions are required. 
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definition 4.1 A vector norm on ?Rn is a function, II · II, from ?Rn into ?R such that 

i) ll XII~ 0 for all XE ?Rn, 

ii) 11 x ll= 0 if and only if x=O, 

iii) II ax II= lal II x 11 for all a E ?R and x E ?Rn, 

iv) II X +y ll~II XII+ II Y II for all x, YE ?Rn. 

example 4.la: Let x E ?Rn. Then 

is called the Euclidean or 12 norm of x. 

example 4.lb: Let x E ?Rn. Then 

11 x 11 oo = max { Ix i I : i = 1, 2, ... , n} 

is called the 100 norm of x. 

( 4.18) 

( 4.19) 

definition 4.2 Let T be an n x n matrix and II · II a vector norm on ?Rn. Then 

{ II Tx ll n } II T II= sup II x II : x E ?R and x -/= 0 ( 4.20) 

is called the induced matrix norm of T, relative to II · II-

definition 4.3 Let T be an n x n matrix with eigenvalues Ai, 1 ~ i ~ n. Then 

p( T) = max { I Ai I : 1 ~ i ~ n} ( 4.21) 

is called the spectral radius of T. 
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We present, without proof, the following 

Theorem 4.1 If T is an n x n complex matrix then 

lim Tk = 0 if and only if p(T) < 1. 
k-HX! 

•) r-: 
~J 

( 4.22) 

So, the spectral radius gives us a useful criterion for determining if an iterative 

method con verges. 

The relationship between the induced matrix norm and the spectral radius of a 

matrix T is expressed in the following 

Theorem 4.2 If T is an n x n complex matrix then 

p(T) ::; II T II . ( 4.23) 

Therefore, if II T II< 1 the iterative method represented by T converges. 

We now wish to briefly discuss methods for estimating the rate at which an 

iterative method converges. Taking norms of both sides of equation ( 4.14) we have 

11 e(k+l) 11 II Te(k) II 

< 11 T 11 · 11 e ( k) 11, for all k ~ 0. 

If e<k) # 0 then we have the following 

definition 4.4 

is called a convergence factor for T. 

II e(k+i) II 
II e(k) II 

(4.24) 

(4.25) 
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This factor is a measurement of the rate at which the error is being reduced 011 

the kth iteration of the iterative process represented by T. II T II, being an upper 

bound for this factor for all e and all k ~ 0, is often used to approximate the rate 

at which the associated method converges. Another upper bound frequently used 

for this purpose is the spectral radius, p(T). Furthermore, the closer II T II or p(T) 

is to 1 the slower the method, while the closer II T I! or p(T) is to 0, the faster the 

method. 

As a representative example consider Poisson's equation on the unit square with 

zero boundary conditions, that is 

~ U = - f on n = ( 0, 1) X ( 0, 1) (4.26) 

u = 0 on I'= boundary (n). 

As a finite difference equation we will obtain 

( 4.27) 

for O < i, j < n, with associated boundary conditions 

Ui,O = Ui,n = Uo,j = Un,j = 0 ( 4.28) 

for O < i, j < n, where h = l/n is the grid spacing. We can rewrite ( 4.27) as 

( 4.29) 
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This gives us the Jacobi iterative formula 

(k+l) - 1 ( (k) (k) (k) (k) ) 1 2 
ui,j - 4 ui+I,j + ui-l,j + ui,j+I + ui,j-l + 4h fi,j, ( 4.30) 

which can expressed in matrix form as 

( 4.31) 

We now will find the spectral radius of the matrix T. First, we will find a 

complete set of eigenvalues for T. To determine an eigenvalue ,\ of T, we want an 

( n - l) x ( n - l) component vector v and a scalar ,\, such that 

Tv = ,\v. ( 4.32) 

This will be accomplished if we find v and ,\ such that 

( 4.33) 

for O < i, j < n, and 

Vi,O = Vi,n = Vo,j = Vn,j = Q ( 4.34) 

for O < i,j < n. The conditions imposed by (4.33) and (4.34) are met if 

. . 
. p1rz . q1rJ 

Vi · = sin - · sm -
'
1 n n 

( 4.35) 

and 

1 ( prr q1r) A=- cos-+cos-, 
2 n n 

( 4.36) 
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where O < p, q < n. The maximum IAI occurs when p = q = l. Hence, we have 

1 ( 1 · 7r 1 · 7T') p(T) = - cos -- + cos --
2 n n 

and the iterative method converges. 

