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ABSTRACT

A divergence correction is conventionally applied to zero-offset data in an effort to
preserve amplitude information. The conventional divergence correction compensates
for the geometrical spreading of a point source in a horizontally 1._yeredmedium where
'velocity varies with depth only. Tile dip.-dependent divergeilce correction extends the
conventional correction for improved amplitude processing of dipping beds.

The dip-dependent divergence correction is computed by dynamic ra), tracing,
and applied to stacked data using a dip decomposition technique. This correction
decreases amplitudes relative to the conventional correction for steep dips and late
times. In a data example from the Gulf of Mexico, the conventional correction over-
amplified the reflection off a salt dome flank by a factor of 1.6.

High amplitudes near salt flanks are also associated with the presence of hydrocar-
bons. Applying the dip-dependent divergence correction ensures that 'bright spots'
are not due to over-amplification of steep dips by the conventional correction.

In areas like the Gulf of Mexico, where the velocity function varies primarily with
depth, and steep beds are commonplace, the dip-dependent divergence correction is
an inexpensive way to improve the amplitude information in seismic images.
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INTRODUCTION

Di.vergence correction is applied to compensate for the decay in amplitude due
to the geometrical spreading of tlm wavefront generated by a seismic source. One
purpose of the dip-dependent divergence correction is to coml)ensate for the geo-
metrical spreading along a normal-incidence raypath to a dipping reflector. As well,
dip-dependent divergence correction is designed to render zero-offset data consistent
with the exploding reflector model (Loewenthal, et al., 1976). After dip-dependent
divergence-correction and migration with an exploding reflector scheme, amplitudes
are more interpretable in terms of the interface reflection coefficients.

Consider the geometrical spreading along a raypath that corresponds to a partic-
ular seismic event in either zero-offset, or finite offset data. The divergence correction

for a particular reflection depends upon the location of the subsurface reflection point
relative to the source location, and upon the velocity function of the overburden.

Conventional and Dip-dependent Divergence Correction

For zero-offset reflections from horizontal beds in a v(z) inedium, where the veloc-

ity v varies only with depth z, tlm reflection point depends on the vertical traveltime
of the seismic energy and the velocity of the medium. Tra veltime and velocity there-
ft)re determine the zero-offset divergence correction for horizontal reflectors. Newman

(1973) derived this correction- V2mst/vo, where t is the two-way vertical traveltime
to the reflector, v0 is the velocity at the surface, and Vrms is the root-mean-square
average velocity along the vertical path between surface and reflecto:.

Newman also derived the divergence correction for finite-offset reflections from
horizontal reflectors in a v(z) medium. Two-point ray tracing is not necessary to
coInpute this offset-dependent divergence correction. To see this, consider a raypath
associated with a finite-offset reflection from a horizontal bed. This raypath is sym-

metrical; i.e., incident and reflected raypaths are characterized by a single value of
: the horizontal slowness (reflection slope), which is constant along a ray in a v(z)

medium. As well, the traveltime of each raypath is equal to one-half the reflection
__ time. Both horizontal slowness (reflect.ion slope) and traveltime are obtainable from

the finite-offset reflection which corresponds to this raypath. Given horizontal slow-
ness and traveltime, a ray may be traced through the v(z) medium, and thus the
location of the reflection point and the divergence correction may be determined,
without requiring two-point ray tracing.

For media with dipping and curved interfaces, other authors (e.g., (_ervenS, and
"t Ravindra, 1971; Cerven)), et al., 1977) have employed asymptotic ray theory to deter-

I

mirle a general expression for the wave amplitude, including the divergence term.
Cerve@, et al., described how to evaluate this divergence correction in the ray-
centered coordinate system using the dynamic ray tracing equations. The divergence
correction for dipping and curved interfaces is computed by tracing rays through
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the medium, and solving the dynamic ray tracing equations at every ray-centered
coordinate.

The finite-offset divergence correction for a reflection fr(nn a dipping reflector in
a v(z) medium is therefore determined by tracing both incident and reflected rays.
A finite-offset raypath to a dipping reflector is not symmetrical. Horizontal slowness
and traveltime along the incident raypath t.o a reflection point on a dipping reflector
differ from those along tlm reflected raypath. Traveltime along incident and reflected
raypaths cannot be detemfined directly from the reflection time of the corresponding
event. Two-point ray tracing is required to determine these traveltimes, as well as the
horizontal slownesses of the incident and reflected raypaths. Once these quantities
have been computed, the divergence correction for reflections from dipping beds in
finite-offset data may be computed as described by Cerveny, et al.

In this thesis, I use the dynamic ray tracing equations to determine the zero-offset
divergence correction for any reflector in a medium whele velocity varies with depth
only. For stacked data, the dip-dependent divergence correction is applied without the
computational cost of two-point ray tracing, rib see this, consider a raypath normally
incident to a reflection point. This raypath is characterized by a single value of the
horizontal slowness (reflection slope) and a single traveltime, which is one-half of the
reflection time of the corresponding zero.-offset event. From the reflection time and
reflection slope of this event, the normal-incidence ray may be traced. The zero-offset
divergence correction may therefore be determined without two-point ray tracing.

