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ABSTRACT 

The product ion of n i t r i c  oxide from combustion of hydrocarbon f u e l s  with 

a i r  has been recognized t o  be a s e r i o u s  p o t e n t i a l  h e a l t h  hazard. In  d i r t i e r  

f u e l s  such a s  c o a l  and o i l  s h a l e ,  a major source  of n i t r i c  oxide occurs  due t o  

the  r eac t ions  of smal l  hydrocarbon fragments with the  n i t r zgen  i n  t he  a i r .  

These r e a c t i o n s  t ake  p l ace  i n  the r i c h  p a r t  of the  combustion flame and a r e  

termed the  "Prompt-NO" mechanism. However, the  d e t a i l e d  r e a c t i o n  sequence and 

r a t e s  of t he se  r e a c t i o n s  a r e  not w e l l  known. The purpose of t h i s  work is t o  

d i r e c t l y  measure key r e a c t i o n  r a t e s  of t he  CH r a d i c a l  and subsequent HCN 

r e a c t i o n s  which form t h e  bas i s  f o r  Prompt-NO product ion.  During t h i s ' i n i t i a l  

Quar te r ,  product ion and d e t e c t i o n  methods f o r  CH were devised and t e s t e d ,  and 

pre l iminary  r a t e  measurements made f o r  t h e  r e a c t i o n  of CH + N2 a t  300 K. 



1. INTRODUCTION 

The product ion  of n i t r i c  oxide from combustion of hydrocarbon f u e l s  with 

a i r  has been g e n e r a l l y  recognized t o  be a s e r i o u s  p o t e n t i a l  h e a l t h  hazard f o r  

both indoor  and outdoor environments. '-' Even with c l ean  f u e l s  such a s  natu- 

ral gas ,  n i t r i c  oxide is generated from the  r eac t ions  of t he  flame s p e c i e s  

wi th  n i t rogen  i n  t h e  a i r .  I n  d i r t i e r  f u e l s ,  such as  coa l  and o i l  s h a l e ,  addi- 

t i o n a l  n i t r i c  oxide is produced from bound ni t rogenous spec i e s .  Two d i s t i n c t  

processes  l ead  t o  t he  formation of NO from N2 i n  t he  combustion a i r :  t h e  slow 

ox ida t ion  of N 2  by oxygen conta in ing  spec i e s  (Zel 'dovich mechanism4) and the  

r e a c t i o n s  of N 2  wi th  hydrocarbon r a d i c a l s  whose products  a r e  subsequent ly  oxi- 

dized t o  NO ("Prompt-NO").s The former process  is thought t o  be w e l l  under- 

s tood  but t h e  d e t a i l s  of t h e  l a t t e r  a r e  poorly known, d e s p i t e  i ts  importance 

i n  NO, emissions.  The goa l  of t h i s  program is t o  develop a d e t a i l e d  under- 

s t o o d ,  of t h e  prompt NO mechanism by d i r e c t  measurement of t h e  temperature  

dependent r a t e  c o e f f i c i e n t s  and product branching r a t i o s  f o r  s e l e c t e d  key re- 

a c t i o n s .  These r e a c t i o n s  may be s i g n i f i c a n t  i n  t he  formula t ion  of var ious  

NO, o r  combined NOx/SOx c o n t r o l  schemes i n  two ways. F i r s t ,  by b e t t e r  

unders tanding  t h e  r e a c t i o n s  r e l even t  t o  NO formation,  one might be a b l e  t o  

more i n t e l l i g e n t l y  design combustion mod i f i ca t i ons ,  such as those used i n  

s t aged  combustors. I n  c u r r e n t  de s igns ,  t h e  f i r s t  s t a g e  runs under f u e l  r i c h  

condi t ions  so  t h a t  more of t he  fue l -n i t rogen  is converted t o  N2 r a t h e r  than 