7T' 
=cos-< 1, 

n 
( 4.37) 

In a similar fashion one can examine the Gauss-Seidel method, which has a 

matrix representation S = (D - L)-1 U. Here we wish to solve 

Sw = µw. ( 4.38) 

From here we obtain 

( 4.39) 

and 

2 1 ( p7r q'lT' ) 2 µ=A=- cos-+cos- , 
4 n n 

( 4.40) 

where O < p, q < n. The maximum lµI occurs when p = q = l. Hence, we have 

1( 1·7T' 1·7T')
2 

7T' p(S) = - cos -- + cos -- = cos2 
- < 1, 

4 n n n 
( 4.41) 

and this method also converges. Note however that p(S) < p(T) so the Jacobi 

method must converge more slowly than the Gauss-Seidel method. 

It is of interest to note that the larger n the closer the spectral radius of either 

method is to 1. This means that the more accurate the discretization (i.e. the finer 

the grid) the slower these two iterative methods converge. 
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It is also of interest that the spectral radius, is not always the best (i.e. smallest) 

bound on the convergence factor. 

To demonstrate this we return to equation ( 4.14) where, expanding e(k) as a 

linear combination of the set V of eigenvectors, we obtain 

T(L amvm) 
VmEV 

L amTVm 

VmEV 

L amAmVm 

VmEV 

Taking norms of both sides 

So, we have 

lle(k+l)II < llmax {l.-\ml: am=/: O} · e(k)I! 

max{l.-\ml: am=/: O} · lle(k)II 

( 4.42) 

( 4.43) 

( 4.44) 

Two observations are pertinent at this point. First of all, notice that the conver-

gence factor, and the resulting rate of convergence, is determined by the eigenvector 
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components that make up e(k). Secondly, and more importantly for this thesis, for 

any error vector e(k), different eigenvector components arc reduced at different rates. 

For example, using the Jacobi method with n = 64, the eigenvector 

. l7ri . 371" j 
v· · = Sln - · Sln -

i,J 64 64 ( 4.45) 

has a bound on its associated convergence factor of 

A=- cos-+cos- ~0.994 1 ( 171" 371") 
2 64 64 

( 4.46) 

On the other hand, the eigenvector 

. 297ri . 317l"j 
v· ·=sin--· s1n--

1'1 64 64 ( 4.47) 

has a bound on its associated convergence factor of 

,\ = - cos - + cos - ~ 0.098 1 ( 2971" 3171") 
2 64 64 

( 4.48) 

Hence, one component is reduced significantly faster than the other. The multigrid 

method, which is discussed in the next chapter, capitalizes on this very idea. 



Chapter 5 

A Sequential Multigrid Method 

We have noted that the error at any step of an iterative method can be expressed 

as a linear combination of eigenvectors. A difficulty associated with methods such 

as the Gauss-Seidel and Jacobi methods is that certain eigenvector components of 

this error are reduced at a significantly slower rate than other components. This 

problem, demonstrated at the end of the previous chapter, results in an overall 

slow rate of convergence for the method. The multigrid method, presented in this 

chapter, augments a basic method, such as Gauss-Seidel or Jacobi, and alleviates 

this problem. 

31 
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5.1 Residual Correction Iterative Methods 

In this section we introduce the basic idea of multigrid methods. We begin with 

a discretized form of an elliptic partial differential on a grid Gh with uniform grid 

spacing h, 

(5.1) 

We assume that fh incorporates both the right hand side of the difference equation 

as well as the boundary conditions. 

Before discussing the multigrid method we will introduce the more general idea 

of a residual correction iterative methodology. Let u~k) be an approximation to the 

solution uh of equation 5.1, obtained on the kth iteration of some iterative method. 

The error et) associated with·uik) is given by 

e(k) - u - u(k) 
h - h h . (5.2) 

The residual r~k) of u~k) is defined as 

(5.3) 

Notice that solving for eik) in the residual equation is equivalent to solving for uh 

in the original equation (5.1), since 

U - u(k) + e(k) 
h - h h . (5.4) 

Many iterative methods can be expressed in terms of approximations to the 

residual equation. In these cases the ma.t.rix Ah is replaced by au approximation 
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Ah such that A;;1 exists and the product of A;;1 and an arbitrary vector is easy to 

compute. The solution e~k) of 

(5.5) 

yields a new approximation 

(5.6) 

to the solution of the original equation ( 5.1 ). Such a method as described above is 

called a residual correction iterative method. 

Expanding (5.6) we obtain 

(5.7) 

(k) + A- -1 (k) 
uh h rh 

(k) + A--1(f A (k)) uh h h - huh 

(k) + A--1r A--1A (k) 
uh h h - h uh 

Hence, the matrix representing this iterative method is h - .. 4.;; 1 Ah and the error 

associated with the method is 

with a convergence factor 

(k+i) - (I A--1A ) (k) 
eh - h - h h eh , 

II e~k+l) 11 

11 e~k) II 

< II h - A;; 1 Ah II . 

