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NONLINEAR DYNAMICS IN THE SSC — EXPERIMENT E778

Stephen Peggs

SSC Central Design Group*
Lawrence Berkeley Laboratory 
1 Cyclotron Road 
Berkeley, CA 94720

INTRODUCTION
A 1% variation in the cost of an accelerator was not very important forty years ago, when 

a cyclotron fitted into a single room. Today, when the net cost of an accelerator such as the 
SSC is measured in billions of dollars, it is much more important to design for an optimum 
balance between cost and performance. While it is irresponsible to increase the cost of an 
accelerator more than necessary to make it work “sufficiently” well, it is more irresponsible 
to construct a machine which almost works, but does not. The problems of large accelerator 
design lie on the horns of this dilemma. Some aspects of a successful design, such as 
building in flexibility to enable development in initially unforeseen directions, are almost 
impossible to quantify. Architectural problems such as these are not addressed here, despite 
their subtlety and relevance. Neither is the most difficult task addressed — the task of 
defining what is meant by an accelerator working “sufficiently” well, in terms of needed 
performance parameters, such as luminosity, lifetime, or linear aperture. Instead, this 
chapter concentrates on the accelerator physics processes which are expected to limit the 
performance of the SSC.

There are two broad classes of accelerator physics processes — single particle and 
collective. Collective effects are caused by the macroscopic electromagnetic fields generated 
by the numerous circulating charged particles (about 10’() particles per bunch). These fields 
are influenced by the environment, such as the metallic vacuum chamber walls, and act back 
upon the circulating particles. For example, a single bunch can disrupt itself significantly on 
one pass through a particular structure in an accelerator. Or, if the fields ring for long 
enough and have the right frequency, a single bunch can be affected on subsequent turns by 
the disturbance it laid down on a first turn. Multi-bunch effects occur when a trailing bunch 
reacts to the ringing fields laid down by preceding bunches.

The performance of the SSC is considered here only in the context of single particle 
models, in which a test particle circulates a collider for many turns in the presence of static 
electromagnetic fields. These fields are conceptually divided into linear restoring forces — in 
which the motion is stable — and nonlinear perturbations. Some sources of nonlinear 
perturbations are inevitable, in the sense of being designed in (chromatic sextupoles), or of 
being impossible to design out (beam-beam interactions). Other perturbations are merely 
random, or accidental, such as imperfections in the magnetic field quality of the
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superconducting magnets. The implicit working hypothesis, which will not be justified, is 
that single particle effects will dominate collective effects in limiting the performance of the 
SSC. This is not necessarily true for other accelerators, where collective effects are often 
crucially important.

Accelerator physics is in good company when it considers the problem of single particle 
stability in response to nonlinear forces. For example, the question of the stability of the 
solar system is perhaps the best known and longest standing problem in nonlinear dynamics. 
Here is a system with an age of order 1010 periods (years), which, despite the best efforts of 
generations of mathematicians, has not been proven to be stable. Rigorous mathematical 
results are hard to come by in even the simplest nontrivial systems, for example, in the three 
body problem. More valuable than rigorous results, however, are the analytic languages and 
tools which classical dynamicists have established in their studies of differential systems — 
systems which are naturally described by differential equations.

The relatively recent advent of powerful computers caused an explosion in the interest 
paid to nonlinear problems. Computers, by their cyclical iterative nature, tend to make 
problems look like difference equations. On the other hand, analytic tools tend to make 
problems look like differential equations, since they are usually much easier to solve than 
difference equations, using only a pencil and paper. Which representation is truly 
appropriate depends on the nature of the system involved. For example, it is natural to 
represent the solar system as a differential system, since gravity acts smoothly and 
continuously, while an accelerator is naturally a difference system, since the nonlinear 
perturbations are usually well represented by brief impulses, separated by lengthy sections of 
linear motion.

At this point a sceptic might argue that numerical methods do not solve physical systems, 
they merely demonstrate the behavior of their solutions. An appropriate response to this is to 
point to the important topic of chaotic behavior in both differential and difference systems, a 
topic that was historically almost completely neglected by classical dynamicists, because of 
their lack of difference tools. Exact solutions are impossible when the motion is chaotic. 
Although Poincare recognised chaos as a distinct phenomenon in differential systems in the 
late 19th century[l], it was the use of computers in simulating chaotic difference systems that 
led to a broad appreciation of the ubiquitous nature of the phenomenon, and led indirectly to 
important formal results. According to the common wisdom, “if the only tool you have is a 
hammer, all your problems look like nails.”

Despite all the powerful analytic and numerical tools available, it is still impossible to 
prove the long time scale stability of single particles in the SSC. At this point a physicist 
resorts to the traditional defense that pragmatism is more important than rigor. The solar 
system appears to be comfortably stable for 101(1 periods. Proton storage rings such as the 
SPS and the Tevatron, with circulation frequency of about 40 kHz and storage times of about 
one day, are conservative nonlinear systems which are usefully stable for about 4.109 
periods. In contrast, the SSC, with a revolution frequency of about 3.5 kHz (the first man­
made audio frequency accelerator), needs stability for only about 3.108 turns in order to 
provide collisions for one day. While the time span of the problem has shortened, the time 
span of the available tools has lengthened — it is no longer uncommon to follow computer 
simulations of accelerator models for 106 turns. Although simulations still fall short of the 
SSC time scale by about two orders of magnitude, it is reasonable to accept their predictions 
about the behavior of the SSC, if the simulations agree with the real behavior of existing 
accelerators operating under relevant nonlinear conditions.

One goal of the E778 nonlinear dynamics experiment is to demonstrate the accuracy of 
numerical simulations of the Tevatron, when it is put into controlled nonlinear situations 
which mimic extreme SSC conditions. Another goal is to understand the long and short time 
scale nonlinear phenomena which are observed. The maximum time scale of the experiment 
is 106 turns if limited data is accumulated on every turn, shorter if more data is taken per
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turn, or longer if data is taken in periodic bursts. At the time of writing, while anticipating an 
E778 run in June 1989, it is already possible to say that the short (40,000 turn) time scale 
behavior is well understood, showing excellent agreement between simulation and 
experiment^,3|. Short time scale investigations are now turning to the development of 
diagnostic and control techniques for the SSC, while the longer time scale investigations arc 
studying phenomenon which, although not critical for SSC performance, have broad interest 
across the field of nonlinear dynatnics[4—71.

The modest goal of this chapter, however, is to give an interested physicist who knows 
little about accelerators a qualitative description of nonlinear accelerator behavior. 
Consequently, there is little attempt at rigor, and only some attempt at generality. Models 
which describe the observed behavior in E778 are emphasised, and some results are shown. 
Before proceeding to nonlinear discussions, it is necessary to build up a minimum set of 
accelerator jargon, mostly concerning linear motion. Many references are available if the 
reader wishes to know more about details of the E778 experiment[8-10], about broader 
theories of single particle dynamics[l 1-14], or about the most basic descriptions of 
accelerator physics[ 15-22],

CLOSED ORBITS, LINEAR OSCILLATIONS, AND BETATRON FUNCTIONS
Consider launching a bunch of 1010 particles from a reference point for one turn around a 

storage ring. When the particles return to the reference point, they have traced out trajectories 
which can be pictured as a dense set of fibers in a rope. Each trajectory is described in detail 
by two functions, X(s) and Y(s), describing the horizontal and vertical displacements from 
a design orbit down the center of the beam pipe, as a function of s, the azimuthal distance 
around the ring. A trajectory is uniquely labeled by four initial coordinates — X(0) and 
Y(0), the initial displacements, and X'(G) = (dX/ds)(0) and Y'(()) = (dY/ds)(0), the initial 
transverse angles. If the magnetic fields encountered are all static, then it can be shown that 
there is one and only one trajectory, the “closed orbit,” which exactly repeats itself. That is, 
if the circumference of the collider is C, then

/ X(C) \ 
X'(C) 
Y(C)

V Y'(C) co

f X(0) \ 
X'(0) 
Y(0)

V Y'(0) co

[1J

The closed orbit is exactly down the center of the beam pipe, Xco(s) = Yco(s) = 0, if all the 
magnets in the storage ring are perfectly aligned, and if they all have ideal fields. In practice, 
of course, the closed orbit and the design orbit never quite agree, even in the best of 
circumstances.