NO. However, t h i s  could i n c r e a s e  t he  product ion of prompt NO, p a r t i a l l y  o f f -  

s e t t i n g  the  advantage of s t ag ing .  Secondly, t he se  r e a c t i o n s  could conceivably 

be used t o  advantage i n  a post-combustion NO, r educ t ion  scheme, s i m i l a r '  t o  

t h a t  used i n  t h e  thermal  deNOx process ,  where gaseous ammonia i n j e c t e d  i n t o  

t h e  exhaust  gas flow s e l e c t i v e l y  reduces NO t o  N2. Cleanup methods of t h i s  

type w i l l  be most u s e f u l  only with a comprehensive knowledge of the  d e t a i l e d  

chemical mechanisms involv ing  n i t r i c  oxide. 



1.1 Review of Prompt NO Formation 

1.1.1 NOx Product ion Mechanisms i n  Hydrocarbon Combustion 

The formation of NOx i n  flames may a r i s e  e i t h e r  from N2 i n  t h e  combus- 

t i o n  a i r  o r  from n i t rogen  s p e c i e s  contained i n  t h e  f u e l .  Fuel  n i t rogen  can be 

t h e  main source  of NOx emissions i n  combustion systems,  f o r  example those  

u t i l i z i n g  c e r t a i n  coa l s  o r  t h e  products  of coa l  g a s i f i c a t i o n 4 .  Here, t h e  

bound ni t rogenous spec i e s  a r e  r a p i d l y  converted t o  small  i n t e rmed ia t e s  such a s  

NH, NH2, CN,  and HCN. I n  f u e l  r i c h  r eg ions ,  N2 is r a p i d l y  formed. A l l  of 

t he se  s p e c i e s ,  i nc lud ing  H z ,  may lead  t o  t h e  formation of n i t r i c  oxide. I n  

many i n s t a n c e s ,  p r a c t i c a l  combustion systems u t i l i z e  f u e l s ,  such a s  n a t u r a l  

gas ,  which a r e  r e l a t i v e l y  f r e e  of ni t rogen-containing spec i e s .  Understanding 

t h e  product ion of NOx from atmospheric  N2 i n  t he se  systems is  a l s o  impor- 

t a n t .  

Two mechanisms f o r  formation of NOx from combustion a i r  i n  

hydrocarbon-air flames have been g e n e r a l l y  i d e n t i f i e d  . These mechanisms a r e  

t he  thermal ox ida t ion  of N 2  through a t t a c k  by oxygen atom r a d i c a l s ,  and an 

apparent  second mechanism (termed the  "prompt NO" mechanism) ' which is  thought 

t o  a r i s e  from r e a c t i o n  of hydrocarbon fragments with molecular n i t rogen .  The 

thermal  ox ida t ion  of N2 i n  flames and post-flame gases  occurs  by t h e  extended 

Z e l  ' dovich mechanism. 

The mechanism is w e l l  understood, a l though some unce r t a in ty  may p e r s i s t  i n  

knowledge of t h e  r e a c t i o n  r a t e  f o r  t he  rate-determining s t e p ,  Reaction (1-1). 

Product ion of NO through t h i s  mechanism is h ighly  dependent on combus t i o n  con- 

d i t i o n s  (flame tempera tures ,  0  atom concen t r a t i ons ,  t u r b u l e n t  mixing and 

post-flame res idence  t ime) but does not depend d i r e c t l y  on the  composition o f  

f u e l .  Various techniques t o  minimize thermal  NOx p roduct ion ,  such a s  s taged  



combustion, o r  burning i n  low excess  a i r  t o  s t a r v e  t he  0 atom concen t r a t i ons ,  

have m e t  wi th  some measure of success .  