(5.8) 

(5.9) 
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5.2 A Coarse Grid Residual Correction Scheme 

In this section we introduce the simplest form of a multigrid method, a two-grid 

method. In this method we use a second grid G 2h in addition to Ch. G 2 h has a 

grid spacing twice the size as that of G h. Other sizes for grid spacing on the coarse 

grid are possible but we have chosen the most convenient. Using this metho<l, the 

correction term e~k) is obtained by solving the residual equation on G2h. That is, 

we solve 

(5.10) 

where A2h is an appropriate coarse grid approximation to Ah, and e~~ and r~7/ are 

coarse grid approximations to e~k) and r~k) respectively. 

In order to move between grids we need two transfer operators 

( 5.11) 

and 

(5.12) 

Ilh is used to restrict r~k) to G 2h, that is, 

I 2h (k) (k) 
h rh = r2h, (5.13) 

and I;h is used to interpolate the correction term e1~ to Gh, that is, 

I h -(k) -(k) 
2he2h = eh · (5.14) 



5.2. A COARSE GRID RESIDUAL CORRECTION SCHENIE 35 

One iteration step can be summarized by the following sequence of steps: 

2. transfer the residual to the coarse grid G2h: r~~ = Jlhrt), 

3. solve the residual equation on G 2h: e~~ = A2lr~~, 

5. compute new approximation: u1k+l) = u1k) + e1k). 

So we have 

(5.15) 

(k) + Ih A--1 (k) 
uh 2h 2h r2h 

U (k) + Ih A--112h(f - A u(k)) 
h 2h 2h h h h h 

u<k) Ih A--112h A u(k) + Ih .4-112hf 
h - 2h 2h h h h 2h 2h h h 

Thus we see that the iteration matrix for coarse grid correction is given by 

(k+1) T (k) 
eh = eh ' (5.16) 
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and the associated convergence factor is 

II e~k+i) II 
II e~k) II < II TII • (5.17) 

A problem exists, however, with this method used alone. There can exist vh E 

Gh such that ItiAhvh = 0. Hence Tvh = vh. So, we have II T 112:: 1 and the coarse 

grid correction method does not converge. The difficulty lies in the fact that the 

residual equation on the coarse grid 

(5.18) 

is not a good enough approximation to the residual equation on the fine grid 

(5.19) 

In particular, the problem is that certain components of e}.k) cannot be accurately 

enough represented on the coarse grid G21i. 

\Ve can be observe this by considering a case where Gh is a 64 x 64 grid, G21i is 

a 32 x 32 grid, and e~k) is expressed as a linear combination of terms of the form 

sin p1rih · sin q1r j h, (5.20) 

where p and q are integers such that -32 < p, q < 32. That is, 

31 31 

e~k) = L L Cpq sin p1rih · sin q1rj h. ( 5.21) 
p=-31 q=-31 

Note that 011 grid G2h the only cmupoucuts of etk) wltich arc visible arc those such 

that -16 < p, q < 16. The other components arc not visible. This phenomena is 
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explained by Shannon's Theorem [6], the fundamental theorem of signal processing, 

which tells us that the only terms that will be visible on a given grid will be those 

that that contain only frequencies (p and q) that are less than one-half the frequency 

n of the grid spacing. 

Components of e~k) such that -16 < p, q < 16 are referred to as low frequency or 

smooth error. Components outside this region, -32 < p, q ::;; -16 or 16 ::; p, q < 32, 

are referred to as high frequency error. Hence, e~k) can be well approximated on a 

grid G2 h only if it is primarily composed of smooth error, that is, its high frequency 

components are small compared to its low frequency components. 

5.3 Smoothing the High Frequency Error 

A multigrid method uses coarse grid correction by first reducing the high frequency 

error components. This is referred to as smoothing the error. Only after the error 

has been smoothed is a coarse grid correction scheme performed. 

It so happens that many iterative methods, such as the Gauss-Seidel and the 

Jacobi methods, have the characteristic that they reduce high frequency error very 

efficiently, in fact, much more efficiently than they reduce low frequency error. This 

fact was demonstrated in the example at the end of the last chapter for the Jaco bi 

method. In this example we saw that a high frequency term, where p == 29 and 

q == 31, had an associated convergence factor of 0.098 while a low frequency term, 
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T--

Figure 5.1: low frequency 

where p = 1 and q = 3, had an associated convergence factor of 0.994. As a further 

illustration of this fact see the figures included in this chapter. In each figure we 

show two graphs of cross sections of error terms on a 64 x 64 grid. Each cross 

section is taken at i = 32. The higher and lower amplitude graphs represent the 

same error term before and after three iterations of the Gauss-Seidel method. Figure 

5.1 represents the effect of Gauss-Seidel method on low frequency error terms. The 

higher amplitude graph represents 

e = sin(171"ih) · sin(371"jh), ( 5.22) 

while the lower amplitude graph represents 

5 3
e = S3 (sin(l1rih) · sin(31rjh)], (5.23) 
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Figure 5.2: high frequency 

where S is the matrix representing one iteration of the Gauss-Seidel method and 

h = 6\. Similarly, figure 5.2 represents the effect on high frequency error terms. 