The fibers in the bundle of trajectories are tangled. That is, two trajectories can have the 
same displacements at some azimuth, and cross. However, if the trajectories are represented 
in four dimensional phase space as (X(s),X'(s),Y(s),Y'(s)), then two trajectories may no 
longer cross, since if they did then the trajectories would become indistinguishable[23]. In 
almost all of what follows in the rest of this chapter it is possible to ignore the vertical 
motion, and to consider only purely horizontal motion. The net effect of this simplification 
here is that the trajectory bundle is now pictured as a set of (X,X') phase space curves 
smoothly flowing around the machine, instead of tangled (X,Y) displacement curves.

Linear motion in horizontal phase space is described by simple matrices. For example, 
the phase space coordinates leaving a field free drift of length L are related to the entering 
coordinates by

[2]
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Motion across a dipole— a magnet with uniform vertical bending field — is essentially the 
same as across a drift of the same length, since the coordinate frame rotates with the design 
orbit. (Note that all beam particles are implicitly assumed to have the nominal energy, so that 
dispersion in the dipoles may be ignored.) In the last kind of linear magnet, a quadrupole of 
strength K, motion is described by

X" + KX = 0 [3]

A quadrupole is analogous to a thin lens in light optics, and the coordinate transformation is 
well approximated by

X
X' out

/ 1 
1

0 x

1
X
X’ in

[4]

if its length is much less than f, the focal length of the quadrupole.
Unfortunately, Maxwells law div(B) = 0 leads inevitably to the conclusion that 

quadrupoles which focus horizontally also defocus vertically, and vice versa. How, then, 
can a beam be focussed and constrained in two planes simultaneously? The situation is saved 
by a well known result from light optics, that the net effect of two equal and opposite 
strength lenses, placed less than their focal length apart, is to focus. Thus a repetitive 
sequence of FODO cells — Focussing quadrupole, dipole, Defocusing quadrupole, dipole, 
... — leads to a net focussing in both planes. The significance of this result was recognised 
by accelerator physicists in the late 1950's, and was incorporated in the design of the 
Alternating Gradient Synchrotron, AGS, at Brookhaven, the first “strong focusing” 
accelerator |24|.

The simplest way to describe linear motion is in terms of “normalised” phase space 
coordinates, (x,x'), which are related to the “physical” coordinates by the transfonnation

In this frame a linear trajectory is generally solved by

x(s) X

x'(s) ,
t'o

" sin(4>(s) - <t>o)

^ C0S($(S) - <{>()) y
161

That is, motion from one azimuth to another is described by a simple rotation, around a circle 
of constant radius. Motion in physical phase space amounts to progression around a tilted 
ellipse, with the transformation from ellipse to circle given by equation |5J. The betatron 
function p(s) which enables this transfonnation satisfies the differential equation

Vp" + K(s) vy - P“3/2 = 0 [7]

with periodic boundary conditions. The betatron phase ()>(s) advances smoothly according 
to

4>' =
P

[81
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So, in a normalised phase space description of linear motion the trajectory fibers form a 
bundle which is circularly symmetric. All the fibers turn around the center of the bundle at 
the same rate, but the rate varies with the azimuthal position.

The betatron function was introduced above in the classical way, through a differential 
equation which implicitly assumes that the user is interested in the trajectory as a function of 
s, the azimuth. It is simpler, and probably more useful, to introduce the beta function in a 
difference formalism, which assumes that the user is interested in the displacement of a 
trajectory at a fixed reference point as a function of t, the integer turn number. This is 
certainly closer to the experimental setup in E778, in which the displacement of a perturbed 
beam is measured at two fixed neighboring beam position monitors on tens of thousands of 
successive turns.

In this perspective linear motion for one turn around a machine is described by 
multiplying successive drift, dipole, and quadrupole matrices together, in order to get the one 
turn linear map, T, where

t + 1
[9]

^ cos(2jtQ) + a sin(27tQ) P sin(2jrQ)

V

1 + a'
■sin(27tQ) cos(2tiQ) - a sin(27rQ)

\

J

X
X’

In normalised coordinates the form of T is even simpler, corresponding merely to a rotation 
by 2rtQ, so that the difference solution is written as

r sin(2jtQt -- <{>()) ^ 

v cos(27tQt - (j)o) ^

in small but significant contrast with equation [6|. The betatron tune, Q, given by
C

2jt Q = <{>(C) - <K0) = (' J

[10]

[11]

is simply the number of twists the trajectory bundle receives in one turn around the 
accelerator. The solution to the difference equation of motion, equation [10], is only valid for 
integer t values. So, the graphical representation of this solution plots one (x^x'p dot per 
turn. Such a representation is called a Poincare “surface of section.” Usually, when many of 
these dots have been plotted, they appear to join together to make a continuous contour— a 
circle in the case at hand, assuming Q is irrational.

What happens to this picture when nonlinear perturbations are included? Although 
everything below is devoted to anwering this question in some detail, it is possible to answer 
the question in one brief paragraph. Usually, the circular contour is simply distorted away 
from a circle. More rarely, the tune Q is perturbed to become a rational fraction, say m/n, 
resulting in the continuous contour being broken up into n distinct smooth contours. And 
sometimes, the sequence of dots do not eventually form a regular contour, but appear to be 
randomly placed within a bounded chaotic region of the surface of section.

RESONANCES
Equations [9] and [10] show that only the fractional part of the tune is important for the 

purposes of discussions with a fixed reference point, because only trigonometric functions of
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Q appear. The integer part is dropped from here on, since it is irrelevant. The next 
refinement is to recognise that the tune is not constant, but is modified by nonlinearities at 
finite amplitudes, just as the frequencies of near linear oscillators, such as the gravity 
pendulum, are modified. For example, in one set of E778 conditions which will be referred 
to below, the tune is approximately

Q = Qo + k a2 = 0.418 - 7 • 10 4 a2 [12]

where Qo is the base, or zero amplitude, tune, and the amplitude of the oscillation, a, is in 
millimetres. The strength of the detuning coefficient, k, depends on the strength of the 
nonlinearities in the ring.

This detuning means that the rate of twisting in a trajectory bundle changes smoothly with 
the distance from the center of the bundle. An interesting thing happens when the fractional 
part Q is equal, or very close, to a rational fraction. According to equation [12], the tune is 
equal to 2/5 when the amplitude 35 is about 5.0 millimetres. There are two independent 
trajectories near this amplitude which exactly repeat themselves after five turns, just as the 
zero amplitude closed orbit repeats itself exactly after one turn. In the jargon, each of these 
new trajectories corresponds to five “period five fixed points” on a Poincare surface of 
section, all with the about the same amplitude 35, but with different phases, approximately 
((> = 4>0 + i 2rc/5, which are visited in turn. For example, if a trajectory is launched at fixed 
point i = 1, after one accelerator turn it returns to point 3, then 5, 2, 4, and then revisits 1 
again.

One of these two new trajectories is stable, and the other is unstable. That is, a trajectory 
launched very close to one of the stable period five fixed points performs linear oscillations 
around the fixed point, with an amplitude and phase on turn t which are given by

[13]

at = 35 + 8a sin(27t Qi t)
The small oscillation tune Q[ is called the “island tune.” Only a limited range of phases, 
within ±8<|> of the fixed points, are visited by this trajectory —- this is what is meant by 
resonant behavior. A trajectory bundle with resonances included is like a cable wound rope 
— the strands in each component cable rotate around the center of the cable, and each cable 
rotates in turn around the center of the rope. Figure 1 shows surface of sections plots for a 
set of trajectories with different initial amplitudes and phases, taken from a numerical 
simulation of the E778 experiment, with the realistic values used above. Five resonance 
“islands” are clearly visible.

Resonances are not expected to be important under normal operating conditions of the 
SSC. It might correctly be objected that it is impossible to avoid resonances completely, 
since the number line is dense in rational fractions, and there are resonances everywhere. 
Fortunately, it turns out that the strength of a resonance drops very quickly with its order, so 
that normally only an insignificant fraction of trajectories are resonant. It is only necessary to 
avoid low order resonances, with denominators of less than 10, say. Even in the absence of 
resonances, however, it is desirable to minimise phase space distortions of the surface of 
section contours. For example, the distinctive triangular shape in figure 1 leads to 
unacceptable SSC operating conditions at large amplitudes, according to the design criteria 
laid down in the Conceptual Design Report of the SSC[25|. The amount of distortion is 
quantified by the quantity smear, S, where

S
(<at2> - <at>2)1/2

[14]<at>
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-1.0
-0.8 -0.6 -0.4-1.0

Figure 1. Surface of section plot of several trajectories, from a numerical simulation of the 
E778 experiment. The value of P is approximately 100 metres, so the five islands 
at a normalised amplitude of about 0.5 10~3 m'/2 have a physical amplitude of 
about 5.0 millimetres.

where angle brackets, <>, denote an average over turn number. That is, the one dimensional 
smear is the normalised nos variation in amplitude[26].