Despi te  the gene ra l  agreement an t he  Zel 'dovich mechanism, a number of  
4 

s t u d i e s  of hydrocarbon combustion i n  va r ious  environments ( i nc lud ing  laminar 

premixed flames and tu rbu len t  d i f f u s i o n  flames) have shown NO concen t r a t i ons  

i n  excess  of p r ed i c t ed  l e v e l s  which a r e  based on t h e  extended Zel 'dovich mech- 

'anism. ' A study of NO formation by Fenimore5 i n  laminar  premixed flames of 

e thy l ene ,  methane, o r  propane burning i n  N2-O2 mix tures  suggested a r ap id  

t r a n s i e n t  formation of NO i n  t h e  primary r e a c t i o n  zone. The formation of t h i s  

"prompt NO" appeared t o  r e q u i r e  hydrocarbon f u e l s  and occurred a t  smal l  0 atom 

concen t r a t i ons  such t h a t  t h e  Zel 'dovich mechanism would not account f o r  t he  
I 

apparent  NO formation r a t e s  i n  t h e  primary r e a c t i o n  zone. ~ e n i m o r e ~  proposed 

t h a t  t h e  prompt NO formation could be due t o  r e a c t i o n  of hydrocarbon f rag-  

ments, such a s  CH, CH2, o r  C2, with  molecular  n i t r o g e n  t o  form HCN o r  CN, wi th  

subsequent ox ida t ion  of t he se  spec i e s  t o  NO. 

The ques t i on  of t he  e x i s t e n c e  of prompt NO has been the  sub jec t  of  

controversy.  The i n i t i a l  s t u d i e s  by Fenimore5 d i d  not  a c t u a l l y  probe t h e  

primary r e a c t i o n  zone, and the  presence of prompt NO w a s  i n f e r r e d  by e x t r a -  

p o l a t i o n  of measured a x i a l  p r o f i l e s  t o  t he  burner head, where a nonzero [NO] 

i n t e r c e p t  w a s  ob ta ined .  An a l t e r n a t i v e  sugges t ion  of Sarofim and ~ o h l ~ f r o m  

s t u d i e s  i n  premixed laminar  CH4-air flames was t h a t ,  except  pos s ib ly  i n  very 

fue l - r i ch  f lames,  t he  formation of prompt NO i n  t he  flame zone cduld be 

expla ined  on t h e  bas i s  of t h e  Zel 'dovich mechanism, assuming 0 atom concentra-  

t i o n s  i n  s u b s t a n t i a l  excess  of equi l ib r ium.  

I n  more recent  flame s t u d i e s ,  measurements of l o c a l  0 atom concent r a t i o n s  

and temperature  p r o f i l e s  i n  t h e  primary r e a c t i o n  zone, i n  combination with 

k i n e t i c  modeling, have shown t h a t  the  Zel 'dovich mechanism is not adequate t o  

account f o r  observed r a t e s  of NO f ~ r m a t i o n . ~  A s tudy  by Hayhurst and 

V i n ~ e , ~  i n  which t r a c e  amounts of hydrocarbons were added to  the.  gas mix tures  

f o r  premixed H2-02-N2 f lames,  showed s i g n i f i c a n t  and unambiguoui i n c r e a s e s  i n  

t he  sampled NO concent ra t ions  as hydrocarbons were added. I n  a d d i t i o n ,  the 



incrementa l  y i e l d  of NO (prompt NO) was found t o  be p ropor t i ona l  t o  t h e  number 

of carbon atoms. i n  t he  paren t  hydrocarbon. Other i n d i c a t i o n s  of t he  e x i s t e n c e  

of a non-Zel'dovich prompt NO mechanism have been found i n  w e l l - s t i r r e d  

r e a c t o r s  l o  and i n  t u rbu len t  d i f f u s i o n  flames. l 1  Based on these  var ious  obser-  

v a t i o n s ,  t h e  concept of a mechanism f o r  NO product ion i n  hydrocarbon combus- 

t i o n  which is d i s t i n c t  from t h e  Zel 'dovich mechanism appears 'to have rece ived  

gene ra l  acceptance.  