Exploding Reflector Migration

After stack and divergence correction, seismic data are migrated. When diver-
gence correction is applied, amplitudes of zero-offset dipping reflections are properly
processed for amp'.itude decay due to geometrical sprea,dfi_g and should become more
interpretable in terms of the interface reflection coefficients. This improvement in am-
plitude processing, however, is often negated by subsequent application of a migration
scheme.

For migration processes based on the exploding reflectors concept (Loewenthal,
et al., 1976), arnplitude errors arise from two sources' incorrect treatment of the
amplitude term in the solution to the acoustic wave equation, and differences between
the assumed exploding reflector data and the actual stacked data. For example, the
commonly used phase-si Jilt migration (Gazdag, 1978) is based on a solution to the
wave equation that includes no amplitude term at all. Reverse time migration (Baysal,
et al., 1983), however, correctly processes the amplitudes for an exploding reflector
source by simply running the acoustic wave equation backwards in time.

The amplitude error associated with reverse time migration results from the differ-
ence between exploding reflector and zero-offset data.. The dip-dependent divergence
,orrection is designed to compensate for this difference.
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Exploding Reflector Correction

In the exploding reflector model, every interface reflection point in the subsurface
explodes sinmltaneously, with source strength proportional to the reflection coefficient
at that point. Consider a curved exploding reflector (Figure 1). Wtlen every surface
element along that reflector explodes at the same time, this gen('rates a wavefield
that travels from the reflector up to the receiver. The raypaths perpendicular to
the upgoing wavefield are identical to the reflected, upgoing segments of the normal-
incidence raypaths.

FIG. 1. Curved reflector with structure that approximates a salt flank. An exploding
reflector raypath is indicated by the single arrow, and a normal-incidence raypath by
the double arrows.

The amplitudes in zero-offset data ZO will be diminished by geometrical spread-
ing GSdou,, along the raypath from source to reflection point as well as geometrical
spreading GS,,p along the raypath from reflection point to receiver,

ZO c< GSdo,_n × GS,,p.

The amplitudes in explodir_g reflector data ER decay due to geometrical spreading
GS,,p only along the raypath from reflection point to receiver,

ER c< GS,,p.

To account for the difference between exploding reflector and zero-offset data, the di-

vergence correction must multiply zero-offset data by the reciprocal of the geometrical
spreading GS:tow,, along the raypath from source to reflector.

This defines the dip-dependent divergence correction. It corrccts for geometrical
spreading along the down.qoing normal-incidence raypath to a reflection point on a
dipping reflector. After dip-dependent divergence correction, the amplitudes of zero-
offset data conform to the exploding reflector model. Thus migration schemes based
on this model will migrate dipping reflections without introducing amplitude error.

l'ilq ,11I ........ 1 ,r,,,_l_, , rq , , rqjq,_l, ,........ ,r Iq' '_..... lip _ 'P"'q q_ll" 'lIIq' 'W'IIllH*_lr lr lr q..... _l'' lP,' flPll ....... lip'' Ifip n"rq , I,q,qll]II_' ir,I ..... W'Iu,, 'lIl_' ,l,,I_ll',q , ..... iIrll,_Ii' 'rN_lll I_' ,ni, ,,If'pl pl iwl ..... '' ll'll_j'IllI_
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Note that the dip-dependent divergence correction preserves the amplitude in-

formation in the stack. Both tile divergence correction and the exploding reflector

migration that it complements are based on the assumption that reflections in the

stack correspond to normal-incidence raypaths. Reflections from dipping beds require

NMO and DMO processing before stack for that assumption to remain valid. Any

amplitude errors introduced by pre-stack processing or the stacking process itself will

be propagated by dip-dependent divergence correction and migration.

The post.stack dip-dependent divergence correction is comparable to Newman's

divergence correction. However, the conventional correction accounts for bottl down-

going and upgoing geometrical spreading. For comparison with the dip-dependent

correction, the conventional correction is modified to account for geometricM spread-

ing only ft'ore source to reflection point. Whereas the dip-dependent divergence cor-

rection properly compensates for point source spreading in reflections from dipping

beds, the modified conventional correction over-amplifies reflections ft'ore dipping

beds. (See the section on Divergence Correction Ratio, p. 19.)