NONLINEAR SOURCES IN ACCELERATORS

High Order Magnetic Multipoles
The general solution to the Laplace equation for a two dimensional transverse magnetic 

field is the polynomial
oo

Bx + iBy = B X(bn + ' an) (x + i Y)" [15]
n = 0

where i = (-1)’/2, and y is the vertical coordinate, litis form is convenient for describing 
magnets in a separated function accelerator, since then only one of the b„ or an is designed 
to be non-zero. For example, dipoles, quadrupoles, sextupoles and octupoles arc described 
by single bn values, with n = 0, 1, 2, and 3, respectively — a bn magnet has 2(n + 1) 
poles. Skew magnets, described by an values, have no vertical B-field on the horizontal 
plane. This breaks a design symmetry of most accelerators, and so skew magnets are mainly 
used for correction purposes.

Returning to a one dimensional analysis again, the effect of a given pure multipole is to 
deliver a horizontal angular kick

AX' ---- ------ » bnX„
d+5) (Bp)

1
(1 + 5)

knXn [16]
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to the trajectory, where L is the length of the magnet (assumed thin). Bp is the rigidity at 
the nominal storage energy Eq, and 5 = AE/Eq represents a small deviation from the 
nominal energy. All magnets have a geometric strength which varies inversely with the 
energy. A trajectory with a constant positive 8 experiences weaker dipoles, and so has a 
closed orbit which is displaced radially outwards from the center of tiie magnets by r|(s) 5, 
where r) is called the “dispersion function.” The quadrupoles are also weaker, and this 
leads to a variation of the tune with energy dQ/dS called the “chromaticity,” which must be 
compensated in all but the smallest storage rings. The need for this compensation leads to the 
intentional inclusion of nonlinearities, “chromatic sextupoles,” in storage rings.

Consider a thin sextupole of strength k2 placed close to a quadrupole of sU'cngth kj, so 
that the two may be superimposed. If the displacement is measured as Z = X -1)5, relative 
to the displaced closed orbit, then the net kick is approximately

AX' = ki (1 - 5) (Z + 7)8) + k2(l-5) (Z + i)5)2

or [17]

AZ' - [k] + (k2Tl-ki)5] Z + k2 [1 — 5] Z2

in a polynomial expansion where terms above first order in 8 have been dropped. The 
coefficient of the first order term in Z shows that if the sextupole is powered with k2 = 
kj/q, then the net quadrupole effect is constant with respect to first order variations in the 
energy. If there is a sextupole at every quadrupole, all powered in this way, then the net 
chromaticity is zero. The price to pay for this correction is the second order term in Z, a 
deliberate nonlinear perturbation of approximately constant strength for all trajectories. 
Chromatic sextupoles are the principle source of nonlinearity in most electron storage rings, 
but not in large superconducting storage rings like the SSC.

Conventional storage rings use “iron dominated” magnets, with fields below the 
saturation level in iron, about 2 Tesla. The field is shaped by the iron, and excellent field 
quality is easily guaranteed by stamping the magnet laminations with the right shape — two 
flat poles for dipoles, four hyperbolic poles for quadrupoles, and so on. The location of the 
current carrying conductors is of almost no consequence. On the other hand, the field in 
superconducting magnets is “conductor dominated” — determined almost entirely by the 
location of the conductors. If the available current density is infinite, the theoretical solution 
for the current distribution required to create a pure M-pole field is trivial — a circular current 
shell of I = Iq cos(M 0/2), where 0 is the angle around the magnet center line. In practice, 
a significant thickness of superconductor is required to make a dipole field of 6.6 Tesla in the 
SSC magnets, as shown in Figure 2. It is not possible, even in the ideal design of a two coil 
layer magnet, to remove all unwanted high order multipole components. This leads to 
systematic bn errors in SSC dipoles. It is mechanically much harder to locate conductors 
accurately than to stamp out magnet laminations, especially when the profile of the cable is 
not quite uniform, and the magnetic forces are very strong. Manufacturing variances like this 
lead to random bn and an errors.

Nonetheless, the strongest nonlinear fields in SSC dipoles are due to “persistent currents” 
on the surface of the superconducting filaments. When Type I superconductors are cooled 
below their critical temperature, they completely eject any externally imposed magnetic field 
by generating a compensating surface current. Type II superconductors, such as the 
Niobium-Titanium commonly used in superconducting magnets, allow partial flux 
penetration. These persistent currents generate error fields throughout a magnet, with a 
magnitude which is function, not only of the nominal field strength and distribution, but also 
of the magnetic history. Persistent current effects arc hysteretic.
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Leads
He Port
1.150" dia.

Shell
304 Stainless Steel 
10 89 O.D. x 10 52 I D.

Heater Holes 
0.514" dia.

Phosphor Bronze

Two coil 
layers

Mid-plane

Yoke • i
16 GA. (.0598" thk.)—\ 
Low Carbon Steel

Collar
16 Ga. (.0598" thk.) 
Nitronic-40

Tube.
.1987 dia. x .028 w. 
304 Stainless Steel

Figure 2. The “cold mass” core of a 6.6 Tesla superconducting SSC dipole. The beam pipe, 
of 4.0 centimetre inner diameter, is surrounded by a two layer coil which is 
constrained by a non-magnetic stainless steel collar. The collar, in turn, is 
constrained by a magnetic steel yoke.

The allowed systematic bn's of the persistent error field have n = 2, 4, 6, et cetera, with 
the sextupole and the decapole being of most concern — the persistent sextupoles are far 
stronger than the chromatic sextupoles at the nominal 1 TeV injection energy of the SSC. 
Fortunately, the perturbation drops rapidly in strength with increasing energy, and is 
negligible at 20 TeV. Injection energy is the worst time to have field errors present, because 
then the beam size is largest — trajectories explore more of the bad field region — and the 
magnetic rigidity is smallest. To make matters worse, Type II persistent currents decay with 
time. If uncompensated, this decay causes a continuous drift in the chromaticity while beams 
are being injected, followed by a rapid large jump when the energy ramp is begun. These 
problems are foremost in discussions which contemplate an increase of the SSC injection 
energy to 2 TeV.

Beam-Beam
Most contemporary electron and proton storage rings are limited in their performance by 

the beam-beam effect. Consider a test particle passing through a counter-rotating bunch of 
particles at a nominal collision point of a storage ring — without a hard collision. The test 
particle experiences macroscopic electric and magnetic fields which give its trajectory a 
nonlinear kick. For example, a horizontally displaced proton passing through a round 
Gaussian bunch of size o receives an angular kick

AX' =
4tz^ 2o2

— exp
'-X2\

2a2,
[18]
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where the “tune shift parameter,” is proportional to the transverse charge density in the 
bunch. The strength of the kick drops off like 1/X at large displacements, unlike the 
polynomial behavior of magnetic kicks, since now the nonlinear field source is localised at 
the center of the beam pipe. Small amplitude trajectories receive kicks which are linear in 
displacement, as in a quadrupole, and are shifted in tune by ^ — hence the name, tune shift 
parameter. At large amplitudes the tune shift approaches zero, and the situation is usually 
stable, again in contrast to the magnetic case. Beam-beam resonances are strongest at 
intermediate amplitudes of a few sigma.

The maximum operational tune shift parameter is of order 0.02 per collision in electron 
rings, and of order 0.004 per collision in proton rings. This order of magnitude difference 
is largely due to the difference in transverse beam shape (electron beams are fiat, proton 
beams are round, both are bigaussian) and to the fact that electrons produce a lot of 
synchrotron radiation, leading indirectly to a stabilising damping of the transverse motion. 
The SSC will be the first proton storage ring in which synchrotron radiation is significant, 
with a damping time of less than one day —- electron ring damping times are typically 
measured in milliseconds. Somewhat different theoretical models are used to successfully 
explain the beam-beam limits in the two kinds of ring[27-31]. Good quantitative agreement 
between theory, simulation, and observation is only obtained in the proton case when tune 
modulation affects are taken into account[32-36]. The subject of tune modulation is returned 
to below.

