

CONF-801107--43

MASTER

A PHENOMENOLOGICAL MODEL FOR PARTICLE PRODUCTION
FROM THE COLLISION OF NUCLEONS AT MEDIUM ENERGIES
WITH FISSILE ELEMENTS

F. S. Alsmiller
R. G. Alsmiller, Jr.
T. A. Gabriel
R. A. Lillie
J. Barish

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

* Work supported by the Office of Basic Energy Sciences,
U. S. Department of Energy under contract no. W-7405-eng-26
with Union Carbide Corporation.

"By acceptance of this article, the publisher or recipient
acknowledges the U. S. Government's right to retain a
non-exclusive, royalty-free license in and to any copyright
covering the article."

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

The addition of a detailed fission channel, including fragment mass, charge, kinetic energy, and excitation energy distributions, to the evaporation stage of the Monte Carlo computer code,¹ MECC-7, for nuclear cross sections and particle production data has been reported in an earlier paper.² In this code the intranuclear-cascade-evaporation model, as developed by H. W. Bertini,^{3,4} and R. L. Hahn,⁵ is applied to nucleon- and pion-nucleus nonelastic collisions at all incident energies between approximately 20 MeV and 3 GeV. Data regarding such collisions between medium-energy protons and uranium nuclei are of particular importance in designing the targets and shielding for facilities to produce an intense source of low-energy neutrons.^{6*} In this paper significant revisions to the model described in Ref. 2 are discussed and comparison between calculated results and experimental data that were not available when Ref. 2 was published will be presented.

The statistical theory of fission originated by P. Fong^{8,9} is used as a guide. Fong-type fission channel calculations for use at high energies have also been given by V. S. Barashenkov and V. D. Toneyev,¹⁰ V. S. Barashenkov and S. Ju. Shmakov,¹¹ and by H. Takahashi.¹² In addition, F. Atchison¹³ has recently prepared a phenomenological model.

* The fission-amended model has also been incorporated in the high-energy transport code HETC.⁷

The model described here relies heavily on experimental data of D. Epperson¹⁴ for postevaporation average mass, total kinetic energy, and variance distributions versus A'_2 , the mass number of the heavy residual nucleus. We used data for 7, 10, 15, 20, 25, and 30 MeV protons incident on ^{235}U to compute the preevaporation distributions, which are shifted in A'_2 (to the value A'_2) by average neutron multiplicities, $\bar{v}_n(E_f)$ and weighted by fission probabilities, $P_f(E_f)$ obtained from the code. E_f is the excitation energy of the fissioning nucleus. Fission fragments lose kinetic energy at each evaporation step due primarily to the loss of mass.¹⁵ In this paper we applied a $\Delta K_E = 0.8$ MeV correction per emitted nucleon to the average relative kinetic energy, $K_E(A'_2, E_f)$, obtained as a solution of the superposition equations of Ref. 2. The final kinetic energy distributions computed for incident protons on ^{235}U now agree fairly well with Epperson's measurements.¹⁴ For $E_f \leq 31.5$, the total excitation energy, $\bar{E}(A'_2, E)$

$$\bar{E}(A'_2, E_f) \equiv E_f + \Delta E_c(A'_2, E_f)$$

of the two fission fragments at scission time is obtained by fitting a variation of Fong's mass yield formula to the calculated preevaporation mass distribution. At all higher E_f , the

functions \bar{K}_E and $\bar{\Delta E}_c$ defined by Eq. (1) are held constant at their $E_f = 31.5$ values.

The parameter, a , used in the nuclear level density formula is that given by LeCouteur and Lang,¹⁶

$$a = \frac{A}{B_0} \left(1 + Y_0 \left(\frac{A-Z}{Z} \right)^2 \right); Y_0 = 1.5$$

and is taken to be the same for fission as for evaporation. The value of B_0 is one of the most important parameters in determining neutron multiplicities as well as neutron energy spectra. It is taken to be independent of E_f , and the nuclear mass and charge numbers, A, Z . Numerical values of B_0 can be varied to fit the experimental data.

In Table 1 the calculated and experimental¹⁷ average number of emitted neutrons per fission from fission induced in ^{235}U , ^{238}U and ^{239}Pu by neutrons with energy 22.79 and 28.28 MeV are presented and compared. Calculated results are given for B_0 values of 8, 10 and 15 MeV. The errors on the calculated results are the statistical errors (one standard deviation) due to the Monte Carlo nature of the calculations. For ^{235}U and ^{239}U all of the calculated results are slightly low, but the values for $B_0 = 8$ MeV are in the best agreement with the experimental data. For ^{239}Pu both $B_0 = 8$ and 10 MeV give results that are in reasonable agreement with the data.