In this thesis, I slmw how to derive the poststack dip-dependent divergence cor-

rection, and discuss its computer iT"_lementation. I show tlm results of applying the

dip-dependent correction for a synthetic data example, and for ,_ field data example
ft'ore the Gulf oi' Mexico.
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DERIVATION OF THE AMPLITUDE CORRECTION FACTOR

Divergence is one factor irl the amplitude term of the ray series solution to the
wave equation. The dip-deperldent divergence correction is the inverse of this factor.
The amplitude term varies depending oil whether the constant density or constant
impedance acoustic wave equation is used. I review the derivation of the amplitude
term (e.g., Bleistein, 1984; Aki and Richards, 1980) from the transport equation
for both constant density and constant impedance cases, because reverse time ex-
ploding reflector migrations implement either the constant density or the constant
impedance acoustic wave equation. I show how the dynamic ray tracing equations
are used to compute the divergence (e.g., (_erven_, and Hron, 1980; Hubral, 1983), and
the dip-dependent divergence correction. For horizontal reflectors, I show that the

,_2 • ,dip-dependent correction reduces to the conventional divergence correction t,m._t/vo
(Newman, 1973). Finally, I discuss the factor by which the constant density am-
plitude differs from the constant impedance amplitude, and its implications for the
dip-dependent divergence correction.

The Transport Equation and the Eikonal Equation

Divergence correction in this thesis is based on traveltimes and amplitudes com-
puted along a ray. Upon substitution of the ray series solution into the constant
density acoustic wave equation (e.g., Cerven:_ and Ravindra, 1971), traveltime and
amplitude are solutions of separate equations, the eikonal equation (1) and the trans-
port equation (2), respectively. For a. medium where velocity varies with depth z
only, the eikonal and the leading order transport equations are

1

Vr(x) • Vt(x) v2(z ) = O; (1)

2Vt(x). VA0(x) + A0(x)V2t(x) = 0. (2)

Both traveltime t along a ray and the leading order amplitude Ao are functions of
the three-dimensional Cartesian position vector x. The eikonal equation relates the
traveltime gradient Vt, which points in the direction of the ray, to the velocity function
,,(z).

The solution to the transport equation (2) describes the leading-order amplitude
Ao. The ray series solution to the wave equa.tion is an infinite series in inverse powers
of frequency w. For seismic data with three-dimensional geometrical spreading losses,
the series may be approxima_ted by the leading order term, which is the coefficient of
the zeroth inverse power of frequency, 1/w °. When the velocity gradient is small with

Cerveny and Ravindra, 1971 p_ 22-23), the leadingrespect to the frequency (e.g., " " , .
order term dominates the ray series. This condition is generally satisfied in reflection
seismic data.

If the constant impedance acoustic wave equation for a v(z) medium is used,
substitution of the ray series solution results in an additional term in the transport
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equation. The eikonal and the leading-order transport equations resulting from the
constant impedance acoustic wave equation are

1

Vt(x) • Vt(x) v2(z ) = 0; (3)

2Vt(x).VA0(x)+A0(x)V2t(x)+ [A0(x)]Vv(z).Vr(x)= 0. (4)Lv(z) j

The Ray Tracing Equations

The solution to the eikonal equation determines the position of a ray as a function
of traveltime along the ray and initial direction of the ray. The three dimensional
slowness vector p is defined such that

g
Vr(x)- p(x)=p_=

where _, denotes a unit vector pointing in the direction of the ray. The magnitude p
. of the slowness vector p is thus equal to 1/v(z).

The eikonal equation (1) involves the dot product of the gradient of traveltime
t, and is non-linear in t. A standard approach to solving such non-linear partial
differential equations is the method of characteristics (e.g., Bleistein, 1984, p. 1-18).
Applying the method of characteristics to the eikonal equation yields the ray tracing
equations

dxi Pi dpi 1 Op

d'--_-- p2' dt pOxi (5)

where the subscript i refers to one of the three Cartesian coordinate directions
(xl,x2, x3). Using equations (5), rays may be traced through the v(z) medium.

Solution of the Transport Equation

The left-hand side of the transport equation (2) is equivalent to the divergence of
A_Vt. Integrating both sides of this equation over a volume V and applying Gauss's
law, fv V . f dV = fs f" _dS, yields

fsA_(Vt.g)dS=O, (6)

where _ now denotes the normal to the surface S, and dS is a differential surface
element. For S equal to the surface of a ray tube, every differential surface element
dS has a unit normal either parallel or perpendicular to Vt.

Traveltime t along the ray is used to track the ray's propagation and describe the
ray tube. Consider a central ray and a family of nearby rays. The endpoints of the

6
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family of rays at, tl sweep out some surface area $1. At a later t2, the same family of
nearby rays will sweep out a different surface area $2, because tlm distance between
the nearby rays changes as the rays propagate through the medium. The two surfaces
Sl and $2, and the cylindrical surface that connects them define the :ray tube.

The surfaces $1 and $2 have unit normals _ parallel to Vt. For the family of
nearby rays that define the sides of the ray tube, every element of surface area on the
cylindrical surface is tangent to the direction of tlm central ray. Consequently, the
unit normal at every point on the cylindrical surface is perpendicular to Vt.