Contemporary colliders store only a few — less than ten — bunches per beam, with 
particle and antiparticle beams counter-rotating in the same vacuum chamber. However, the 
frequency of collision decreases as the machines get larger, leading to a decrease in 
luminosity, unless there is an increase in the number of bunches or the charge per bunch. 
Both of these solutions come into violent conflict with the beam-beam limit, loosely defined 
as the maximum allowable tune shift per turn (not per collision). The SSC resolves this 
dilemma, and the associated problem of producing copious numbers of anti protons, by filling 
two vertically separated storage rings with thousands of bunches of protons, longitudinally 
spaced by about 5 metres. Collisions between counter-rotating bunches are only allowed 
where they are useful. Consequently, the beam-beam effect is not expected to be critical in 
the SSC, although its presence will be noticed.

Radio Frequency Cavities
So far, the longitudinal motion of a test particle relative to the center of its own bunch has 

been ignored. Only transverse motion has been considered, although sometimes the test 
particle has had a constant off energy parameter 8, and a displaced closed orbit. For 
example, a closed orbit trajectory with a large 5 of 10~3 at a place with a typical dispersion 
function q of 3 metres is displaced outwards by 3 millimetres, and its single turn path length 
is about 2 centimetres longer than the design orbit. At the end of each turn a particle 
following this trajectory lags farther and farther behind the center of its bunch — if the speed 
of the particle is independent of its energy, a reasonable assumption in the relativistic limit. 
What, then, keeps a bunch of particles together? The answer is, a small number of short 
radio frequency cavities, each applying a longitudinal voltage which depends on the test 
particles longitudinal displacement from the center of its bunch. For the sake of simplicity, 
suppose that there is only one cavity, with a typical wavelength of about one metre. A 
nominal particle passes through this cavity when the field is zero, but a particle that arrives 
late loses energy, and an early particle gains energy.

So, the energy displacement 5 is not constant, but oscillates, with a typical period of 
hundreds of turns in proton storage rings, and tens of turns in electron storage rings. As is 
shown below, this situation appears at first sight to be analogous to the simple gravity 
pendulum. However, there is a crucial difference — the radio frequency restoring force is 
not applied continuously, like gravity, but is only applied as an impulse, once per turn of the
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accelerator. That is, the gravity pendulum is a differential system, while longitudinal motion 
in an accelerator is a difference system. Difference systems like this which arc analogous to 
the gravity pendulum are described by the “standard map,” which is so named because of its 
universal importance and frequent occurrence in many different nonlinear manifestations.

Even though nonlinear longitudinal motion does not limit the performance of any 
accelerator, the standard map is pedagogically well worth studying. Most resonant 
situations, including the most complex, can be reduced to a standard map by appropriate 
coordinate transformations (at least in principle). Equivalently, the standard map 
demonstrates many of the properties of more complex situations, such as chaos, the change 
of tune with amplitude, and the useful limits of a Hamiltonian description. For these 
reasons, longitudinal motion is the first nonlinear topic discussed here in detail.

LONGITUDINAL MOTION —THE STANDARD MAP
Suppose that a test particle circulates around a storage ring containing one radio 

frequency cavity. If the azimuthal reference point at which a Poincare surface of section is to 
be constructed is just before the cavity, then one turn consists of i) passage through the 
cavity, followed by ii) traversal of the rest of the machine. Although the RF cavity is 
typically several wavelengths long, it is reasonable to approximate it as an infinitesimally 
short impulse by integrating the electric field that the particle experiences into a single 
voltage. So, if the particle trails behind the center of its bunch by a positive distance of As 
when it passes through the cavity, its off energy parameter on turn t+1 is related to that on 
turn t by

§t+l = 5t - iff sin(et) (19]

where the RF phase angle

0t = 2k
Asi_
^-RF

[20]

is a natural longitudinal coordinate. The total path length during one turn varies with the 
energy according to

C = Cq + 27t<r|>5 ]21]

where <r)> is the average dispersion function in the bending dipoles. The additional term 
modifies As and 0,

6t+l
n . (2k)2<T]> „
0t + ---- :-------- ot+i

'•RF
[22]

Equations [20] and [22], taken together, constitute the one turn map for longitudinal 
motion. Notice that the right hand side of |22] includes terms with both subscripts t and 
t+1 .

It is now convenient to make a coordinate transformation, whose physical meaning will 
soon become apparent. Replacing 0, 8 and the physical parameters in [20] and [22] with 
the quantities

q = 0, p 2k
<rp>

^■RF
Eq
Vrf

Ad’ 271 <T1> v RF V'2 
^RF I [23]

the map becomes
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Pt+1 = Pt - AT sin(qt) [24J

qi+i = qt + at pt+i

This is the standard map. If q is always small, it has an approximate linear solution of

qt = qo cos(27I Qs t) [25J

where the small oscillation tune, Qs, is called the synchrotron tune in the particular case of 
longitudinal oscillations. It is given by

cos(27t: Qs) = 1
AT2

[26]

which shows that even small amplitude motion is unstable under the standard map if AT is 
greater than 2 . In electron storage rings Qs is typically between 0.01 and 0.1, while in 
proton storage rings it is typically an order of magnitude smaller.

The physical meaning of the coordinates q and p, and the parameter AT, is made clear 
by taking the standard map to be the numerical representation of a rigid pendulum of unit 
length, with the acceleration due to gravity set equal to one. In this case q corresponds to 
the angle the pendulum makes with vertical, p corresponds to the angular velocity of the 
pendulum dq/dt, and AT corresponds to the integration time step size. Since the 
continuous time T is given in terms of the discrete time t by

T = t AT [27]

and since 27t Qs = AT for small time steps, the small angle motion of the pendulum is 
simply

q(T) = qo cos(T) [28]

It is not surprising that the time step must be much less than the natural period of the system 
— much less than one — for such a discrete representation of a differential system to be 
accurate. What is surprising, perhaps, is that the dynamics of analogous differential and 
difference systems are qualitatively different.

The most compact way to describe the differential pendulum system is by means of a 
Hamiltonian,

H = ip2 - cos(q) [29]

which, by definition, is shorthand for the equations of motion

dci _ 3H
dT dp

dp _ an
dT - ~aq"

[30]

Trajectories of the pendulum system follow contours of the Hamiltonian function, because II 
is explicitly conserved, since

dll _ aild£_ aHdcj_
dT - dp dT + dq dT ~ [31]

by substitution of the equations of motion[30J. The rate of progress along a contour depends 
only on the local slope of the Hamiltonian function. These two properties make it easy to 
picture the behavior of a one dimensional system, if only a I lamiltonian can be constructed 
from the equations of motion.
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Figure 3a shows the contours of the pendulum Hamiltonian. Equivalently, it shows the 
Poincare surface of section of the longitudinal motion of particles in a storage ring, in the 
limit that Qs goes to zero. A trajectory near the center of the plot exhibits stable, limited, 
oscillations — the pendulum has a maximum absolute angle, or, equivalently, the particle is 
trapped inside a single RF “bucket.” A trajectory near the top or bottom will eventually reach 
all values of the coordinate q — the pendulum is rotating continuously, or the particle is not 
associated with any particular bunch. The boundary between these qualitatively different 
kinds of motion, trapped and untrapped, is called the “separatrix.” It takes an infinite amount 
of time to move once around the separatrix, since the slope of II is zero at the “unstable 
fixed points” where the pendulum is inverted and motionless. Equivalently, the longitudinal 
tune of a particle shifts from Qs at the centre of the RF bucket, to zero at its edges.

From the pendulum point of view, the standard map is merely an approximation of the 
differential equations of motion, via

-0.5

-1.0-1.0
-0.5

-1.0 -1.0
-0.5

Figure 3. Standard map trajectories, with four different synchrotron tunes, Qs, 
corresponding to different integration time steps, AT . a) Contours of the 
Hamiltonian 11 = (P2/2) p2 - cos(q), representing the differential pendulum, 
b) Qs = 0.06 . Almost indistinguishable from a), with no sign of chaos, even 
close to the “separatrix.” c) Qs=0.12. A narrow chaotic region appears near the 
“separatrix,” and some secondary islands appear, d) Qs = 0.18. Most of phase 
space is chaotic, surrounding complex island structures.
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[32]

However, from the RF cavity point of view, the Hamiltonian representation is merely an 
approximation of the difference equations of motion. It depends upon the physical case in 
hand whether a continuous or discrete representation is more appropriate. Figure 3b shows 
how trajectories with a small value of Qs = 0.06 respond to the standard map almost exactly 
as if the system was continuous. (To keep the plot symmetric, the azimuthal reference point 
has been moved to the center of the RF cavity, instead of just before it). One dot is drawn 
per iteration of the map, for many iterations of several different trajectories. Except for one 
trajectory, these dots appear to form continuous lines — “KAM surfaces”!37^10] — looking 
like the contours of the continuous Hamiltonian.