The p r a c t i c a l  importance of prompt NO a s  a p o l l u t a n t  i n  a c t u a l  combustion 

systems w i l l  of course depend on f u e l  type as w e l l  as combustion condi t ions .  

The premixed flame s t u d i e s  gene ra l l y  show t h a t  t h e  occurrence of prompt NO is 

not very temperature  dependent,  and it is not s t r o n g l y  dependent on 

s to i ch iome t ry  under f u e l  r i c h  cond i t i ons ,  a l though the  prompt NO l e v e l s  a r e  

. much lower i n  l ean   flame^.^ Since p r a c t i c a l  flames a r e  i n  gene ra l  not pre- 

mixed, and may be t u r b u l e n t ,  r e a c t i o n  zones which a r e  a t  l e a s t  s l i g h t l y  fue l -  

r i c h  a r e  t o  be expected i n  most combustion systems. The prompt NO mechanism 

can t h e r e f o r e  be a p o t e n t i a l  source  of s i g n i f i c a n t  NO, emissions i n  most 

s i t u a t i o n s  where "clean" ( con ta in ing  i n s i g n i f i c a n t  f u e l  n i t rogen )  hydrocarbon 

f u e l s  a r e  burned as wel l  as f o r  " d i r t y "  f u e l s  burned under f u e l  r i c h  

condi t ions .  

1.1.2 K i n e t i c  ~ e c h a n i s m s  f o r  Prompt NO Formation 

Although complete understanding of t h e  d e t a i l e d  r e a c t i o n  s t e p s  i s  l ack ing  

i n  a d e s c r i p t i o n  of prompt NO formation from hydrocarbon combustion, t h r e e  

s t a g e s  i n  t h e  process  a r e  g e n e r a l l y  recognized.6 The f i r s t  s t a g e  is  t h e  pro- 

duc t ion  of cyano type i n t e rmed ia t e s  (HCN, CN, C2N2), as w e l l  as N o r  NH, by 

r e a c t i o n  of hydrocarbon fragments (CH, CH2,  C 2 ,  e t c . )  with N2.  I n  t h e  second 

s t a g e ,  t he  HCN o r  CN is converted t o  NHi by o t h e r  flame s p e c i e s ,  and f i n a l l y  

t h e  NHi spec i e s  a r e  converted i n  p a r t  t o  NO. The mechanisms p e r t a i n i n g  t o  

HCN d e s t r u c t i o n  and conversion of NHi s p e c i e s  t o  NO a r e  a l s o  r e l evan t  t o  

NO, product ion from f u e l  n i t rogen .  The goa l  of t h i s  program i s  t o  o b t a i n  

d i r e c t  measurements of t he  temperature-dependent r a t e  c o e f f i c i e n t s  f o r  key re- 

a c t i o n s  i n  both t h e  HCN formation and d e s t r u c t i o n  s t e p s .  These measurements 

would be combined w i th  experimental  and modeling r e s u l t s  from r e c e n t l y  



completed s t u d i e s  of NHi-NO, r e a c t i o n s  and mechanisms a t  Aerodyne t o  pro- 

v i d e  a  more complete and d e t a i l e d  d e s c r i p t i o n  of NO, formation dur ing  

combustion. 



. . .  

2. PROJECT STATUS REPORT 

September 15, 1982 
Report No. ARI-RP-114 
Report Per iod:  8 June 1982 - 

' 31 August 1982 

CONTRACT TITLE AND NUMBER: 

A K ine t i c  Study of NO, Formation and Remova1,Processes i n  Combustion Streams 
DE-AC21-82MC19028 

CONTRACTOR NAME: Aerodyne Research, Inc .  
45 Manning Road 

' B i l l e r i c a ,  MA 01821 

CONTRACT PERIOD: 8 June 1982 - 8 October 1983 

1. Contract  Object ive:  No Change 

2. Technical  Approach Changes: No change t o  t e c h n i c a l  approach. 

3. Contract  Tasks : 

Task 1 - Source and Detec t ion  Techniques f o r  CH. This t a sk  was 
completed dur ing  t h i s  per iod.  CH i s  produced by mixing a 
s l i g h t  excess  of atomic f l u o r i n e  (made i n  a microwave d i s -  
charge)  with methane. It is  de t ec t ed  us ing  l a s e r  induced 
f luorescence  a t  429.8 w i n  the  x2n - A ~ A  e l e c t r o n i c  band. 