In the integration of equation (6) over the ray tube, only the surfaces S1 and 5'2
contribute. The dot product Vt. _ has magnitude ]Vt[ = v-l(z), but opposite sign,
for Sl and $2. At Sl,the surface normal _ is antiparallel to the ray direction Vt,
_,hile at $2 the two vectors are parallel. In the limit as the ray tube collapses to the
central ray, $1 and $2 are equal to the differential surface elements dS1 and dS2, and

, the integral (6) equals the integral over the surface areas at tl and t2:

A_dS1 A_dS2 = O,
Vl V2

A2 = A1V -_2 V-_-1. (7)

A2 and A1 denote the leading order amplitudes at times t2 and tl along a centrM ray.
v2 is the velocity at depth z2 corresponding to time t2, and vi is defined analogously.
Recall that the ray has travelled farther at t2 than at tl.

The ratio of differential areas in equation (7) defines the geometrical spreading.
For reasons discussed in Appendix A_ I will refer to the velocity ratio term as the
transxnission factor. The amplitude A2 is thus the product, of Al, the geometrical
spreading factor GS, and the transmission factor T

A2 = A1 × GS × T, (8)

where

as-v , r- .

Equation (7) is the solution to the transport equation (2) resulting from the con-
stant density acoustic wave equation. Following the discussion above, the solutio,,
to the transport equation (4) resulting from the constant impedance acoustic wave
equation may be derived.

The left-hand side of the transport equation (4) is equivalent to the divergence of
A_vVt. Applying Gauss's law to both sides of equation (4) and integrating over a
ray tube as in the above discussion yields

A2vl dS1 A_v2dS2
O,

Pl V2

7
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A2 = A1 d_ A1 × GS, (9)

where the terms in equation (9) are defined as irl equation (7). The solution to the
transport equation (4) resulting from the constant impedance acoustic wave equation

contains only the ratio of cross-sectional areas d_/dS2, and 11otransmission factor.

To determine the amplitude at any point along a central ray, requires an expression
for the geometrical spreading GS in terms of traveltime (or distance) along a ray, and
for the amplitude term of constant density wave equation (7), the transmission factor
nmst be evaluated as well. From the ray tracing equations, the Cartesian coordinates

of any point Mong a central ray may be determined and the transmission factor
computed.

The Geometrical Spreading Term

The product of initial amplitude and geometrical spreading may be written as
the Jacobian of the transformation from Cartesian coordinates to ray coordinates
(Bleistein, 1984, p. 260-270).

,/eS,_vf) ,A1 _ dS'2 - (s, ")'1,_2) '

where the Jacobian J(s,'_l, _2) of the transformation between Cartesian and ray co-
ordinates is defined by

O(xl,z2,xa) I=- "
Ray coordinates are described by distance s along a ray, the ray's initial polar angle
71, and its initial azimuthal angle 72. Figure 2 illustrates the angular variables 71 and
_2.

The Jacobian J(s, "_1,"72)measures the geometrical spreading due to a point source
when the energy has travelled through the medium without reflection or refraction
from an interface. The Jacobian J(s, "h, 72) reduces to the product of two independent

, Cervenycomponents: an in-plane component and an out-of-plane component(e.g., "
and Hron, 1980; Bleistein, 1986), when the point source amplitude is recorded on a
seismic line oriented in the direction of geologic dip.

Recorded data from such a line corresponds to rays with initiM direction parallel
to the seismic line. It is convenient to orient the Cartesian system so that the seismic

line lies along the xi = x axis. Initial direction parallel to the x axis is thus equivalent
to "72= 0. Rays characterized by 72 = 0 are constrained to travel within the in-plane
depth slice beneath the seismic line. A depth slice perpendicular to the seismic line
lies in the out-of-plane direction.

For a seismic line at the surface of a v(z) medium oriented in the direction of
geologic dip, the three-dimensional Jacobian J(s,'_l,_'2) is the product of the in-
plane component JII evaluated at "_2= 0, and the out-of-plane component a. The

8
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FIG. 2, "}'1and "_2are defined with resI_ect to a central ray shot from the origin of a
Cartesian coordinate system (xi, x2, x3j.

three-dimensional spreading is therefore

The Jacobian JII describes a coordinate transformation from the in-plane dimensions
x,z, where depth e=xa, to two-dimensional ray coordinates s,71 (72=0)

O(x,z)
Jii = 0( s, 71) "

Jil is computed using the dynamic ray tracing equations, as described in the following
section.