In a region of phase space which is regular, where trajectories form KAM contours, two 
infinitesimally close neighboring trajectories diverge linearly with time. When Qs is 
increased to 0.12 and 0.18, in Figures 3c and 3d, chaotic trajectories appear with scattered 
dots. In chaotic regions of phase space, infinitesimally close neighboring trajectories diverge 
exponentially with time. Chaos first becomes visible in Figure 3c near where the separatrix 
used to be — there are no separatrices in difference systems — in a region which is bounded 
by KAM surfaces. Most of phase space is chaotic in Figure 3d, and it is hard to say whether 
chaotic regions bound regular regions, or vice versa.

Both Figures 3c and 3d also show secondary resonance island structure in addition to the 
main island at the center of the plot. For example, there is a chain of 16 small islands near 
the (now non-existent) main separatrix in Figure 3c. Comparatively large islands are also 
visible near the top and bottom of the figure, in the “untrapped” part of phase space. These 
are resonances on the backs of resonances, an example of the kind of recursive structure 
which is often associated with chaotic behavior. It is not too surprising to learn that, if 
motion around these sub-resonances is examined in detail, then it, too, can be described in 
tenns of the standard map. And so on, ad infinitum.

The fundamental difference between the differential pendulum and the difference 
pendulum is that the restoring force is time independent in the first “autonomous” case, and is 
time independent in the second, “non-autonomous” case. This is conveniently illustrated by 
rewriting the standard map as a single, second order, differential equation in q

oo
5(T-nAT) AT sin(q) |33|

where the delta function 5( ) is not to be confused with the off energy parameter. 
Neighboring trajectories in one dimensional autonomous systems show only linear 
divergence, while non-autonomous systems can also show exponential divergence. Systems 
of two or more dimensions can always show exponential divergence — chaos.

SEXTUPOLES — TI IE 11ENON MAP
One of the earliest dynamicists to attempt a general numerical study of nonlinear maps 

was Henon, an astrophysicist|41]. He found that the map which now bears his name 
“exhibits all the typical properties of more complicated mappings and dynamical systems.” 
This one-dimensional map is directly relevant to accelerator physics, as it describes an 
accelerator in which there is a single nonlinearity, a thin sextupole, of unit strength. In 
normalised coordinates the motion around the linear part of the machine amounts simply to a
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coordinate rotation, so if the reference point for the Poincare surface of section is just before 
the sextupole, then the map from turn t to turn t+1 is just

X'*’WCsc]n a]
x t+1 J ^ -S C J ^ x t + xt2 J

[341

where C = cos(2?t Qo) and S = sin(2jt Qo), in which Qo is the tune of a small amplitude 
trajectory. Figures 4a through 4d tire taken almost directly from a paper by Henon, showing 
surface of section plots of several trajectories for four values of the control parameter Qo, 
near to 1/3, 1/4, 1/5 and 1/6 .

Four different kinds of trajectories can be loosely distinguished. Regular non-rcsonant 
trajectories are found close to the origin of each of the figures. The trajectories are regular, 
but become distorted away from circles at moderate and large amplitudes. As discussed both 
above and below, the deviation from circularity is conveniently measured by the smear.

septum

-1 —------- ----------------------------------
-1 0 x 1

Figure 4. Trajectories obtained by FIenon[41J from iterating his map with different base 
tunes, Qo . When Qo ~ 1/n, n resonance islands appear, a) Qo = 0.324 = 1/3 . 
The stable triangle and the divergent amis are well described by first order theory, 
but the outlying islands are not. b) Qo = 0.2516 = 1/4 . Four big islands at a 
small amplitude, with Qo very close to 1/4 . c) Qo = 0.211 ~ 1/5 . Five islands, 
surrounded by a stable KAM contour, and then chaos, d) Qo = 0.185 = 1/6 . 
The six islands are almost rotationally symmetric - they resemble each other and the 
standard map structure.
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Under normal stable operation of a storage ring the beam fills only the small smear region. 
The deviations from circularity increase as the amplitude gets larger, until the motion breaks 
up into regular resonant trajectories, forming a chain of resonance islands. The number of 
islands corresponds to the denominator of the rational fraction nearest to Qo . Chaotic 
trajectories occur at the largest amplitudes in the figures (except in Figure 4a where chaotic 
points have been removed for the sake of clarity). While some of these trajectories are 
bounded, as in the case of the standard map, some appear to diverge to infinity. This is 
because the x2 nonlinear term in the Henon map is unbounded, unlike the sin(q) term in 
the standard map.

Rapidly divergent regular trajectories can be seen in figure 4a, in the form of three arms 
of widely spaced dots whose amplitude increases rapidly from turn to turn. This behavior is 
very useful in the controlled extraction of particles from a storage ring, as illustrated by the 
inclusion of a “septum” in the figure. The septum is a current or charge carrying metallic 
membrane, arranged so that there is no magnetic or electric field on the inside, while on the 
outside a particle is deflected into an extraction line. For the extraction efficiency to be high, 
the septum must be thin compared to the amplitude increase in three successive turns. More 
and more particles are squeezed out of the stable triangle at the center of the beam pipe by 
gradually moving the base tune Qo closer and closer to 1/3. Despite appearances, these 
trajectories are really only regular resonant trajectories, since, given enough time and an 
enormous vacuum chamber, a particle following one of these trajectories would eventually 
return to the small amplitude region.

Smear, and the First Order Discrete Hamiltonian. Hi
It is relatively straightforward to solve the equations of motion for the distortions which 

perturb the circular trajectories near the center of the plots — at least to first order in the 
sextupole strength g, where

Ax' = gx2 [35]

First, though, it is convenient to introduce “action-angle” coordinates, J and <]>, where

/ (2J)'/2 sin(<])) > 

^(ZJ)1/2 cos(<l>) ,
[36]

That is, the action J behaves very much like the betatron amplitude, while <]> is explicitly the 
betatron phase of the trajectory under study. It is easy to show that the motion from turn t to 
t+1 is described to first order in g by

z J \

<(>^ 21+1

/ J
+

fJJh. \
3<j>

dlli
V aw t

where the one turn “discrete” I lamiltonian 11 j is given by

[37]

Hi 2k Qo J + J3/2 [ sin 3(\j/ + <|>) 3 sin (\|/ + <]>) ] [38]

in which \|/ is the constant phase of the single sextupole, relative to the reference point. The 
first term in this discrete Hamiltonian corresponds to the linear phase advance of 27t Qo, as 
expected.

Not one, but sixteen sextupoles dominate the nonlinear behavior of the Tevatron in the 
E778 experiment. More generally, then, the Hamiltonian is written as
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Ill [39J= 2k Qq J + Vjk J‘/2 Sin(k(|) + ((>ik)
{ik)

where the sum is over ik pairs

(ik) = {33,31} [40]

The constants Vik and <[% are obtained from a vector sum of the terms proportional to g in 
equation [38], over all sextupoles. Equation [40] is not exactly correct, but only describes 
the motion correctly to first order in sextupole strength, since higher order terms have been 
ignored. This first order result for Hi, and the results which follow, are easily generalised 
further. For example, if octupole nonlinearities are also present, the set [ik] is extended to 
become [30,31,44,42,40}. Or, if two dimensional motion in the presence of sextupoles is 
to be described, it is expanded to [ijkl) = (3030,3010,1210,1212,121-2), where j/2 is the 
exponent of the vertical action, and 1 is the coefficient of the vertical betatron phase. What is 
hard is to extend the description to higher order in nonlinear strengths.

The action is a smooth function of the phase, J(<[>), if the motion is regular and non- 
rcsonant. Substituting the lowest order solution of phase motion

<(>t = 2jt Qo t + <J)o [41J

into the difference equation of motion for J in [37] gives

■!(<[> + 2tc Qq) - J(<1)) = - ^ [42]
d(()

Using the Hamiltonian in equation [39] gives, for perturbations small compared to Jq,

J(<|>) = Jo - V „ kV* Jo1/2 sinCM) + (Elk + kTtQo) [43]
2 sin(k7tQo)

(ik)

A resonance denominator appears here, for the first time — if the base tune Qo is near an 
integer or an integer divided by three, then one of the terms in the sum becomes large and can 
destroy the original assumption that the perturbation is small. The k=3 term causes the 
characteristic triangular shape seen in Figure 4. In order to describe the 4, 5, or 6 fold 
structure that leads up to the resonance islands in Figure 4, it is clearly necessary to include 
higher order terms in the discrete Hamiltonian.

