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/ ABSTRACT

The optimal scheduling of tasks among which complex interrelationships (such as 
precedence constraints) may exist is essential for driving the new generation of 
concurrent supercomputers to their utmost performance. To address this need, the 
project ROSES (Robot Operating System Expert Scheduler) has been initiated at 
the Oak Ridge National Laboratory’s Center for Engineering Systems Advanced 
Research. The project, its method for optimizing schedules, and its implementing 
computer code are each called ROSES. The problem of finding optimum schedules 
is explosive in complexity (i.e., NP-complete). By combining heuristic techniques, 
graph-theoretic algorithms, and sophisticated data structures, ROSES achieves 
near-optimal solutions in a highly efficient manner both with respect to computer 
time and memory-space. In this report, the description of the methodology is 
followed by an overview of the ROSES computer code, including detailed outlines 
of selected algorithms. In addition, this report describes an application of ROSES 
to schedule inverse dynamics computations for a robot manipulator.



EXECUTIVE SUMMARY

Some of the most challenging computational problems being posed today concern 
intelligent autonomous systems, such as autonomous robots. These systems 
must perform highly complex computations very rapidly. To meet the demands, 
concurrent computation seems necessary.

ROSES is an optimization procedure that searches to find rapid schedules for 
concurrent-computation performance of precedence-constrained tasks.

Some of the terminology warrants comment. Concurrent computations refers to the 
use of an ensemble of processors that work simultaneously, though not necessarily 
in lockstep fashion, toward completing a large computational job. To prepare for 
concurrent computation, the large job is broken up into atomic computational tasks, 
each to be performed wholly on a single processor of the ensemble. A schedule is 
a plan that partitions the computational tasks among concurrent processors, and 
indicates when each of these tasks is to begin. A rapid schedule is one for which 
the wall-clock time is short from start to scheduled finish of the multitask job. An 
optimum schedule is most rapid (it finishes in minimum time). Usually there are 
precedence constraints to satisfy. For example, it may be that computational task * 
cannot start until computational tasks a and b are completed, because task i needs 
results from the completed tasks a and b. In that case: unless tasks t and a and 
b are all assigned to the same processor, there will be a need for messages to pass 
results from a and/or b to i.

Determining the optimum constraint-satisfying schedule is an NP-complete problem 
(i.e., is explosive in complexity). ROSES finds near-optimum constraint-satisfying 
schedules quickly.

ROSES can generate near-optimum schedules for multitask jobs having this 
property: The time needed for message-passing is small compared with the time 
needed to process computational tasks (no matter what the partition of tasks among 
processors).

This report describes the ROSES search-scheme in terms of: two different graphs (a 
search tree and a task graph), heuristics based largely on critical-path considerations 
(plus other time bounds), and various data structures. All these combine to make 
the ROSES search-process efficient.

The schedule emergent from a ROSES search is called a ROSES search- 
output schedule. It always fully satisfies all the precedence constraints among 
computational tasks. However, because of simplifying approximations (e.g., in the 
search-scheme’s model for message-passing), the ROSES search-output schedule 
will generally not be precisely executable on a real multiprocessor. What will be 
executable is a well-defined compromise schedule — a schedule which retains certain 
selected features of the ROSES search-output schedule, but replaces others (e.g., 
replaces all model message-passing times with real message-passing times). The 
compromise-schedule fully satisfies all the precedence constraints. It is easy to 
arrange for the multiprocessor to execute this compromise-schedule.

ROSES has been applied to schedule the solution of dynamics equations for a robot 
arm. The ROSES search-output results were compared with results obtained earlier

vn



by other workers using different methods. In several ways, the results from ROSES 
were superior to the ear her results.
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I. INTRODUCTION

Some of the most challenging computational problems facing scientists and engineers 
today arise within the framework of intelligent autonomous systems. Such problems 
range from robots operating in unstructured hazardous environments where 
explosives, toxic chemicals, or radioactivity may be present, to the development 
of battle management paradigms for the Strategic Defense Initiative. To enable 
a robotic system to work effectively in real time in an unstructured environment, 
one needs to solve repeatedly a variety of highly complex mathematical problems 
such as on-line planning, vision, sensor fusion, navigation, manipulator dynamics 
and control. Similarly, a “Star-Wars” defense system would need to respond to an 
offensive strike by coordinating perhaps millions of separate actions on a schedule 
timed in milliseconds. The computational requirements of these problems fall 
into the “supercomputer” class, but ultimately we need to solve them “onboard” 
the autonomous robot or space system. The only realistic option is VLSI-based 
concurrent computation.

Concurrent computation1 refers to the use of an ensemble of small computers that 
work in parallel, but not necessarily in lockstep fashion, on parts of a complex 
problem. Our interest is in concurrent processors which coordinate their activities 
almost entirely by sending messages to each other2 (to avoid many of the difficulties 
associated with attempts to scale-up shared memory systems to a large number of 
processors). The major technological drive behind concurrent computation appears 
to be very large scale integration (VLSI).3 The basic trend is to use state-of-the- 
art VLSI to integrate an entire processing system on a single chip4-5 including 
communication links, memory interface, 32-bit processors and even 64-bit IEEE 
floating point,5 resulting in smaller and cheaper individual processors comparable 
in performance to their larger capability and more expensive predecessors. Such 
advanced single-chip processors are being combined into concurrent systems of great 
power and versatility. Methods must be developed for properly applying this power 
and versatility to the complex problems needing solution by intelligent autonomous 
systems.

One of the first and most important steps in attempting to solve a problem 
in a concurrent computation ensemble is decomposing the problem into a set 
of tasks (or “processes”) each to be performed wholly by one processor of the 
ensemble. When a problem is re-expressed by decomposing it, the re-expression 
often involves precedence constraints among the tasks. The distributed nature 
of the computational system translates these precedence constraints into message­
passing requirements. A plan which partitions the task set among the processors, 
and which also stipulates when each task should be performed, is called a “schedule”. 
The optimal scheduling of tasks, among which complex interrelationships (such as 
precedence constraints) may exist, is essential for driving the new generation of 
concurrent supercomputers to their utmost performance. To address this need, the 
project ROSES (Robot Operating System Expert Scheduler) has been initiated at 
the Oak Ridge National Laboratory’s Center for Engineering Systems Advanced 
Research. The project, its method for optimizing schedules, and its implementing 
computer are each called ROSES.

The ROSES methodology and computer code are due to two of this report’s authors. 
The methodology was conceived by J. Barhen. The code was written by J. Barhen 
and P. C. Chen.

1
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This report focuses on the methodological framework of ROSES. The problem 
of finding optimal schedules is NP-complete. It is computationally intractable6 
for more than two processors and task sets of large dimensionality. ROSES has 
been designed to achieve near-optimal schedules by combining heuristic techniques 
and graph-theoretic algorithms to control time complexity, with sophisticated data 
structures to handle efficiently space complexity.

The major part of ROSES proceeds by search to generate a “ROSES search- 
output schedule.” The course of the search, its emergent schedule, and ROSES’s 
estimated time for concurrently executing that schedule, are all influenced by input 
data describing the computational tasks, message requirements, and processors. 
The input data include, for example: (1) each computational task’s algorithmic 
parameters, such as the number of floating point multiplications in the task; and 
(2) processor system performance parameters, such as the time for one floating 
point multiplication. Thus, ROSES can be used to estimate optimal concurrent- 
execution times for various problem decompositions and for various multiprocessors 
— all these estimates being obtainable without any actual experimental runs on a 
concurrent multiprocessor.

After an acceptable problem decomposition and ROSES search-output have been 
determined, actual execution on a multiprocessor is in order. To facilitate such 
execution, we invoke an optional, concluding part of the ROSES computer code. 
This optional part generates “run-time” control data to be fed to the multiprocessor 
along with routines corresponding to all the individual computational tasks that 
ROSES has scheduled. (Also to be fed are an appropriate host program, and 
ordinary input data to complete the description of the multi-task problem.) The 
run-time control data will inform the multiprocessor how to execute the multi-task 
job in accord with selected features of the ROSES search-output schedule. The 
schedule that will be executed will be in perfect compliance with the precedence 
constraints.

This report is organized as follows. Section II provides a short background on 
multiprocessor scheduling. The methodological framework for ROSES schedule- 
optimization is described in Section III. This is followed, in Section IV, by an 
overview of the schedule-optimization part of the ROSES computer code. Detailed 
outlines of selected routines are included. Section V discusses an application 
of ROSES: scheduling the solution of inverse dynamics equations for a robot 
manipulator. The Section V discussion includes some further description of the 
“run-time” data generated by ROSES. Section VI contains brief comments on future 
research directions.
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II. BACKGROUND

Multiprocessor scheduling has been studied extensively over the last twenty years, 
and excellent reviews can be found in the literature.7-10 Most earlier work for 
processor scheduling has been concerned with deterministic models7-9 in which the 
task execution times are assumed to be fixed and known in advance. Stochastic 
models, in which task execution times are random variables and the computer 
system is modeled via queuing networks, will not be discussed here, but the 
interested reader is referred to the articles of Robinson10 and Rosberg11 as a starting 
point for further details. Major complications in deterministic scheduling arise 
when the number of tasks in a particular algorithm exceeds the number of available 
processors, and/or when the topology of the task graph (as determined by the 
precedence constraints) is not expressible in a way similar to the interconnection 
topology of the computation ensemble. Furthermore, optimal schedules are in 
general extremely difficult if not impossible to obtain, since for an arbitrary number 
of processors, unequal task processing times, and non-trivial precedence constraints, 
the problem is NP-complete.6

In the past, studies of multiprocessor scheduling have often been abstract, since 
few appropriate machines existed. Among the many outstanding contributions 
made, in this area of abstract studies, special credit goes to the seminal paper 
of Ramamoorthy, Chandy and Gonzalez (RCG).12 They present algorithms and 
heuristics to obtain the minimum number of processors such that given a set of 
computational tasks and their partial ordering, the overall execution time would be 
minimized. RCG also address the more general problem of scheduling precedence- 
constrained tasks on an arbitrary number of processors. In particular, they point out 
that for multiprocessor scheduling problems involving tasks with unequal processing 
times, it is sometimes optimal to keep a processor idle even when there are tasks 
that could be processed immediately. In a similar vein, Fernandez and Bussel have 
derived13 sharp lower bounds on the number of processors and on the minimum time 
required for optimal schedules. Bounds on the performance guarantees of scheduling 
algorithms have also been investigated by Garey, Graham and Johnson,14 and more 
recently by Sarin and Elmaghrabi.15

Another important research area is concerned with the problem of scheduling T 
tasks, where each task i has a release time r,- and a deadline time d,. For a variable 
number of processors, if tasks are related by a partial order (i.e., by a relation that 
is reflexive and transitive) and are allowed to have different processing times tj, 
then the problem is known to be strongly NP-complete.6 This is still the case even 
if the tasks are to be scheduled on a single processor.16 Ullman has shown17 that 
the problem remains NP-complete for unit-time tasks, even with all release times 
set to zero and a single deadline. However, Simons and Sipser18 were able to prove 
that if no partial ordering applies, a polynomial time algorithm exists, assuming 
again unit-time tasks but with unconstrained release times and deadlines. They 
have also investigated how small perturbations of the basic assumptions underlying 
a scheduling problem impact its transition from NP to P-completion and vice versa.

Monma’s work focuses on scheduling T equal-length tasks on N identical parallel 
processors, subject to “in-tree” precedence constraints.21 This corresponds to a 
situation in which all tasks have at most one immediate successor. Monma shows 
that for tasks with different completion deadlines an 0[T] Unear-time algorithm can 
be derived.
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The effect of processor memory size on the scheduling problem has been considered 
by Lai and Sahni.22 They show that no multiprocessor system that contains at least 
one processor with memory size smaller than at least two other processors can be 
scheduled “nearly on-hne” to minimize the overall completion time.

Numerous other interesting algorithms have been proposed, including the use 
of quadratic programming23 and linear execution orderings via nonlinear integer 
optimization.24 A great deal of effort has also been devoted to load-balancing 
issues.25 However, the applicability of most proposed approaches to real-life 
problems suffers from some of their underlying assumptions (e.g., “unit-time” task 
lengths, and/or few processors, and/or no precedence constraints).

With the motivation of newly developed concurrent computers, there has been an 
increased interest in formulating efficient multiprocessor scheduling algorithms.26-29 
Real-time systems in general, and robotic applications in particular, axe the driving 
force behind these developments. Other promising avenues being explored involve 
the derivation of parallel scheduling algorithms.39 Published results in this area 
are currently limited to SIMD architectures. Much work remains to be done, in 
particular for the more difficult MIMD, message-passing architectures.

Advanced autonomous robots, such as the HERMIES-II prototype currently being 
developed and tested at CESAR31 or the Hexapod walking machine constructed 
by Ohio State University,32 and other intelligence-targeted machines of the future, 
are generally composed of a variety of asynchronously controlled components. For 
a robot, these components may include manipulator arms, electro-optical sensors, 
sonars, navigation controllers, etc. In order to take advantage of the distributed 
nature of the associated robotic processes, it was envisioned33 that a Robot 
Operating System (ROS) should be developed to provide a generalized framework 
for implementing machine intelligence in a real-time environment. ROSES (i.e., the 
ROS Expert Scheduler) is being developed in that context.
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m. METHODOLOGICAL FRAMEWORK

This section focuses on the basic methodological framework which allows ROSES to 
find near-optimal solutions to the NP-complete precedence-constrained scheduling 
problem. Our intent is to show how ROSES combines heuristic techniques, graph- 
theoretic algorithms, and sophisticated data structures so as to make its search 
efficient. This section’s statements about ROSES refer to the major, schedule- 
generation part of ROSES.

Concerning notation: In this report’s variable-names, italic style and roman style 
are used interchangeably. So are hyphens and underlines. For example, apt and spt 
are identical in meaning; so are TIME-to.GOAL and TIME-to-GOAL.

III.l. STATEMENT OF THE PROBLEM

ROSES addresses problems of the following kind: Assume that one is given a set 
of Ne tasks {e|e = l,...,JVe}, each task having an expected time-length L(e). An 
overall goal exists, and there are precedence constraints among the tasks and the 
goal. These precedence constraints are expressible in the form: “Tasks ea,..., ej 
must be completed before any of tasks e/,..., e< can begin; tasks eem must 
be completed before any of tasks er,...,ew can begin; ... tasks ea,... ,ez must be 
completed before the goal is reached.” In the foregoing statement, the subsets of 
predecessor tasks (that is, subsets like en,..., e^, e*,..., em, e,,..., ez) may or may 
not be disjoint from each other; and similarly, the subsets of successor tasks may 
or may not be disjoint from each other. In any case, the cumulative requirement 
is that, in order to reach the goal, all the tasks must be completed — once each, 
in any sequence compatible with the precedence constraints. The tasks are to be 
performed on a set of Np identical concurrent processors {p\p = 1,..., Np}. Each 
processor can handle only one task at a time, and task preemption is currently 
not allowed; i.e., once a task is started on a processor, that task is processed there 
without interruption until finished. The sooner the goal is reached, the better. 
Therefore the objective is to find an optimal or near-optimal schedule for reaching 
the goal rapidly.

Three “allowed approximations” deserve mention; they are used in translating 
real-world conditions to the above-described problem statement. These three 
approximations concern time-lengths, message-passing, and interprocessor relations. 
Each is listed find discussed separately.

1. Optimization is done assuming all time-lengths L(e) to be fixed, certain, and 
known in advance of task-performance. Zero-length tasks are allowed.

Though zero-length tasks do not directly consume scheduled time, they can of 
course imply precedence constraints. They can be useful for re-expressing a ROSES 
problem in terms of disjoint precedence requirements, as follows: Suppose that 
a task-scheduling problem is initially posed in terms of non-disjoint predecessor 
subsets and/or non-disjoint successor subsets. Then by postulating some extra 
zero-length tasks, it is always possible to pose an equivalent problem having only 
disjoint predecessor subsets and disjoint successor subsets. Such disjointness is 
convenient and is required for the main search algorithm of ROSES.
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2. Communications between tasks are themselves treated as tasks. They 
axe “message-passing tasks” as opposed to the others, which are called 
“computational tasks.” The ROSES search algorithm treats all tasks alike. 
That is: during search ROSES assigns processors to tasks on the basis of the 
tasks’ stated lengths and precedence constraints, with no other variables to 
indicate whether a task is message-passing or computational.

This modeling of messages is reasonable if message-passing times are small compared 
with computational-task times. For such cases, ROSES users may often decide to 
describe the message-passing tasks as having zero time-lengths.

3. Besides being identical in themselves, all processors are presently considered 
identical in their relationships to every other processor (and even reflexively, to 
themselves).

Thus, for example, all processors are assumed to be equidistant for message­
passing (and at present there is no coded provision for avoiding a message-passing 
task, even if it connects two tasks assigned to be performed successively by the 
same processor). The assumption of equidistant processors may be viewed as a 
compromise, reasonable for general application to concurrent computers with a 
variety of special (but highly connected) configurations. In any case, the entire 
message-passing approximation still leaves ROSES in good competitive status with 
respect to other current scheduling systems.

Our expectation is that forthcoming improvements in hardware will greatly reduce 
message-passing times compared to the times of logical and arithmetic operatives 
on a single processor. Therefore, we expect that neglecting message-passing times 
will often be a very reasonable approximation in searches to optimize schedules.

m.2. SPECIFICATION OF SCHEDULES

As noted, the problem is to find an optimal or near-optimal schedule for reaching the 
goal rapidly. ROSES specifies each schedule as a chronological list of “assignment­
starting” triplets <,p,e where i is the time for processor p to start task e. For 
convenience, the list also includes triplets indicating the starting times of idling 
periods, using e = 0 to indicate idling. With this inclusion, the schedule need not 
be accompanied by the information L(e); because it is understood that unless the 
goal has been readied when a processor finishes an assigned task, there will always 
be a new assignment listed for it, either with e > 0 or e = 0.

A ROSES schedule always satisfies all the precedence constraints and all the 
processor-availability constraints. However, the schedule may or may not be 
complete (where “complete” implies reaching the goal).

In specifying a schedule, ROSES tags each successive triplet with an ordinal number 
spt (for “selection point’’). When constructing a schedule, ROSES works forward in 
spt and time. That is, ROSES make its selections for [t,p,e] in order of increasing spt 
and nondecreasing t. Using curly brackets to indicate a set, we write the schedule 
as

{[t,p, e]} — e(apt)]/or5P^ — li2,3,...}
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Within Eq. (1) we have used — for a particular assigned processor and its associated 
task (or idling) the same symbols p and e which were introduced earlier as generic 
running indices. In later discussions too we shall use p and e sometimes as special, 
sometimes as generic. Usually the context will make our intended meaning clear 
(but where clarity does require different symbols, we shall use different symbols).

Two features of Eq. (1) lead to possibilities for the construction of some essentially 
redundant schedules. These features are: the use of processor indices p, and the use 
of selection-point indices spt even when a subseries of triplets has the same t. (The 
simplest p-associated example is that two ROSES schedules would be essentially 
redundant if they differed from each other only by an overall permutation of their 
processor indices.)

However, ROSES successfully avoids constructing such redundant schedules. To do 
this, ROSES uses special redundancy-avoiding procedures to sequence tasks and to 
sequence processors. These redundancy-avoiding procedures pervade the ROSES 
method; they are intertwined with the procedures used to satisfy basic constraints 
and to apply heuristics; and they involve the same graph-theoretic techniques and 
data structures that ROSES uses to satisfy the constraints and to apply heuristics.

In this report we want to most strongly emphasize, as basics, the procedures 
for satisfying constraints and applying heuristics. Accordingly, we want to avoid 
cluttering our explanations of these basics with numerous details about the 
intertwined redundancy-avoidance procedures. Still, we want to make clear that 
- and how - redundancies are avoided. As a compromise, we have put some of the 
redundancy explanations into Appendices A and B.

III.3. STRUCTURE OF A ROSES SEARCH

Construction of a single schedule proceeds according to the following heuristic rules 
and conventions: At t = 0 (the start of the schedule), each of the Np processors 
is given an assignment — either one of the tasks e > 0, or an idling assignment 
e = 0. For this initial set of triplets, the processors are assigned in order of p. 
At < = 0, the only tasks that can be assigned are those which have no precedence 
requirements. Partly for heuristic reasons, and partly to avoid redundancies, tasks 
are always assigned in a preference-order that is strongly influenced by critical-path 
considerations. After f = 0, assignments are made at, and only at, task-finishing 
times. These are the only times when processors become free (because they have 
just finished tasks), and when further tasks may become assignable (because a just- 
finishing task may complete their precedence requirements). Whenever a processor 
finishes a task, that processor is immediately given a new e-assignment, either e > 
0 or e = 0. Furthermore, at that same task-finishing time t, each processor that has 
been idling is given a newly starting assignment, either e > 0 or e = 0. If, at a given 
task-finishing time t there are several different processors which finish their tasks or 
have been idling, then ROSES gives them assignments with simultaneous starting 
times but successive spt indices. In a complete schedule, the last time t specified 
is “TIME-to-GOAL,” which coincides with the finishing time of the last-to-finish 
task.

In the course of searching for an optimal solution, ROSES constructs at least one 
complete schedule — and sometimes many alternative schedules. Table 1 shows 
such a set of alternative schedules. In this table, each capital letter represents an
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entire assignment-triplet [t,j),e]. We comment now on two qualitative features which 
Table 1 prominently displays:

a. Some schedules axe abandoned before being completed all the way to goal.

b. Two successively constructed schedules generally share their history, up through 
some spt.

Table 1. Schematic Example of a Set of Schedules 
Constructed Successively by ROSES

Schedule* Schedule* Schedule* Schedule*
spt #1 #2 #3 #4

1 A A A A
2 B B B B
3 C C' C' C'
4 D D' D" D"
5 E E' E" E"
6 F (abandoned F' F"
7 G after G' G"

(continues spt=5) • (abandoned
to goal) • after

(continues 
to goal)

spt=7)

*Below, each capital letter represents an assignment-
staxting triplet [t,p, e].

Both (a) and (bl axe easily understood in terms of ROSES using a modified depth- 
first search metnod enhanced with some A*-like features (e.g., time bounds) and 
some additional criteria for backtracking. Along each path in the search tree, 
successive vertices, and the branches stemming from them, axe labeled with the 
ordinal munbers spt. At each vertex the branches correspond to allowed alternatives 
for a triplet to be added to the series of triplets forming the path leading to
that vertex. (We use the word “branch” to mean the path-segment between two 
successive vertices.) This search-tree picture will be used in comments on (a) and
(b).

Concerning (a), i.e., the fact that some schedules axe abandoned before being 
completed all the way to goal: ROSES aborts a schedule upon finding evidence 
that if the schedule were continued all the way to the goal, that completed schedule 
would not be better than — i.e., would not have a shorter TIME-to-GOAL than,— 
the best complete schedule previously found. Evidence on this matter is continually 
sought: for (in the A* spirit) ROSES calculates, at each spt, several different kinds 
of time bounds on the TIME-to-GOAL for a schedule incorporating the history- 
through-spt of the schedule currently under construction. In addition, ROSES uses
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some other, heuristic criteria for deciding whether or not to continue the schedule 
under construction.