Dynamic Ray Tracing Equations

Consider an in-plane raypath from shotpoint to subsurface reflection point (see
Figure 3). The equations of dynamic ray tracing are based on the ray-centered co-
ordinate system. In ray-centered coordinates, every point along a central ray has
direction vector s and normal n. s and n define an orthogonal coordinate system at
every point along the central ray. s has magnitude s equal to the distance travelled
along the ray. The magnitude n of n is equal to the distance between the central ray
(with angle 71) and a nearby ray (with angle 71 + d71), when s is held fixed. The
relationship of n to s is derived by expanding the eikonal equation about the central
ray in the (s, n) coordinate system (Cerven:9, 1981a)

dn dp_ v,,, (10)d'--_= vp., d---s"= - v--y-n'

These are the equations of dynarnic ray tracing, p. is the component of the slowness
in the direction of the normal, and v,n_ is the second derivative of velocity with respect
to n.
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FIG. 3. The normal distance n at some distance s along tile ray between a ray
with take-off angle 71 and a nearby ray with take-off angle 71 + d71. The initial
normal distance is measured when the distance travelled along the ray is equal to
unity. As both normal distances become small, the normal at s is approximated by
the differential dh, and the initial normal distance by 1. d71 (Cerven3_, 1981b). The
ratio d71/dn is simply the ratio of the initial spreading to the spreading at distance
8.

Equations (10) also describe the 2-D Jacobian JIl' JIl(S,71) is related to the Ja-
cobian of the transformation between Cartesian and ray-centered coordinates J(s, n)
by the factor 0n/071

O(x,z) Io(x,z)

= O---n-nj(s,n). (11)
071

As the ray tube collapses to the central ray, J(s, n) approaches one (Cerven3_, 1981b)

and JIl(S, 71) reduces to
On

= ' (12)

Oqrt/OqT1 is evaluated by taking the partia,1 derivative of the dynamic ray tracing
equations (10) with respect to 71. Define q and p (¢2erven:9, 1981b) so that

On 0p.
q_ _ P= 0'71'

In these new variables, the in-plane Jacobian ,Ill(S, 71) is now simply q. The derivative
: of equations (10) with respect to 9'1is

dq = vp, dp v,,,"ds" d"'s= "- -7 q" (13)

At s =0, the nearby rays have not diverged from the central ray, and tile in-plane
spreading q(s = O) equals zero. For a source at the surface z = O, where velocity.n
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is v0, initially, the partial derivative of normal slowness p,_ with respect to _'1 is
proportional to 1/vo. The constant of proportionality is determined by the angle
between the nearby rays and the central ray. For convenience, that constant is set to
unity and p(s::O) = 1/vo.

For a velocity function which varies with depttl z only, v,.,, is equal to v_._p_v2,
where v,zz is the second derivative of velocity with respect to depth z, and p. is the
horizontal x component of the slowness I/v(z) at any point along a raypath. Initially
p. = sin 7l/vo, The dynamic ray tracing equations for the in-plane Jacobian q are

dq di)
-- = -v,.. p_ q. (14)__. :- Yp,

ds ds

In-plane and Out-of-plane Spreading

The in-plane Jacobian q is described },v equations (14). When p in equations (14)
is a constant, and equal to its initial va.lue of 1/vo, the equation for q describes the
out-of-plane spreading a(s, "_1)(Bleistein, 1986)

do" v
--- = ....
ds vo '

where initially a = O. Like q, a depends on the velocity along the path of the
central ray, where the central ray is defined by a particular initial azimuthal angle
_1. Horizontal slowness p. ma), be used to characterize a central ray instead of the
angle "_1,because p. is constant in a v(z) medium, and p_(s=O) = sin _/v0. Instead
oi' o(s,'7l), the equivalent o(s,p.) is used to describe the out-of plane spreading.

" The dynamic ra,3' tracing equations ibr the in-plane component of the spreading q
and the out-of-plane component a are

2,

: do__2 = ,?_.
ds Vo'

dq (lt) p'2,q,ds = rp, ds = -v _

The product of initial amplitude and geometrical spreading may now be writ te.

1

'i A ' v "d--_7 TJ(5" "/1, _'2)'

' = V;q' (16)

where both a and q are functions of distance s along a ra),, and the horizontal com-

i ponent of the slowness p_. Note that a and q depend on velocit:y along the raypath.Velocity is a function of depth z; it may be computed at any point along the raypath

11
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from tile ray tracing equations (5), which are differential equations in traveltime t
along the ray. I use tlle relation ds = vdt to rewrite equations (14) in terms of the
differential dt

da v2
-- = --; (17)
dt Vo

dq dp 2
d"_- v2p' d-"i= -v,,,p_v q, (18)

where a(t=0)0, q(t=0) = 0, and p(t=0) = 1ro.

Amplitude Correction

The constant density wave equation amplitude is given by equation (8). It is the
product of initial amplitude, geometrical spreading GS, and transmission T. These

-- qumatities may be computed at any point along a ray using equations (18), (17), and
the ray tracing equations (5). The initial velocity in the transmission factor is vo,
for I have assumed the point source was located at the surface z = 0. The velocity
at some later time corresponding to depth z may be expressed as v(z), where the

: mapping z=z(t,p_) is implicit. The amplitude at depth z is therefore

] 1, A(t,p_;v)= a(t,px;v)q(t,1; ;v)V_ ° . (19)