Substituting the phase motion given in |411 into [43] gives the action as a function of turn 
number,

Jt = <J> - "V1 ----^--------Jo'/2 sin(27t k Q0t + <)>ojk) [44]
jZ-j 2 sin(kjtQo)
(ik ‘

where <J> = J0 is the average action, and <[)oik= k((>o + <!>ik + kttQo is a constant phase. In 
terms of amplitude rather than action, the motion is

at <a> X k Vik
2'/2+1 sin(kTiQo)

ao'-1 sin(27t k Q0t + (|)oik) [45]

According to the definition given in equation [14], the one dimensional smear is

S = 'a> Vil32 V;i32~ \Qt

sin2(37tQo) 26 sin2(7tQo)
1461
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showing that the smear due to sextupoles increases linearly with amplitude, for small 
amplitudes. The displacement x(t) at the reference point, which can be detected by a beam 
position monitor (BPM), is

[47 Jxt = at sin(27t Qo t + <t>o)

= <a> sin(27t Qo t + <j)o)

cos(2jt(k+l)Qot + <fc)ik + <J>o)] [48]

Since k = 1 or 3 for sextupoles, Fourier analysis of a tum-by-turn BPM signal reveals 
harmonics at 2Qo and 4Qo, in addition to the fundamental signal.

Experimental observation of smear
Two analyses are readily available for measuring smear from turn-by-turn position data, 

corresponding to treatment in the frequency domain and in the time domain. While E778 has 
so far concentrated on time domain measurements of one-dimensional motion, frequency 
domain measurements will be essential in the imminent studies of two dimensional 
oscillations. Both analysis techniques are complicated by the finite size of the beam, as will 
be seen.

The basic experiment is very simple — kick the beam horizontally on turn 0, inducing an 
oscillation of amplitude a^icio ar|d observe the ensusing oscillations for at least a hundred 
turns on two neigliboring BPMs. If the two signals on a given turn t are X|(t) and X2(t), 

then the amplitude at on that turn is given by

at2 = c 11 x j2 + C12XJX2 + C22X22 149]

where the coefficients cn, C]2, and cn depend on the beta values at the two BPMs, pi and 
p2, and on the betatron phase advance A<(>i2 between them. For example, if pi=p2 and 
A<|)i2 = 90 degrees, then ci i = C22 = l,andci2=0. Having established the time sequence at 
for a sufficient number of turns, the smear is obtained directly from equation 114], Practical 
problems associated with non-zero closed orbit offsets, and P and <{> errors, are easily 
overcome.

The data taken and processed in this way in Figure 5 show that, instead of the amplitude 
being approximately constant (within smear variations), there is an initial gaussian decay 
of the signal. This decay is due to the finite size of the beam, which implies a distribution 
of initial amplitudes in a typical range aicicic±a, where o is the gaussian beam size. The 
spread in amplitudes leads to a spread in tunes across the beam, of size AQ = 
o(dQ/da)l;ij.ick, causing the signal to decohere with a gaussian time constant of 1/AQ turns. 
It is straightforward to compensate for the decoherence in calculating the smear during one 
dimensional motion.

The equivalent frequency domain measurement consists of Fourier analysing the signal 
from either one or both of the BPMs, as described theoretically in ]47], and then 
reconstructing the values of V33 and V31, ready for substitution into [46] for evaluation of 
the smear. Using only one BPM leads to some problems in reconstructing the V values, 
since the response at 2Qq, for example, depends on V33, V3i,())()33, and <]>03i • 
Information from two BPMs is needed to derive the phases <J>()33, and <[>031, or to construct 
the amplitude time series for subsequent Fourier analysis. Finite beam size also causes

18



riiii i i i

i i i i i i i i~l
1000 2000 3000 ■1000

Turn number

TTTT II I I I I II TTTTTTTT

.1 I I I I I I'LLL.L l-L 1.1
0 100 200 300 400 500

Turns after kick

Figure 5. Typical data from the E778 experiment, showing both Gaussian decoherence and a 
persistent signal, a) Raw turn-by-turn data taken by one of the beam position 
monitors, over 4,000 turns. The signal strength initially drops very rapidly after a 
transverse deflection of about 4 millimetres, finally leaving five persistent signal 
lines with a very slow decay rate, b) The reconstructed amplitude over the first 
500 turns, showing that the initial decoherence is well fitted by the solid line 
Gaussian. About 30% of the beam is trapped in a resonance island at an amplitude 
of about 4 millimetres.

problems in the frequency domain, by broadening peaks which would otherwise be sharp. 
So long as the peaks do not overlap, it is relatively straightforward to dreive the single 
particle equivalent amplitudes and phases.

Five Islands— the Sintile Resonance Hamiltonian. 115
The simple solution to the equations of motion given above, [41] and [43J, breaks down 

when the motion is resonant, or nearly resonant. For example, suppose that the coefficient 
set (ik) in equation [43] is somehow extended to include k=5 (and hence i>5) in trying to 
describe the phase space distortions close to the five-fold island structure seen in Figure 4c. 
As the tune Qo approaches 1/5, the shrinking resonance denominator sin(5jtQo) 
eventually leads to a violation of the original assumption of small distortions— and predicts 
infinite distortions when Qo=l/5, on resonance. The source of this error lies in assuming 
the simple phase advance per turn given by equation [43], When a trajectory is trapped in a 
resonance island, the solution is better given by an expression like [13]. The trapped and 
untrapped approximate solutions for the phase illustrate the topological difference between 
resonant and non-resonant motion. Given enough time, the phase of a non-resonant 
trajectory will come arbitrarily close to any given phase. In contrast, the phase of a resonant 
trajectory has only a limited range of possible values.

There are two important experimental questions to ask about a resonance. First, how 
wide is it? That is, what amplitude or action range does it span. Second, what is the tune Q[ 
at the center of the islands? These questions are answered theoretically by concentrating on a 
single resonance denominator, say five, and by developing a Hamiltonian description of the 
five-turn motion. That is, whereas so far t has been implicitly integer, soon t will be an 
integer which is exactly divisible by five. As a starting point, assume that the tune Qo is 
close to 2/5, as in the resonance investigations of the E778 experiment, and assume that the 
one turn Hamiltonian II] has somehow been developed to include a complete set of 
coefficients with i,k < 5, specifically [ik] = [33,31,44,42,40,55,53,51} .
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It can be shown that only terms with k=() and k=5 survive when II) is averaged over 
5 turns, so that the “single resonance Hamiltonian” becomes

IIs = 2k (Qo - j) J + V40J2 + V55 J5/2 Sin(5<j) + (J)55) [50]

This is just shorthand for the five-turn difference equations of motion

( J 

((ik ^ ^ t+5

f J k
+

fJJh )
dip

du5
V dJ J t

[51]

by analogy with the single turn equations of motion, equation |37], The meaning of the three 
terms in II5 becomes clear when the partial differentiations in ]51] are performed. For 
example, the first term corresponds to a five turn phase advance of 5 • 27t (Qq - (2/5), 
independent of the action. Subtraction of 2/5 from Qo is justified by noting that it leads to 
an inconsequential subtraction of 47t from the five turn phase advance. The subtraction is 
motivated by making the coefficient of J a small number. Next, differentiation of V40 J2 
with respect to J leads to a five turn phase advance of 10 V40 J, linearly proportional to the 
action.

Temporarily ignoring the third term, there is an octupolar tune shift with action or 
amplitude, given by

Q(J) = Qo + ^0 J = Qo + —^ a2 ]52]
71 2k

The action Ji at which Q(J[) = 2/5 identifies where the resonance is found. Before examining 
the behavior of the term in V55, it is convenient to make a coordinate transformation and 
rewrite H5 as an expansion around J],

H5 = jUI2 - Vcos(5<]>) |53]

where

1 = J - j!, U = 2V4o, V = V55Jl5/2 [54]

and the value of (]>55 has been conveniently chosen.
Substitution of this Hamiltonian into the equations of motion [51] (with J replaced by I) 

shows that (I,<)>) = (0,0) is a fixed point — a trajectory launched there is stationary. This is 
in marked contrast with the usual single turn motion, in which a trajectory always advances 
by a large phase of about 27tQo, even in the absence of nonlincarities. In some region close 
enough to I = 0, then, II5 may be considered as representing differential equations of 
motion, continuous in t, which agree well with the difference motion whenever t is an 
integer multiple of five. In this approximation

fd-± ^ ( dHg \
dt 3<]> ' - 5Vsin(5(t>)N

d<]) aii5 U 1 ,
V dt J l si ) \ /

which, except for factors of 5, is the familiar case of the pendulum. For small angles, S,), « 
1/5, the solution of these equations is just
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( V\l/2
■pr] Sir(27i Qit)5

156]
\

<1>
/ ^ cos(2rt Qit)

wliere it may be assumed that V and U tire both positive. The island tune is given by

Q, = JL (u V)1/2 157]

This answers the second of the two key questions about the resonance. Now return to the 
first question — what is the resonance width?