Task 2 - Rate Measurements. Room temperature  measurements f o r  (31 + 
N2 were made and agree  w e l l  wi th  p rev ious ly  r epo r t ed  
va lues .  De ta i l ed  a n a l y s i s  ( f low c o r r e c t i o n )  rou t ines  were 
s e t  up so  t h a t  t h e  r e s u l t s  w i l l  be a s  a c c u r a t e  a s  pos s ib l e .  

Task 3 - Evaluat ion of e x i s t i n g  Data. . A  comprehensive l i t e r a t u r e  
search  has been performed f o r  a l l  chemistry r e l evan t  to  t h e  
formation of prompt NO and is  c u r r e n t l y  being eva lua ted .  

4 .  Open Items: None. 



5. Summary S t a t u s  Assessment and F o r e c a s t :  Th i s  i s  t h e  f i r s t  q u a r t e r l y  re- 
p o r t  f o r  t h i s  c o n t r a c t .  The work is p r o g r e s s i n g  on s c h e d u l e  
and t h e  t e m p e r a t u r e  dependent  r a t e  c o n s t a n t s  f o r  CH + N2, 
NO, and NO2 w i l l  be measured d u r i n g  t h e  coming q u a r t e r .  

S i l v e r ,  Program Manager 



TASK 

1. Design Sources and 
Detec t ion  Methods f o r  CH 

v 

2 .  Rate Measurements 

3 .  Evaluat ion of 'Exis t ing  
Data 

4 .  Computer Model 

5 .  Col labora t ion  with METC 
Personnel  

F igure  2.1 Contract  Task Schedule 

MONTH 

FY ' 82 

J J A I S  

I 

FY '.83 

O N D J F M A M J J A S  



3.  PRODUCTION AND DETECTION OF CH 

3.1 Task Goals and Milestones ' 

The purpose of t h i s  t a s k  is t o  develop a  s u i t a b l e  source  of CH r a d i c a l s  

f o r  use i n  t he  Aerodyne high temperature  f a s t  flow r eac to r .  I n  a d d i t i o n ,  . t h i s  

t a s k  r e q u i r e s  t h e  development of a  s e n s i t i v e  method f o r  d e t e c t i n g  CH. Th@se 

goa ls  have been achieved,  using methods l a r g e l y  developed a t  METC f o r  produc- 

t i o n  of CH from the  s t r i p p i n g  r e a c t i o n s  of F + CH,,, and f o r  d e t e c t i o n  us ing  

l a s e r  induced f luorescence .  

3 . 2  Technica l  Discuss ion  

3 .2 .1  CH Product ion  

The r e a c t i o n  of atomic f l u o r i n e  wi th  hydrogen conta in ing  molecules o f t e n  

r e s u l t s  i n  a  r ap id  a b s t r a c t i o n  t o  produce HF plus  t he  remaining r a d i c a l .  This  

approach has been used s u c c e s s f u l l y  t o  c l ean ly  produce NH2 from the  r e a c t i o n  

of atomic f l u o r i n e  wi th  excess  ammonia. l 2  9 l 3  Using t h i s  method, we mixed 

moderate excesses  of atomic f l u o r i n e ,  produced i n  a  microwave d ischarge  i n  ex- 

cess  helium c a r r i e r  gas ,  with methane. The admixture of these  spec i e s  occurs  

i n  a  coax ia l  i n l e t  tube arrangement,  shown i n  Figure 3.1, which permits  the  CH 