Here we have 

e = sin(297rih) · sin(3l 7r j h) (5.24) 

and 

S3e = S3 (sin(297rih) · sin(3171" j h )] . (5.25) 

Figure 5.3 shows the effect on a combination of two frequencies, where 

e == sin( l7rih) · sin(31r j h) + sin( 297rih) · sin(311r j h) ( 5.26) 

and 

S3e = S3 (sin( l 7rih) · sin(31r j h) + sin(291rih) · sin(3l 7rj h )]. (5.27) 
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Figure 5.3: mixed frequencies 

Notice in these figures how significantly the higher frequency error is reduced with 

only 3 iterations of the Gauss-Seidel method while the lower frequency error is 

hardly affected. 

5.4 Increasing the Convergence Rate For Lower 

Frequencies 

After reducing or ;Jmoothing the high frequency error, the remaining error can then 

be transferred to the coarser grid. This transfer is now effective since the remaining 

error is of low frequency and can reasonably be approximated on the coarser grid. 
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Moreover, transferring the low frequency error to the coarser grid has the desired 

effect of increasing its frequency relative to the coarser grid. This makes the re­

maining error conveniently susceptible to further reduction using a method such as 

Gauss-Seidel or Jacobi on the coarser grid. 

5.5 A Two-Grid Multigrid Method 

A basic two-grid multigrid method begins with the choice of the two grids to be 

used. In the results presented in this section we have used a 64 x 64 and a 32 x 32 

grid. As a model problem, for this algorithm and those to follow we are usmg 

Example 4.3.1, that is we wish to solve Poisson's equation 

6 U = - f on !1 = ( 0, 1) X ( 0, 1) 

u = </> on r = boundary(n). 

(5.28) 

We first obtain a discretization of the problem on the fine grid, which we will express 

as, 

(5.29) 

where h = 
6
1
4

• We then proceed with the algorithm as follows: 
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ALGORITHM 5.1 

(A Two-Grid Method) 

step i: 
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Set the iteration counter k at 0. 

Guess u~o) as an approximation to uh. 

step ii: 

Repeat until 11 ut) - uh II ~ c, for some iteration k and some error tolerance c: 

- Perform three Gauss-Seidel sweeps on Ahu~k) == fh. 

- Transfer the residual to the coarse grid: r~~ == rrr~k). 

We use injection for transferring the residual from the fine to the coarse grid. 

- Approximate the solution to the coarse grid residual equation: A2he~~ = r~~. 

This yields us e~~, a good approximation to e~~. We accomplish this with 30 

iterations of Gauss-Seidel, using an initial guess e~t) = 0. 

- Transfer the error term to the fine grid: e~k) = Ith et~. 

We use bilinear interpolation to transfer the error term from the coarse to the 

fine grid. 

- Compute new approximation: u~k+i) = u~k) + e~k). 

- Increment the iteration counter k. 
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step iii: 

Perform three Gauss-Seidel sweeps on Ahuik) == fh. 

This smooths out any high frequency error introduced on the final iteration by 

the interpolation operator. D 

One iteration of the multigrid method is called a V-cycle. If S is the matrix 

representing one iteration of the basic smoothing iterative method then the matrix 

representing one iteration (i.e. one V-cycle) of the two-grid multigrid method is 

given by 

S 12(I Jh A--1 12hA )S11 
h h - 2h 2h h h h , (5.30) 

where l1 and l2 are the numbers of iterations of the smoothing iterative method 

that are applied before and after the coarse grid correction process. So, in matrix 

form the algorithm can be expressed as 

(5.31) 

5.6 A Full Multigrid Method 

A full multigrid method is a simple extension of the basic method. The idea is that 

in solving the problem on the coarse level an even coarser level can be used. In fact, 

an entire hierarchy of different size grids can be used. 
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One V-cycle for a full multigrid method can be defined recursively by 

(5.32) 

and 

(5.33) 

where p denotes the pth finest level and if q is the finest level then 

( 5.34) 

We present an example of a three-grid multigrid method. Here the coarse grid 

residual equation: 

(k) (k) 
A2he2h = r2h, (5.35) 

is solved by computing the residual of this residual equation and transferring it to 

an even coarser grid (a 16 x 16 grid). We use a slightly different notation to assist 

us in explaining this method. We use rJ~) rather than r~~ to represent the first 

residual computed on grid G2h. Similarly, we use u~~ rather than e~~ to represent 

the error on grid G2h. We use r!!) to represent the second residual (ie. the residual 

of the residual) computed on grid G4h. Similarly, we use ui~ to represent the error 

on grid G4h· We then proceed with the algorithm as follows: 
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ALGORITHM 5.2 

(A Three-Grid Method) 

step i: 

Set the iteration counter k at 0. 