"- The amplitude correction D for a point source located at the surface, where am-
plitudes are observed at depth z is simply the reciprocal of the right hand siae of
equation (19)

i _a(t )( )_VOv(z). (20)
D(t,p_;v) = , . ,p_;v q t,p_.;v

i The correction D is the dip-dependent divergence correction; it has an in-planem spreading component V_, and a.n out-of-plane spreading component x/'o_. The trans-

mission correction yf_/v(z) is included in the dip-dependent divergence correction
_ for the solution to the constant density acoustic wave equation (7), but not, for the

solution to the constant impedance a.coustm wave equation (9).

i The dip-dependent divergence correction D without tra,nsmission factor may be., Vrms t/Vo (Newman, 1973), wherecompared to tlm conventional divergence correction 2 ,

i t _ is reflection time. For rays normally incident upon a reflector, the reflector dip is

equal to the angle 0 between the ray and the vertical z axis. Because the horizontal
slowness p_ at any point along a ray is given by sinO(z)/v(z), for horizontal reflectors,
p_ = 0. The dip-dependent divergence correction D at p_ = 0 is

D(t, 0; v) = _a(t,p._; v)q(t, 0; v). (21)

l
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When p_ is zero, p in equation (18) is a constant, equal to its initial value 1/vo.
The dynamic ray tracing equatk ,_s (18) for q and p reduce to a single equation,

dq = pov2 = lv2 ' (22)
dt Vo

Equation (22) is identicM to equation (17), the differentiM equation for a. The
solution of equations (17) for a, mid also q, may be written in integral form

2

1 fot v2 Vrmsta=q=-- dt= .
V 0 VO

" Substituting these results into equation (21), the divergence correction for horizontal
reflectors is therefore

4 V2rmst (23)

i D(t,O;v) = • V0 '._ V_mst'

I 2v0

i Because equatic:= (23) depends on traveltime t along tile ra ypath to the reflection
point, it is actually half of _he conventional correction. The conventional correction
is p oportional to two-way reflection time, or twice the traveltime to the reflection

I point for a normal-incidence raypath.

Transmission Factor

: The dip-dependent divergence correction is applied to correct, zero-offset data so
that amplitudes are consistent with the exploding reflector model. The combination
of dip-dependent divergence correction followed by migration, will improve the di-
agnostic value of the amplitude information in the stack. As discussed previously,
the migration process must treat amplitudes in accordance with the acoustic wave
equation, as does reverse time migration. If the migration scheme is based on the
constant density acoustic wave equation, amplitudes after divergence correction will
be consistent with exploding reflector data, only if the transmission factor is included.
To see this, compare a zero-offset amplitude associated with a particular reflection
point to the exploding reflector amplitude associated with the same point.

In its most general form, tile constan_ £;,_ity amplitude, equation (8), is the

product of initial amplitude Al, geomet, ricai spr,ca(ling GS, and transmission factor
T

A2=Al xGSxT=GSx _
Vvl '

where A2 is the amplitude at some depth z2, v2 is the velocity at depth z2, and vx is
the initial velocity. For a zero-oNset reflection from a reflector at. depth z where the

13
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t

velocity is v(z), amplitude is proportional to

A cx GS_ownX XGSupX
V Vo V_(-_ '

c< GSdow.x GS_v.

The recorded amplitude A is the product of geometrical spreading GSdown along the

downgoing raypath, the downgoing transmission Cv(z)/vo, where v0 is the velocity
at the surface, geometrical spreading GS, p along the upgoing raypath, and upgoing

transmission CVo/V(Z). The transmission factor is equal to unity along the normal-
incidence raypath that originates from and returns to the source depth z=O. If that
same reflector at depth z was an exploding reflector, then the recorded amplitude
would be proportional to

U0

A c< GSupx_.

So ft, at zero-offset amplitudes are consistent with exploding reflector amplitudes, the
dip-dependent divergence correction D must correct for both geometrical spreading

, and the transmission factor along the downgoing normal-incidence raypath

I D = 1 __ I / Vo

I aS,o.o.× ow..×
Reverse time migration based on the constant density acoustic wave equation willaccount for tz'ansmission and geometrical spreading while running the wave equation

i backwards in time. For an event recorded from a reflector at depth z, the reverse

time migration will back out the upgoing divergence GS_p, as well as the upgoing

transmission _o]v(z). However, zero offset amplitudes do not include the factor

%/-_/v(z). dip-dependent divergence must multiply ampli-The correction zero-off set

tudes by the transmission factor Cvo/v(z), so that the migration scheme processes
amplitudes correctly.

To properly process amplitudes, reverse time migration schemes that rely on
the constant density acoustic wave equation must include the transmission factor

¢-_7"_ with the dip-depender_.c divergencecorrection. If, however, the migration is

based on the non-reflecting or constant-impedance acoustic wave equation (Baysal,
et al., 1984), the transmission factor drops out of the amplitude as in eql_ation (9).
Constant impedance amplitude A,_at depth z2 depends only on initial amplitude A1
and geometrical spreading GS

A2 = A1 x GS.