Comparisons with experimental neutron multiplicities at higher energies (<3 GeV) indicate that a B_0 value of approximately 10 MeV is needed to obtain agreement.^{2,11} Calculated results of

neutron energy spectra, average kinetic energy of residual nuclei, and residual nuclei mass distribution have also been obtained and will be presented. In particular, the residual mass distribution will be compared with experimental data. The agreement between calculated and experimental results that have been obtained give some confidence that design calculations carried out using the data obtained from this model will be reliable.

Table 1

The average number of neutrons emitted per fission for neutron induced fission in various elements

Neutron Energy MeV	Average Number of Neutrons Emitted per Fission			Calculated	
	$B_0 = 8 \text{ MeV}$				
	$B_0 = 10 \text{ MeV}$	$B_0 = 15 \text{ MeV}$			
^{235}U					
22.79	$5.493 \pm .049$	$4.96 \pm .09$	$4.79 \pm .08$	$4.67 \pm .08$	
28.28	$6.080 \pm .090$	$5.51 \pm .09$	$5.34 \pm .09$	$5.23 \pm .09$	
^{238}U					
22.79	$5.513 \pm .043$	$5.15 \pm .10$	$4.88 \pm .10$	$4.80 \pm .10$	
28.28	$6.137 \pm .067$	$5.79 \pm .11$	$5.46 \pm .11$	$5.32 \pm .11$	
^{239}Pu					
22.79	$6.000 \pm .077$	$6.02 \pm .08$	$5.93 \pm .08$	$5.81 \pm .07$	
28.28	$6.479 \pm .104$	$6.61 \pm .08$	$6.49 \pm .08$	$6.33 \pm .08$	

References

1. H. W. Bertini et al., "Instructions for the Operation of Codes Associated with MECC-7 (originally MECC-3), A Preliminary Version of an Intranuclear Cascade Calculation for Nuclear Reactions," Oak Ridge National Laboratory, ORNL-4654 (1971).
2. F. S. Alsmiller et al., "Calculated Particle Production Spectra and Multiplicities From Nucleon-Fissile Element Collisions at Medium Energies," Proceedings of the International Conference on Nuclear Cross Sections for Technology, October 22-26, 1979, Knoxville, TN.
3. H. W. Bertini, "Nonelastic Interactions of Nucleons and π Mesons With Complex Nuclei at Energies Below 3 GeV," Phys. Rev. C6, 631 (1972).
4. H. W. Bertini, "Spallation Reactions: Calculations" in Spallation Nuclear Reactions and Their Applications (D. Reidel Publishing Co., Boston, MA, 1976).
5. R. L. Hahn and H. W. Bertini, "Calculations of Spallation-Fission Competition in the Reaction of Protons With Heavy Elements at Energies \leq 3 GeV," Phys. Rev. C6, 660 (1972).
6. J. M. Carpenter, "Pulse Spallation Neutron Sources for Slow Neutron Scattering," Nucl. Instr. Methods 145, 91 (1977).

References (Cont'd)

7. T. W. Armstrong and K. C. Chandler, "Operating Instructions for the High-Energy Nucleon-Meson Transport Code HETC," Oak Ridge National Laboratory, ORNL-4744 (1972).
8. P. Fong, Statistical Theory of Nuclear Fission (Gordon and Breach Science Publishers, New York, NY 1969).
9. P. Fong, "Kinetic Energy and Prompt Neutron Distributions in Fission," Phys. Rev. Letters, 11 (1963).
10. V. S. Barashenkov and V. D. Toneyev, "Interactions of High-Energy Particles and Atomic Nuclei with Nuclei," Chapter 10, FTD-ID(RS)T-1069-77 (1977).
11. V. S. Barashenkov and S. Ju. Shmakov, "Nuclear Fission Induced by High-Energy Protons," Communication of the Joint Institute of Nuclear Research, Dubna, USSR (1979).
12. H. Takahashi, "Fission Reaction in High Energy Proton Cascade," to be published in the Proceedings of the Symposium on Neutron Cross Sections for 10 to 50 MeV held at the Brookhaven National Laboratory, May 12-14, 1979.
13. F. Atchison, "The Inclusion of Fission in the High Energy Particle Transport Code, HETC," Bulletin of the American Physical Society 24, 874 (1979).
14. D. H. Epperson, "Systematics of Mass Yield Distributions for Nuclear Fission of Neptunium" Dissertation, Dept. of Physics, Duke University, 1978.

References (Cont'd)

15. J. Terrell, "Neutron Yields from Individual Fission Fragments," Phys. Rev. 127, 880 (1962).
16. K. J. LeCouteur and D. W. Lang, "Neutron Evaporation and Level Densities in Excited Nuclei," Nucl. Phys. 13, 36 (1959).
17. P. Manero, Va. A. Konshin, "Status of Energy-Dependent $\bar{\nu}$ -Values for the Heavy Isotopes ($Z>90$) From Thermal to 15 MeV and of $\bar{\nu}$ -Values Spontaneous Fission," Atomic Energy Review, Vol. 10, 637 (1972).