Guess ui0) as an approximation to uh. 

step ii: 

Repeat until llutk) - uhll :Sc, for some iteration k and some error tolerance c: 

- Perform three Gauss-Seidel sweeps on Ah u~k) = fh. 

45 

- Perform three Gauss-Seidel sweeps on A 2hu~t) = rJZ), with initial guess ii~~ = 0. 

C f (k) J4h (k) - ompute 4h = 2hr2h. 

- Perform 30 Gauss-Seidel sweeps on A 4hui7! = rJ!l, with initial guess ui~ = 0. 

C (k) (k) J2h (k) 
- orrect U2h = U2h + 4h u4h . 

- Perform three Gauss-Seidel sweeps on A 2h u~~ = rJZ), with initial guess fI~~. 

- Correct u(k) - u(k) + Jh u(k) 
h - h 2h 2h · 

- Increment the iteration counter k. 

step iii: 

Perform three Gauss-Seidel sweeps on Ahu~k) = fh. D 



46 CHAPTER 5. A SEQUENTIAL MULTIGRID METHOD 

Table 5.1 at the end of this chapter shows some actual results using algorithms 

5.1 and 5.2. For a comparison we also show results using a simple Gauss-Seidel 

method. The stopping criteria we use is II u~k) - uh II~ c = 10-6
• In the table, k is 

the number of iterations, and t is the cpu time in seconds. 

For solving our model problem we see the speed of execution, relative to the 

Gauss-Seidel method, increase by factors of ~~\0 = 2.9 and 1
4
6
1\

0 = 4.0 for algo­

rithms 5.1 and 5.2 respectively. There are two factors contributing to this improved 

performance. First of all, as we have already discussed, when the problem is trans­

ferred to a coarser grid the lower frequency components of the error are increased, 

relative to the coarser grid, resulting in an improved convergence rate for those 

components. Secondly, a significant amount of the work of the multigrid algorithms 

is performed on the coarser grids in executing Gauss-Seidel iterations for residual 

equations.. Relative to the work required to perform a Gauss-Seidel iteration on 

the fine grid Gh, a Gauss-Seidel iteration on G 2h requires only i of the work and 

on G4h only /6 of the work. 

Though initial studies introducing and investigating multigrid methods are cred­

ited to Fedorenka (7, 8] in 1962-64 and Bakvalow [9] in 1966, the recognition of the 

efficiency and potential power of multigrid methods is due to A. Brandt [10] in 1976. 

Since Brandt's original paper, multigrid methods have gradually become recognized 
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as offering significant possibilities in the area of numerical methods for partial differ­

ential equations [11]. For an introduction to multigrid methods the book by Briggs 

[12] is very good. For a more complete treatment see the article by Stuben and 

Trottenburg [11]. 
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Table 5.1: Sequential Multigrid and Gauss-Seidel Methods 

method k t 

Gauss-Seidel 6250 164 

Algorithm 5.1 209 58.3 

Algorithm 5.2 239 41 



Chapter 6 

A Parallel Domain Decomposition 

Method 

In the previous chapter we introduced an essentially sequential method that uti­

lized multiple grids in order to accelerate the convergence of a basic iterative method 

(such as the Gauss-Seidel method). In this chapter we take a different approach 

while continuing to use the same basic iterative method. Here, rather than attempt­

ing to increase the rate of convergence we break the problem up into a number of 

subproblems and solve the subproblems simultaneously on multiple processors. In 

this case, the convergence rate is not improved yet the execution speed is decreased 

due to the use of multiprocessing. 
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A numerical parallel Schwarz method is an iterative method which involves de­

composing the domain over which a partial differential equation is to be solved into 

multiple overlapping subdomains. The subdomains are then distributed over mul­

tiple processors. Then, using a standard iterative method, each processor works to 

solve a smaller version of the original problem for the specific subdomains to which 

that processor has been assigned. The processors work in parallel. Information ex­

changes between any two processors are primarily restricted to subdomain boundary 

value approximations for the overlapping regions of their respective subdomains. 

6.1 The Schwarz Alternating Principle 

A nonparallel form of this domain decomposition method was originally proposed 

in the 1860's by H. A. Schwarz for solving the Dirichlet problem for harmonic 

functions [13]. In 1890, Picard, who called the method the "Schwarz Alternating 

Procedure," used it to solve a nonlinear elliptic partial differential equation [14]. A 

good description of the Schwarz alternating procedure can be found in the book by 

Kantorovich and Krylow [15]. Numerical analogs to this method were developed by 

K. Miller [16]. The suitability of variants of the method as parallel algorithms has 

been explored in recent years by Kang [17] and Rodrigue and Simon [18, 19]. 

We will now introduce the sequential Schwarz alternating procedure, using two 
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subdomains, to solve Poisson's equation 

~U = -f on n = (0,1) X (0,1) (6.1) 

u = <I> on r = boundary(n). 