The approximate representation of the motion by differential equations of motion is valid 
“close enough” to the center of the islands, and for island tunes Qi much less than one. A 
trajectory in this region follows contours of constant H5 very closely. The shape of the 
Hamiltonian hillside is a parabolic valley along the I-axis, with a modulation along the (])- 
axis caused by the cos(5<t>) term which leads to five local minima separated by five saddle 
points, corresponding to five stable and five unstable fixed points.

The amplitude width of the islands is estimated by assuming that trajectories at least as far 
as the separatrix follow II5 contours. (This is explicitly wrong very close to the separatrix, 
which does not even exist in the difference system.) Since trajectories follow contours of 
II5, and since the saddle point (unstable fixed point) is on the boundary between resonant 
and non-resonant motion, the height of the saddle point, H5(0,27t/10), is the same as the 
height Il5(I\v,0), where l\v is the island half width. This gives

[58]I\v

This is readily converted to an amplitude width by dividing by ag the resonance amplitude. 

Experimental Resonance Observation
In an experiment, the resonance amplitude ai is adjusted by changing Qq , so long as it 

remains inside the dynamic aperture. This has a strong effect on both Qi and a\v, 
especially for high order resonances, since Q[ goes like ain^, and a\y goes like a^11-^/2, 
where n is the order of the resonance. At first sight measurements of resonances appear to 
be ovcrconstrained, since there are two parameters in the theoretical model, U and V, 
while there are three experimental observables, d2Q/da2, Qi and a\v» which are related to 
each other by equations [52], [57], and [58]. This would provide a stringent test of the 
model. Unfortunately, life is not that simple, again because of the finite beam size. In 
practice, d2Q/da2 is easily measured to about 10%, but the determination of Qi and a\y to 
this accuracy is more difficult.

Figure 5 illustrates typical data obtained by kicking the gaussian beam into a phase space 
position which partially overlaps fifth order islands. At first the signal undergoes the usual 
gaussian decoherence. However, there is also a “persistent signal,” which has a very small 
decay rate — it is typically observed for tens of seconds, or millions of turns. This signal is 
due to particles which do not decohere because they are phase locked within the bounds of a 
resonance island. If the base tune Qq is adjusted to maximise the persistent signal strength, 
when akick = aj, the persistent amplitude leads directly to the resonance width a\y, through

persistent _ q aW 
akick (j

where G is a geometrical factor close to unity which is calculated by numerical 
simulation[2,3,9]. The beam size o is assumed to be well known, although in practice it
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fluctuates from shot to shot. Once measurements of a\v have been made at several values of 
atdck, the set of data pairs (Qo.aidck) are analysed to yield an accurate plot of tune versus 
amplitude.

Measurement of Qi is not so straightforward. If the beam size is much smaller than the 
island size, then Fourier analysis of the time series {<))t - 27t (2/5) t) leads to a sharp peak at 
Qi, if the phase amplitude 5(t> in [13] is small. If the phase amplitude is large, then several 
peaks are seen, at harmonic multiples of a value of a fundamental tune which is smaller titan 
the value Qi at the center of the island. In practice the beam size is relatively large and 
Fourier analysis reveals a broad spectrum, due to the spread in Qi. A better way to measure 
Qi experimentally, independent of beam size, is by observing the response of a persistent 
signal to tune modulation.

TUNE MODULATION
If a set of quadrupoles is perturbed by a small sinusoidal current, the tunc of a small 

amplitude trajectory is modulated according to

Qo = QOO + q sin(2;t Qm 0 [60]

where q and Qm are the tune modulation amplitude and tune. Power supply ripple like this 
is normally carefully avoided, especially in proton colliders, where any source of noise 
degrades the storage lifetime of the beam. (This in itself is a good reason for deliberately 
introducing tune modulation in a controlled experiment.) Noisy quadrupoles are particularly 
troublesome during the slow extraction of protons, when the smooth approach of the tune to 
a low order resonance is necessary to ensure a steady spill rate. Special fast quadrupoles are 
used during slow extraction in the Tevatron, responding to the difference between measured 
tune and requested tune, to compensate for such noise. It is these quadrupoles which E778 
uses in its investigation of resonance behavior in the (q,QM) parameter space. As Figure 6 
shows, the (q,QM) plane is rich in dynamical features. The dotted line in the figure shows 
the region accessible to the experiment, with maximum q and Qm values of about 0.01 .

Tune modulation is included in the resonance Hamiltonian near a fifth order resonance by 
adding a single term to equation [53], to give

H5 = 2tt q sin(27t Qm 0 I + jUI2 - V cos(5<|>) [61]

This Hamiltonian is still shorthand for two differential equations, not difference equations, 
because of the very small net motion in five turns. Unfortunately, H5 is now time 
dependent, and so is no longer conserved. The two first order equations of motion are now

fd\ \ 
dt ' - 5 V sin(5<J>) ^

d<() v 2k q sin(27tQMt) + UI y
V ^ J

or, as a single second order differential equation in <]>

+ (27tQi)2 •s"1^5<*>) = (27t)2 q Qm cos(2jc Qm 0 [63]

This is physically analogous to the motion of a rigid pendulum, of small amplitude natural 
tune Qi, which is driven by an external torque. (The factors of 5 could easily be removed 
by a scale change). Just as longitudinal motion was interesting because of its connection to 
the universally recurring standard map, the effect of tune modulation on accelerator 
resonances is interesting as a representation of the driven differential pendulum.
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Figure 6. Dynamical behavior in different regions of the tune modulation parameter space 
(QlVl.q). for a value of Qi = 0.003 . The dotted line shows the region accessible 
to the E778 experiment, extending beyond the resonance pole at Qm = Qi for this 
particular value of the island tune, which is relatively small.

If the motion is not chaotic, the general form of the solution for the phase of a trapped 
particle is a double Fourier scries expansion in both the driving tune Qm, and in a free 
oscillation tune, which is shifted below Qi at moderate or large amplitudes. However, the 
experimental observable in E778 is the persistent signal picked up at a BPM, which depends 
on the average motion of the distribution of trapped particles. It seems reasonable to assume 
(but is only an approximation) that the center of charge motion which is detected is the same 
as that of a trajectory with no free oscillation amplitude. Hence we are mostly interested in a 
solution to the equation of motion which is a single Fourier expansion in the coherent driving 
tune, Qm • There is a family of possible periodic solutions, labeled by the integer k,

OO

5<t> = k 27r (Qm t) + £ cn cos(n 271 QmO |64]
n=l

where the coefficients cn are functions of q, Qm, and Qi.
The first term in [64], linear in t, corresponds in the pendulum system to gaining or 

losing exactly k complete turns in one modulation period. In the accelerator system the 
linear term leads to the possibility of stable resonance islands at a family of sideband tunes, 
since

„ 2 1 ^d<!x 2 , Qm
Qsoliiiion — 5 + - j + ^ "j" [651

Each sideband represents five resonance islands, with centers at an action Ik given by
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Qdk) Qsolution [66]2 . UIk 

^ 2n

so that

Ik
2jt; Qm 

5U [67]

The interesting question is whether the k-th solution is stable. If it is, then it should be 
possible to observe persistent signals at the corresponding sideband tune, by kicking a beam 
on top of one of the sideband islands.