formation r e a c t i o n s  t o  reach completion before  being admitted i n t o  the 75 an 

long ,  7.26 cm d ia .  f low tube. This  f low r e a c t o r  is  f u l l y  descr ibed  i n  Ref. 14 

and w i l l  not be d i scussed  f u r t h e r .  I f  CH,, is added v i a  the  moveable i n j e c t o r  

r a t h e r  than through t h e  o u t e r  coax ia l  i n l e t  tube ,  v i s i b l e  chemi-luminescence 

can be observed (wi th  t h e  i n j e c t o r  near the  viewing p o r t ) .  Near optimum mix- 

i n g  r a t i o s  of F2 and CHb were obtained by " tuning" t h i s  flame u n t i l  a  deep 

blue co lo r  developed, c h a r a c t e r i s t i c  of CH. This is a c ruder  approach than 

t h e  more e l a b o r a t e  OMA techniques used by ~ e s b i t t ' ~ ,  but s e rves  a s  a good way 

of i n i t i a l l y  making some CH so  t h a t  t he  l a s e r  may be proper ly  tuned and f luo-  

rescence optimized. Once CH was de t ec t ed ,  t h e  methane was switched back 
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t o  the  c o a x i a l  i n l e t  tube and the  mixtures  optimized. It appears  t h a t  a  

F2/CH4 r a t i o  of -3-4 works bes t .  Unlike t h e  formation of NH2, t h i s  mecha- 

nism involves  s e q u e n t i a l  hydrogen atom a b s t r a c t i o n  and, i n  a l l  l i k e l i h o o d ,  

produces a  host  of smal l  r a d i c a l  spec i e s  i n  a d d i t i o n  t o  CH, a t  s i m i l a r  concen- 

t r a t i o n  l e v e l s .  A s  long a s  t he  r e a c t a n t  gas concen t r a t i on  i s  kept  i n  excess  

of [cH], i.e. pseudo f i r s t  o rde r  k i n e t i c  condi t ions  a r e  maintained, t h i s  

p r e sen t s  no problem f o r  making r a t e  measurements. 

3.2.2 CH Detec t ion  

Using t h e  x2Il(v" = 0)  + A ~ A ( V '  = 0)  e l e c t r o n i c  band near  431 nm, CH was 

de t ec t ed  by l a s e r  induced f luorescence .  A n i t rogen  pumped dye l a s e r  

(Molectron W14 and DL14, r e s p e c t i v e l y )  produce& 200 pJ pulses  which e x c i t e  

l i n e s  i n  t h e  A-X t r a n s i t i o n .  The unfocused l a s e r  beam is s t e e r e d  through t h e  

d e t e c t i o n  reg ion  and is  co l l imated  by a  set of black anodized b a f f l e s .  Fluo- 

rescence is  imaged through an fI1.5 l e n s  and i n t e r f e r e n c e  f i l t e r  (A,, = 428.6 

nm, FWHM = 7.3 nm) i n t o  a  ga ted  pho tomul t i p l i e r  tube.(Hammamatsu R763P). The 

s i g n a l  is i n t e g r a t e d ,  ampl i f ied  and t r ansmi t t ed  t o  a  PRIME 400 computer f o r  

on-line a n a l y s i s .  Averaging, background s u b t r a c t i o n  and normal iza t ion  t o  t h e  

l a s e r  pu lse  energy a r e  done by t h e  computer.16 The l a s e r  frequency is a l s o  

computer c o n t r o l l e d  and can au toma t i ca l l y  scan  o r  f i n d  t h e  cen t e r  of an exci-  

t a t i o n  l i n e .  A sample e x c i t a t i o n  spectrum of CH from 428.5 - 431.5 nm i s  

shown i n  Figure 3.2. The most i n t e n s e  l i n e ,  hence t he  one used f o r  a l l  

f u r t h e r  r a t e  measurements descr ibed  i n  t h i s  r e p o r t ,  is the R1(2) unresolved 

doublet  of t h e  (v '  = 0 + v" = 0)  t r a n s i t i o n  a t  429.8 nm. l7 It is es t imated  

t h a t  t h e  d e t e c t i o n  s e n s i t i v i t y  us ing  t h i s  technique is  - lo6  molecules 

f o r  100 l a s e r  pu lses  wi th  a  SIN = 1. 
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4. REACTION RATE MEASUREMENTS OF CH 