Concerning (b), i.e., the fact that two successively constructed schedules generally 
share their history, up through some spt: ROSES generally constructs a new 
schedule by altering only some later portion of the preceding schedule. The 
similarity of consecutive schedules in Table 1 comes about from selecting and 
traversing a particular branch [t,p, e] at an spt vertex in the search tree, then deciding 
not to continue the current schedule past that branch, and then backtracking in the 
search tree to the same spt vertex or to a yet earlier vertex in preparation for 
proceeding forward through a previously untraversed branch.

ROSES tends to backtrack as little as possible — or, to put it positively, ROSES 
tends to press forward toward the goal as much as possible. This “pressing- 
forward” approach is in line with the choice of depth-first style for ROSES. The 
depth-first choice means that, unless there is evidence which warrants abandoning 
a partially complete schedule, ROSES works to complete that schedule before 
switching to construction-work on a different schedule. Furthermore, after a 
schedule is completed or abandoned, ROSES constructs the next trial schedule 
not by starting anew at t = 0, but instead by backtracking in the search tree only 
as far as the latest previous vertex where (according to saved information) at least 
one as-yet-untried branch remains and is worth traversing. Then the new schedule 
starts with a portion identical to the early portion of the preceding schedule, but 
continues differently in moving toward the goal from the vertex to which the search 
backtracked.

This style of searching, i.e., pressing forward, tends to maximize the speed of 
accumulating pertinent information about completed (and possibly near-optimum) 
schedules. The accumulated information is put to good use by ROSES, in evaluating 
later-constructed partial or full schedules.

After completing a schedule (i.e., reaching the goal), ROSES stops searching if the 
TIME-to-GOAL is judged sufficiently satisfactory, or if the search tree has been 
explored as fully as the ROSES heuristic rules dictate. If neither of these conditions 
holds, then as noted above, ROSES backtracks to the last previous search-tree 
vertex where any as-yet-untried branches exist and are worth traversing.

The search tree is constructed so that ROSES can form only schedules which satisfy 
the precedence constraints and processor-number constraints. Furthermore, the 
search tree is constructed so that it disallows several kinds of essentially redundant 
schedules.

However, the details of the search tree are not known in advance of traversing 
the tree. Only after ROSES reaches a search-tree vertex for the first time, by 
forward-traversal, does ROSES determine the further allowed triplet-choices and 
so construct the search-tree section just ahead of that newly reached vertex. At 
each vertex spt, the set of allowed triplet choices depends strongly on the series of 
triplets chosen at past selection points of that particular schedule’s history. During 
forward search, ROSES continually accumulates and updates information depending 
on the schedule-under-construction, in order to determine the characteristics of the 
next search-tree vertex with all its emanating branches. Besides identifying these 
branches, ROSES determines a preference-order for them. These determinations 
are made before traversing any one branch at that vertex. In short: for a given spt,
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ROSES works to “nominate” a list of candidate triplets, and gives them a preference 
order, before evaluating each particular candidate in turn.

When doing the work of nominating search-tree branches, ROSES is much concerned 
with questions of readiness. Which tasks are ready to be assigned, because their 
precedence requirements have been satisfied? Which processors are ready to accept 
new assignments because they have finished their previous assignments? When 
doing the work of evaluating search-tree branches, ROSES is much concerned with 
time bounds. The needed information on readiness and time bounds is stored in 
terms of data structures.

Our next four sections deal in turn with the search tree, readiness, time bounds, 
and data structures.

m.4. PROPERTIES OF A ROSES SEARCH TREE

Many of our later explanations are cast in terms of search-tree construction and 
traversal. To provide background for those explanations, this section reviews and 
extends our foregoing remarks about ROSES search-tree features and terminology.

As noted earlier, we use the word “branch” to mean the search-tree path-segment 
connecting two vertices. ROSES constructs each search-tree part — vertex plus 
stemming-out branches — only if and after ROSES has (1) traversed the path 
leading to that vertex, and (2) decided that the traversed path is sufficiently 
promising to extend and traverse further.

• Basics: Vertices, Branches, Schedules, and Selection-Point Indices

Figure 1 shows a very limited portion of a ROSES search tree.

Each search tree vertex is labeled with an index spt (as well as other descriptors). 
Similarly, each branch is labeled with an index spt. As spt increases, time t is 
nondecreasing. Our convention is that spt increases in the upward direction. Thus, 
a “forward-going” search-tree path proceeds upward. A forward-going search-tree 
path, if it starts from the bottom of the tree, corresponds to a schedule. The 
successive branches within that path correspond to the assignment-starting triplets 
[f,p, e] of the schedule. The bottom point of the search tree corresponds to < = 0 
with all processors idling. It is a vertex tagged with the selection-point index spt =
1. Every schedule-path starts there, and the further vertices along each schedule- 
path are tagged with successively increasing selection-point indices spt = 2, 3, 4,..., 
etc.

A schedule-path is complete if its top vertex implies attainment of the goal. In 
the search tree, many different vertices, each at the top end of a separate path, can 
individually imply attainment of the same goal (all tasks completed). Each separate 
complete path implies a different way of reaching the goal.

Although many assignments may be made at the same time t, each branch 
corresponds to only a single assignment-starting triplet [f,p, e]. For example, at 
f = 0 all of the Np processors are assigned; but each of the branches stemming from 
the spt = 1 vertex represents the initial assignment for one particular processor, 
not the entire set of initial assignments to all processors.
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Fig. 1. Portion of a ROSES search tree, for a two-processor case. Vertices are marked with large 
underlined labels spt[t,p\. Branches are marked with small labels spt[t,p,e]. Each illustrated schedule- 
path shows an initial assignment for pi, then an initial assignment for p2, and then a reassignment for pi 
when pi completes its initial assignment.
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If a branch stems from a vertex tagged sptc, then that branch too is tagged sptc. 
This convention — relating vertex-indices to branch-indices — is convenient for 
correlating our description with the indexing scheme used in the main control 
structure of the ROSES code. A ROSES search progresses by repeatedly passing 
through that main control structure. Each pass is associated with “current” entities 
which we refer to here by using subscripts c.

Thus, the beginning-of-pass, forward-going path starts from spt = 1 and goes up to 
a vertex tagged sptc. That is, the beginning-of-pass schedule-path corresponds to a 
schedule incorporating (sptc - 1) triplets. The branches stemming from the current 
vertex sptc correspond to candidates for a triplet to be added to the current (sptc 
- l)-member schedule, so as to form an sptc-member schedule.

• Branches Stemming from the Same Vertex

Because of the heuristic rules and conventions described early in Section III.3 
(and also, because of conventions and procedures used to avoid redundancies): All 
nominated triplets (branches) stemming from the same search-tree vertex have the 
same [t,p] combination; it is only in e-value that they differ. Accordingly, a vertex 
may be labeled with [t,p] as well as with spt. Furthermore, when discussing a fixed 
search-tree vertex, we sometimes think in terms of alternative e-choices, rather than 
alternative [f,p, e] choices.

At each vertex there is one stemming-out branch which represents idling, e = 0. 
For all other branches, the e represents a task, for which e > 0. Every one of these 
task branches refers to a task that is “ready” — where a ready task means a not- 
yet-started task whose precedence requirements are satisfied. The task-branches 
at each vertex are arranged, left to right, in order of decreasing /, L favor. (The 
rules used to evaluate “/, L favor” will be described later in this report.) The ioling 
branch is placed at the extreme right, for it is the “least favored” of all the branches 
stemming from that vertex. For brevity, we use terms such as “most favored” to 
refer to e-choices in this order: the ready tasks in decreasing order of /, L favor, 
and then the idling choice e = 0.

What is the import of “favor”? When ROSES is forward-searching from a vertex spt, 
ROSES always traverses the most favored (leftmost) branch that has not yet been 
traversed. Then on successive revisits to a vertex (revisits allowed via backtracking), 
ROSES traverses successively less favored branches.

The task-branches stemming from a vertex [t,p] do not always represent the entire 
set of tasks ready at t. Some of those ready tasks may be excluded because of 
redundancy-avoiding task-ordering conventions. (Discussions of this matter appear 
in several places within this report, e.g., in Appendices A and B). However, whenever 
the f of a vertex spt is different from that of its preceding vertex spt - 1), then the 
branches stemming from the vertex spt do correspond to all the tasks ready at t, 
plus the idling branch.

• Specification of Vertices and Branches

The combination spt,[t,p] is not generally enough to uniquely specify a vertex. 
There could be several vertices, in different parts of the search tree, that are identical 
in their combination spt, [<,p]. Similarly, the combination spt, [t,p, e] is not generally 
enough to uniquely specify a branch.
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Even within a given path, there may be multiple vertices with a given [t,p]; this 
can occur because zero-length tasks are allowed.

However, when discussing a fixed schedule-path we can properly identify a unique 
vertex by referring to “the spt vertex,” and we can properly identify a unique branch 
by referring to the “spt branch” or the “e-branch” (where here spt and e imply 
special values, not generic variables). These references axe precise because, within 
a given schedule-path, there is no more than one vertex tagged with a particular 
value spt, no more than one branch tagged with a particular value spt, and no more 
than one branch for a particular value e.

• The “Assignment-Finishing” Set

One can think of each branch as representing a discrete triplet-assignment event in 
the schedule; or alternatively, one can think of the vertices as the discrete events, 
and the branches as representing a span of changing time and other coordinates. 
In either case: Aside from the branch’s assignment-starting triplet [i,p, e] and spt 
there are additional attributes implied by a branch and its position.

One such additional implication is the assignment-finishing set 
characterizing the vertex which constitutes the upper end-point of a branch 
spt, [t,p, e]. The finishing time t^ and the finishing processor p^, are to be identified 
with the pair [t(apt+i)>Psj>t+i)] the vertex following spt. The finishing time t^ 
is the earliest time, at or after t, that any previously assigned task finishes. The 
finishing processor p# is a particular processor finishing its assignment at t^ — and 
the branch’s starting processor p does not usually fit this description. If there is 
more than one processor finishing at t^, then the particular associated with a 
branch is determined by a set of redundancy-avoiding conventions described later 
in this report. Once p# is determined, is determined; for is the task or idling 
assignment finishing at t^ on p#.

Thus, a given branch (and/or its pair of bounding vertices) does not generally 
represent the start and finish of one task. The finishing processor p# is not generally 
the same as the starting processor p; the finishing task e# is not generally the same 
as the starting task e; and the finishing time t^ is not generally the same as the 
finishing time t + L(e) of the starting task. (However, it could happen, in some 
cases, that e# = e and p# = p and t<f, = t + L(e).

• Terminology: Planning Schedules and Executing Schedules

Here we describe a language convention that we have already been using: Whether 
or not we talk in search-tree terms, we often use jargon that ignores the distinction 
between scheduling (i.e., planning) a set of tasks, and actually executing those 
tasks. For example, if during schedule-construction a task e has just been assigned 
to start at time t we may say that task e “has started.” Similarly, if during schedule- 
construction ROSES is at the point of considering what other tasks can be scheduled 
after completion of task e, then we may say that task e “has been completed.”

• More Terminology: Traversing a Branch; Adding a Triplet; etc.

Terminology is important because we want to have different descriptive phrases, 
with differing defined meanings, to correlate with different kinds of operations within 
the ROSES algorithm.
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The phrase “traversing a branch” is interpreted as actually adding that branch’s 
triplet [t,p, e] to the schedule. Elaborations follow.

There is a clear distinction between constructing the search tree and traversing the 
search tree. Constructing the search tree entails determining the set of branches 
[<,p, e] stemming from a vertex. Traversing the search tree entails trying out a 
particular branch as an addition to the current schedule-path: i.e., adding a triplet 
to the schedule, and investigating whether the resulting extended schedule-path is 
promising. Thus, traversing the search tree is equated with constructing a schedule; 
and we treat the following notions as essentially synonymous:

• traversing a branch;

• adding a triplet;

• making an assignment;

• extending a schedule;

• evaluating a branch, triplet, assignment, or augmented schedule.

There are many distinctions left to make, and worth making. One reason for defining 
terminology carefully is that we want to have different descriptive phrases, with 
differing defined meanings, to correlate with different kinds of (sub)procedures in 
the ROSES code. For example, when we describe features of the ROSES coded 
algorithms, we shall be concerned with the distinctions among:

1. Constructing all the branches at a search-tree vertex;

2. Considering whether a vertex may have, stemming from it, any as-yet- 
untraversed branches that are worth traversing;

3. Traversing a branch and then deciding that the resulting schedule-path is worth 
continuing further;

4. Traversing a branch and then deciding that the resulting schedule-path is not 
worth continuing further.

In (2) and (4) the judgments “not worth traversing” and “not worth continuing” 
may involve TIME-to-GOAL considerations, or redundancy considerations.

• Limitation to Constraint-Satisfying, Non-Redundant, “Promising” Schedules

The ROSES method for constructing its search tree leads to these properties:

• The search tree’s branches are limited so that, though taking any search- 
tree path, ROSES can construct only those schedules which satisfy the input 
problem’s processor-number constraints and precedence constraints. •

• Furthermore, the search tree’s branches are limited so that, if ROSES traverses 
each branch no more than once, ROSES avoids the construction of several 
general kinds of essentially redundant schedules. (See Appendix A.)
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In other words: In order to limit its attention to schedules which axe constraint- 
satisfying, and which axe free from some types of redundancy, ROSES directly limits 
its construction of search-tree branches.

In contrast, the way that ROSES limits its attention to schedules with promising 
time characteristics is by limiting its traversal of already constructed branches. In 
addition, some kinds of redundancy axe avoided by limiting traversal. (See Appendix

III.5. TASK GRAPHS AND READINESS

Precedence constraints, and the readiness of tasks, are conveniently considered in 
terms of directed acyclic graphs (dags).34 A dag has directed edges connecting its 
vertices. Any problem of the kind treated by ROSES (see Section III.2) can be 
expressed in terms of a dag. Each task is represented by one edge e in the dag, 
and each precedence constraint by one vertex v of the dag. The tasks’ time-lengths 
axe brought into the representation by associating a non-negative number L(e) with 
each edge.

To immediately assure the required isomorphism, the ROSES-problem precedence 
constraints must be stated so that each predecessor-task is disjoint from all others, 
and each successor-task subset is disjoint from all others. However, if such 
disjointness does not hold in the problem as initially stated, then it is always 
possible, by adding some zero-length tasks, to pose an equivalent problem with 
the desired disjointness. Hereafter we shall assume that the task-set has indeed 
been defined so that the desired disjointness exists; then an isomorphic dag exists.

The dag for a ROSES scheduling problem is called a task graph. Figure 2 diagrams 
a simple task graph for ROSES.

The goal is drawn at the task graph’s top. As already noted, the graph’s edges 
represent tasks. Computational tasks are drawn as solid-line edges, message-passing 
tasks as dashed edges. The diagrammed edge-lengths axe not generally drawn to 
scale with £(e). The graph’s vertices imply ROSES-type precedence constraints. 
For example, in Fig. 2 every one of the tasks eu, ejs, ei4 must be completed before 
task 67 can start; and task must be completed before any one of the tasks 617, eig 
can start. In short, the vertices represent AND gates.

Every task-graph vertex is uniquely indexed, and each edge extends between 
two definite vertices. Thus, the vertex-indices can serve as labels for the edge’s 
beginning-point (tail) and finishing-point (head). Edges 612,613,614 are called fan- 
in edges to vertex ei4. Edges 617 and ei8 axe fan-out edges from ei5.

A vertex is called “ready” if and only if all its fan-in edges have been completed. 
The goal is reached when it, as a vertex, is ready.

A task is called ready if and only if all its precedence requirements have been 
satisfied and the task has not yet been started. Therefore an edge is called ready 
if and only if (1) it is a fan-out edge from a ready vertex and (2) its corresponding 
task has not yet been started.

A complete set of the graph-attributes needed by ROSES consists of an input-data 
list specifying, for each task e, its length L(e) and its head-tail pair [u,v]. At the
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start of an input problem, when no tasks have yet been performed, there must be 
some tails which are ready. These are tails without fan-in edges. Accordingly, all 
their fan-out edges are ready.

Each message-passing task has only one predecessor task (always computational) 
and one successor task (always computational). In the special case that all the 
precedence requirements between computational tasks are expressed in terms of 
message-passing tasks, there is automatic fulfillment of the requirement that all 
predecessor-task subsets be disjoint from each other and all successor-task subsets 
be disjoint from each other.

The task graph shown in Fig. 1 is of the special kind just mentioned: i.e., 
all precedence requirements are expressed in terms of message-passing tasks. 
Consequently, Fig. 1 has the following properties: No computational task shares 
its tail vertex with any other task having the same head; and along any task-graph 
path, computational tasks alternate with message-passing tasks. (However, ROSES 
is not restricted to such cases.)

The task graph should not be confused with the search tree. Some examples of 
important differences follow:

• A complete schedule would involve every edge in the task graph, but only one 
path in the search tree.

• The task graph does not deal directly with processors; the search tree does.

• The task graph does not incorporate line-segments representing idling; the 
search tree does.

• The task graph is not a tree. A task-graph vertex can have many fan-in edges, 
but each search-tree vertex has only one lead-in branch.

• In the task graph, a line-segment with its two bounding vertices always 
represents a single task e starting at the tail vertex and finishing at the head 
vertex. In the search tree, a branch with its two bounding vertices implies, 
among other things: one task (or idling assignment) starting at the smaller- 
spt vertex, and a generally different task (or idling assignment) ending at the 
larger-spt vertex. The search-tree task that starts at the smaller-spt vertex may 
not finish until many vertices beyond its starting vertex.

• The task graph provides a convenient way to exhibit the state of the multitask 
job. For example, each task-edge could be colored red part-way up, to indicate 
its stage of completion. The search tree does not offer that particular visual 
convenience; instead it offers an analogous way to exhibit the state of the search.

• The task graph is constructed wholly, at the very beginning of an overall ROSES 
search. The search tree is constructed (branch-cluster by branch-cluster) as the 
overall search progresses.

ROSES uses the task graph to help construct the search tree. By combining the 
dynamic information about a current schedule, with the static information of the 
task graph, ROSES determines which vertices are ready and which edges are ready. 
Then ROSES uses this information in identifying the set of e-choices at the next
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search-tree vertex. The task graph is also used in computing critical-path data 
that affects the sequence in which paths of the search tree are traversed (i.e., the 
sequence in which alternative schedules are constructed).

One kind of “readiness” information not related to the task graph (but needed in 
search-tree traversal) is the readiness of processors. A processor is “ready” if it is 
free to accept a task-assignment (e > 0) — i.e., if it is not still occupied with an 
earlier-assigned task. All processors are ready at t = 0.

Hereafter, we use the words “task” and “edge” interchangeably. Note that an edge 
(task) always has e > 0. Only idling assignments have e = 0.

III.6. TIME BOUNDS AND HEURISTICS

In ROSES, time-bound considerations play an essential role. They are used in two 
broad ways: to sequence the code’s consideration of e-choices at spt (so that the 
most promising choices are considered first), and to evaluate partially completed 
schedules (so as to decide whether a partially constructed schedule is promising 
enough to be worth continuing).

The basic time-bound ideas may be stated in terms of two simple lower limits on 
the total TIME-TO-GOAL for a given problem. One of the two lower limits, T0, is 
calculated by ignoring precedence constraints and ignoring some incommensurable- 
length effects, while taking into account the real (limited) number of processors. The 
other lower limit, Too, is calculated by assuming that the precedence constraints do 
apply, but that the number of processors is infinite. The two lower-bound values 
are (as discussed below):

T0 = (sum of all task lengths)/(number of processors); (2)

To© = critical path length to goal, in the task graph:
i.e., maximum end-to-end length of any complete (3)
precedence-chain-of-edges in the task graph.

In (3), a “complete precedence-chain-of-edges” is a series of edges which in the 
task graph would make a continuous path starting from the tail of an edge without 
precedence requirements and going all the way to the goal.

In (2), the lower bound T0 is just the TIME-to-GOAL that would apply if no 
processors were ever idle at any time from the schedule’s start (t = 0) until its 
end (t — TIME-to-GOAL). However, idle time may be unavoidable - unavoidable 
because of the precedence constraints, and/or because there is not way to partition 
the total set of tasks e into Np subsets each having the same subset-sum of time- 
lengths.

Clearly, the problem may be such that neither T0 nor T^ is attainable. T0 may 
exceed Too, or vice versa; that depends on the input problem. The larger of the two 
bounds is the more useful. If a completed schedule’s TIME-to-GOAL is equal for 
not much greater than the maximum of Ta and Too, then that schedule is optimal (or
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near-optimal). However, if a completed schedule’s TIME-to-GOAL is considerably 
larger that the maximum of T0 and Too, then that solution may or ma not be 
considerably larger than the true optimum. Further information is needed, to 
determine how much the true optimum value deviates from the maximum of T0 
and Too- In cases where neither T0 nor Too is attainable, a better lower bound may 
be determined by adding and utilizing more information about the input problem.13

Belatedly, lower bounds may be determined for the possible completed forms of a 
partially constructed schedule, by using information about the so-far-constructed 
portion of that schedule. ROSES continually makes such determinations. That 
is, during construction of a schedule, ROSES continually uses variations of Eqs. 
(2) and (3) to determine lower bounds on TIME-to-GOAL for the feasible forms 
of the partially completed schedule. For example, a very simple variation of (2) 
involves taking into account the idling time that has already been assigned, within 
the currently incomplete schedule under consideration.

Such lower bounds are determined, during construction of a schedule, at each spt 
prior to goal-reaching. By comparing lower bounds for the completed form of 
the current schedule, with the TIME-to-GOAL of the best earlier-found solution, 
ROSES decides whether the partially constructed schedule is worth continuing or 
should be abandoned. As indicated just below, there axe two different sets of time- 
bound tests for partially completed schedules. In search-tree terms, there are two 
qualitatively different sets of search-tree points where straightforward time-bound 
tests may lead to decisions-to-abandon.

1. In some cases, time-bound tests show that the f at a search-tree vertex [f,p],spt 
is unsatisfactory when that t is combined with other implications at the vertex. 
In such cases ROSES backtracks without bothering to traverse any as-yet- 
untraversed branches stemming from the vertex. The vertex is said to be 
“unsatisfactory in t." For a vertex, satisfactoriness in t depends not only on t 
itself and the schedule up to vertex spt, but also on the best TIME-to-GOAL 
previously found. Consequently, a vertex which is “satisfactory in f” at one 
visit may be “unsatisfactory in tv at a later visit; that can happen if a better 
TIME-to-GOAL was found in between the two visits.