We begin by partitioning the domain n into two overlapping subdomains !11 and 

will include part of the original boundary, ri n r, as well as a new part, called 

a p3eudo-boundary, ri - r. See the figure below. Next, we solve the problem on 

n2 
r,,----~...._-........ , 

\. ___ 'yr ____ ,/ 

n1 

Figure 6.1: n = n1 u n2 = (0, 1) X (0, 1) 

subdomain n1 , using a guess '11 for the solution on the pseudo-boundary, r 1 - r. We 

then solve the problem on subdomain n2 , using values we obtained in solving the 
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subdomain n1 problem as the boundary values on pseudo-boundary, r 2 - r. From 

there we go back to subdomain f21 and solve the problem using updated values 

for the pseudo-boundary r 1 - r, obtained from subclomain n2 . We continue to 

alternate between the two subdomains in such a manner until the approximation is 

close enough for our needs. 

The algorithm can be described as follows: 

ALGORITHM 6.1 

( A Sequential Method Using Two Sub domains) 

step i: 

Divide domain n into two subdomains n1 and n2 , as described previously. 

step ii: 

step iii: 

Initialize iteration counter k to 1. 

Solve 

u~k) cp on r 1 n r 

(6.2) 
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Then solve 

(6.3) 

u~k) cp on r 2 n r 

step iv: 

Repeat until llu~k) - ull S c on !11 and llu~k) - ull S c on !12 , for some iteration k 

and some error tolerance c. 

k=k+l. 

Solve 

Then solve 

/}.·u (k) 
2 

u~k) cp on f 2 n f 

(6.4) 

(6.5) 
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step v: 

L t - (k) n n d - (k) n e u = u 1 on H-1 - H-2 an u = u 2 on H 2 . D 

Then llu - ull < c so u is a suitable approximation to 1t. 

6.2 A Parallel Schwarz Method 

Because of the dependency that the solution on one subdomain of Algorithm 6.1 

has on the previous solution of the other subdomain, this algorithm is inherently 

sequential. By breaking the domain into more than two subdomains we can use a 

similar scheme and obtain a parallel method. The first parallel method we consider 

uses 4 subdomains and 2 processors. See figure below. 
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Figure 6.2: f2 = ut=l ni = (0, 1) x (0, 1) 

The algorithm can be described as follows: 

ALGORITHM 6.2 

( A Parallel Method Using Four Subdomains and Two Processors) 

step i: 

Define two sequences of real numbers, 

such that 

55 

(6.6) 
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Then define 

(6.8) 

step ii: 

Guess Ut = 'lPt on r1 - r, 

and U3 == 'tp3 on I'3 - I'. 

step iii: 

Initialize iteration counter k to 1. 

Solve 

(6.9) 

U ~ k) q> on I' 1 n r 

on processor 1, while solving 

(6.10) 

(k) 
U3 q> on r3 n r 

on processor 2. 

Then solve 

(6.11) 
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u~k) qJ on r 2 n r 

on processor 1, while solving 

(6.12) 

on processor 2. 

step iv: 

Repeat until llui - ull ::; c on ni, for i = 1, 2, 3, 4, for any iteration k and for some 

error tolerance c. 

k=k+l. 

Solve 

(6.13) 

u~k) q> on r I n r 

on processor 1, while solving 

( 6.14) 
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u~k) ¢ on r 3 n r 

on processor 2. 

Then solve 

( 6.15) 

u~k) ¢ on r 2 n f 

on processor 1, while solving 

(6.lG) 

on processor 2. 

step v: 
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- (k) and U = u 4 on D4. 0 

Then llu - ull < c so fi is a suitable approximation to u. 

We can generalize Algorithm 6.2 and obtain a parallel method which uses 2n 

subdomains and n processors. 

This algorithm can be described as follows: 

ALGORITHM 6.3 

( A Parallel Method Using 2n Sub domains and n Processors) 

step i: 

Define two sequences of real numbers, 

such that 

Then define 

Di= (xti,xrJ X (0,1), for i = 1,···,2n. 

step ii: 

( 6.17) 

( 6.18) 

(6.19) 

Guess ui = 1Pi on ri - r, for i = 1, 3, ... , 2n -1 (ie. guess boundary values on pseudo 

boundaries for odd regions). 
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step iii: 

Initialize iteration counter k to 1. 

For i = 1, 3, ... , 2n - 1, solve ( in parallel on all n processors) 

~u(k) 
z -! on n l ( G.20) 

(k) 
<P on ri n r U· 

l 

(k) 7J,. on cnn. U· 
? 'Z 

Then, for i = 2,4, ... , 2n - 2, solve (in parallel on n-1 processors) 

~11,~k) -! on ni ( G.21) 

(k) 
<P on ri n r U· i 

(k) (k-1) 
on ri n ni-1 U· ui-I i 

u~k) (k-1) on ri n ni+i, i 7.\+1 

while also solving ( on the nth processor), for i = 2n 

(k) 
~U2n -! on n2n (G.22) 

(k) 
U2n ¢ on r2n n r 

(k) 
U2n 

(k-1) 
U2n-1 on r2n n fl2n-l· 

(Note: Pseudo boundaries for even regions do not require an initial guess.) 