4.1 Task Goals and Milestones 

The purpose of t h i s  t a s k  is t h e  d i r e c t  measurement of suspected key re- 

a c t i o n s  involved i n  t he  formation of NO i n  combustion flames. Foremost among 

these  is the  r e a c t i o n  of CH with N2 ,  thought t o  be t h e  i n i t i a t i o n  s t e p  f o r  t h e  

formation of Prompt-NO. The r e a c t i o n  of t he  HCN product with atomic oxygen 

' a n d  t h e  hydroxyl r a d i c a l  a r e  a l s o  of i n t e r e s t .  I n  a d d i t i o n ,  NO and NO2 might 

be removed v i a  r e a c t i o n  wi th  CH. The temperature  dependent r a t e  cons t an t s  and 

product channels f o r  t h e s e  . r e a c t i o n s  a r e  t o  be measured i n  t he  ARI high 

temperature  f a s t  f low r e a c t o r  as pa r t  of t h i s  t ask .  A t  t h i s  point  i n  t i m e ,  

room temperature  measurements of CH with  N2 have been performed, and t h e  sys- 

tem has been prepared t o  extend the  N2 measurements ( a s  w e l l  as do CH + NO and 

NO2) t o  h igher  temperatures .  

4.2 Technical  Discussion 

4.2.1 Heterogeneous (Wall)  Removal of CH. 

Before measuring any r a t e  cons t an t s ,  one must determine t h e  e x t e n t  t o  

which CH is removed by r e a c t i o n s  with t he  flow tube wal l .  The value of t he  

f i r s t  o rde r  wa l l  removal r a t e  (kw) is  needed t o  a c c u r a t e l y  analyze t he  ob- 

s e rved  r e a c t i o n  r a t e  t o  produce t h e  " t rue"  r a t e ;  i . e .  - a va lue  co r r ec t ed  f o r  ' 

d i f f u s i o n a l  e f f e c t s .  Since t he  r a t e  measurements use a  f i xed  CH source ,  a l l  

decays a r e  independent of 'k, t o  f i r s t  o r d e r ,  but show a vary ing  degree of 

dependence t o  with a p p l i c a t i o n  of the  d i f f u s i o n  co r r ec t i ons .  13,18 

These measurements a r e  made by varying the  flow v e l o c i t y  ( r e s idence  t i m e  

i n  t h e  tube)  a t  f i x e d  p re s su re  ( d i f f u s i o n ) .  A p l o t  of I n  ( s i g n a l  x  v e l o c i t y )  

v s .  l l v e l o c i t y  produces a  s t r a i g h t  l i n e  whose s l o p e  equa ls  k z ,  where z  is  

t h e  d i s t a n c e  from source  i n l e t  t o  t he  d e t e c t o r .  The observed k, f o r  CH i n  