2. In other cases, the vertex itself is judged satisfactory, but time-bound testing 
indicates lack-of-promise after a particular branch has been traversed — i.e., 
after a particular triplet has been added to the schedule. In such cases, one can 
say that the schedule was considered sufficiently promising to continue past the 
(spt - 1) branch, but is found too unpromising to continue past the recently 
added spt branch. In such cases, ROSES associates the lack-of-promise of the 
schedule with the addition of the triplet at spt, and so ROSES next investigates 
the remedy of replacing the offending spf-triplet [t,p, e] with an alternative 
branch stemming from the same vertex [t,p], spt. If no as-yet-untraversed 
branches remain at that search-tree vertex, then ROSES back-tracks further.

If these backtracking rules cause ROSES to try backtracking past spt = 1, then 
the tree has been traversed as fully as the ROSES heuristics dictate. In that case, 
ROSES stops searching.

Suppose the goal is reached. Then if TIME-to-GOAL is judged sufficiently close to 
a known overall lower bound (say, T0), ROSES decides to stop searching. Otherwise 
(unless other reasons for stopping exist), ROSES backtracks to continue its search.
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The above descriptions indicate how ROSES uses the time-bound notions to decide 
whether to backtrack. Furthermore, ROSES uses a heuristic related to Too to give an 
apriori preferred sequence to the evaluation of edge-choices at each spt. Specifically: 
At each vertex of the search tree, ROSES considers candidate edge-branches in 
decreasing order of

f(e) = critical task-graph-path-length to GOAL beginning with edge e: 
i.e., the maximum end-to-end length of any precedence-chain- 
of-edges in the task graph, starting from the tail of e and 
incorporating e itself and going all the way to the goal.

As noted, the larger that /(e) is, the more favored the candidate edge e. 
Furthermore, if two candidate edges have the same /(e) but different time-lengths 
.L(e), then the shorter edge is considered more favored. Candidates which are equal 
in both / and L are considered in an arbitrary order (sometimes depending on 
other features of the calculation being performed). The entire scheme (including 
its arbitrary-order part) is referred to as “the /,X heuristic”; it arranges tasks e in 
order of decreasing “/, L favor.”

As to the non-task choice, e=0: At each spt vertex ROSES places at the end of the 
candidate-list — lower in favor than all of the available edges representing tasks 
— the idling candidate e=0. This lowest-in-favor position is in line with the lower 
bound T0 of (2), because there will be a tendency for the total idling time to be 
minimal of idling is avoided when individual assignments are chosen.

The “order of considering branches” concerns backtracking. If a search-tree vertex 
is found to be “unsatisfactory in t,” then there are no consequences from the favor- 
sequence of its stemming-out branches. But for the moment, let us suppose that 
the search-tree vertex is not unsatisfactory in t (and not unsatisfactory in any 
other way that makes ROSES avoid traversing the as-yet-untraversed branches at 
that vertex). Then it can be said that: At a given search-tree vertex spt, ROSES 
considers the most favored e-choice first — i.e., when first visiting that vertex. Then 
on successive return visits to that vertex (reached through backtracking), ROSES 
considers successively less favored e-choices.

In short, at a given satisfactory search-tree vertex, ROSES always traverses the 
most favored as-yet-untraversed branch. Within this procedure the /, X heuristic 
has been crucial to the success of ROSES.

ROSES also uses an extension of the above-described /, X heuristic in order to 
classify some kinds of schedules as “not worth constructing” even before testing 
those schedules in terms of time bounds. This extension involves a function called 
the delay function D(e) which characterizes a given schedule and is defined for 
all edges e. Specifically, we define D(e) to be the number of search-tree vertices, 
within the schedule-path, at which e characterizes the most-favored (leftmost) 
branch but that branch is not incorporated in the schedule-path. In other words: 
D(e) is the number of vertices, within the schedule-path, at which task e was the 
most favored stemming-out edge-choice but was “delayed” rather than selected. 
ROSES immediately classifies as “unsatisfactory in D,” and therefore “not worth 
constructing,” any schedule which would have any delay function D(e) greater than 
Dm AX, where Dm ax is an input parameter called “the maximum delay.”
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It is easy for ROSES to avoid constructing such schedule-paths. Any schedule with 
any D(e') > Dm AX must incorporate an spt'-member schedule-path such that: 
.D(e') = {DmAX + 1), and e' characterizes the most favored (leftmost) edge at that 
vertex, and all the branches except the leftmost one would make schedules with 
D(e') = (DmAX +1). Therefore, to avoid all schedules unsatisfactory in D, ROSES 
needs only to do this: Avoid adding any branch except the leftmost one, at any 
vertex where adding the leftmost branch makes a schedule with D(e') = Dm AX- 
After adding that leftmost branch, ROSES marks the vertex as “unsatisfactory in 
.D,” or more simply as “having no satisfactory as-yet-untraversed branches”; then 
if and when that vertex is revisited (through backtracking) ROSES avoids adding 
branches at that vertex and instead backtracks further.

Note that this D(e) procedure for limiting search does not simply put a constant 
numerical restriction on the branching degree at each vertex (as in “beam” 
searching). Instead, the D(e) procedure uses detailed characteristics to selectively 
reject search-tree paths. At present the it D(e) procedure is the only one, in the 
ROSES repertory, which excludes schedules that are not surely known to offer zero 
possibility of excelling the best complete solution found earlier in the search.

This report-section, Time Bounds and Heuristics, has presented the general 
principles of ROSES time-bound testing and described some related heuristics. 
Some of the specifics of the time-bound tests will be described in Section IV.5 
in connection with outlines of coded algorithms. Among the further time-bound- 
related heuristic features of ROSES (beyond those described above), there are:

• a modified dynamic-programming scheme, and

• a way to characterize “precedence-bottleneck” features of the task graph, and 
to take them into account so as to calculate a closer lower bound than Too-

m.7. ROSES DATA STRUCTURES

In the following we present examples of how ROSES expresses and stores, in 
conveniently accessible forms, key information needed to conduct a successful search 
along the lines described in earlier sections. Much use is made of abstract data 
types,34 involving such complex data structures as •

• doubly linked lists describing sequenced sets of data blocks, (with sequence itself 
carrying important information);

• array implementations of embedded stacks;

• circular-array implementation of a queue.

In describing the ROSES framework, what we want to convey are the general notions 
of: what information each data structure stores, and what sorts of operations can 
access that information. We shall describe ROSES structures in terms of simple 
specific Fortran arrays and variables; then readers themselves can abstract the 
general notions. The actual ROSES-code arrays and variables differ in detail 
from the Fortran entities specified here. However, the general notions are the 
same. Appendix D gives further information about the correspondence between 
this report’s entities and ROSES code entities.



22

III.7.1. The Initial Task-Graph Structures ITG and G

The static data structure ITG holds all the information necessary to specify the 
initial task graph. The principal component of ITG is itself a structure, G. 
Specifically: The structure G comprises a series of 4-word substructures called 
quartets, each pertaining to one of the Ne edges e. The entire series is arranged in 
order of increasing e (but that order need not bear any relation to the topology of 
the task graph). Within each quartet the four words store, respectively:

1. the tail vertex of e

2. a pointer to the last-previous quartet associated with the same head as e has

3. the head vertex of e

4. a pointer to the last-previous quartet associated with the same tail as e has. 

Thus, G stores information that would be embodied in four coupled arrays:

1. tail (e)

2. previous-e-for-same-head(e)

3. head(e)

4. previous-e-for-same-tail(e)

The array names axe largely self-explanatory, but we give one precise definition as 
an example: The element “previous-e-for-same-head(e)” is a pointer to the largest 
index e' such that head(e') = head(e) and e' < e. If there exists no such index 
e', then the element “previous-e-for- same-head(e)” holds a special value signaling 
that it is nonexistent. Similar comments hold for “previous-e-for-same-tail.”

Using these arrays, we write the structure G as

G = {[tail(e), previous-e-for-same-head(e),
(5)

head(e), previous-e-for-same-tail(e)] for e = 1,2,3,...}

As the foregoing description implies, the structure G is a series of quartets but 
incorporates many linked lists. For each task-graph vertex v, there are two lists 
— one backward-linked list-of-quartets describing all the fan-in edges to u, and 
another backward-finked list-of-quartets describing all the fan-out edges from v. 
Each quartet is part of two different finked fists — the fan-in list associated with 
its head-vertex Vh, and the fan-out fist associated with its tail-vertex vt- Thus, G 
is a doubly-linked structure which does not really fit into the category of a doubly- 
finked “fist.” For example, instead of having one or two overall linked sequence(s), 
G has many finked strands each with its own finked sequence. This departure from 
simple finked-fist linearity is of course a reflection of the fact that G represents a 
more complex set of edge relations — the dag34 of the initial task graph.
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We let the comprehensive initial task-graph structure ITG include not only G but 
also the time-length array L(e) and the number-of-edges scalar Ne. Together, G 
and L(e) and Ne completely specify the initial task graph. In fact, the pointer parts 
of G are not essential for defining the task graph; they are included because they 
facilitate locating edges with desired properties. For the same reason, ITG also 
includes:

nfie(v) = number of fan-in edges to vertex v of the task graph, (6a)

nfoe(v) = number of fan-out edges from vertex v of the task graph, (66)

and

hfie(v) = highest-indexed fan-in edge to v, (7a)

hfoe(v) = highest-indexed fan-out edge from v, (7b)

By using G and the auxiliary parts (6), (7) of the structure ITG, ROSES can easily 
perform such subtasks as: Find all the edges fanning out from v.

Furthermore, the comprehensive initial task-graph structure ITG includes the 
critical-path-length array /(e) of Eq. (4). Like the pointers, and like the arrays (6) 
and (7), the array /(e) constitutes redundant data in the sense that it re-expresses 
information already within the more ordinary data set (head(e), tail(e), L(e)} that 
are input to describe the task graph. As noted earlier, /(e) is part of a heuristic that 
is crucial to the success of ROSES. Therefore, even though /(e) is a simple array 
rather than a many-feature data structure, it is a prime example of how ROSES 
converts “ordinary” information into especially useful, convenient forms.

III.7.2. The Processor-Readiness Structures PR and R

The processor readiness structure PR gives information about the spt-order in which 
processors are to be assigned. It also specifies each processor’s current assignment 
e, and tells when each processor will finish its e and so be ready for reassignment.

The structure PR includes p, the scalar data element pointing to the “current 
processor” — i.e., the processor to be assigned, when ROSES is in the process of 
identifying the current triplet \t,p,e) in preparation for adding it to the schedule. 
In search-tree terms: p is the processor index within the label [t,p] of the current 
search-tree vertex.

Besides including the scalar data element p, the structure PR includes a complex 
structure R. The main points about R can be understood rather quickly if one 
understands and remembers some of the ideas discussed in III.3 — ideas regarding 
(i) triplet-assignment times t being coincident with task-finishing times, and (ii) the 
uniqueness of the sequence that ROSES uses when assigning different processors p,
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in case these different processors axe given triplet-assignments [t,p, e] with the same 
starting time t.

In Eqs. (8) through (13) below, we define a set of four arrays equivalent in content 
to what R holds. Each of these arrays is indexed by an integer p' running from 0 
to (Np + 1). For most of the Np cases, i.e., for 1 < p' < Np, the index p1 denotes a 
real processor and we have

tready(f/) = ready time of processor p',
= time at which p' will finish its present assignment 
= time at which p' should be considered for reassignment; (8)

evalue(p') = e-value presently assigned to processor p'; (9)
pfwd(p') = pointer to that processor which would follow p', 

within a list of the Np processors arranged in 
order of nondecreasing tready(p'); (10)

pbak(p') = pointer to that processor which would precede p', 
within a list of the Np processors arranged in 
order of nondecreasing tready(p'); (H)

However, when p' = 0 or p' = (Np + 1), the index p' does not denote a real processor.
In each of these cases, only one of the four arrays has a defined element. We have

pfwd(p/ = 0) = pointer to that processor which would be first, 
within a list of the Np processors arranged in 
order of nondecreasing tready(p'); (12)

= pointer to the processor that is first-in-line to be 
considered for reassignment;

= p, “the current processor”;
pbak(jVp -f 1) = pointer to that processor which would be last, 

within a fist of the Np processors arranged in 
order of nondecreasing tready(p') . (13)

Definitions (10-13) mention a list of processors arranged in order of nondecreasing 
tready (p'). This list needs further description to specify the ordering of processors 
within any incorporated sublists composed of processors having identical tready(p'). 
To describe that ordering we describe how ROSES forms and updates the list. At 
< = 0 when the processors are all idling (before any task-assignments have been 
made), the processors are arranged simply in order of p\ Then shortly after each 
calculation-point where a processor is assigned, ROSES determines the processor’s 
new ready time and inserts that processor into its proper place within the previously 
existing Ust-in-order-of-ready-time. If it happens that the new ready time equals 
the ready time of some previously existing sublist (even a subhst of membership 1), 
ROSES uses this rule: A processor having a newly assigned zero-length task keeps
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its first place (i.e., is inserted immediately preceding the existing sublist), but a 
processor given any other assignment is placed immediately following the existing 
sublist.

ROSES uses the information of R and PR to construct and traverse the search tree. 
For example, ROSES uses the information of tready and pfwd to identify the pair 
[t,p] characterizing the next search-tree vertex.

The structures R and PR store dynamic data. Suppose that ROSES decides to 
traverse a particular branch [t,p, e] stemming from the current vertex. Then, as 
part of that traversal, ROSES updates evalue(p) to e. Suppose that ROSES then 
decides to extend the schedule yet further. That decision, together with the just- 
finished traversal of the branch [t,p, e], may warrant a new value of tready(p) for 
the just-assigned processor p. Furthermore, it may warrant a change in pfwd(p) 
and pbak(p), to indicate a new position of p within the list that is arranged in 
nondecreasing order of tready(p'). Finally, it may warrant a change in the value of 
p, “the current processor.”

Formally, the data structure R comprises a series of 4-word blocks. Below we first 
display the structure, and then review R’s properties in “structural” terms.

R= {[tready(p'), evalue(p'), pfwd(p'), pbak(p')] 
forp1 = 0,1,.. .,(A7p + 1)}.

(14)

Except for the cases p' = 0 and p' = (Np + 1), each block of R pertains to a real 
processor-index p'. Within each such real-processor block the first word stores the 
processor’s future “ready time”: i.e., the time at which the processor will finish its 
assignment and so be ready for reassignment. Of course, if a processor is assigned to 
perform a task (E > 0) then that processor’s ready time is set equal to the e-staxting 
time plus L(e). If a processor p' is assigned to idle (e = 0), then its ready time is set 
equal to the earliest time — call it Iet — that any task which is currently running 
(on another processor) will be finished. This time tet is of significance to the idling 
processor because t£T is the earliest time when further tasks may become newly 
ready for assignment (ready, by virtue of their precedence requirements becoming 
fulfilled). Within each real-processor block of R the second word, evalue(p/), is the 
e-value assigned to processor p'. The third and fourth words, pfwd(p') and pbak(p') 
axe Unking pointers which define the list mentioned in Eqs. (10-13); i.e., the list 
arranging Np processors in order of nondecreasing ready times.

The p' = 0 block of R is not a “real-processor” block; it is used only for forward­
pointing to the processor that should be considered for assignment first — i.e., 
first among the Np processors for which there are currently listed ready times. 
That first-to-be-considered processor has a ready time equal to the earliest finishing 
time, among the Np known finishing times for p' = 1, 2, ..., Np. However, some 
other processors may have that same ready time. Similarly, the p' = (Np + 1) 
block of R is not a real-processor block; it is used only for backward-pointing to 
that processor for which reassignment should be considered last: i.e., last among 
the Np assignments for which there are currently forecasted times. That last-to- 
be- considered processor — call it plast — has a ready time equal to the latest
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finishing time for any currently running task. Here again, some other processors 
may have that same ready time.

Not only does pfwd(Q) point to the current processor p and not only does pbak(Np 
+ 1) point to plast', it is also true that pbak(p) points to p1 = 0, and pfwd(pLAST 
points to p' = (Np + 1). Thus, the pointers pbak and pfwd, together with the other 
elements in (14), define R as a doubly linked list of (Np + 2) blocks.

When R is viewed as a doubly linked list, its “real-processor” blocks are arranged in 
nondecreasing order of ready time tready(p'). When R is viewed as a set of Fortran 
arrays, its real-processor blocks are arranged in order of increasing processor index 
p'. From either viewpoint, the structure R begins with its p' = 0 block and ends 
with its p' = (Np + 1) block.

Finally we discuss how a schedule-under-construction is affected by the linked 
sequence of processors p' within a set of R-blocks having equal ready times. The 
linked sequence of p' indices within such an equal-ready-time set influences the 
spt-sequence of processor indices p' assigned within the schedule. However, that 
linked sequence of p' indices has no effect at all on the spt-sequence of e-values 
assigned within the schedule. The reasons for this lack-of-effect are that: (i) all 
tasks ready at the same spt are given the same opportunity to be selected (on the 
basis of their relative favor), and (ii) the readiness of a tasks at spt depends upon 
the time at which its predecessor-task subset becomes completed and the spt-index 
at which its predecessor-tasks were assigned, but not upon the spt-index at which 
its predecessor-task subset becomes completed. This matter is discussed further in 
Appendix A and Section IV.

HI.7.3. The e-Alternatives Structure EA

The e-alternatives structure EA describes the branches stemming from each vertex 
along the search-tree path corresponding to the current schedule.

In brief: The task-branches stemming from successive vertices are described by 
a long list of e-values. The long list, called A, is used as a stack — one stack- 
section for each search-tree vertex spt along the path. In addition to the long list A 
there is a stack of pointer-triads — one triad for each search-tree vertex spt along 
the path. In each stacked pointer-triad, the first and third pointers indicate the 
beginning and end of the spt stack- section within the long list A. The second 
pointer indicates which branch is to be traversed next, in case ROSES visits vertex 
spt (perhaps after backtracking there) and finds that conditions warrant forward 
traversal from that vertex. Though A itself lists only task-branches, the second 
pointer can indicate either a particular task-branch, or the idling branch, or the 
condition that no satisfactory untraversed branches exist.

In more detail:

• The structure EA has two main substructures. Together, these two 
substructures define a stack of lists: one list for each vertex spt = 1, 2, 3,..., sptc 
in the current schedule-path. Each spf-tagged list contains, in decreasing order 
of /, L favor, all the task- indices e > 0 characterizing the branches stemming 
from search-tree vertex spt. It is understood that, in addition to these listed
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task-branches, there is always one unlisted branch — the idling branch, which 
is most unfavored of all.

• Furthermore, for each search-tree vertex spt in the current schedule-path, the 
two main EA substructures together indicate whether there are any possibly- 
satisfactory as-yet-untraversed stemming-out branches; and if so, which among 
them is the most favored. That “most favored possibly-satisfactory as-yet- 
untraversed branch” is the one to be traversed next, in case ROSES is at the 
vertex spt and finds no reason to consider vertex spt unsatisfactory. (Vertex spt 
might be unsatisfactory in t or in D; see Section III.6.)

Thus: For the current vertex sptc, the structure EA stores information concerning 
whether and how to extend the current (spf c-l)-member schedule. For each previous 
vertex spt' < sptc the structure EA stores analogous information that will be helpful 
in case ROSES backtracks to that previous vertex spt'.

Fortran Expressions of the Substructures in EA

Next we define Fortran variables holding the information of the substructures in 
EA. Then we shall use these Fortran variables to review and extend our description 
of EA.

Suppose that a schedule-path extends from spt = 1 to spt = sptc, and suppose 
also that the branches stemming from vertex sptc have been determined. Then one 
of the two main EA substructures holds information expressible in terms of the 
Fortran array

A(ia) for ia = 1, 2, 3, ..., LASTiaPLUSone(sptc), (15)

which has elements storing task-indices e. The exhibited upper limit, 
LASTiaPLUSone(sptc), is a datum included among those given by the second main 
substructure of EA. That second main substructure holds information expressible 
in terms of the Fortran pointers

iaFIRST = FIRSTia(spt) for spt = 1, 2, ..., sptc; (16)
iaCURRENT = CURRENTia(spt) for spt = 1, 2, ..., sptc; (17)

iaLASTplusONE = LASTiaPLUSone(spt) for spt = 1, 2, ..., sptc. (18)

Each of (16), (17), (18) shows a scalar as well as an array-element. The 
three explicitly indexed pointer-arrays FIRSTia(spt), CURRENTia(spt), and 
LASTiaPLUSone(spt) by themselves indicate the pointer structure. However, for 
a given spt, it is often convenient to use the dynamic scalar iaFIRST instead of 
FIRSTia(spt); and similarly for iaCURRENT and iaLASTplusONE.

The precise meanings of A(ia), and of the pointers, are as follows:

At each search-tree vertex spt, the number of stemming-out task-branches is

nTASKbranches(spt) = [LASTiaPLUSone(spt) - FIRSTia(spt)];
= iaLASTplusONE - iaFIRST .

(19)
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If this number is nonzero, then the associated task indices e > 0 are given by the 
list

A(FIRSTia(spt)), ..A(LASTiaPLUSone(spt)), (20a)

or equivalently

A(iaFIRST) A(iaLASTplusONE-l) (206)

where in (20b), iaFIRST and iaLASTplusONE refer to spt as in (16-18). In the 
special case that iaFIRST = iaLASTplusONE, Eq. (19) shows that the number 
of task-branches is zero. In that case the list for spt is considered empty. The 
end-element A(iaLASTplusONE) is not a member of the task-branch list. In 
fact, the value of A(iaLASTplusONE) is never used; only the pointer-value itself, 
iaLASTplusONE, is used. (The role of this value will be discussed further, shortly.)

As to the pointer iaCURRENT: If and only if iaCURRENT < iaLASTplusONE, 
the value of A(iaCURRENT) is the index of a possibly satisfactory untraversed 
task branch stemming from vertex spt. In that case iaCURRENT indicates the 
e-index of the next branch to be traversed if the search-procedure is at vertex spt 
and conditions warrant forward search from that point.

Implications of the Relative Values of the Pointers

For a given spt, the relative values of the pointers FIRSTia(spt), CURRENTia(spt), 
LASTiaPLUSone(spt) indicate the existence or nonexistence of certain kinds of 
branches stemming out from the vertex. One example has already been noted: 
If and only if iaCURRENT < iaLASTplusONE does there exist, stemming from 
the vertex spt, a possibly satisfactory as-yet-untraversed task-branch. This if-then 
condition involving iaCURRENT, and other such relative-value conditions, affect 
the decisions that ROSES makes about how to traverse branches stemming from the 
vertex spt and how to construct branches at vertex (spt + 1). Table 2 summarizes 
the main properties and imphcations of the pointers’ relative values for a single 
search-tree vertex spt. Several of the conditions shown in Table 2 are used within if- 
then statements in the computer-code implementation of the ROSES methodology.