Only spreading correction is required, to make zero-offset amplitudes consistent with
the exploding reflector model. For reverse time migrations that use the non-reflecting

14
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wave equation, such as the migration applied in the data examples (the section on
the transmission factor _f_,/v(z) should not be included.Results, 27),p. V "' " "
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IMPLEMENTATION

In this _';ection, I discuss the computational methods used to implement the post-
stack dip-dependent divergence correction. The differential equations (18) and (17)
that determine component_ a and q of this correction are solved numerically using
finite differences, a, q, and the divergence correction are determined for the range of
reflection slopes and reflection times ft)und in the recorded data. I then describe the
dip-decomposition technique used to apply the dip-dependent divergence correction
to zero-offset data.

The dip-dependent divergence correction corrects for tile amplitude loss due to
geometrical spreading along the raypath from source to reflection point. The dip-
dependent divergence correction, without tim transmission factor is

D(t,p,; v) = _/a(t,p,; v)q(t,px; v),

where a and q are defined by the differential equations (17) and (18). By solving these
equations for a and q, the dip-dependent divergence correction can be tabulated for
all downgoing traveltimes t and all horizontal slownesses p,.

To apply the dip-dependent divergence correction to stacked data, it must be
tabulated not as a function of downgoing traveltime and horizontal slowness, but as a
function of two-way reflection time and reflection slope of zero-offset data. By halving
the intervM-velocity function v, the divergence correction to the reflection point is
computed for ali reflection times t. Horizontal slowness p, = sinO(z)/v(z), where 0
is the angle between the ray, and the vertical z axis is equal to one-half the reflection
slope on a zero-offset section. Again, by halving the velocity, the dip-dependent
divergence correction for the normal-incidence raypath from source to reflector can
be tabulated for all reflection slopes p_. For a given zero-offset section, values of p_
range from 0 to the maximum reflection slope, 2/vo.

Numerical Solution for a and q

The finite difference solution to the equations for a and q lnarches forward in
reflection time t, for all possible values of the reflection slope p_. Recall that for a
v(z) medium, the horizontal slowness is a constant along the ray. For a particular
reflection slope p_, marching forward in reflection time is equivalent to tracing normal-
incidence rays to reflectors of different dip and depth.

The forward difference approximation to a, ,_quation (17), results in
At

ai+ 1 = aJ + .--[v(jAt)] 2 ,
Vo

where aJ represents a(jAt; v), a o= O, and At is the time sampling interval. Implicit
in the notation v(jAt), is a mapping from reflection time t to depth z. This mapping
is given by the ray equation (5) for depth z

dz p_
= = v2p_, (24)dt
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where ps is the vertical component of the slowness 1/v(z). When p_ = 0, p_ - 1/v(z),
the right side of equation (24) reduces to v(z), and reflection time t along the ray
is equivalent to vertical time T, which is used as the independent variable in seismic
field velocities.

The forward finite difference approximations to equations (18) deliver values that
oscillate in an unphysical manner when the curvature of the velocity function V,z_
changes sign rapidly. I removed this instability by using a simple implicit scheme, the
Crank-Nicholson approximation (e.g., Press, et al., 1988, p. 658-661). Applying this
scheme to the equations for p and q yields two equations with two unknowns, p_+l
and qj+l:

where q0 = 0 and po = l/v0, and the variables A j, and B j are defined by

AJ = (vi)2, = v  Jp2v

Solving for p_¢+1and qj+l yields

¢+' : lA'"+ +- 1- AJ+'B,C_ O_

where a is defined by

a = 1 + AJ+IB j+l.

Dip-decomposition

From the finite difference solutions for a and q, the dip-dependent divergence
correction _/_ is tabulated for all reflection times and all reflection slopes. The
dip-dependent divergence correction is equivalent to a time-varying dip filter because
of its simultaneous dependence on reflection slope and reflection time. Although
dip-dependent processing is most easily implemented in the frequency-wavenumber
domain, the time-dependent attributes of the table cannot be considered once the
2-D Fourier transform is made. To apply the divergence correction, I use a dip-
decomposition technique similar to Jakubowicz's (1990) method for efficient DMO.
For each reflection slope p_ and time t, the dip-dependent divergence correction is
applied in the wavenumber-time domain. The dip-filtered data are then transformed
to the wavenumber-frequency domain. In this domain, only the frequencies near
the wavenumber-slope ratio w - k/p_ are included in the divergence-corrected data
B(x, t). The dip-decomposition algorithm is summarized below:

17
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t

Zero B(k,w)
Fourier transform the stacked data a(x,t) to A(k,t)
For all wavenumbers k {

For all slopes p_ {
Apply the divergence correction for all times t so that'

s(k,t) = D(p_,t) x A(k,t)
Fourier transform s(k,t) to S(k,w)
For all frequencies w near k/p_ {

Add S(k,w) to the output B(k,w)
}

}
}
Inverse Fourier transform B(k,w) to give the divergence-corrected data b(x,t).