6.2. A PARALLEL SCHWARZ METHOD Gl 

step iv: 

Repeat until llui - ull ~ E on each ni, i == 1, 2, ... , 2n, for some iteration k and for 

some error tolerance c. 

k==k+l. 

Solve 

(6.23) 

on one processor, while also solving (on the remaining n-1 processors) for 

i == 3, 5, ... , 2n - 1 

~u~k) 
1 -f on n-1 (6.24) 

(k) 
1> on ri n r U· t 

(k) (k-1) on ri n ni-1 U· ui-1 1 

(k) (k-1) on ri n ni+i· U· ui+I 1 

Then solve, for i = 2, 4, ... , 2n - 2, ( on n-1 processors) 

(6.25) 
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(k) 
U· 

i 

(k) 
U· i 

(k) r n 
Ui+l On i n Hi+l, 

while solving ( on the nth processor) 

u~~ q> on r 2n n r 

(k) (k) r n 
U2n U2n-1 on 2n n H2n-1 · 

step v: 

Let u = uik) on ni for i = 2, 4, ... , 2n, 

- (k) n n 
U = U1 on Ht - ,H2, 

Then llu - ull < c sou is a suitable approximation to u. 

6.3 Numerical Schwarz, Methods 

(G.26) 

For a numerical implementation of these Schwarz methods, the differential equation 

on each subdomain ni for each iteration k becomes a finite difference or matrix 

equation ( as presented in Chapter 3), where each snhdomain becomes a snhgrid. 

Thus for each subdomain ni and iteration k we have a subg;rid Gi and an associated 
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matrix equation 

(6.27) 

where Ai is the matrix associated with the ith subdomain ni, c~k) is a vector incorpo-

rating the values of fi from ni, the boundary conditions from the original problem 

(6.1), and the pseudo-boundary conditions obtained from neighboring solutions, 

and u~k) are solutions to equations (6.27). 

Of course, numerically we do not solve for each u~k) exactly but rather obtain 

an approximation. In the numerical algorithm we use we have incorporated the 

Gauss-Seidel method to obtain an approximation u~k) for each ni and iteration k 

of the parallel Schwarz process. 

As an initial vector vJ0
) for the Gauss-Seidel process on ni at the kth iteration 

of the Schwarz process, we use 

V
(O) -
1 -

(0) 
V· = i 

(k-1) n n 
Ui-1 On Hin Hi-1 

(k-1) n n n 
Ui+l on Hi Hi+l, 
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for i = 3, 5, ... , 2n - 1, 

(0) 
V· = t 

for i = 2, 4, 6, ... , 2n - 2, and 

V
(O) -
2n -

(k-1) n n 
U2n On H2n - H2n-1 · 

Table 6.1 shows some actual computational results using the numerical version 

of algorithm 6.3. In this case we have used 16 subdomains on 8 processors. The 

number of iterations of Gauss-Siedel taken on each subdomain to approximate each 

respective subdomain problem is given bys and a is the number of columns of grid 

points in the overlapping region between two adjacent subdomains. Once a.gain, 

as a stopping criteria we used II u~k) - uh II:::; E = 10-5
. We experimented with 

different values for s and a. Our best results were obtained using s = 1 and a = 4, 

indicating that for this version of the parallel Schwarz method run on a shared 

memory machine, the best results are obtained when a minimum number (ie. 1) of 

Gauss-Seidel iterations are performed on each subdomain problem and the overlap 

between adjacent subdomains is maximal. 
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In all cases we see a marked improvement over the basic Gauss-Seidel method. 

In particular, for s = l and a = 4 we see the speed of execution, again relative to 

the Gauss-Seidel method, increase by a factor of \6
2\

0 = 7.4. 
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Table 6.1: A Parallel Schwarz Method 

s = l s=3 s = 10 s = 20 

k t k t k t k t 

O'. = 0 6250 24.2 2250 25.6 1000 37.7 850 64 

O'. = 2 4800 25.6 1700 26.8 550 28.8 350 36.6 

O'. = 4 3250 22.2 1100 22.2 350 23.5 200 26.8 



Chapter 7 

A Parallel Multigrid Method 

7.1 The Algorithm 

In chapters 5 and 6 we have presented two methods, one sequential the other parallel, 

that serve to enhance more basic iterative methods such as the Gauss-Seidel and 

Jacobi methods. In this chapter, we introduce a further improvement by combining 

the two-grid multigrid method and the parallel Schwarz method. The idea is to 

take our two-grid sequential multigrid method and use the parallel Schwarz method 

in place of the basic Gauss-Seidel method. The algorithm is as follows: 
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ALGORITHM 7.1 

To solve 

~u=-f on !1=(0,l)x(0,1) 

u = q> on r, 

we begin by discretizing the problem thus obtaining the matrix equation 

We then proceed as follows: 

step i: 

Initialize iteration counter k to 0. 