Other Properties of EA

After a search-tree part (vertex plus stemming-out branches) is constructed, the 
corresponding defining pointers FiRSTia(spf) and LASTiaPlUSone(spt) remain 
unaltered as long as that vertex remains in the current search-tree path. In contrast, 
the pointer CURRENTia(spt) undergoes revision every time ROSES traverses a 
branch from that vertex spt. For a newly constructed vertex spt, CURRENTia(spt) 
is initialized at FIRSTia(spt). Then after each traversal, CURRENTia(spt) is 
incremented appropriately so that — barring cases of an “unsatisfactory” vertex 
— the spf-tagged branches will be traversed successively, left to right (in decreasing 
order of favor), on successive visits to the vertex.
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In some cases the list of e-choices at vertex spt + 1) is identical to a sublist within 
the list for the preceding vertex spt. In such a case the appropriate part of the 
spt section of A(ia) is “re-used” for vertex (spt + 1). That is, the three pointers 
associated with (spt + 1) are set so that they point to elements within the same 
physical A-section that was used for spt. Thus, the array A(ia) may not stack 
a physically separate list for each search-tree vertex. Nevertheless, the effect of 
the pointers is to define a unique list for each different search-tree vertex in the 
schedule-path, and all of the stated relations such as those in Table 2 hold.

Table 2. Relative Values of the e-Alternatives Pointers 
for a Single Search-Tree Vertex

Condition Comment

iaFIRST < iaL A S T plus ONE always true;
iaFIRST < iaLASTplusONE iff there is at least one task branch;
iaFIRST = iaLASTplusONE iff only an idling branch exists.

iaFIRST < iaCURRENT always true;
iaFIRST iaCURRENT iff vertex spt is being visited for the 

first time;

iaCURRENT < iaLASTplusONE + 1 always true;
iaCURRENT < iaLASTplusONE iff there exists at least one possibly- 

satisfactory untraversed branch, and 
the most favored such branch is a 
task-branch;

iaCURRENT iaLASTplusONE iff there exists at least one possibly- 
satisfactory untraversed branch, and 
the most favored such branch is the 
idling branch;

iaCURRENT > iaLASTplusONE iff there axe no more possibly- 
satisfactory untraversed branches;

iaCURRENT = iaLASTplusONE + 1 iff iaCURRENT > iaLASTplusONE

For further discussion of the structure EA, we refer to Appendix C. It discusses:

• The relation between the set of task-branches stemming from vertex (spt — 1) 
and the set stemming from vertex spt] and •

• More details about the arrangement of the e-indices of these two sets of task- 
branches, within the long list A of the structure EA.

III.7.4. The Dynamic Task-Graph Structure DTG

The dynamic task-graph structure DTG is very plain; it involves no pointers or 
stacks or queues. We include it here simply because it is pertinent to the last
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part of Section IV (Overview of the Code) and it needs more than just a few-line 
definition.

As noted earlier (see Section III.5), a task-graph vertex is “ready” if and only if it 
has no unfinished fan-in edges. The dynamic task-graph structure DTG includes 
information describing, for each task-graph vertex, how many fan-in edges are 
unfinished. Thus, the dynamic task-graph structure DTG relates (i) the fan-in­
edge properties of the initial task graph with (ii) the traversed-branch history of 
the current schedule-path in the search tree.

Two substructures of DTG are called nfieus(v) and nfieuts(v). We pronounce them 
“en-fuse” and “en-futes”; and their names are mnemonic, as will be seen. Each of 
them describes the number of unfinished fan-in edges, but they differ in the detailed 
meaning of unfinished. Just below we give preliminary definitions (to be followed 
by more detailed explanation):

[nfieus(u) at spt'] = number of fan-in edges unfinished at spt', 
for task-graph vertex v; (21a)

[nfieuts(u) at spt'] = number of fan-in edges either unfinished at
tgpt or not assigned before spt', for task- (216)
graph vertex v.

The above definitions are formally correct, though they may need more explanation 
for a detailed understanding. However, even if one does not analyze or understand 
them in detail, they have these uses: They indicate that ROSES stores unfinished- 
edge information, and they indicate that there are complicating distinctions to be 
made in connection with the fact that t is nondecreasing with spt rather than 
increasing with spt. The more detailed explanation, presented just below, is 
included mainly for use in conjunction with reading the outline of routine Create 
in Section IV.5.6 ahead.

We begin with some terminology and notation. As usual, the word “edge” implies 
“task” (e > 0). Also as usual, the current schedule-path extends from search-tree 
vertex spt = 1 to search-tree vertex sptc. Let subscripts s and <f> indicate “start” 
and “finish,” respectively. At search-tree vertex spta, edge e is assigned to start at 
time <a(e); it will finish at time t^ = ta-\- L(e). Furthermore: If, within the current 
schedule, e ever plays the role of a finishing edge e^, then the search-tree vertex at 
which this happens is characterized by spt^e) and t^.

Using the foregoing terminology we present, for the current schedule-path, the 
following definitions which describe three different classes of “finished”:

An edge e is “finished at-or-before sptc” (22)
iff spt^(e) < sptc, be., 
iff spt^(e) < and spt,(e) < sptc.

An edge e is “finished at-or-before < <cjSptc >” 
iff t<t>(t) < tc and spta(e) < sptc.

(23)
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An edge e is “finished at-or-before tc” (24)
iff t^(e) < tc.

In each of the definitions (22) and (23) the last-written condition, spta < sptc, 
merely specifies that the edge e has been assigned at some point within the current 
schedule. In our subsequent discussion, phrases like “satisfies (23)” will mean 
“satisfies the iff-conditions stated in definition (23).” As will be explained in the 
next few paragraphs: The edges satisfying (22) axe a subset of those satisfying (23), 
which in turn axe a subset of those satisfying (24).

In definition (22) the last-written condition, spta < sptc, is formally superfluous 
because it follows automatically from the first condition plus the truism that 
spta(e) < spt^(e). However, we have included that last condition explicitly, in
(22) , in order to make the following fact more immediately obvious: If an edge 
satisfies definition (22), then it also satisfies definition (23). This is so because 
spt^, < sptc implies ^ < tc. Thus, the edges satisfying (22) are a subset of those 
satisfying (23).

In definition (23) the words “finished at-or-before < tc, sptc >” could be replaced 
by “known at sptc to be finished at-or-before tc\" because requiring the condition 
spta < sptc means requiring that ROSES “knows” the finishing time t^(e).

The edges satisfying definition (22) finish at tc and so satisfy (24). So do the edges 
satisfying (23). However, there may also be additional edges satisfying (24); for it 
could happen that, at some spt,, beyond sptc an edge e will be assigned that will 
turn out to finish at <^(e) = tc. The tj, of that yet-to-be-assigned e is unknown to 
ROSES; and so, such an edge is not “known at sptc to be finished at <c.” Thus, the 
edges satisfying (22) axe a subset of those satisfying (24), and the edges satisfying
(23) axe a subset of those satisfying (24).

Because “finished at-or-before < tc,sptc >” means “known at sptc to be finished at- 
or-before sptc,” the following definition is not a trivial statement: Any edge which 
is not “finished” is said to be “unfinished.”

Next, just below, we repeat definition (6a) from the initial task-graph structure 
ITG, and then finally define nfieus(r) and nfieuts(u) in detail:

nfie(v) = number of fan-in edges to task-graph vertex v (6a)
[nfieus(u) at sptc] = number of fan-in edges (to v) which are

unfinished at spt (25a)
[nfieuts(u) at sptc] = number of fan-in edges (to v) which are

unfinished at < <c, sptc >. (256)

The last defined variable, nfieuts(v), is important for constructing the search tree. 
When nfieuts(u) at sptc is zero, then the task-graph vertex v is known to be ready 
at tc; and so, sill the unstaxted edges farming out from v axe known to be ready 
at tc. The e-altematives at sptc - i.e., the e-choices characterizing the branches 
stemming from a search-tree vertex sptc — axe restricted to ready tasks. For detailed 
implementation, the following points axe helpful:
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• An edge is “ready at spt” if an only if (1) it has not been assigned before search- 
tree vertex spt, and (2) it is a fan-out edge from a task-graph vertex at which 
nfieuts(u) = 0.

• An edge is “newly ready at spt” if and only if it is a fan-out edge from a 
task-graph vertex v which has nfieuts(u) = 0 at search-tree vertex spt but had 
nfieuts(u) ^ 0 at search-tree vertex (spt — 1).

Thus, the e-alternatives at search-tree vertex sptc are restricted to tasks which 
have their required-predecessor tasks finished at or before < tc, sptc >. Because of 
redundancy-avoiding procedures, there are also further restrictions in the case that 
t at sptc is the same as < at sptc — 1.

From the above described properties of (23) and (24), it is easy to show that

[nfieuts(u) at sptc] < [nfieus(u) at sptc]
< [nfieus(t;) at sptc— 1].

For further information relevant to the use of nfieuts(u) in constructing the search 
tree, see Section IV.5.6 (the outline of the coded routine Create) and see Appendix 
A (paragraph 3 under Redundancy-Avoiding e-Sequencing Rule).

The dynamic task-graph structure DTG also includes the delay function D(e) 
discussed in Section III.6.
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IV. OVERVIEW OF THE CODE

This section culminates with detailed outlines describing the coded implementation 
of several major ROSES algorithms. Specifically, these outlines describe the 
ROSES-code Main routine and five principal subroutines. All of Section III and 
Appendices A, B, and C constitute preparatory material for understanding these 
outlines, and the present section includes further preparatory material. Specifically: 
Section IV.l notes and justifies this report’s emphasis on forward search. Section 
IV.2 briefly reviews the overall ROSES procedure in terms of the work done 
during one pass through the principal control structure of MAIN. Section IV.3 
describes some terminology and notation to be used in the outlines. Section IV.4 
draws attention to several kinds of complications handled by ROSES. Section IV.5 
describes the algorithms in terms of outlines of routines. As indicated earlier, some 
of this report’s arrays, etc. differ in detail from those actually coded in ROSES. 
Section IV.3 and Appendix D describe how this report’s variables and routine-names 
differ from the ROSES code’s variables and array-names.

IV.l. PRELIMINARY REMARKS

Here we briefly discuss scope and emphasis, considering these major aspects of the 
ROSES code:

a. Input and initializations;

b. Forward movement in the search tree;

c. Heuristics;

d. Backtracking (through one or many search-tree vertices); and

e. Output.

In this report we treat all these aspects but emphasize (b). For example, the six 
outlines in Section IV.5 describe the principal algorithms controlling (b), forward 
movement in the search tree. The other listed aspects are described, throughout 
this report, mainly in terms of how they affect forward movement. Heuristics and 
backtracking deserve some special comments here. As to heuristics: These are used 
to sequence and limit the ROSES code’s investigations of different trial schedules. 
Among the present heuristics used by ROSES, only some are described within this 
report. The described heuristics include all of those which affect the first complete 
schedule that is constructed by ROSES, for a given input problem. Other heuristics 
exist in ROSES, and yet more will be added. (The present multiplicity of heuristics, 
and the plans for continual addition and refinement of heuristics, are consistent 
with calling ROSES an “expert” scheduler.) As to backtracking and heuristics, 
together: The conditions that provoke backtracking are such that there is little 
or no backtracking while ROSES constructs its first complete schedule for a given 
input problem. Furthermore, the present ROSES heuristics have proved so good 
that, in the practical applications investigated thus far, ROSES has never found 
a second-or-later schedule that excels its first-found solution. Therefore we have 
considered forward movement the aspect to emphasize, in this report.



IV.2. A PASS THROUGH THE MAIN CONTROL STRUCTURE OF 
ROSES

Following a set of data-initializations, the MAIN routine executes the basic 
computation-control algorithm of ROSES. Roughly speaking, each pass through 
this control structure (or “loop”) starts at a definite vertex of the search tree (the 
“beginning-of-pass” vertex), ana then, depending on conditions found within the 
pass, does one and only one of these three things:

1. Advances fully to the next consecutive vertex. Makes preparations for 
advancing forward from that end-of-pass vertex.

2. Advances toward the next consecutive vertex, but decides that there is not 
enough promise to continue beyond that vertex. Therefore, returns to the 
beginning-of-pass vertex. (In this case the end-of-pass vertex is the same as 
the beginning-of-pass vertex.)

3. Decides that advancing from the beginning-of-pass vertex is not worth doing. 
Therefore, backtracks from the beginning-of-pass vertex. This backtracking 
is done along the search-tree path corresponding to the current schedule. 
Once started, the pass’s backtracking proceeds continuously until a vertex 
is reached where the e-assignment was other than a zero-length task.

IV.3. TERMINOLOGY AND NOTATION

34

• Meaning of “Pass”

In the rest of this report, “pass” always means a single execution of the basic control 
structure (or “loop”) in the MAIN routine.

• Meaning of “Earlier,” “Later,” Etc.

This report’s discussion often involves comparative terms like “earlier” and “later.” 
We have tried to make clear, in each case, the kind of time or sequence meant: e.g., 
sequence of “wall-clock” times during a ROSES calculation, or sequence of times t 
in the triplets [t,p, e] of a schedule, or sequence of placement within the spt-tagged 
list of a constructed schedule, or sequence of placement within the linked list of the 
processor- readiness structure PR. These sequences are not necessarily the same. 
For example,

• During its overall search, ROSES may construct many different schedules 
(by moving forward and backward in the search tree). Therefore neither t 
nor spt is generally monotonic with increasing ROSES execution-time.

• Within a single schedule, the series of spt-tagged triplets [t,p, e] may include 
some groups of consecutive members having different spt but identical t. 
Therefore “earlier spt” is not the same as “earlier f.” •

• The task-finishings have consequences for new-task readiness, and the linked 
list of the processor-readiness structure PR could be interpreted as implying
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a definite spt-sequence for task-finishings (even within a set in which all 
task-finishing times are the same). However, ROSES does not restrict its 
recognition of readiness consequences to the same spt- sequence as is implied 
for task finishings by PR’s linked list.

(That is: Suppose that ROSES is considering triplet assignment at spta and 
will not assign processor px there because several other processors precede 
px in the linked PR list. Suppose, however, that px is listed as finishing task 
er at tready(px), and suppose also that the finishing of ex completes the 
requirements for ez. Then at spt0 ROSES may assign ez even though ROSES 
will insist on delaying, until past spta, the assignment of the processor px 
whose completion of task ex makes ez assignable.)

Thus, to make clear what is meant by “earlier” or “later” in particular cases, we 
may write phrases like “a schedule that ROSES has constructed earlier during its 
overall search.” However, it is often the case that shorter phrasing will suffice. If 
the reader keeps in mind the variety of meanings that “earlier” and “later” may 
have, then short phrases (such as “later- constructed schedule”) should suffice to 
indicate which meaning is the intended one.

• Suffixes BOP and EOP to Mean “Beginning-of-Pass” and 
“End-of-Pass”

In ROSES, most of the principal data structures are dynamic. In many cases there 
is just one important updating of the structure within each forward-moving pass; 
and that updating occurs midway in the pass (not at the very beginning, not at 
the very end). The updating of different variables proceeds sequentially in ROSES 
computation time, not concurrently. Furthermore, the updating of one variable 
generally requires non-trivial usage of other variables. Thus, within a single pass 
there may be important use of a variable while it still has its beginning-of-pass 
value, and then important use after it has been updated from its beginning-of-pass 
value. To read the code (or an outline) with proper understanding, it is crucial to 
know the update-stage of each dynamic variable in each instruction.

Therefore we often show the update stage of a variable by appending, immediately 
after the variable’s basic name, the letters BOP or EOP. For example, in the case of 
spt we write sptBOP or sptEOP. The ending BOP indicates the variable when it has 
its beginning-of-pass value; EOP indicates the variable when it has its end-of-pass 
value. (The meanings here are very strict. Thus for BOP, “beginning” means “the 
very beginning” not just “toward the beginning”. For EOP, the phrase “end-of-pass 
value” means the value identical to that at the very end of the pass.) Occasionally 
we append the letters INT, to indicate versions which are intermediate — i.e., not 
guaranteed to have the beginning-of-pass value, but not guaranteed to have the 
end-of-pass value either.

Another set of examples, more complex than the pair sptBOP and sptEOP, consists 
of the pointers

CURRENTiaBOP (sptB OP), 
CURRENTiaEOP(sptBOP), 
CURRENTiaEOP(sptEOP),
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all three of which play important roles, within a given pass. Such lengthened names 
axe not graceful-looking. However, we tolerate them because they make it so easy 
for us to connote, without extensive discussion, the update stage of the variable.

In fact, these additions BOP, EOP, INT axe nothing more than built-in comments 
to the variable names: for, in the case of any variable-name so terminated, the code 
ROSES may be assumed to incorporate statements such as the Fortran specifications

EQUIVALENCE (spt, sptBOP, sptEOP, sptINT)
EQUIVALENCE (CURRENTia, CURRENTiaBOP CURRENTiaEOP CURRENTiaINT) (26)

Clearly then, the commenting device BOP, EOP, INT causes no wasting of storage 
space. Furthermore, each EOP value within one pass automatically becomes the 
BOP value for the next pass.

The fact that the endings BOP (etc.) axe comments has other implications too. 
Note, for example, that sptBOP is not simply a saved value which may be used 
after spt has been updated. Instead, the very appearance of sptBOP means that 
spt has not yet been updated within the current pass. The ROSES code does 
occasionally need saved values-before-updating, to use together with values- after­
updating. In such cases, truly separate variables axe set. For example, ROSES 
sets sold = sptBOP early in a pass. Then later in that pass (past the point where 
updating to sptEOP has taken place), ROSES investigates whether or not sptEOP 
= sold. It would not be reasonable to investigate whether sptEOP = sptBOP, 
because the two are Fortran-equivalent. The only kind of instruction that properly 
includes both sptEOP and sptBOP is an updating instruction (e.g., sptEOP = 
sptBOP -|- 1).

• Differences Between This Report's Variables and ROSES Code 
Variables

This report uses some variables which differ mildly from those in the actual ROSES 
code. In particular: This report uses some names meant to be more mnemonic than 
their counterparts in ROSES. Also, this report uses some indexed arrays which are 
trivially simple transformations of ROSES-code indexed arrays. This is done in an 
attempt to allow explanation of all ROSES procedures in terms of indexing schemes 
which are very easy to discuss.

These mild deviations from the ROSES code should pose no problem for readers who 
may later deal directly with the code, for there is documentation available which 
describes the relation between this report’s variables and ROSES counterparts. (See 
Appendix D and the following).

The three variables in [t,p, e] deserve special comment. We shall first point out 
which ROSES-code variables are not to be identified with [f,p, e] and then, which 
are to be so identified.

In the ROSES code there is a simple three-part structure [tsched(spt), psched(spt), 
esched(spt)] that is related to [<,p, e); it will appear in our Sections IV.5.3 and 
IV.5.6 — the outlines of “CheckE” and “Create.” However, the relation between
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[tsched(spt), psched(spt), esched(spt)] and [t,p, e] is not close enough for us to 
identify the two structures with each other. Tne two structures correspond with this 
exception: [tsched(spt), psched(spt), esched(spt)] is not defined until about midway 
in the pass; and moreover, it is defined only if ROSES decides to try continuing 
the current schedule beyond its spt-tagged triplet. In contrast, the triplet [t,p,e\ 
is investigated by ROSES quite early in the pass — earlier than the setting of 
[tsched(spt), psched(spt), esched(spt)].

In the program-outlines of Section IV.5, the proper counterparts to t,p and e are 
tready(p), p, and e.

For p, our earlier remarks about BCP and EOP apply straightforwardly. That is, 
there are no unusual problems concerning pBOP and pEOP.

The counterpart to <BOP is treadyBOP(pBOP), and the counterpart to <EOP 
is treadyEOP(pEOP). In addition, there is treadyEOP(pBOP). Furthermore, the 
ROSES code uses these scalars: told as a saved value of treadyBOP(pBOP), 
tNEXTinSCHED as the value of treadyEOP(pEOP), and tNEXTfcp (meaning 
“tnext for the current processor”) as the value of treadyEOP(pEOP).

As to e: The ROSES code does have a variable named e having the same meaning 
as the e in this report’s triplet [i,p, e]. However, at the very beginning of a pass, the 
implicit value of e does not make a proper triplet with tBOP and pBOP. In fact, 
in some passes e is found to be “nonexistent”; i.e., there are no as-yet-untraversed 
branches at the search-tree vertex. ROSES does not set or use e, within a pass, until 
e is found to be “existent.” After the first explicit setting of e within a pass, e is 
never revised within that pass. (Therefore it could be written as eEOP.) Although 
the ROSES e is not a beginning-of-pass value, it is does have a straightforward 
relation to beginning-of-pass variables. That relation is

f Abop((CURRENTiaBOP(sptBOP)) if iaCURRENTbop < iaLASTplusONEbop 
e = < 0 if iaCURRENTbop = iaLASTplusONEbop (27)

( undefined if iaCURRENTbop > iaLASTplusONEbop

where the suffix “bop” has the same meaning as “BOP,” and where 
iaCURRENTbop has the same value as CURRENTiaBOP(sptBOP), and 
iaLASTplusONEbop has the same value as LASTiaPlusoneBOP(sptBOP).

IV.4. AVOIDING REDUNDANCIES

The program outlines in Section IV.5 will indicate in detail how ROSES treats:

zero-length tasks, 
idling assignments,
e-assignments which begin simultaneously with each other,
e-assignments which finish simultaneously with each other, and
schedules which (if constructed) would be essentially redundant with each 
other.



38

These matters axe all “special cases,” in the sense that handling them requires 
elaborations of the basic ROSES constraint-satisfying and heuristic procedures. 
The elaborations axe generally to avoid redundancies. Although we have called 
these matters “special cases,” they do in fact occur often within applications of 
interest. One reason for the occurrence of simultaneous times is that the finishing 
of one task can make many tasks simultaneously ready. (This happens in cases 
where was the last unfinished edge to a task-graph vertex with many fan-out 
edges.) Another reason for the occurrence of simultaneous times is that message­
passing tasks axe sometimes treated as zero-length edges. The major reasons for 
encountering possibilities of redundant schedules are: the sameness of all processors, 
the assumed equidistance of processors, and the occurrence of simultaneous times.

The above-listed complications are interrelated, and so is their handling. The 
program-outhnes in Section IV.5 describe the mechanics of how these special cases 
are handled. What we would like to indicate, also, is why the described program 
steps axe correct for (1) exploring the search tree as fully as the ROSES heuristics 
warrant, while (2) avoiding the construction of essentially redundant schedules. In 
an effort to make this clear, we have included pertinent explanations in Section III, 
in Appendices A and B, and in comments within the program outlines.

The following two remarks may help readers to use the program outlines to 
understand the how and why of handling zero-length tasks and the other listed 
complications:

1. Because the listed complications are strongly interrelated, their handling is 
not confined to one or a few ROSES routines. (This diffusion is somewhat 
analogous to the pervasiveness of backtracking considerations.) To illustrate 
the pervasiveness of complication handling — i.e., redundancy avoidance — we 
list, below, some examples of complication handling described in the six outlines 
presented in the next section:

• The algorithm of Main includes a backtracking procedure affected by zero- 
length tasks (see STEP 7).