Rigorous analytical results for the solutions exist only in the slow and fast modulation 
limits, when Qm is much smaller or much larger than Q[ . For large amplitude oscillations 
in the intermediate region it is necessary to rely on iterative solutions and on simulations. 
The k=0 solution in the small angle limit 5 l<J)l « 1 is illuminating. It is given, for all 
values of Qm, by

<t>

and

Qm2
Qi2 - Qm2

cos(2tc QmO

I
Qi2

Qi2 - Qm2
27t q
~TT sin(27t QMt)

[68]

Both expressions include the same resonance denominator, but with different numerators. At 
constant q, the amplitude of the action oscillation goes to (27cq)/U for small Qm and to 
zero for large Qm, while the phase oscillation amplitude goes to zero for slow modulation, 
and to q/QM f°r fast modulation. This explains the “amplitude modulation” and “phase 
modulation” labels in Figure 6 . The small angle approximation is only appropriate below the 
boundary line

qQM  
Qi2 - Qm2

[69]

which is the solid line in Figure 6 showing the resonance pole at Qm = Qi ■
Rigorous analysis (see below) shows that this is also the boundary of stability for the 

k=0 solution in the slow modulation limit. Both simulations and a numerical iterative 
solution to |64) agree that just below the resonance condition, Qm S Qi, this line marks the 
limit of stability of the k=0 fundamental, but that just above resonance the k=0 solutionis 
stable for all values of q . This shows that the small angle boundary has different physical 
implications above and below the resonance. Preliminary results from the numerical iterative 
solution indicate that none of the k*() sideband solutions are stable below the 
resonance[5,7J. In contrast, all of the sideband solutions appear to be stable above 
resonance, with the possible exception of a small region near the resonance.

Rigorous analysis in the large Qm limit (also see below) shows that, although the 
sidebands may be stable, the size of the islands is insignificant below the small angle 
boundary. If the sideband islands are big enough to overlap with each other and the 
fundamental chain of islands, there is large scale chaos. Figure 7 shows the appearance of 
sideband islands when tune modulation with Qm > Qi is turned on, in the presence of a 
single beam-beam interaction with a tune shift parameter just below and just above the critical 
value required for sideband overlap. The two plots on the left do not include tune 
modulation, while those on the right do. When the tunc shift parameter is increased from
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Figure 7. The creation of resonance sidebands, and their chaotic overlap, by tune 
modulation. A single round beam-beam interaction of strength ^ perturbs the 
phase space, with a base tune near a sixth order resonance. Plots a) and b), on 
top, have ^ = 0.0042, while the bottom two plots have a slightly stronger value E, 
- 0.006 . Plots a) and c), on the left, have no tune modulation, while those on the 
right have (Qm4]) = (1/194, 0.001) . Sidebands become visible when the 
modulation is turned on in b), but the sidebands must overlap for massive chaos to 
occur, in d). Amplitude a is measured in units of the beam size.

£,=0.0042 in the top two plots to ^=0.006 in the bottom two plots, the sidebands, when 
they are present, are submerged in a sea of chaos.

Slow modulation — the amplitude modulation reizion, Qm « Qi
If the tune is changing so slowly that the motion is adiabatic, it is reasonable to 

approximate the rate of change as constant. As will be seen, the most stringent conditions 
come when the rate of change is largest, so the most interesting approximation to the 
Hamiltonian in equation |61 ] is

H5 = (271)2 qQMt I + i-U {2 _ Vcos(5<i>) [70]
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This Hamiltonian is still time dependent, but now it_is possible to go through a canonical 
coordinate transformation, from (I,<)>,Il5) to (!,<(>, H5), that produces a time independent 
Hamiltonian which can be graphically understood. Specifically, the generating function

F3(I,<j>,t) = - 1 ^ - et 0 - ^E213 [71)

with

_ (27t)2 c]Qm _ qi- ,, c] Qm I72|
e - u - v Qi2 |/Z|

gives, by its definition,

I s -^2. = l + et , ()) s -^2. = ^ |73,
3<{»

and

H5 = n5 + ^ = jUl2 - Vcos(5<j>)-E(t> [74[

While the old phase and the new phase are identical, reflecting the suppression of phase 
modulation in this region, the new action drifts relative to the old action at a constant speed.

The new Hamiltonian has an extra term, linear in the phase, which has serious 
consequences for the stability of the k=0 fundamental island chain. (Note that, as a 
consequence of linearising the rate of change of tune, solutions with k^O are explicitly 
impossible in this picture). Pictorially, this non-periodic term corresponds to a constant 
slope of the quadratic valley of Hamiltonian contours, along the direction of the valley. If 
this slope is steep enough, there are no longer any local minima. There are minima, and the 
k=0 solution exists, if there is a solution for the stable fixed point (Ipp.^rp)

dt f — 5Vsin(5<}>Fp) + e

d<J>
yw j

U Ipp J

0

0
[75]

where the overbars have been dropped. If the k=0 islands exist, their centers are at lpp=0, 
with a shifted phase. There are no stable islands at all if IeI > 5 V, that is, if

i]Qm

Ql2
|76|

This condition corresponds, in this limit, to the small angle boundary in equation [69| .
Figure 8 shows the effect that crossing this boundary has on the measured lifetime of 

persistent signals observed in the E778 experiment. A set of symbols of a particular kind 
corresponds to a single constant value of q, at a series of Qm values. A decay time of 
47,000 turns is approximately equivalent to one second in the Tevatron. The decay rate 
increases dramatically when the stability boundary is crossed, consistent with a fit to the data 
of Q[ = 0.0085. Unfortunately, this method of measuring Qi is time intensive, since each 
data point corresponds to a two minute injection cycle of the Tevatron and the analysis is 
done off-line. It is hoped that in the near future it will be possible to measure Qi in a single 
machine cycle, opening up the possibility of a rapid comprehensive scan of resonances 
across a relatively wide range of tunes.

26



M
od

ul
at

io
n a

m
pl

itu
de

,
0.0085

\ strong 
\ sidebandsCHAOS

amplitude
modulation

phase
modulation

Modulation tune, Q

Persistent signal decay rate vs.
0.0C008 r ■"T

oa.

>>cd

0.00002 —

0.00000
10'

o o
□

Of/ X
! o

Modulation tune, QM

-i

-i

Figure 8. The effect of tune modulation on the decay rate of a persistent signal. Data taken at 
four values of q reaches from the amplitude modulation region just into the phase 
modulation region, and into the chaos region. The decay rate of the persistent 
signal increases significantly as the boundary between amplitude modulation and 
chaos is crossed.

Rapid modulation — the phase modulation region. Qm » Qi
In this region, instead of approximating the old Hamiltonian and then applying a 

generating function, a time independent Hamiltonian is found by first applying a generating 
function and then making an approximation. The appropriate generating function is now

F3(I,<j>,t) = - 1^ - qL_cos(27tQMt)I [77]

which gives, instead of [731 and [74],

1=1, <J) = <J) + ^cos(27tQMt) [78]

and

H5 = jUl2 - V cos(5(j> + cos(2it QmO)

= TUI2 - V^Ji(g.)cos(5<{» + i27tQMt) [79]

i
where the Jj are integer order Bessel functions. In this transformation the action remains 
unchanged, but the phase is modified, appropriate to the phase modulation region. The 
Hamiltonian is made time independent by concentrating on the vicinity of the k-th sideband, 
near an action Ik, and then averaging the sum in [79] over one modulation period.

In the limit of large Qm, not very much happens during one period, and only one turn in 
the sum survives the averaging. After resychronising the Hamiltonian to concentrate on the 
k-th sideband, and dropping the overbars, then

H5k = jU (I - Ik)2 - VJk^jcos(5<J)) [80]
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which is time independent, and differs from the simple resonant form [53] mainly by the 
presence of the Jk factor. Whether or not the k-th sideband is significant depends on the 
value of this Bessel function. As a rule of thumb, Jk is approximately zero if the absolute 
value of the argument is less than the absolute value of k, the order. That is, the sideband k 
is only significant if

q > Ikl^l [81]

The right hand side of this equation is the separation of the sideband tune from the 
fundamental resonance tune. Equation [81] therefore corresponds to the sensible physical 
condition that, in order for the resonance to be felt at actions near Ik, the tune of such 
trajectories must be modulated far enough to cross the fundamental.

The preceding argument implicitly presumes that the sidebands can be isolated one from 
the other, and treated separately. This is true if the sideband separation in action, 
(2tiQm)/5U) according to [67], is larger than the sideband width. If the sidebands are 
typically wider than they are apart, chaos appears, spanning the action range of the sidebands 
of significant size. It is easily shown by further approximating the Bessel function, and 
substituting JkV for V in [58], that sideband overlap is expected if [81] is true, and if

3/4 1/4 4
Qm (5q) < —j^-Qi [82]

K

This boundary is shown as the second solid line, nearly vertical, in figure 6. Because of the 
“statistical” approximation of Bessel functions (similar in spirit to approximating a sin 
function by 1/V2), this condition is rather qualitative. Depending on the exact phase of the 
sidebands, some will overlap earlier or later than the condition suggests.
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