Guess u~o) as an approximation to uh. 

step ii: 

Repeat until 11 u~ - uh II :s; E, for some iteration k and some error tolerance E. 

(7.1) 

(7.2) 

- Perform three parallel Schwarz iterations on Ahu~k) = fh (ie. this is algorithm 

6.3 with k = 3). The method used on each subdomain is s iterations of the Gauss­

Seidel method. 

- Compute the residual on the fine grid Ch: r~k) = fh - Ahu~k). 

- Transfer the residual to the coarse grid G2h: r~J! = I1:hr~k). 

- Perform thirty parallel Schwarz iterations on the coarse grid to obtain a good 
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approximation to the solution to the coarse grid residual equation 

(7.3) 

This yields e2h, a good approximation to e 2h. 

- Transfer error term to the fine grid Gh: e~k) = Ithe~~-

- Compute new approximation: u~k+l) = u~k) + e~k). 

- Increment the iteration counter k. 

step iii: 

Perform three final parallel Schwarz iterations on Ahu~k) = fh, as was done in step 

ii. This reduces high frequency error introduced during the final interpolation. D 

Table 7.1 shows some computational results using this algorithm. As with the 

parallel Schwarz method of the previous chapter, the number of iterations of Gauss­

Siedel taken on each subdomain to approximate each respective subdomain problem 

is given bys and a is the number of columns of grid points in the overlapping region 

between two adjacent subdomains. Also, as before, as a stopping criteria we used 

II u~k) - llh II::; c = 10-6
. 
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Table 7.1: A Parallel Multigrid Method 

s = l s=3 s = 10 s = 20 

k t k t k t k t 

O:'. = 0 237 12.5 102 14.6 68 31.6 64 58.9 

Q'. = 2 189 12.8 82 15.6 50 30.9 41 50.4 

Q'. = 4 112 9.29 54 12.7 34 26.3 26 40.1 



Chapter 8 

Conclusion 

In performing the research for this paper I explored two significantly different it­

erative algorithms, one essentially sequential and the other essentially parallel, for 

solving elliptic partial differential equations. Both algorithms serve to significantly 

enhance a more basic traditional method, in this case the Gauss-Seidel method. 

The sequential multigrid method uses one or more coarser grids to accelerate 

the convergence of a basic method such as Gauss-Seidel. The multigrid approach 

is to address the problem, associated with the basic method, that low frequency 

error components are reduced at a much slower rate than those of higher frequency. 

By transferring these low frequency components to a coarser grid their frequencies, 

relative to the coarser grid, are increased. Then the basic method can be employed 

to more rapidly reduce this part of the error. The use of coarser grids is also helpful 
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because the data representing the problem is significantly reduced on the coarser 

grids making iterations of the basic method that much faster. 

The parallel Schwarz method takes advantage of the fact that, in methods such 

as Gauss-Seidel, the update of any grid point of Gh is independent of all but its 

immediate neighboring grid points. Thus, using a machine such as the Alliant FX/8, 

the workload can be judiciously distributed over multiple processors, realizing a 

significant increase in the speed of execution. 

I combined these two methods into the parallel multigrid method presented 

in Algorithm 7.1. This algorithm capitalizes on both of the previous approaches. 

The use of a coarser grid is used to improve the rate of convergence while multiple 

processors are used to distribute the workload. Whereas, our best execution speeds, 

relative to the speed of the Gauss-Seidel method, were 1
4~\

0 = 4.0 and 1
26;2° = 7.4 

for the sequential multigrid and parallel Schwarz methods, respectively, the best 

results using the combined method showed a relative speed of 1
9~ 9° = 17.6. As in 

the pure parallel Schwarz method, the best results were obtained using s = 1 and 

a= 4. Table 8.1 summarizes these results. 

One may view the parallel multigrid method as a parallel enhancement of the 

essentially sequential multigrid method or as a multigrid enhancement of a parallel 

Schwarz method. It is not unusual to find a sequential method, which contains po­

tcntia1ly parallel sections of code, enhanced hy placin.c; it in a. parallel cuvirom1wnt. 
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What is unusual though is to find such a highly parallel method such as the Schwarz 

method enhanced by placing it in an inherently sequential environment. 
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Table 5.1: Relative Speeds of Execution 

method time factor 

Gauss-Seidel 164.0 1.0 

sequential multigrid 41.0 4.0 

parallel Schwarz 22.2 7.4 

parallel multigrid 9.29 17.6 
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