• The “CheckE” algorithm calculates nonzero lengths for idling assignments 
(see STEP 2).

• The steps in “ForwAE” and “Create” are obviously dominated by provisions 
for treating e-assignments that have simultaneous finishing-times.

2. There are alternative schemes which could have been chosen, for modifying 
the basic ROSES procedures so as to accommodate the special complications. 
Because the possible choices are non-tmique, and because parts of the chosen 
schemes are interrelated and are distributed among many programs (see 
comment 1), readers are likely to find that the instructions in any one program 
are insufficient to indicate what scheme has been chosen. Therefore examination 
of several programs, and some iterative reading, may be needed in order to 
develop a satisfying picture of the complication handling methods. This report’s 
preparatory descriptions, in the main text and in Appendices A and B, should 
help to speed understanding.
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IV.5. OUTLINES OF SELECTED ROUTINES

The present ROSES code incorporates over 20 routines. Six of the principal routines 
are outlined below. These outlines show the principal algorithms controlling forward 
motion in the search tree.

Unless otherwise indicated, readers may assume that all the mentioned variables 
are global (i.e., in Fortran common blocks available to all routines).

IV.5.1. Main

Purpose: Initialize variables in preparation for the main iterative control structure 
of ROSES — hereafter called the “main loop” of ROSES. Then execute this main 
loop.

Comment: The main loop constructs many schedules, triplet by triplet. To do 
this, the main loop moves forward and backward in the many-branched search tree. 
The directions and extents of these moves are determined by results calculated 
within each loop-pass. Although the main loop starts with a control instruction 
involving spt, the phrase “loop over spt" is inadequate as a capsule description. It is 
inadequate because the same ordinal number spt tags so many different vertices and 
branches in various sections of the search tree. A better description, indicating how 
each pass differs from others, is this: Each pass deals with (a) a particular search- 
tree vertex; and either (b.l) a particular as-yet-untraversed branch stemming from 
that vertex, or else (b.2) the knowledge that no such untraversed branch exists at 
that vertex. An alternative description (not using search-tree terms) is as follows: 
Each pass deals with a particular, unique combination of

a. sptBOP; plus all the other attributes describing a particular beginning-of-pass 
schedule: i.e., a partially competed schedule that comprises triplets [t,p,e] 
tagged with selection-point indices 1, 2, 3, ..., (sptBOP - 1);

and furthermore,

b. a set of three beginning-of-pass pointers — FIRSTiaBOP(sptBOP), 
CURRENTiaBOP(sptBOP), LASTiaPLUSoneBOP(sptBOP) — and the 
corresponding (pointed-to) elements of Abop. Together, these imply either (b.l) 
or else (b.2): viz.,

b.l. a particular “current” triplet [t,p, e] which, when added to the beginning-of- 
pass schedule, would produce an sptBOP-member schedule that satisfies the 
input-problem constraints and that is different from any sptBOP-member 
schedule previously constructed by ROSES.

or else

b.2. the knowledge that no such triplet exists.

In (b.2.), backtracking is necessary before forward movement should be made. In 
(b.l.), forward movement is appropriate. However, the newly formed, sptBOP- 
member schedule may be complete or not, and if complete, it may be worth 
continuing or not. Those matters will be determined and decided within the pass. 
Then appropriate preparations will be made, so as to prepare for the next pass.
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Steps of Main:

1. Read input, and set static data closely related to input. To do this,

1.1. Call SYSINT to set static data other than the task-graph description. For 
example, read in and set: the number of processors NP, the heuristic 
“delay”-limit DM AX, several file indices, and several values for end-of-list 
indicators.

1.2. Call INGRAF to set the static task-graph structure ITG, the static array 
nfie(v) describing the number of fan-in edges for each task-graph vertex, 
and other static task-graph data.

2. Initialize other data variables. To do this,

2.1. Call LAGRAF to compute f(edge), the static array describing the critical 
task-graph path length beginning with each edge.

2.2. Call INITPR to initialize the dynamic processor-readiness structure PR.

2.3. Call INITST to initialize dynamic data including: the e-alternatives 
structure EA, the selection-point index spt, and various time-bound 
variables such as trequired (which is the currently known lower bound 
for the TIME-to_GOAL of any feasible completed form of the current 
schedule-under-construction).

2.4. Call INITQ to initialize data structures designed to save calculated values 
of time-bound variables, correlated with characteristics of the incomplete 
schedules for which these time-bound variables were calculated.

3. DO WHILE sptBOP exceeds 0
(i.e., while there remain any as-yet-untried schedules worth investigating):

3.1. Define the scalar pointers

iaFIRSThp = FI RSTiaBOP (sptBOP)
iaCU RRENTbp = CU RRENTiaBOP(sptBOP)
iaLASTPLU SON Ebp = LASTiaPLUS<meBOP(sptBOP).

3.2. Determine whether current evidence indicates that it is worthwhile to 
investigate as-yet untried branches stemming from the beginning-of-pass 
vertex. To do this,

• Check whether the pointers of step 4 identify a real triplet \t,p,e\ — 
as opposed to indicating that there is no available triplet which would 
extend the current schedule in a constraint-satisfying way. •

• Check (using brief tests comparing time-dimensioned variables 
calculated during the preceding pass) that there are no conditions which 
are common to all as-yet-uninvestigated branches stemming from the 
beginning-of-pass vertex, and which preclude a TIME-to_GOAL that
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is satisfactorily short compared with the best one found earlier in this 
run of ROSES.

3.3. If the checks under 3.2 indicate that the proposed schedule-extension is 
indeed worth investigating, then

• Call FORWRD to investigate the extended schedule, to generate output 
if the goal is reached, and to revise dynamic data in preparation for later 
passes.

3.4. OTHERWISE (i.e., if either of the checks under 3.2 indicates that the 
current beginning-of-pass schedule is unworthy of continuation):

Call Bakwrd N times.

A fuller description of the preceding statement follows. Backtrack along the 
current schedule’s search-tree path, at least as far as the preceding vertex (it 
is tagged sptBOP — 1); and then backtrack further, if necessary, to reach a 
vertex having t < t(sptBOP) — i.e., to reach a vertex at which the selected 
e was not a zero-length task. Do this backtracking by making N calls to 
Bakwrd. The integer N is essentially determined by Bakwrd. Bakwrd will 
roll back most dynamic variables to the values they had at the beginning 
of the last-previous pass in which the beginning-of-pass spt was equal to 
(—JV+ the present pass’s sptBOP). However, the Bakwrd routine will refrain 
from rolling back some of the e-altematives variables (so as to prevent re- 
investigation of already-investigated schedules), and will refrain from rolling 
back some of the time-bound variables (so as to prevent construction of 
schedules which are known in advance to be unpromising for culminating in 
solutions better than previously found solutions).

3.5. End the if-block that began at step 3.3.

4. End the do-loop that began at step 3.

5. End the routine Main.

IV.5.2. Forwrd — Called from Main

Purpose: Check whether the current search-tree vertex is “satisfactory in D" (see 
Section III.6) and, if satisfactory, investigate the sptBOP-member schedule formed 
by adding the current triplet [t,p, e] to the beginning-of-pass schedule.

More specifically: If the current search-tree vertex is satisfactory in D, then form 
the current sptBOP-member schedule and check whether it seems worth extending 
further. If it does, update variables so as to prepare for that extension. In any 
case, update variables to prepare for possible later return, by backtracking, to the 
beginning-of-pass search-tree vertex. If in the course of the investigation calculations 
are made which produce time-bound information of possible later interest,’ then save 
that time-bound information. (Some of these updates will serve also to inform the 
calling program, Main, what to do in its next pass.) If in the course of investigation, 
a goal-reaching solution of interest is found, then generate appropriate output.
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Comment: Forwrd is a managing program. It effects most of its results by calling 
other subroutines to perform the detailed work.

Steps of Forwrd:

1. Check for excessively delayed tasks. To do this:

Check whether FIRSTiaBOP(sptBOP) points to a real edge; i.e., check whether 
the most favored (leftmost) branch at the current search-tree vertex is a task- 
branch. If so, then call that leftmost branch’s task-index “elong" and check 
whether, if the current (sptBOP-1)-member schedule were augmented by the 
current candidate triplet, the resulting schedule would have D(elong) exceeding 
DM AX. Such a D(elong) implies that the task “elong" would be excessively 
delayed, within any schedule incorporating the current candidate-branch.

In that excessive-delay case, not only is the current candidate-branch considered 
too unpromising to investigate, but all of the as-yet-untraversed branches 
stemming from the vertex are considered too unpromising to investigate. 
Therefore in that case, mark the vertex as having no as-yet-untraversed 
branches worth traversing. To do this, update the current-branch pointer 
CURRENTia(spt) from CURRENTiaBOV(sptBOV) to

CURRENTAiaEOB{sptBOB) = LASTiaPLVSoneBOB(sptBOB) + 1.

Then return to Main. One immediate effect will be that Main will end the 
current pass without doing much other updating — e.g., will end the pass with 
sptEOP the same as sptBOP — and then will spend the next pass backtracking.

If step 1 has not triggered return to Main, then continue as follows:

2. Revise the current-branch pointer CURRENTia(spt) from CURRENTiaBOP 
(sptBOP) = iaCURRENTbp to

CURRENTiamT(sptBOP) = iaCURRENTbp + 1 .

With one kind of exception (see step 5.2 of CheckE), there will be no further 
updating of CURRENTia for spt = sptBOP in this pass. Thus in most cases, 
the above-described revision, to get CURRENTialNT, is the same as updating 
to get CURRENTiaEOP(sptBOP). The purpose of such updating is to prepare 
for any later return, by backtracking, to the search-tree vertex sptBOP.

3. Save the beginning-of-pass value treadyBOP(pBOP) as the scalar told.

4. Call CheckE. CheckE will set e and will check whether there are any “e- 
dependent” reasons — i.e., reasons depending on this pass’s special e — for 
deciding that the sptB OP-member schedule is not sufficiently promising to 
continue. (Main and Forward have already determined that there are no 
“e-independent” reasons for rejecting continuation of the current schedule — 
i.e., no reasons known to be the same for all as-yet-untried e at the search- 
tree vertex.) CheckE will also update some variables. In particular, CheckE 
will update parts of the processor-readiness structure R; the results will be 
etm/ueEOP(pBOP) and freadyEOP(pBOP).
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5. If CheckE returns information indicating that the sptBOP-member schedule is 
not worth continuing, then return to Main.

6. Otherwise (i.e., if CheckE returns information indicating that continuation 
seems worthwhile): Continue the process (started by CheckE) of updating 
variables in preparation for furthering the sptBOP-member schedule. To do 
this, execute steps 7 through 11:

7. Update D(elong), incrementing it by 1 (to get its EOP version). After this 
updating, the array D(ef) will characterize the schedule incorporating the next 
as-yet-untraversed branch stemming from the current search-tree vertex.

For explanation of what D(elong) means, see step 1 of Forwrd. See also 
Section III.6.

8. Call ForwPR, to finish updating the process-readiness structure PR. In 
particular, ForwPR will update the pointer parts of the doubly linked list R 
from their BOP versions to their EOP versions. ForwPR will also update p 
from pBOP to pEOP.

9. Call ForwEA. ForwEA will revise the A-array and pointer-set substructures 
of the e-alternatives structure EA, updating them from their BOP versions 
to their EOP versions. In addition, ForwEA will update trequired to 
trequiredEOP, where trequired = the known lower bound to TIME-to - GOAL 
for any completed schedule incorporating the current, partial sptBOP-member 
schedule. ForwEA will also call a subroutine, Create, that will (among other 
things) check whether the goal has been reached, and if so call a subroutine 
(OUTDAT) to print output.

10. Update to the array n/iet«EOP(v); where

nfieus(v) = the number of fan-in edges unfinished at spt

for each task-graph vertex v.

This updating is designed to describe the unfinished-edge situation at the current 
pass’s end-of-pass search-tree vertex. At that vertex, processor pEOP becomes 
ready for reassignment. Because nfieus(v) needs changing only if a task gets finished, 
the array nfieus(v) is updated here only if evalue(pFiOP) exceeds 0. In that case, 
the updating is

nfieusEO'P(h) = nfieusBOP(h) - 1 ,

where h is the head of the edge having index evaluefvEOP): that is, h = 
head( evalue(pEOP)).

11. Set t*meEOP(ip<EOP) = trequiredEOP. Both sides represent the lower limit to 
TIME-to-GOAL for any completed schedule incorporating the current, partial 
aptB OP-member schedule.

12. Return from Forwrd to Main.
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4.5.3. CheckE — Called from Forwrd

Purpose: The purpose has two parts, (a) and (b).

a. Check properties depending on e, to determine whether any of the back- 
track-provoking conditions 0, 1, 2, 3 holds.

Each of these four conditions implies that, by adding the current triplet 
[t,p,e] to the beginning-of-pass (aptBOP-l)-member schedule, one gets an 
aptBOP-member schedule that is too unpromising to continue.

b. Update selected variables so as to prepare for subsequent work of two kinds 
- work to be done later within the current pass, and work to be done within 
the next pass and yet-later passes.

Comment: When CheckE is called, Main and Forwrd have already established 
that there exists a particular real triplet [t,p,e\ constituting the current candidate 
for addition to the current beginning-of-pass (3ptBOP-l)-member schedule. In fact, 
Main and Forwrd have already performed preliminary checks on the satisfactoriness 
of that triplet, and have not found it to be unsatisfactory. However, these 
preliminary checks did not involve detailed properties of e. Now CheckE will make 
further checks, taking into consideration the particular e in

Special Note: In this outline, the section on Steps departs slightly from the 
actually coded CheckE. In brief: Our “steps” outline separates some of the 
intertwined parts of the actually coded program.

More specifically: In the actual CheckE, there is an intertwining of program-parts 
that (a) check for conditions 0, 1, 2, 3; and (b) update variables needed within 
this pass’s CheckE and/or needed later than this pass’s CheckE. That intertwining 
of program-parts promotes effciency of execution, but makes the code harder to 
understand. In order to conmunicate the functions of CheckE more clearly, we have 
written an outline which ignores some of the intertwining.

Steps of CheckE:

1. Set e.

This is not a matter of selecting e; that selection was done implicitly prior to 
entering CheckE. The present step merely sets e to the value that is already 
implicitly - and uniquely - determined by the BOP version of the e-altematives 
structure EA. See Eq. (27) of Section 4.3.

We interpret the setting of e as adding the current triplet [t,p,e] to the 
beginning-of-pass (aptB0P-1)-member schedule, so as to form an aptBOP- 
member schedule. After setting e. CheckE Proceeds to investigate the 
properties of such an sptBOP-member schedule.

2. Set the three scalars tNEXTfcp, tNEXTinSCHED and pNEXTinSCHED. 
These will be used within the current operation of CheckE, and within other 
subroutines later in this pass. The meanings are:
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tNEXTfcp = time for next assignment of the current processor pBOP; 

tNEXTinSCHED = time for next spt in the schedule; 

pNEXTinSCHED = processor for next spt in the schedule.

The settings depend on the value of e as follows:

• If e > 0 — that is, if a task has been assigned, set

tNEXTfcp = told + L(e), where told = treadyBOP(pDOP) and has been

passed from Forwrd to CheckE;

tNEXTinSCHED = min [treadyBOP(pfwdBOP(pBOP)), tNEXTfcp]-, 

pNEXTinSCHED = pfwdBOP(pBOP) if tNEXTinSCHED < tNEXTfcp 

pNEXTinSCHED =

pBOP if tNEXTinSCHED = tNEXTfcp

• If e > 0 — that is, if idling has been assigned, then set

tNEXTfcp = minimum of those times treadyBOP(p') that exceed told; 

tNEXTinSCHED = treadyBOP(pfwdBOP{pBOP))-, 

pNEXTinSCHED = pfwd(pBOP).

3. Check for condition 0 - the condition that the e of the current triplet [t,p,e] 
represents an edge having the same length and head as the edge in some 
other triplet previously added (as the jptBOP-tagged member) to the current 
beginning-of-pass schedule.

In the foregoing sentence, “previously” means “in a previous pass, at a prior 
visit to the current search-tree vertex.” The implication is that the current 
pass’s visit to the search-tree vertex is a visit that has been reached by 
backtracking.

Condition 0 is the redundancy condition described in Appendix B. When 
condition 0 holds, the current sptBOP member schedule has exactly 
the same TIME-to.GOAL possibilities as those of a schedule previously 
investigated by ROSES during this run.

4. Check, in sequence, for each of the other backtrack-provoking conditions - 
condition 1 (re idling); condition 2 (re critical path length), and condition 3 
(involving dynamic programming).

For additional description of these conditions, see further comments at the 
end of this program-outline.
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5. In conjunction with making the checks of step 4, update some data to be used 
in later passes. Specifically:

5.1 If condition 1 (excessive idling) does not hold, then update the global 
timebound variable idle time .

5.2 If condition 2 holds, then not only is the current aptBOP-member schedule 
unsatisfactory (re critical path), but the same unsatisfactory feature would 
plague all as-yet-unconstructed schedules incorporating the current pass’s 
(sptBOP - l)-member schedule. Therefore, revise the branch-pointer 
CURRENTia(spt) from the value it has had since it was set by the 
Forwrd step-2 instruction CURRENTialNT(sptBOP) = iaCURRENTbp +
1. Revise it by setting

CURRENTiaEOP(sptBOP) = iaLASTplusONEbp + 1 ,

This new setting of CURRENTia will forestall construction, in any later pass, of any
further schedules incorporating the current pass’s (sptBOP-l)-member schedule.

5.3 Update the dynamic programming structures.

6. If steps 3 and 4 have shown that any of backtrack-provoking conditions 0,1, 2, 3 
holds: Set a flag to inform Forwrd that the newly constructed ^p tB O P - member 
schedule is not worth continuing, and return to Forwrd.

This return to Forwrd leaves .sptEOP = .sptBOP. It will also result in many 
other variables (e.g., the processor-readiness structure) having the same 
EOP values as their BOP values. In effect, this return and its ramifications 
mean that, within the current pass of the main loop, ROSES has traveled 
forward along a particular search-tree branch stemming from the beginning- 
of-pass search-tree vertex, but then (still within the current pass) has 
backtracked to that same vertex in preparation for the next pass.

7. If none of the conditions 0, 1, 2, 3 holds, then the jptBOP-member schedule is 
considered worth continuing. In this case:

7.1 Record the triplet [f,p,e] in a structure

[tschedfaptBOP), pachedfsptBOP), esched(sptBOP)].

7.2 Similarly, record the finishing edge euahzeBOP(.spfBOP) as 
efinishing(sptBOP). This represents the edge which finished on processor 
pBOP at time t = tBOP = treadyBOP(pBOP). It is the edge which, by 
finishing, freed pBOP to be the p of this pass’s |<,p,e].

7.3 Increment the selection-point index spt by setting

sptEOP = sptBOP + 1 .

7.4 Update the non-pointer parts of the processor readiness quartet structure 
R. That is, set

evaJueEOP(pBOP) = e,
treadyEOP(PBOP) = tNEXTfcp.
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(All other elements of evalue and tready remain constant throughout the pass.)

8. Return from CheckE to Forwrd.

Further Comments: Condition 1 indicates excessive idle time; its check is 
related to T0 (see Section III.6). Condition 2 indicates that there is an as- 
yet-unassigned edge with an f(e) that would be excessively long when added 
to tNEXTinSCHED. Condition 3 involves comparisons implemented by dynamic 
programming techniques. These three conditions may be described further in later 
documentation of ROSES.

IV.5.4. ForwPR - Called from Forwrd

Purpose: Complete the forward-updating (started in CheckE) of the processor- 
readiness structure PR.

More specifically: Update the pointer arrays pfwd(pindex) and pbak(pindex) of PR 
so as to move the pBOP-tagged block of PR to its proper new place within the 
doubly linked list of the PR structure. (The index pBOP identifies the processor 
recently assigned during this pass.) Also, update p from pBOP to pEOP, making 
pEOP identify the processor to be considered for assignment in the next pass.

Comment: The doubly linked list is to be arranged so that ready time is 
nondecreasing in the forward direction. Rearranging the list may be viewed as 
rearranging the order of processor indices pindex, or as rearranging the order of 
blocks within the ordered set

{ [ tready (pindex), evalue(pindex), pfwd(pindex), pbak(pindex) ]: 
pindex = 0, 1, 2, ... , JVj, + 1 } .

Steps of ForwPR:

1. If pNEXTinSCHED (the next processor to be considered for assignment) is 
the same as pBOP (the processor assigned within the current pass), then no 
updating by ForwPR is necessary. In that case, return to Forwrd.

(The data element pNEXTinSCHED is a parameter supplied by Forwrd to 
ForwPR. It is passed as a Fortran argument.)

2. Change the forward pointer in the pindex=0 block, and the backward pointer in 
the pindex=pNEXTinSCHED block, so as to identify pNEXTinSCHED as the 
first real processor in the doubly linked fist.

(Before this step, the processor was the second real processor in the doubly 
linked list. Therefore this step would be equivalent to removing the pBOP 
block from the doubly linked list, were it not for the fact that this step 
leaves the pBOP block with obsolete forward and backward pointers.)

3. Find the proper new place for pBOP in the doubly linked processor list. The new 
place should be such that, after pBOP is inserted there, the updated processor 
list will be in nondecreasing order of end-of-pass ready time trecdpEOP. (The 
array treadyEOP(pindex) was set in CheckE.)
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To execute this step, loop backwards through the doubly linked list, starting 
with pindex=Np + 1 and successively considering the blocks that are pointed 
to by backward pointers. Here “considering a block” entails comparing 
its tready(pindex) with treadyEOP(pBOP). In this way, find the place that 
just precedes the block (or set of blocks) having the smallest tready greater 
than treadyEOP(pBOP). Such a place will follow any set of other blocks 
having tready=treadyEOP(pBOP). Here the choice of “following” is an 
arbitrary convention. (Limiting to one definite place avoids some redundant 
schedules.)

4. Change four of the PR pointers so as to insert pBOP into its proper new place 
within the doubly linked list - i.e., into the place found in step 2.

To execute this step: Update the forward and backward pointers in the 
pBOP block of PR. Also, update the backward pointer in the block that 
(according to step 2) should follow the pBOP block. Also, update the 
forward pointer in the block that (according to step 2) should precede the 
pBOP block.

5. Update the index p from pBOP to pBOP=pNEXTinSCHED, so that the 
updated index pBOP identifies the process to be considered for assignment 
in the next pass.

6. Return from ForwPR to Forwrd.

IV.5.5. ForwEA — Called from Forwrd

Purpose: Complete the forward-updating of the e-alternatives structure EA. Here 
“forward-updating” implies “for the case that jptEOP exceeds sptBOP by 1.” The 
parts of EA to be updated are those parts relevant for the first visit to the search-tree 
vertex sptEOP.