1.8 Torr  of helium wi th  an uncoated alumina wa l l  ( r a d i u s  = 3.63 cm) is  -200 

s-l,  a s  shown i n  Figure 4.1. This  corresponds t o  a  y (wa l l  s t i c k i n g  co- 

e f f i c i e n t )  of '.021 

- 
-1 YE - 

kw(s  = 2r c = mean molecular speed 

Th i s  value i s  reasonably high and r e s u l t s  i n  a  r ap id  l o s s  of CH concen t r a t i on  

as it flows down t h e  tube. The i n s e r t i o n  of a  Teflon l i n e r  i n  the  flow tube 

lowers k, t o  85 s'l ( r a d i u s  = 2.97 cm), r e s u l t i n g  i n  Y = .007, an improve- 

ment of a  f a c t o r  of t h r ee .  This  is  s i g n i f i c a n t ,  s i n c e  t h e  CH concen t r a t i on  

depends exponen t i a l l y  on k,. unfor tun&ely ,  we cannot use t h i s  l i n e r  f o r  

t h e  high temperature  s t u d i e s  and w i l l  have t o  work with a  l a r g e  G. To 

accommodate t h i s  f a c t ,  we  have reanalyzed t h e  flow c o r r e c t i o n  formulas of 

~ r o w n l ~  and s i g n i f i c a n t l y  extended the  regions of v a l i d i t y  of h i s  program t o  

i nc lude  h ighe r  va lues  of k, and lower d i f f u s i o n  c o e f f i c i e n t s .  

4.2.2 Reaction a t  300 K 

The r e a c t i o n  . r a t e  cons tan t  f o r  CH + N2 has been the  sub jec t  of a  number 

of s t u d i e s  a t  room temperatures  19-24 and i n  a  flame. 25 The room tempera- 

t u r e  r a t e s  vary by over an o rde r  of magnitude and a r e  much h igher  than  would 

be expected from e x t r a p o l a t i n g  the  flame da t a  t o  room temperature.  It has ' 

been suggested 21,22  t h a t  t h i s  r e a c t i o n  has two pathways, 

CH + N 2  + HCN + N (high T) ,  and 

(low T) 

This  would exp la in  t h e  d i f f e r e n c e s  i n  measured room temperature  r a t e s ,  s i n c e  

they  were o r i g i n a l l y  performed a t  d i f f e r e n t  p ressures .  Wagal, e t  a1.22 mea- 

sured  t h i s  r e a c t i o n  over a  l a r g e  range of p r e s su re s  and determined t h a t  t he  



CH WALL REMOVAL 

Figure 4.1. Wall Removal Measurement f o r  CH i n  Flow Tube. 

4-3 



t e rmolecular  k(1ow p re s su re  l i m i t )  = (2.6 20.3) x cm6 molecule-2 s-' 

and the  bimolecular high p re s su re  l i m i t  r a t e  cons tan t  is (p  + -) equal  t o  

(6.3 21.3) x c m 3  molecule-' s-'. ~ e r m a n  e t  a1.26 r e c e n t l y  repor ted  mea- 

s u r i n g  a s l i g h t  nega t ive  temperature  dependence over a l i m i t e d  temperature  

range. 

A s  a f i r s t  s t e p  i n  our extending these  s t u d i e s  t o  T > 1000 K, a room tem- 

p e r a t u r e  measurement was made. Because of t h e  smal l  r a t e  and l a r g e  k,, t he  

amount of N 2  r equ i r ed  was f a i r l y  high;  thus ,  it  was added along with t h e  main 

flow gas (helium) r a t h e r  than through the  moveable i n j e c t o r .  The r e s u l t a n t  

r a t e ,  co r r ec t ed  f o r  k, and d i f f u s i o n ,  is 2 x cm6 molecule'2 s - I .  The 

es t imated  e r r o r  of t h i s  p re l iminary  r e s u l t s  is +50%, but agree  q u i t e  w e l l  wi th  

t he  va lue  of Wagal. 

4.2.3 Work Fo recas t  

This t a s k  has j u s t  begun and, during t h i s  next q u a r t e r ,  we should o b t a i n  

t h e  temperature  dependent r a t e  cons t an t s  f o r  t h e  r e a c t i o n s  of CH with N2 ,  NO, 

and NO2. I n  a d d i t i o n ,  t he  necessary equipment and gases  needed to  measure t h e  

r a t e s  of HCN with 0 and OH w i l l  be ordered and assembled. 
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