Specifically, the parts to be updated are: that sublist of the array Aeop which 
is directly related to sptEOP; and also, the pointers FIRSTiaEOP(sptEOP), 
CURRENTiaEOP(sptEOP), and LASTtaPL USoneEOP(sptEOP).

Comment: Earlier during this pass. Forwrd and CheckE revised EA to be suitable 
for subsequent revisits to this pass’s vertex sptBOP. That preparation was done 
by updating from CURRENTiaBOP(sptBOP) to CURRENTiaEOP(sptBOP). Now 
ForwEA wil[ prepare for the next pass by

a. setting pointers FIRSTiaEOP(sptEOP), CURRENTiaEOP(sptEOP), and 
LASTiaPL USoneEOP(sptEOP), and

b. setting, if needed, a physically new section within the A-array - a new 
section to which the three new pointers of (a) will refer.

Steps of ForwEA:

1. Check for the existence of conditions which make it unnecessary to construct 
(in preparation for sptEOP) a physically new sublist within A.
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A physically new sublist is unnecessary when the proper sublist of A for 
jptEOP consists of the upper portion of the sublist used for sptBOP. 
Sufficient conditions for this “non-necessity” condition axe as follows: (a) No 
tasks which were unready at the vertex <sptBOP,told> will be ready at the 
vertex <sptEOP,tNEXTinSCHED>\ and (b) If the recently assigned e is a 
task, then it is permissible to limit the sptEOP sublist of A to edges e which 
are values less favored than the recently assigned e. Sufficient conditions for 
this are (see III.7.4 and Appendices A and C):

tNEXTinSCHED = told and tNEXTfcp ^ told.

The last-written condition is equivalent to 7^ 0, where is the assignment 
made earlier in this pass.

2. If the check of step 1 indicates that a physically new sublist is unnecessary, 
update only the EA pointer arrays and then return to Forwrd. To do this:

2.1 First, set

LASTiaPLUSoneEOP(spfEOP) = iaLASTplusONEbp .

2.2 Then if the recently assigned e was a task (i.e., if iaCURRENTbp < 
ia LASTplusONEbp): Start the new branch-set with the e-value that, in 
the .sptBOP branch-set, was just rightward of the recently assigned e, and 
also, set the new current-branch pointer for the first visit to vertex sptEOP 
at that same just-rightward e-value. This means setting

FIRS TiaEOP (sptBOP) = iaLASTplusONEbp, 
CURRENTiaEOP(sptEOP) = iaLASTplusONEbp.

2.3 However, if the assigned e was idling (i.e., if iaCURRENTbp = 
iaLASTplusONEbp), then restrict the branch-set at the vertex sptEOP to 
idling also. To do this, set

FIRS TiaEOP (sptEOP) = iaLASTplusONEbp, 
CURRENTiaEOP(sptEOP) = iaLASTplusONEbp.

2.4 Then return to Main.

3. ELSE - i.e., if the check of step 1 does not show that a physically new sublist 
is unnecessary - then construct a physically new sublist for sptEOP within A. 
Also, set appropriate pointers (i) to associate the newly constructed sublist 
with sptEOP, and (ii) to indicate that the most favored (leftmost) branch is 
the branch to be traversed at the first ROSES visit to search-tree vertex EOP 
if that vertex is satisfactory. The physically new sublist for sptEOP is to be 
placed just beyond the sptBOP-list within A. In order to properly construct it, 
place it, and point to it:

3.1 Set FIRSTiaEOP(sptEOP) and CURRENT mEOP(sptEOP) each to 
LASTiaPLUSoneBOP(sptBOP).
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3.2 Call Create. Among other things, Create will return an array “buffer ” 
listing (in decreasing order of favor) tasks which axe ready at sptEOP but 
which were not ready at sptBOP.

3.3 Find spiPRIME, as follows:

If L(e) ^ 0, then loop backward through the lists stacked in 
A, in order to find the smallest selection-point index such that 
LASTiaPL USone(sptPRIME) = LASTiaPL USoneBOP(sptBOP). The 
sublist of A that is associated with this spiPRIME contains all the tasks 
ready at tNEXTinSCHED, except for those which will be in the array 
“buffer" of step 3.2. However, this sublist-associated-with-sptP^/AfE also 
contains some tasks which became assigned at selection-point indices equal 
or greater than sptEOP - 1 and therefore are not ready at jptEOP.

\{ L(e) = 0, where e is the most recent assignment, then set

spiPRIME = jptEOP - 1.

The sublist of A that is associated with this spiPRIME contains all the tasks 
ready at tNEXTinSCHED, except for those which axe of favor exceeding 
the favor of e, and those which will be in the array “buffer” of step 3.2. 
However, this sublist-associated-with-jptPiZ/AfE also contains task e itself, 
which became assigned at sptEOP - 1 and so is not ready at jpfEOP.

3.4 Construct a sublist-of-A for sptEOP by merging the newly ready edges in the 
list “buffer^ (of step 3.2) with the edges within the sublist that is associated 
with spiPRIME of step 3.3; but omit any edges of that sublist-associated- 
with- spiPRIME which have already been assigned and so axe not ready at 
.sptEOP.

During this merging, keep all edges in decreasing order of f,L favor. (When 
an edge in the list-associated-with-aptPJZJAfE has the same f(e) and length 
as an edge in the “buffer list,” then the edge in the spiPRIME list is 
considered more highly favored.)

3.5 FVom the length of the merged list in step 3.4, determine and set the pointer
LASTiaPL USoneEOP(sptEOP).

4. Update trequiredEOP to

trequiredEOP = max [treguiredBOP,

tNEXTinSCHED + f(Aeo?{FIRSTiaEOP(sptEOP)))).

5. Return from ForwEA to Forwrd.

IV.5.6. Create - Called from ForwEA 

Purpose: The purpose has two parts, (a) and (b).

a. Return, to ForwEA, an array buffer(ib). This array should list, in decreasing 
order of f,L favor, all the newly ready edges - i.e., ah the edges which are ready
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at search-tree vertex sptEOP but which were unready at search-tree vertex
apiBOP.

b. Check whether present information guarantees that the goal will be reached 
at t(aptEOP) • If so: Record appropriate data describing the completion of the 
schedule; arrange for printing output; and decide whether to continue searching 
for additional schedules.

Comment: The logic of this program is complex if one considers in detail 
the handling of cases where zero-length tasks occur. For such cases, a fully 
explicit description of the reasoning behind this program would involve the detailed 
differences discussed in Section III.7.4: i.e., the differences between edges finishing 
at-or-before spt, edges finishing at-or-before t(spt), and edges finishing at-or-before 
< t(apt), spt >• In addition, a fully explicit description of this program’s logic would 
involve explanations depending on the conditions under which Create is called: i.e., 
if L(e) is nonzero then tNEXTinSCHED is different from told. The outline below 
makes some compromises between brevity and explicitness; it describes some but 
not all of the details concerning what the program does, and some but not all of 
the details concerning why the described steps are appropriate for accomplishing 
the stated purposes.

Steps:

1. Find all the newly ready edges - i.e., edges which are ready at search-tree 
vertex spHEOP but which were not ready at search-tree vertex sptBOP. Place 
these newly ready edges, in decreasing order of favor, in an array “buffer.” In 
order to do the aforementioned edge-finding and edge-placing:

Find all the newly ready task-graph vertices - i.e., the vertices vn which are 
ready at search-tree vertex sptEOP but which were not ready at search-tree 
vertex jp<BOP. For each such newly ready vertex vn, find each fan-out edge ent- 
and then insert it into its proper place within an overall array “buffer” that 
will list all such edges eni- from all such vertices vn. In order to do all of the 
aforementioned -finding and e„i-finding and en;-placing:

1.1 Set data that will remain constant during calculation of the array buffer(ib). 
Examples are:

head(e), where e = the e-value assigned earlier during this pass. 

eOflag. Set this to 1 if L(e) is zero, but to 0 ii L(e) exceeds zero.

1.2 Initialize data that will vary during calculation of the array buffer(ib). 
Examples are:

pindex, initialized to pEOP.

nfieuts(v), initialized to nfieusBOP(v).

The initial value given to nfieuts is not the proper value of nfieuts(v) at 
search-tree vertex apffiOP. However, for selected indices v, subroutine 
Create will revise the initial value so that nfieuts(v) will take on its 
proper value at search-tree vertex sptEOP.
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The arrays nfieuts and nfieus were defined in section III.7.4. The array 
nfieuts(v) is an array internal to Create.

1.3 Loop over pindex using the sequence in which pindex is forward-linked in 
the doubly-linked processor-readiness list R. [That list R is forward-linked 
in order of nondecreasing tready(pindex).] Treat all pindex in the first 
sublist of the linked structure R: i.e., all pindex in the sublist within which 
tready (pindex) = tNEXTinSCHED.

The variable tNEXTinSCHED was calculated in CheckE, returned to 
Forwrd, and passed by Forwrd through ForwEA to Create.

To execute this loop over pindex:

• For selected task-graph vertices, revise nfieuts(v) to find its proper value at 
the search-tree vertex sptEOP.

The selected group comprises those task-graph vertices v such that 
nfieuts(v) is different at aptEOP than it was at sptBOP] because it is 
only for such task-graph vertices that a zero nfieuts(v) implies a newly 
ready vertex. In order for nfieuts(v) to be different at .sptEOP than it 
was at jpfBOP, v must be a vertex such that either (i) t(aptEOP) exceeds 
f(aptBOP) and there are some edges, assigned before .sptEOP, which have 
v as a head and which finish at tSplEOp), or else (ii) t(aPtEOP) = ^(aptBOP) 
and v is the head of a zero-length task beginning at sptBOP.

Therefore to make the selected revision:

For each pindex, determine the associated task-graph vertex v which is 
the head of evalue(pindex). Decrement the transient value of nfieuts(v) 
by 1 for each edge e" = evalue(pindex) satisfying the following two 
conditions: e" is a task rather than idling, and if L(e) = 0 then 
head(e") = head(e).

• For each revised element nfieuts(v) that becomes zero, the vertex v is newly 
ready at sptEOP. Therefore for each pindex such that the nfieuts(v) is revised 
and is seen to be 0, find the edges fanning out from v and insert them, in 
decreasing order of favor, into the array “buffer.”

The edges fanning out from v are found by using the ITG substructures 
G and hfoefv). The order of favor is found by using the arrays f(edge) 
and L(edge).

• Then end the loop on pindex

2. Check whether present data guarantee that the goal will be reached at t(aptEOP)- 
This is so if nfieuts(goalnode) = 0.

3. If the check of step 2 shows that the goal will be reached at <(aptEOP) > then do not 
bother to make and record all the further assignments (at aptEOP and beyond) 
which would formally reach the goal through idling-branch extensions of the 
partially completed search-tree path that goes up to vertex sptEOP. Instead,



proceed immediately to record information describing the completed schedule,
to prepare for continued searching, and to make the decision as to whether to
continue searching. In detail:

3.1 Set TIME.to.GOAL = tNEXTinSCHED.

3.2 Set the stacked block \tsched(spt'EO'P),pscked(sptEOP),esched(sptEOT>)] to 
[TIME.to.GOAL, 0, - 1].

3.3 Call OUTDAT to print output.

3.4 Set the variable INITIAL to False, to indicate that at least one solution (i.e. 
one complete schedule) has been calculated.

3.5 Set timeBundercut = TIME.to.GOAL - tbetter, where tbetter is an 
input indicating how much improvement is demanded of later-constructed 
schedules, in order for ROSES to to consider them worth constructing.

3.6 Set Maxldle Time = the maximum idle time (summed over all 
processors) allowable, in any yet-to-be-constructed schedule, if that yet- 
to-be constructed schedule is to have a TIME.to.GOAL shorter than 
timeBundercut.

This means that MaxIdleTime will equal (NPHimeBundercut - Tzero), 
where Tzero is the lower bound T0 defined in Section III.6.

3.7 Decide whether to cease or to continue searching for an improved solution. If 
the decision is to cease, then sept spt=9 (because a value spt=0, when finally 
returned to Main, will cause the main loop to end). To do this deciding and 
zeroing:

• If timelundercut < MinTime, or if MaxIdleTime < 0, then set apt =
0.

Here MinTime is a lower-bound-on-“the-achievable” that has been 
calculated by a subroutine of CheckE in the course of checking for 
Condition 3.

4. Return to ForwEA.
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V. AN IMPLEMENTATION EXPERIMENT: INVERSE 
DYNAMICS EQUATIONS FOR A ROBOT MANIPULATOR

Let us now address some of the practical considerations related to the 
implementation of ROSES-scheduled algorithms on the NCUBE5 concurrent 
computer. To fix the ideas, we consider a robot-related calculation: the solution of 
the inverse dynamics equations of a manipulator arm. This problem was chosen 
for illustrative purposes, i.e., because it is relatively “simple,” while exhibiting 
the nonlocal communication and structural irregularity characteristics of interest. 
Below we start with rather general discussions of robot-arm equations, and parallel 
algorithms for solving them. Then we specialize to ROSES and to the NCUBE 
in discussing the ROSES-scheduling of a particular robot-arm algorithm, GOLEM, 
and the implementation of GOLEM on the NCUBE.

V.l. NEWTON-EULER INVERSE DYNAMICS

Several state-of-the-art formalisms are currently available to efficiently solve the 
inverse dynamics problem of a serial link manipulator, in which forces or torques 
are predicted based on desired motion. In the Newton-Euler formalism the equations 
for each link are written in link-fixed coordinate systems in order to simplify the 
calculation of the inertia tensors. A set of recurrence relations allows the angular 
velocities, angular accelerations and linear accelerations at the center-of-mass of 
each link to be successively calculated from the base to the end effector. Net 
forces and torques acting on each link’s center-of-mass are then obtained. Forces 
and torques acting at the joints are subsequently calculated in a recursion from 
the “hand” to the base. Joint actuator torques or forces are determined from a 
knowledge of the orientation of each joint. The detailed derivations can be found in 
Luh and Lin’s seminal paper.26 A display of the Newton-Euler equations of motion 
is included in Table 3, with notation as follows:

Wi

Wi

Pi
Ft

Ti

Pi
r?

Ji

A]-i

fi

7.

= angular velocity of link t 
= angular acceleration of link i 
= linear acceleration of link i 
= net force acting on link i
= net torque acting on link i about the center-of-the-mass

= origin of the i-th coordinate system with respect to the (z-l)th
= position of center of mass of link i with respect to the origin 

of link i

= inertia tensor about center of mass of link i

= frame transformation matrix from (i-l)th to i-th coordinate 
systems (denoted as A~ in the table); by analogy, Af will 
denote the frame transformation A)+1

= force exerted on link i by link i-1
= moment exerted by link i-1 on link i
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The symbols tu* and w have identical meanings. Lightface type rather than boldface 
has been used, even for vector quantities and matrices.

Table 3. Robot Inverse Dynamics Computational Tasks as 
Characterized by their Principal Equations (Newton-Euler

Formalism, Six-Link Manipulator)t

Task# Rotational Link Prismatic Link

1-6 w, = +Zi-i q,) Wi = A~ iwi_i

7-12 w,- = Aj~ (w,—! + 2i_iqi +
ttfi-i x Zi_iqi)

i

i ■_II

13-18 V;(1) = WiX (wi x p?) v;(1) = WiX (24,- Zi_iqi 
+«;,■ x p*i)

19-24 p-t = A~ pi_j+ w, x p* + Vi = ^i(1) + A-Cp,-! + 2,-iqi) 
+w, x pj

25-30 V[2) = Wi x [u>i x r*]

30-36 Fi = m,[V;(2)+ w, x r?+ p,]

37-42 r, = j.w, + wiX (JiWi)

43-48 v[3) = Ti + (p; + r?) x Fi

49-54 f. = F + Atfi+l

55-60 v;(4)=p* x (/i - f)

60-66 7* = Atw+Vi<3) + v;(4)

tq; and q,- are the first and second time derivatives of generalized coordinates. The joint index 
t runs from 1 to 6 for tasks 1 to 48, and from 6 to 1 for tasks 49 to 66.

The symbols z represent unit vectors. Typical initial conditions are w0 — w0 = 
0;p<> = 9zoi thereby absorbing gravity into the initial acceleration to reflect the 
simplified form of the force balance equation

/, = F, + Atf,+l . (28)



Initial conditions for the backward recursion are obtained from the specification of 
/n+i and 7;v+i> the external force and moment exerted on the hand. The joint 
actuator torques or forces are simply (omitting friction):

= 7. • A{ 2,_i or <f>i = fi • A{ 2,_i . (29)

V.2. PARALLEL ALGORITHMS FOR INVERSE DYNAMICS

The pioneering work of Luh and Lin on scheduling of parallel computations for a 
computer controlled mechanical manipulator26 has established a solid foundation 
for further research and development of parallel algorithms for robot dynamics. 
In their approach, one CPU is associated with each joint (or link). Each CPU is 
connected both to a primary memory, which stores local programs and data, and 
to a “common” memory, located between adjacent CPUs, which stores common 
data and information necessary for interprocessor communication. The Newton- 
Euler formalism provides the computational framework. Because of the dynamic 
coupling between adjacent links, Luh and Lin developed a parallel formulation of the 
inverse dynamics problem in terms of a multicomputer task-scheduling optimization 
problem under series-parallel precedence constraints. Their solution, based on 
a generalization of the branch-and-bound algorithm, exhibits, however, several 
significant limitations. Most importantly, the bijective computer-to-link mapping 
is not ideal for real-world applications, since it is subject to single-point failures. 
Furthermore, because of the underlying topology, the system suffers from severe 
load unbalance, i.e., some processors are very underutilized. Finally, the issues of 
intertask communication and synchronization are not directly addressed.

In recent years, there has been an increased interest in the development of parallel 
algorithms for inverse robot dynamics.26-30 As reported by Kasahara and Narita,38 
it seems that most of these studies do not involve an implementation on an 
actual multiprocessor system. Results are therefore often presented in terms 
of “number of additions and multiplications” and their theoretical equivalent of 
processor clock cycles,37 ignoring many fundamental constraints of multiprocessing 
such as communication overheads or saturation effect bottlenecks. Furthermore, 
the emphasis is in general on architectures fully dedicated to a specific algorithm 
formulation.

Our approach is to use a single large-scale multiprocessor system, the NCUBE, for 
the concurrent solution of all major algorithms involved in the operation of the 
autonomous robot. Since the NCUBE is reconfigurable (i.e., subcubes of specified 
dimension can be allocated in real time), this approach attempts to make the best 
possible use of the available computing resources.

V.3. ROSES

Now we discuss input to ROSES, and output from ROSES, for the robot 
manipulator problem.

One of the first and most important steps in attempting to solve a problem on 
a concurrent computation ensemble is decomposing the problem into a set of 
computational tasks (or “processes”) each to be performed on a single processor 
of the concurrent ensemble. For tne robot-arm problem described above, our
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proposed decomposition involves 66 computational tasks for a 6-degrees-of-freedom 
manipulator. The proposed decomposition is indicated in Table 3; it differs 
somewhat from the decomposition used by Luh and Lin.26

Problem decomposition induces precedence constraints among the computational 
tasks, and the distributed nature of a concurrent computational system translates 
those constraints into message-passing requirements. Such tasks and constraints 
axe convenient to consider in terms of task graphs.

Task graphs in the parallel processing literature generally use nodes (vertices) to 
denote tasks, and edges to describe communication links or precedence constraints. 
However, we prefer a somewhat different model. In a full ROSES task graph, edges 
represent tasks (computational or communication), while nodes (vertices) represent 
synchronization points for precedence constraints. This was discussed in Section
II.5, where we mentioned an input list including, not only all computational tasks, 
but also message-passing tasks.

In fact a user of ROSES may input either of the following:

[1] A list including only computational tasks - with each listed task accompanied 
by a sublist identifying that task’s immediate predecessors in a precedence 
requirement description involving computational tasks only; or

[2] A complete ROSES-task-graph edge list, including not only all computational 
edges but also all message-passing edges - each one of these edges being 
accompanied by identification of its head-node and its tail-node (so that 
these nodes can be interpreted properly, as synchronization points for 
precedence constraints).

If the user inputs [1], then an optional “preparatory” part of ROSES needs [2]. 
An example of jl]-to-[2] conversion is indicated by Tables 4 and 5; it is for inverse 
dynamics and the Stanford arm.

Note that both Table 4, type [1] information, and Table 5, type [2] information, 
include task-describing algorithmic parameters such as Mul #, the number of 
multiplications in a task. Besides needing input that describes tasks, ROSES needs 
input that describes the concurrent ensemble on which the multi-task job is to be 
run. In particular, ROSES needs the total mnnber of active processors (this may 
be input as a hypercube order), and the performance times for basic arithmetic 
operations.

The major, schedule-generation part of ROSES was described in Sections III-IV. It 
proceeds through a search to generate what we shall call a ROSES search-output 
schedule. For each processor in the ensemble, this schedule assigns a specific set of 
tasks. Furthermore, for each task the schedule stipulates a numerical starting time 
(relative to a zero-point time at which the entire multi-task job begins). Thus, the 
ROSES search-output schedule is very time-specific.



Table 4. Computational Tasks for the Solution of the Newton-Euler 
Robot Inverse Dynamics Equations As Input to ROSES*

Task
ID

Mul
#

Add
#

Pr. Con.
#

Free. IDS Const. Task
ID

Mul
#

Add
§

Pr. Con.
§

Free. IDS Const.

1 8 6 1 0 34 9 9 3 10 22 28
2 8 6 1 1 35 9 9 3 11 23 29
3 8 5 1 2 36 9 9 3 12 24 30
4 8 6 1 3 37 12 6 2 1 7
5 8 6 1 4 38 12 6 2 2 8
6 8 6 1 5 39 12 6 2 3 9
7 10 8 1 0 40 12 6 2 4 10
8 10 8 2 I 7 41 12 6 2 5 11
9 8 5 1 8 42 12 6 2 6 12

10 10 8 2 3 9 43 6 9 2 31 37
11 10 8 2 4 10 44 6 9 2 32 38
12 10 8 2 5 11 45 6 9 2 33 39
13 12 6 1 1 46 6 9 2 34 40
14 12 6 1 2 47 6 9 2 35 41
15 15 8 1 3 48 6 9 2 36 42
16 12 6 1 4 49 8 8 1 36
17 12 6 1 5 50 8 8 2 35 49
18 12 6 1 6 51 8 8 2 34 50
19 14 14 2 7 13 52 8 8 2 33 51
20 14 14 3 8 14 19 53 8 8 2 32 52
21 14 15 3 9 15 20 54 8 8 2 31 53
22 14 14 3 10 16 21 55 6 6 2 36 49
23 14 14 3 11 17 22 56 6 6 2 35 50
24 14 14 3 12 18 23 57 6 6 2 34 51
25 12 6 1 1 58 6 6 2 33 52
26 12 6 1 2 59 6 6 2 34 53
27 12 6 1 3 60 6 6 2 31 54
28 12 6 1 4 61 8 11 2 48 55
29 12 6 1 5 62 8 11 3 47 56 61
30 12 6 1 6 63 8 11 3 46 57 62
31 9 9 3 7 19 25 64 8 11 3 45 58 63
32 9 9 3 8 20 26 65 8 11 3 44 59 64
33 9 9 3 9 21 27 66 8 11 3 43 60 65

*The column headiings have these meanings: Task ID is the same as Task § in Table 3. Mul # means number of 
multiplications. Add § means number of additions. Pr. Con. # means number of immediate predecessor computa­
tional tasks in a task graph limited to computational tasks. The columns headed Free., IDS, and Const, show the 
indices ID of the immediate predecessor computational taskfc.
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Table 5. Robot Inverse Dynamics Task Graph 

As Generated by Roses from the Information ip Table 4.f
Nodes

Head Tail
Cost

Mul Add
Edte
No*

Nodes
' Head Tail

Cost
Mul Add

Edje
No.*

i 2 8 6 1 103 102 8 8 51
i 4 8 6 2 105 104 8 8 52
7 6 8 5 3 107 106 8 8 53
9 8 8 6 4 109 108 8 8 54

U to 8 6 5 111 110 6 6 55
13 12 8 6 6 113 112 6 6 56
15 14 10 8 7 115 114 6 6 57
17 16 10 8 8 117 116 6 6 58
19 18 8 5 9 119 118 6 6 59
21 20 10 8 to 121 120 6 6 60
23 22 10 8 It 123 122 8 11 61
25 24 10 8 12 125 124 8 11 62
27 26 12 6 13 127 126 8 11 63
29 28 12 6 14 129 128 8 11 64
31 30 IS 8 15 131 130 8 11 65
33 32 12 6 16 133 132 8 11 66
35 34 12 6 17 4 3 0 0 67
37 36 12 6 18 6 5 0 0 68
39 38 14 14 19 t 7 0 0 69
41 40 14 14 20 10 9 0 0 70
43 42 14 15 21 12 11 0 0 71
45 44 14 14 22 16 3 0 0 72
47 46 14 14 • 23 16 IS 0 0 73
49 48 14 14 24 18 17 0 0 74
51 50 12 6 25 20 7 0 0 75
53 52 12 6 26 20 19 0 0 76
55 54 12 6 27 22 9 0 0 77
57 56 12 6 28 22 21 0 0 78
59 58 12 6 29 24 11 0 0 79
61 60 12 6 30 24 23 0 0 80
63 62 9 9 31 26 3 0 0 81
65 64 9 9 32 28 5 0 0 82
67 66 9 9 33 30 7 0 0 83
69 68 9 9 34 32 9 0 0 84
71 70 9 9 35 34 11 0 0 85
73 72 9 9 36 36 13 0 0 86
75 74 12 6 37 38 15 0 0 87
77 76 12 6 38 38 27 0 0 88
79 78 12 6 39 40 17 0 0 89
11 80 12 6 40 40 29 0 0 90
13 82 12 6 41 40 39 0 0 91
15 84 12 6 42 42 19 0 0 92
17 86 6 9 43 42 31 0 0 93
19 88 6 9 44 42 41 0 0 94
91 90 6 9 45 44 21 0 0 95
93 92 6 9 46 44 33 0 0 96
95 94 6 9 47 44 43 0 0 97
97 96 6 9 48 46 23 0 0 98
99 98 8 8 49 46 35 0 0 99

101 100 8 8 SO 46 45 0 0 100

•The indices which are < 66 refers to computational tasks, and correspond to 
the Task ID numbers in column l of Table 4. The indices > 66 refer to 
message-passing tasks.
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Table 5, Coat’d
Node*

Head Tail
Cost

Mai Add
Edfe
No;

Nodes
Head Tati

Cost
Mul Add

Edge
No.

41 25 0 0 101 94 15 0 0 151
41 37 0 0 102 91 73 0 0 152
41 47 0 0 103 100 71 0 0 153
SO 3 0 0 104 100 99 0 0 154
52 5 0 0 105 102 49 0 0 155
54 7 0 0 104 102 101 0 0 154
54 9 0 0 107 104 47 0 0 157
51 ll 0 0 101 104 103 0 0 151
40 13 0 0 109 104 45 0 0 159
42 15 0 0 110 104 105 0 0 140
42 39 0 0 111 108 43 0 0 141
42 51 0 0 112 101 107 0 0 142
44 17 0 0 113 110 73 0 0 143
44 41 0 0 114 110 99 0 0 144
44 53 0 0 115 112 71 0 0 145
44 19 0 0 114 112 101 0 0 144
44 43 0 0 117 114 49 0 0 147
44 55 0 0 III 114 103 0 0 141
41 21 0 0 119 114 47 0 0 149
41 45 0 0 120 114 105 0 0 170
69 57 0 0 121 111 45 0 0 171
70 23 0 0 122 III 107 0 0 172
70 47 0 0 123 120 43 0 0 173
70 59 0 0 124 120 109 0 0 174
72 25 0 0 125 122 97 0 0 175
72 49 0 0 124 122 111 0 0 174
72 41 0 0 127 124 95 0 0 177
74 3 0 0 121 124 113 0 0 171
74 15 0 0 129 124 123 0 0 179
74 5 0 0 130 124 93 0 0 110
74 17 0 0 131 124 US 0 0 III
71 7 0 0 132 124 125 0 0 112
71 19 0 0 133 121 91 0 0 113
10 9 0 0 134 121 117 0 0 114
10 21 0 0 135 121 127 0 0 115
<2 ll 0 0 134 130 19 0 0 114
12 23 0 0 137 130 119 0 0 117
14 13 0 0 131 130 129 0 0 III
14 25 0 0 139 132 17 0 0 119
14 43 0 0 140 132 121 0 0 190
14 75 0 0 141 132 131 0 0 191
II 45 0 0 142 l 123 0 0 192
II 77 0 0 143 1 125 0 0 193
90 47 0 0 144 1 127 0 0 194
90 79 0 ' 0 145 1 129 0 0 195
92 49 0 0 144 l 131 0 0 194
92 II 0 0 147 I 133 0 0 197
94 71 0 0 141
94 13 0 0 149
94 73 0 0 150
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After an acceptable ROSES search-output schedule has been generated, actual 
execution on a multiprocessor is in order. To facilitate such execution, we invoke an 
optional, concluding part of the ROSES; it generates “run-time” control information 
to be fed to the multiprocessor. This run-time control information includes the 
following basic features of the ROSES-optimized schedule:

for each processor,

• the set of computational tasks to be performed, and

• the sequence in which these tasks should be performed.

However, the run-time control information omits the following time specific feature 
of the ROSES search-output schedule: numerical starting times for the tasks.

The run-time control information is fed to the multiprocessor along with a routine 
for each computational task in the ROSES task graph. Also fed in axe an appropriate 
host routine, and ordinary input data needed to complete the specification of 
the problem to be solved concurrently. Within the computational-task routines, 
there are write-message instructions and read-message instructions. A correlated 
write-read pair corresponds to a message-passing task in the ROSES task graph. 
Given the aforementioned run-time control information and routines and input 
data, the multiprocessor has enough information to fully satisfy the multi-task job’s 
precedence constraints - as we next explain.

Precedence constraints relating tasks on the same processor are satisfied because 
the multiprocessor will comply with that part of the run-time control information 
which specifies a sequence for each subset of tasks on the same processor. However, 
there is no need to specify direct sequencing constraints relating tasks on different 
processors, because such precedence constraints are taken care of by the following 
blocking feature: execution is disallowed past a read-message instruction, until a 
message having the requested message-characteristics has been received and read. 
This blocking feature is part of the operating system on NCUBE processors. Our 
convention is that, except for delays caused by such blocking, each processor is to 
perform its sequence of task without interruption.

What about the matter of specifying proper message-characteristics - i.e., the 
matter of matching write-read partners properly so that blocking will assure 
satisfaction of the precedence constraints? The present ROSES code facilitates this 
by using the ROSES-optimized task-to-processors assignments to prepare run-time 
information that specifies for each computational task,

• the number of messages to be received, and for each such message, 
its originating processor and its “message type” (a word that further 
characterizes the message); •

• the number of messages to be sent, and for each such message its destination 
processor and its “message type.”
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V.4. THE GOLEM CODE

The Newton-Euler inverse dynamics formalism has been implemented in a computer 
code named GOLEM. It has been programmed to utilize, as part of its input, a 
run-time control information file generated by ROSES. We have have attempted to 
avoid “tailoring” the code for a specific robot arm. In particular, there is no limit 
on the number of joints, their type (rotational or prismatic) or on the manipulator 
configuration that GOLEM can handle. All matrices, vectors and scalars involved 
in the solution of the inverse dynamics equations (see Table 1) are stored in two 
one-dimensional arrays, denoted BC and NC, for reals and integers respectively. 
Storage requirements are calculated at run time, pointers are defined, and memory 
is allocated dynamically.

In order to enhance potential interactions with other robot activities sharing the 
hypercube, the architecture of GOLEM is modular. Key stages in the computational 
flow are modular interface, dynamic memory allocation, database processing, model 
initialization (e.g., frame transformation matrices, inertia tensors), actual solution 
of the equations and display of the results. Two modes of operation are available. In 
the sequential mode all computations take place on the Intel 80286/80287 processors 
resident on the NCUBE Peripheral Subsystem (host). In the concurrent mode the 
equations are solved on the hypercube nodes (i.e., the single-chip processors in the 
NCUBE ensemble).

Let us now briefly examine the basic steps involved in setting up the concurrent 
computation. Several system functions are provided39 that allow use of the ensemble 
by FORTRAN and C programs. All functions return an integer*4 result; negative 
values correspond to an error code. First the host allocates the requested hypercube:

ISH = NOPEN{ NOH ) (30)

In the above statement NOH is an integer*2 variable giving the hypercube order. 
The channel number to be used when referencing that hypercube is the integer*2 
variable ISH. The second step involves the loading of programs onto the nodes of 
the previously allocated hypercube. One can load either the same program onto all 
nodes or a different program onto each node. The only restriction in the preliminary 
release of the NCUBE system is the limit of one program per node. Thus, it is 
currently the responsibility of the user to provide multitasking capabilities at the 
node level, if multitasking is required by his particular solution algorithm. This 
is the case for GOLEM. Our approach is to download the same program to all 
nodes, i.e., in principle each node could execute all tasks in Table 3. However, only 
the tasks scheduled to be run on a particular node will be activated. To achieve 
this capability, we had to develop a “focused addressing” algorithm which uses the 
appropriate switching and synchronization information provided by ROSES. The 
host’s download statement has the form:

istat = NLOAD( ISH,codex,IN,WA,NWA) (31)

where IN is an integer*2 variable identifying the node that is to receive the program, 
and codex is a character string that contains the name of the file to be loaded. The 
user must provide a work buffer (WA) that is at least as large as the size of the
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node program. The variable NWA gives the size of the working area in bytes. For 
large applications one must, of course, send different code segments to each node, 
but the focused addressing scheme is still valid.

The third step involves the sending of data to the nodes. For a particular node IN, 
this is accomplished by the host using the statements:

istat = NWRITE( ISH, BC, NLOR * 4, IN, mtypr ) (32)

jstat = NWRITE( ISH,NC, NL01 * 4, IN, mtypi). (33)

Here the “message-type” parameters mtypr and mtypi are used simply to indicate 
whether the data in the message are reals or integers. We download the complete 
working memory (arrays BC and NC of run-time word-sizes NLOR and NL01, 
respectively) to all nodes. This is consistent with the approach outlined above. 
Furthermore, the array pointers have been stored in NC, and can be selectively 
retrieved at each node for maximum flexibility. Clocks are now initialized and we 
proceed with the solution of the equations on the hypercube ensemble.

Finally, the host must receive the problem responses from the appropriate nodes. 
The preferred implementation is clearly via interrupts. (A possible alternative is to 
continuously test for any arriving message from any node using the system function 
NTEST.) The message is then retrieved with the statement

isize = NREAD( ISH, WB, NWB, IN, LL ) (34)

where WB is a buffer of size NWB bytes. This buffer is assumed to be large enough 
to hold the longest message that one would expect to receive from any node. IN 
denotes the source (originating node) of the message read. The message type LL is 
defined as the pointer to the subarray in BC (or NC) where the incoming message 
needs to be stored. Since a positive value of “isize” represents the size in bytes of 
the received message, this is accomphshed as follows (assuming again 4-byte words):

NML = isize/4
CALL VECEQV(BC(LL+1), WB, NML ) ^

After all expected messages have been received, timing is performed, the hypercube 
is deallocated, and the final results are displayed.

The communication primitives used by the nodes are semantically and syntactically 
quite similar to the ones described above for the host peripheral subsystem, and 
we will not enter into details. The most significant differences involve the use of'an 
additional primitive, WHOAMI, and (in GOLEM) the use made of the message-type 
arguments. The subroutine WHOAMI is called by each node program to establish 
the node’s identity and its relationship to the host for the current hypercube 
partition:

CALL WHOAMI( IDN, IDP, IDH, NOH ) (36)
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All arguments axe integer*2 variables and denote, respectively, the identities of 
the node, the calling process and the host, and the hypercube order allocated 
to the problem. In GOLEM, the message-type parameters used for internode 
communication axe defined as 16-bit “packed words.” The six most significant 
bits represent a pointer position (not value) in array NC. The next 9 bits encode 
task identity information obtained from ROSES. The least significant bit is used to 
determine whether the data in the message axe reals or integers.

V.5. PRELIMINARY RESULTS

We present now the timing results for our ROSES-scheduled inverse dynamics 
calculations. These results axe preliminary in the sense that the CESAR NCUBE 
machine is a “beta-site” prototype. The “time score” of the solution should be 
expected to change for the commercial (“production”) version of the NCUBE/ten 
(a ten-dimensional hypercube), due to probable changes in system performance 
characteristics such as processor clock rate, operational status of the instructions, 
or compiler optimization capabilities. Thus, rather than list absolute timings for 
the computation, we prefer to show here more general results, such as expected 
levels of processor load balance (throughput). The assignment of the tasks in Table 
3 to nodes of a two-dimensional hypercube is given in Table 6 for the forward and 
backward recursions. The processor utilization results shown in Table 7 refer to 
the most unbalanced node and axe given for two, three, and four processors. The 
improvement in performance observed (a factor of two in the non-asymptotic domain 
over previously reported results26) is particularly significant in light of the fact that 
the NCUBE’s individual nodes axe much more powerful (by at least an order of 
magnitude), which the load balance results do hot explicitly reflect. This should 
open the possibility for real-time control of flexible manipulators, where many more 
degrees of freedom axe involved.

The fundamental role of the task scheduler in achieving good concurrent 
computation efficiencies for irregular robotics problems of the type discussed 
above can not be overemphasized. Thus, it is important to provide well-defined 
benchmarks against which the performance of available codes can be tested. As a 
first step in that direction, we have carried out a comparison between the recent 
results of Kasahara and Narita,38 the original work of Luh and Lin,26 and ROSES. 
To provide a fair basis for the comparison, we now assume that each processor has 
the same performance parameters as the ones used by Luh and by Kasahara (40 
/is for a floating point add, 50 fis for a floating point multiply, rather than the 2/is 
associated with the NCUBE processor design). Furthermore, instead of using the 
task partition of Table 3 and the cost estimates for the general form of the equations, 
we adopt the task partition and “specialized” costs given by Luh and also used by 
Kasahara. For completeness, their task data axe reproduced here in Table 8. The 
results of the comparison are summarized in Table 9. The agreement between 
our ROSES results and the results of Kasahara and Narita is excellent. However, 
whereas their method requires mainframe computing power,38 ROSES runs on 
an Intel 80286 (IBM PC-AT, or NCUBE Peripheral Subsystem). Furthermore, 
notwithstanding the fact that the current version of our code is an unoptimized 
prototype, the time required to schedule over 200 tasks (88 computational and 140 
message-passing) was approximately 12s on a 6MHz IBM PC-AT.
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Table 6. Task Assignment of the Inverse Dynamics Equations 
for a Two-Dimensional Hypercube*

Node
0

Node
1

Node
2

Node
3

1 7 2 25
13 8 14 3
19 9 4 15
20 10 16 11
21 5 28 6
22 17 12 18
23 29 30 41
24 42 27 26
36 40 34 39
49 33 46 45
55 32 35 38
61 31 47 44
62 37 48
63 43 50
64 51 56
65 57 52
66 53 58

59 54
60

*In each column the entries correspond to the Task § 
entries in Table 3, and to the Task ID entries in Table 4.

Table 7. Processor Load Balance for the Solution of the Inverse 
Dynamics Equations of the Stanford Manipulator

Item This Work Luh & Lin26

Processors 1 2 3* 4** 6

Load^ 1 .96 .95 .61 .37

Speed-up 1 1.96 2.87 3.22 2.56

*We allocate an order-2 cube, but schedule tasks on three 
nodes only.

••Asymptotic domain critical length reached: using more 
than 4 processors for this simple example wastes resources.

^Load factor for most unbalanced node in system.
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Table 8. Benchmark Parameters for the Solution of the Newton- 
Euler Equations of a Robot Manipulator* f

Task Mul Add Pr. Con. Free. JDS Const. Task Mul Add Pr. Con. IDS Const.

’Adapted from Tables 7 and 8 of Ref. 26, where the equations were 'specialized" to the Stanford 6-DOF manipulator. 
^For the meanings of column headings, see footnote of Table 4.
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Table 9. ROSES Benchmark Results - Scheduled Times for Solution of the 
Newton-Euler Inverse Dynamics Equations for the Standard 

6-DOF Manipulator Using the Parameters of Table 8

Number of 
Processors

Time for Optimal Schedule Found 
Luh & Kasahara ROSES
Lin26 & Narita30 (this work) 
ms ms ms

Known
Lower
Bound*

ms

ROSES 
Exec. Time 
s(IBM-AT)

1 24.80 24.83 24.80 24.80 12.99

2 - 12.42 12.43 12.40 12.81

3 - 8.43 8.49 8.43 12.52

4 - 6.59 6.67 6.38 12.30

5** - 5.86 5.88 5.67 11.84

6 9.70 5.73 5.78 5.67 11.68

7 - 5.69 5.67 5.67 11.75

8 - - 5.67 5.67 11.94

See this report’s Section III.6, especially paragraphs 2 through 5.
Beginning of asymptotic domain: optimal schedule on any multiprocessor would 
equal the critical path of the graph.
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VI. CONCURRENT COMPUTATON, MACHINE 
INTELLIGENCE AND ROBOTICS

In this concluding section we comment briefly on the potential implications, for 
robotics, of recent advances in concurrent computation. We concentrate our remarks 
on the areas of machine vision and manipulator dynamics, in which significant 
research efforts axe underway in the Oak Ridge Laboratory’s Center for Engineering 
Systems Advanced Research (CESAR).

VI.I. MACHINE PERCEPTION

The field of machine perception (e.g., vision, tactile sensing, etc.) has 
been, in particular over the last decade, closely associated with progress in 
computer architectures, as evidenced by the detailed bibliographies found in the 
literature.40-42 One of the main objectives of this association was to help overcome 
severe drawbacks in artificial vision systems such as latency and propensity to fail 
except in simple structured domains.

In the past, the computational emphasis has essentially been on SIMD 
architectures for simple preprocessing tasks such as convolution and mask 
evaluation; pipelined architectures have been used for executing sequences such 
as blurring/differentiation/zero-crossing. To develop a realistic machine vision 
system43 one needs to go beyond these retina-level tasks and include some of 
the higher level components of human perception. For example, humans seem 
to perceive effortlessly characteristics such as colinearity, direction, periodicity, 
coarseness and continuity. This suggests that a machine vision system ought to 
include efficient mathematical transformations that can handle these effects.

For such complex processing options, where the type of processing is influenced 
by the context of the image, MIMD concurrent computers are required. Despite 
the fact that the processing speed of neurons is slow by silicon chip standards, 
human perception is extremely fast. This implies that human perception achieves its 
speed through massive parallelism, involving perhaps billions of processing elements. 
The same will almost certainly be true of successful machine vision systems. To 
achieve this goal, the CESAR research program on Human Analog Vision has, from 
the outset, investigated algorithms that can be executed on concurrent computer 
architectures.43 NCUBE multiprocessors of various dimensions have been used in 
this research.

VI.2. ROBOT DYNAMICS

For many of the applications in which mechanical manipulators are used today, 
real-time performance can be achieved in a well structured environment, using 
quasi standard bus-based multi-microprocessor architectures. Such manipulators 
generally consist of a base-anchored open-link articulated chain, composed of a few 
(typically six) rigid links connected by rotational or prismatic joints. The dynamic 
behavior of a manipulator is modeled, as shown in Section V, by a set of coupled, 
highly nonlinear equations of motion. The efficient solution of these equations is 
required, both for the design of advanced real-time control algorithms, as well as 
for carrying out “planning” activities, either at the machine intelligence level of the 
autonomous robot, or at the man-machine interface for telerobotic applications.
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A major emphasis in the design of future robots will be structural flexibility44 and 
joint compliance.45 Such models will increase very significantly the complexity of 
the equations of motion and associated control algorithms. Furthermore, since such 
calculations need to be carried out in a common computational framework with 
other robotic activities including vision, sensor fusion, navigation, ... it is essential 
that the computers on board be able to operate in a concurrent fashion.

VI.3. FINAL REMARKS

The development of concurrent computers raises several challenging issues. How 
powerful should each processor be? How should the processors communicate with 
each other? How should the workload be divided among the processors? How does 
one make sure that processors are not sitting idle waiting for input from other 
processors? To address the fundamental computational problems underlying the 
development of machine intelligence and robotics, we can now start from one of 
the most promising advances in the field of computer science, i.e., VLSI-driven 
hypercube architectures for concurrent computation. To utilize these architectures 
properly we should have ready-to-use, efficient methods for optimizing the time- 
dependent assignment of tasks-to-processors - methods suitable for a wide range of 
hard real-time applications. ROSES is one contribution toward that goal.
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APPENDIX A

AVOIDING REDUNDANCIES OF “TYPE A” 
(Redundancies related to Permutations of Processor Indices, and 

Redundancies related to Permutations of spt Indices)

ROSES specifies schedules using processor indices p and selection-point indices spt. 
As noted in Section 111.2, possibilities for redundant schedules arise because of the 
high degree of symmetry among processors p, and because there are no physical 
differences implied by differences in the apt-sequence of [t,p, e] triplets identical in t.

What kinds of schedules, besides those completely identical in every detail, are 
considered redundant? To answer this, we first note that any ROSES triplet- 
series schedule may be specified as an unordered set of quartets [spt,t,p.e\. ROSES 
considers as redundant any two schedules made up of quartet sets differing only in p- 
labels and apt-labels. In other words, two schedules would be considered redundant 
if both involved the identical set of pairs [t,e]. Such redundancies - which we call 
“[t, e]-set redundancies” or “type-A redundancies” - are the kind discussed here. 
(For some other kinds, see Appendix B.)

Throughout our discussion of redundancies, we are concerned not so much with 
complete schedules, but rather with incomplete schedules - i.e., schedules under 
construction. We want to avoid constructing, and working to extend, incomplete 
schedules which offer the same opportunities for subsequent [t, e] assignments as are 
offered by schedules already constructed.

To explain how ROSES avoids [t,e]-set redundancies, we start by examining some 
subclasses. In that connection we shall display a list of operations Al, A2, A3. 
(As will be shown following the list: In our descriptions of A2 and A3 the parts 
following the dashes need not be read carefully!) Two ROSES schedules would be 
[t,e]-set redundant with each other if and only if their series of apt-ordered triplets 
differed by any transformation combining operations of the following kinds Al, A2, 
A3:

OPERATION Al. For the indices p, any overall permutation.

OPERATION A2. For the indices p within an apt-ordered subseries of same-t 
triplets [t,p,e], any permutation -
and then for the processor indices within any subsequent triplets, exactly 
the same permutation (so that each processor continues to get e- 
assignments at times appropriate to the pertinent time-lengths L(e)).

OPERATION A3. For the indices e within an apt-ordered subseries of same-f 
triplets [f,p,e], any permutation -
and then for the indices p within any subsequent triplets, the 
permutation that, if applied to the original subseries of same-i triplets, 
would have produced exactly the same combination of [p,e] pairs as were 
produced by the aforementioned permutation of indices e. (Here again, 
the permutation applied to “subsequent triplets” is to arrange that each 
processor continues to get e-assignments at times appropriate to the 
pertinent time-lengths L(e).)
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Concerning Al: The class of permutations being considered is covered by A2 with 
t = 0. Concerning A3: Within a subset of same-t triplets having a fixed series of 
apt-labels, permutation of the e-indices is equivalent to combining a permutation of 
the p-indices with a permutation of the apt-indices. For each of A2 and A3: If the 
permutations described preceding the dash were applied, then to take care of all 
subsequent permutations described after the dash, the ordinary ROSES constraint- 
satisfying procedures would suffice - within a transformation combining operations 
of type Al, A2, and A3.

Therefore, to avoid redundancies associated with Al, A2, A3 all that ROSES needs 
to do is: restrict every same-< subseries of triplets to a unique choice for the spt- 
sequence of p-indices involved, and to a unique choice for the spt-sequence of e- 
indices involved. Any unique pair of sequences will do, provided of course that the 
resulting series satisfies the input problem’s constraints. (But ROSES will always 
satisfy those constraints.)

ROSES does choose and use such unique spt-sequences of p indices and e indices, 
disallowing others. In the subsections below, we sketch the procedures used to 
restrict these sequences. (Of course, care should be taken so that, in the process 
of eliminating redundant schedules, we do not inadvertently also eliminate some 
schedules which would be non-redundant with respect to those retained. This 
matter too will be addressed below.)

Redundancy-Avoiding p-Sequencing Procedure

The redundancy-avoidingp-sequencing procedure uses a “processor ready-time list”: 
a list of processor indices arranged in nondecreasing order of ready time, where ready 
time is the time that each processor will complete its present assignment. The choice 
of a unique p-sequence within a series of same-/ triplets, in the schedule, depends 
upon the choices made for sequencing p-indices within a series of same-ready-time 
members in the processor ready-time list.

The initial ready-time list, describing the state when all processors are idling and all 
have ready time / = 0, is arranged simply in order of p. Subsequently, whenever a 
processor p' is assigned a task or an idling period, the position of p' in the ready-time 
list is updated to reflect the fact that its ready time is changed to the forecasted 
completion time of its new assignment. Suppose that the new ready time of p' is 
equal to that associated with some sublist 7' of other processor-indices within the 
existing processor ready-time list. Then the position of p' is updated according 
to these rules: A processor p' that starts a zero-length task retains its position at 
the very beginning of the complete list - and so, retains its position at the very 
beginning of the sublist 7'. A processor p' that starts any other kind of assignment 
is inserted after the end of the sublist 7'.

At each spt, the very first processor in the ready-time list is assigned. By combining 
this rule with the above-described initial-position rule and position-updating rules, 
we find these rules for p-sequence within the schedule: If a processor starts a zero- 
length task at spt', then that same processor is reassigned at (spt1 + 1). Otherwise, 
processors which are ready at the same time are reassigned in the same order in 
which they were previously assigned. At / = 0, processors are assigned simply in 
order of p, with the following exception (which was ignored in our opening paragraph 
of III.6): If there are zero-length tasks ready at / = 0, and if processor p' is assigned 
at spt1 to start a zero-length task at / = 0, then that same processor p' will be
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reassigned at (spt1 + I) and processor (p' + I) will not be assigned until the next 
selection point after processor p' is given a nonzero-length task.

However, the details of these results for p-sequence in the schedule are not 
important. In fact, the order of processors, within a same-t sublist of the ready­
time list, not only has no effect upon the set of [t,e] pairs in a schedule; it has no 
effect on the spf-order of these pairs, either. The important point is that the above- 
described p-sequencing procedure - which happens to involve a ready-time list - 
does determine a unique p-sequence in the schedule’s subseries of same-t triplets.

Further description concerning the processor ready-time list is given in section
III.7.2, which discusses the data structures PR and R. Details of the redundancy­
avoiding p-sequencing procedure are given sections 1V.5.3 and IV.5.4, which present 
outlines of subroutines CheckE and ForwPR.

Of course, to complete the job of avoiding jf, e]-set redundancies, a unique choice 
must be made also for the e-sequencing witnin each subseries of same-f triplets in 
the schedule. This e-sequencing choice is discussed next.

Independence of e-Sequencing and p-Sequencing Procedures

The choice made for the spt-sequence of p-indices, within a schedule’s same-t 
subseries of triplets, does not influence the choice made for the spt-sequence of 
e-indices. The reason is connected with the following feature of ROSES: Before 
making any assignments at a given spt', ROSES determines the entire set of tasks 
known to be ready at spt'. Here a task ready at spt' means a task whose precedence 
requirements are fulfilled by predecessor tasks each of which (i) was assigned in a 
triplet with tag spt less than spt', and (ii) had or has a ready time < t(spt>). Note 
that there is no requirement for the predecessor tasks to have finished at spt < spt' - 
i.e., no requirement for the predecessor tasks to have been in triplets with processors 
that were given other e-assignments at spt < spt'.

Redundancy-Avoiding e-Sequencing Rule

Consider the group of tasks e; ready at some single point spt' - each of them 
assigned at its own spti such that spti < spt' although every t{ has the same value, 
ti = t(apt') = t'• ROSES restricts its schedule-construction to schedules in which 
these e-assignments axe spt-sequenced in order of decreasing “favor” - where favor 
is defined in Section III.6 beginning near Eq. (4).

As in the case of the p-sequencing results, the particular unique choice made, for 
spt-sequence of e-indices, is unimportant in the sense that “any unique pair of p- 
sequence and e-sequence will do” for the purpose of avoiding [t, e]-set redundancies. 
However, the e-sequencing rule stated above has three computational conveniences 
worth mentioning. First, it has the overall convenience of using exactly the same e- 
ordering convention as ROSES uses to heuristically determine the sequence in which 
to consider truly different schedules. Second, the redundancy-avoiding e-sequencing 
rule has this special feature: all tasks starting at t are assigned prior-in-spt to all 
idling periods starting at t. This special feature facilitates the assignment of idling 
periods, because it guarantees that when ROSES assigns idling periods, ROSES 
will have all the information it needs to determine those idling periods’ completion 
times. (As noted in III.3, these completion times are set equal to the earhest time
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after t that any task-assigned-at-or-before-t will finish.) Third, because “favor” 
among tasks is /, L favor as defined near Eq. (4), the redundancy-avoiding e- 
ordering convention has a special convenience associated with zero-length tasks. 
This special convenience is explained just below.

Suppose that among the above-mentioned tasks e,- ready at spt there is at least one 
zero-length task; call it e„. Suppose that this ea is assigned at t', and of course 
then finishes at t', and by so finishing renders at least one more task ready at t'. 
Suppose, though, that the assignment of e0 is not made at the smallest spt for t'. 
In that case: at the program-execution-point where ROSES reaches the smallest 
spt for £', ROSES will have too little information to “know” the entire set of tasks- 
ready-at-t'. Without knowing the entire set of tasks ready at t', ROSES cannot 
find their order of decreasing /, L favor. Instead, ROSES must reach the later spt 
that is associated with adding the triplet incorporating e0, before knowing which 
if any additional tasks are to be included in the set of ready-at-t' tasks. Despite 
this delay in knowledge, there is little complication and no need to change the 
redundancy-avoiding e-ordering rule given above for spt-sequencing e-assignments 
starting simultaneously at t'. This is explained as follows. Because of the way that 
/, L favor is defined, any task whose precedence requirements are newly satisfied 
by the completion of a zero-length task necessarily has f,L favor below that of 
the zero-length task itself. Therefore the delay in knowledge is never so great 
that ROSES has assigned a less-favored task at a smaller spt than it should have. 
Consequently, the stated conventional sequence, decreasing order of favor, is easily 
effected without undoing any assignments. The only complication is that ROSES 
must add the tasks-made-ready-by-e0 to the set of other ready tasks lower in favor 
than e0.

The above considerations axe, however, not quite the end of the story concerning 
zero-length tasks and redundancies. The existence of zero-length tasks warrants 
ROSES procedures that eliminate another kind of redundancy, not covered in this 
Appendix A. Discussion of that other kind is included in Appendix B, under B2.

The implementation of the redundancy-avoiding e-ordering rule is discussed in 
Section III.7, in connection with the data structures EA and A. Details are given 
in the outlines of subroutines ForwEA and CREATE in Sections IV.5.5 and IV.5.6.

Final Note: Cases Where Redundant Schedules Can Be Useful

For some applications, it may be appropriate to turn off or circumvent some of the 
ROSES code’s redundancy-avoiding procedures. That could be useful in situations 
where the following conditions (i) and (ii) hold:

i. There are symmetries in the mathematical problem handled by ROSES 
(e.g., perfect symmetry among processors) which do not exist in the real- 
world problem; thus, ROSES neglects certain asymmetries in the real-world 
problem. However,

ii. The ROSES-neglected asymmetries in the real-world problem can be taken 
into account, after the ROSES calculation, by altering or reinterpreting 
the ROSES-produced schedules so as to discriminate between schedules 
considered “essentially redundant” by ROSES.
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APPENDIX B
REDUNDANCIES OF “TYPE B”

Redundancies Related to Properties of Tasks)

As in Appendix A, we axe concerned here with redundancies of partially completed 
schedules, i.e., schedules under construction.

General Differences Between Type-A Redundancies and Type-B 
Redundancies

Here in Appendix B we discuss how ROSES avoids redundancies associated with 
task-properties (e-properties). In contrast, in Appendix A we were concerned with 
redundancies associated with the p-properties and spt-properties. This difference 
leads to the following difference: Within a set of type-A-redundant schedules, all 
schedules have exactly the same set of [<, e] pairs. Within a set of type-B-redundant 
schedules, the schedules have different [i, e] pairs but have other similarities that 
imply redundance of opportunities for total TIME_to_GOAL.

Unlike Appendix A, this Appendix B uses some search-tree terminology (explained 
in III.4) and task-graph terminology (explained in III.5).

Type-A redundancies axe avoided by directly limiting the search tree. Type- 
B redundancies are avoided in other ways. Some are avoided by traversing a 
branch and then rejecting the resulting schedule; others are avoided by avoiding 
the traversal of existing search-tree branches.

There are two subtypes to be considered here: Bl and B2.

Redundancies of Type Bl

Suppose that two tasks are of equal length, share the same head, and share the same 
tail. Then substituting one of these tasks for the other, in a schedule, will make no 
difference in timing or readiness, and so will had no effect on the opportunities for 
performance of other tasks at subsequent times t in the schedule. In fact, exactly 
the same comments hold true if the two tasks merely have the same length and 
head, even if they have different tails. Therefore, ROSES classifies as “not worth 
continuing” any schedule which differs from an already-constructed schedule only 
by the kind of substitution just described.

In this Bl case, the redundant schedule-paths exist in the search tree. For Bl, 
eliminating a redundant schedule falls in the category of traversing a branch 
and then deciding not to continue the redundant schedule. The ROSES-code 
implementation is described in Section IV.5.3, in our outline of subroutine CheckE, 
steps 3 and 6.

Redundancies of Type B2

Consider two schedules, ALPHA and BETA, which involve the same combination of 
[t, e] pairs except for differences in pairs involving zero-length tasks. Suppose that 
schedule ALPHA has assigned all of the zero-length tasks that schedule BETA has 
assigned, and suppose further that in each case of a zero-length task e0 assigned by
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both ALPHA and BETA, schedule ALPHA has assigned that task e0 at least as early 
as schedule BETA has assigned it. Under those stated conditions: At the time-point 
of its latest assignment, schedule ALPHA offers all of (and perhaps more than) the 
opportunities offered by schedule BETA at that same time-point. That is, schedule 
BETA may be more restrictive in the opportunities it offers, because a delay in 
assigning a zero-length task ea will delay the opportunity of assigning nonzero- 
length successor tasks e' for which e0 would satisfy precedence constraints. However, 
schedule ALPHA offers all of (and in some cases more than) the opportunities 
that schedule BETA offers, because even if a zero-length task is assigned early, its 
successor tasks e' can still be delayed. Therefore to avoid redundant schedules, 
ROSES should not construct both schedule ALPHA and schedule BETA.

To eliminate redundancies of the kind described just above, ROSES restricts its 
considerations to schedules in which every zero-length task is assigned at the earliest 
time t consistent with:

• the [i,e] pairs for nonzero-length-e assignments,

• the e-sequence rule of Appendix A,

• the precedence constraints,

• the processor-number constraint, and

• the formal “non-interruption” constraint.

For the present discussion, the essence of the last-mentioned constraint may be 
written this way: A processor assigned to a nonzero-length e at spti cannot be 
assigned to any other e (even a zero-length e) at any spt > spti having = spti.

To implement the entire “earliest-t ...” positioning rule described under B2: When 
ROSES is backtracking and comes to a vertex at which the last-selected branch 
was a zero-length task, ROSES backtracks yet further instead of considering the 
substitution of a lesser-favored branch. See step 3.4 in our Section IV.5.1 outline of 
Main.

Final Note: Cases Where Redundant Schedules Can Be Useful

The “Final Note” written at the end of Appendix A is applicable to these Appendix 
B redundancies also.
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APPENDIX C
MORE DETAILS ABOUT TASK-BRANCH SETS 

AND THE e-ALTERNATIVES STRUCTURE

The task-branches stemming from a vertex correspond to all the tasks e that 
are “ready at vertex spt,” minus some which are excluded in order to acid the 
construction of redundant schedules. This appendix continues Section III.6.3 by 
discussing:

i. the relation between the set of task-branches stemming from vertex (spt - 
1) and the set stemming from vertex spt, and

ii. some details about the arrangement of these task-branches’ e-indices within 
the long list A of the e-alternatives structure EA.

This appendix’s statements concerning (i) are justified by ROSES properties 
described in text-sections up through III.7.3, and Appendices A and B. The 
statements concerning both (i) and (ii) axe consistent with the ROSES-code details 
described in Section IV.

If t(spt) differs from t(apt-i), then the task choices at spt consist of all the tasks 
that have been made ready at t(Spt) because of precedence requirements fulfilled 
by tasks started at vertices spt' < spt. If t(apt) is the same as t(spt-i), then 
the aforementioned relation holds except that, because of redundancy-avoiding 
considerations, tasks of favor greater than e(apt_1) are disallowed at vertex spt. 
As noted in Section III.7.3, a task-list is considered empty if FIRSTia(spt) exceeds 
LASTiaPLUSone(spt) - 1. These general statements lead to the following special 
statements about the relations between branches at neighboring vertices.

t(spt) differs from t(spt-i), and if t(apt_i) is unequal to the t at any other vertex 
of the schedule, then the task-choices at vertex spt consist of: all the task-choices 
at vertex (spt - 1) minus any task-choice e(apt_1) started at vertex (spt - 1), plus 
any tasks whose precedence requirements are newly completed at t(9pt) by tasks 
assigned before spt. The task-list

A(FIRSTia(spt - l)),...,A(LASTiaPLUSone(spt - 1) - 1)

for vertex (spt - 1), and the task-list
A(FIRSTia(spt)),...,A(LASTiaPLUSone(spt) - 1)

for vertex spt, are contiguous within A (if non-empty) and are physically distinct 
from each other (if non-empty). That is, the location of A(FIRSTia(spt)) coincides 
with the location for A(LASTiaPLUSone(spt - 1)). Either or both task-lists may 
be empty.

If is equal to t(apt_i), then the relations of task-branch sets are as described 
just in the preceding paragraph, with these two exceptions:

i. Tasks more favored than e(spt_1) are disallowed as branches from vertex spt, 
because of redundancy-avoiding considerations; and
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ii. If C(apt-i) was anything but a zero-length task, then the task-list 
A(FIRSTia(spt),A(LASTiaPLUSone(spt) - 1)

for vertex spt is not physically separate from the task-list
A(FIRSTia(spt - 1), A(LASTiaPLUSone(spt - 1) - 1 ))

for vertex (spt - 1). Instead, the task-list for vertex spt coincides 
with the upper part of the task-list for vertex (spt - 1), and the 
location of A(LASTiaPLUSone(spt)) is the same as the location of 
A(LASTiaPLUSone(spt - 1)). Furthermore, in this case where e is other 
than a zero-length task, only the following emptiness conditions can occur: 
Both task-lists may be non-empty, or both may be empty, or only the spt 
task-list may be empty.

If t(apt) differs from t(3pt-i) but <(Spt_i) is the same as the t for some preceding 
vertices in the schedule-path, then the e-choices at vertex spt consist of: the echoices 
at the lowest-indexed vertex spt having t(Bpt>) = t(,pt-i), minus any tasks assigned 
at or after spt' but before spt, plus any tasks made newly ready at spt by virtue 
of the completion of their precedence requirements at t(3pt) by tasks which were 
assigned before spt and which finish at t(spt)- The task-list

A(FIRSTia(spt - 1 )), ..., A(LASTiaPLUSone(spt - 1) - 1)

for vertex (spt - 1), and the task-fist
A(FIRSTia(spt)),...,A(LASTiaPLUSone(spt) - 1)

for vertex spt, are contiguous within A (if non-empty) and are physically distinct 
from each other (if non-empty). That is, the location of A(FIRSTia(spt)) coincides 
with the location for A(LASTiaPLUSone(spt - 1)). Either or both task-lists may 
be empty.
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APPENDIX D
RELATION OF THIS REPORT’S TERMINOLOGY 

TO ROSES-CODE TERMINOLOGY

This report’s terminology was chosen to differ from the ROSES-code terminology, 
in cases where such differences seemed to allow simpler clearer explanation of the 
essential ideas behind ROSES data structures and algorithms.

Table D1 relates the two terminologies. For brevity, Table DI and this Appendix’s 
text use some algebraic notation in place of pure computer-code notation. For 
example, the table lists pproc(3p'+l) rather than pproc (3*pprime+l).

The coded arrays G(...) and pproc(...) deserve further discussion, which appears in 
the text below.

The Array G(...)

The coded array G(...) may be viewed in terms of its quartets 
G(4e,-3), G(4e'-2), G(4e'-1), G(4e/)

where

e' represents a task-index;

G(4e'-3) = tail(e'y,

G(4e'-2) is a “pointer”; it stores that index I for which 

G(I) = tail(previous-e-forsame.head(e') )

G(4e' — 1) = head{e')

G(4e') is a pointer; it stores that index J for which 

G(J) = head(previousje.forsameJail(el) ) 

Another way of stating the relation is:

G(4e'-3) = tail(e');

G(4e'-2) = 4 (previousje-forsame-head(e>) ) - 3; 

G(4e'-1) = head(e');

G(4e') = 4 {previousjt-for^ameJai^e') ) - 1.
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Table Dl. Relation of this report’s terminology to ROSES-code terminology

Variable-name in this report®’4 Equivalent in the ROSES Code

A(\a) Esik(...)
CURRENTia(spt) ptstk(spt)
DMAX MaxDelay
€ (see footnote c)
efinishingispi)
esched(spt)
evalue(p')

FsfJfc(spt) 
esched(spt) 
pproc(3p' +1)

f(e') fedge(e')
FIRSTia(spi) boisk(spt)
goalnode goalnode
head(e) G(4e-1)
iaCURRENT stkpt
iaFIRST stkbot
iaLASTpluaONE sikiop
LASTiaPL USone(spt) topstk(spt)
Ne,NE nedges-1
Np,NP nprocessor
nfie(u) na(u)
nfieus(v) ma(v)
nfievU(v) maa(v)
nfoe(v) nb(v)
P (see footnote c)
pbak(p')
pfwd(p')

[pproc(3p' +3)-l]/3 
[pproc (Sp1 +2)-1]/3

previous- e-for— same— head(e) 
previous- e-for- same- iail(e)

[G(4e-2)+3j/4
[G(4e)+l]/4

psched(spt) psched(spt)
sold sold
spt spt
t (see footnote c)
tail(e) G(4e-3)
TIME-to-GOAL isolation
tnexifcp tnext
IN EX TinSCHED tnew
told told
tready(p') tproc(p'+l)
irequired
u

irequired
u

V

Routine in this report
V

Routine-name in the ROSES code
CheckE ChooseEdge
ForwEA UPSTAT

a This column concentrates on cases for which this report’s terminology differs 
from the code’s. (Included, however, are a few of the cases for which this 
report’s terminology coincides with the code’s.)

4 Names with suffixes BOP,I NT, and EOP are omitted because ROSES- 
code counterparts to them are the same as if these suffixes were absent. 
(In short: ROSES-code variables have dynamically changing meanings, 
encompassing meanings which this report distinguishes among by attaching 
suffices BOP, INT, EOP.)

c More details about t,p,e are given in Sec. IV.3 below its last boldface 
subheading.
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The Array pproc(...)

The coded array pproc(...) may be viewed in terms of its triads 

pproc(3p' + l),pproc(3p' + 2),pproc(3p' + 3) 

where

p' represents a processor-index; 

pproc(3p' + 1) = evalue(p'y,

pproc(3p' + 2) is a pointer; it stores that index I for which 

pproc(I) = evalue(pfwd(p'))-,

pproc(3p' -f 3) is a pointer; it stores that index J for which 

pproc(J) = evalue(pbak(p'));

Another way of stating the relation is: 

pproc(3p' + 1) = evalue(p')] 

pproc(3p' + 2) = 3pfwd(p') + 1; 

pproc(3p' + 3) = 3pbak(p') -f 1.