The dip-decomposition algorithm efficiently applies the dip-dependent divergence cor-

:! rection to stacked data. For example, applying the dip-dependent divergence correc-
tion to a stacked data set of 800 traces, each with 750 time samples, took 1 minute

t

' and 20 s on an IBM RS/6000. Compare this time to the migration time- 90 minutes,
( using a time-wavenumber t-k migration process (Hale, 1991). The dip-dependent

)tt divergence correction required only 1.5 % of the migration time.

it To include the transmission factor in the algorithm described above, use the ray

]_ tracing equations (5)to compute V_O/V(Z)at every point along the downgoing ray-!
] path as a function of reflection time and reflection slope. Then at)ply the full ampli-

:1 tude correction for both geometrical spreading and the transmission factor in place

I of the divergence correction. Given a velocity flmction that varies with depth and

stacked data, the dip-decomposition algorithm is an efficient way to implement thedip-dependent amplitude correction.

1
I
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DIVERGENCE CORRECTION RATIO

The importance of the dip-dependent divergence correction is evaluated by com-
paring amplitudes after conventionM divergence correction to amplitudes after dip-
dependent correction. For comparison, the conventional correction has been adjusted
by a factor of two to correct for geometrical spreading only along the raypath to the
reflection point. The dip-dependent divergence correction is compared to the con-
ventional correction in contour plots of tile ratio of conventional to dip-dependent
correction. These contours show that tlm conventional divergence correction over-
amplifies dipping reflections, and that the importance of dip-dependent divergence
correction depends on reflection slope, reflection time, velocity function, and whether

or not the transmission factor _/v0/v(z) is required.

Horizontal and Dipping Reflectors

For interval-velocity flmctions that increase with depth, the geometrical spreading
correction is b_rgest for energy that travels the farthest and penetrates most deeply
into the medium; i.e., at large t:mes and at small values of horizontal slowness (re-
flection slope), where the direction of propagation is nearly vertical.

FIG. 4. A shallow, overhung reflector and a deep, nearly horizontal reflector in a
medium where the velocity increases with depth. The reflection times of the two
normal-incidence raypaths are equal. The divergence correction is greater for the
nearly horizontal reflector than for the dipping reflector.

Consider a dipping reflector and a nearly horizontal reflector in a medium where
the velocity increases monotonically with depth (Figure 4). If the reflection times
to these reflectors along the normal-incidence raypa,ths are the same, the dipping
reflector must be shallower than the nearly horizontal reflector. The velocity along
the normal-incidence raypath to tlm dipping reflector is therefore less than that for
the nearly horizontal reflector.

Recall that both components a and q of the dip-dependent divergence correction

Vr5-_depend on velocity along the raypath. From the differential equations (17)
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and (18), it is seen that a and q at a particular point on a raypath depend on the
integral of the velocity squared along the raypath with respect to the traveltime to
that point. For a normal-incidence ray that remains at shallow zones characterized
by small velocities, such as the ray to the dipping reflector in Figure 1, the dip-
dependent divergence correction will be smaller than for a normal-incidence ray that
travels through deeper zones characterized by higher velocities; i.e., the ray to the
nearly horizontal reflector in Figure 4. Thus, for fixed reflection tinm, the divergence
correction decreases as reflector dip, or reflection slope increases. The maximum value

, of the divergence correction occurs for zero reflection slope or for horizontal reflectors,
where the conventional divergence correction V2mst/Vo is valid.

Comparing dip-dependent to conventional correction, tile difference between cor-
rections increases with traveltime in a medium where the velocity increases mono-

tonically with depth. Consider two normal-incidence raypaths with the same small
reflection time to a dipping and a horizontal reflector. For early reflection tinms,
both the dipping and horizontal reflector must be located at shallow depths, and the
deeper zones with higher velocities encountered by the ray to the horizontal reflector
have velocities not very different from those that characterize the shallow ray to the
dipping reflector. The difference between divergence corrections along those shallow
raypaths is small. At late reflection times, however, the reflectors may be located at
very different depths. For these late times, the raypath to the horizontal reflector
travels through zones with nmch higher velocities than those along the raypath to
the dipping reflector.

Figure 5a shows contours of the ratio of conventional divergence correction to
dip-dependent divergence correction, as a function of reflection time and slope for the
velocity function v = 1.5 + 0.6z. These contours indicate the amount of amplitude
error when the conventional divergence correction is applied to an event with a par-
ticular reflection slope and reflection time. From the above discussion, contours with

• large ratios, where the conventional divergence correction differs greatly from the dip-
dependent correction, should correspond to large dips or large reflection slopes and
late tinms.

In Figure 5a, conventional divergence correction exaggerates amplitudes by less
than three percent for events whose reflection slope and reflection time fall above
the contour labeled 1.03. For events that fall on the 2.25 contour, the conventional

correction over-amplifies those events by approximately 125 percent. The amount of
over-amplification after conventional divergence correction increases with reflection
slope and reflection time.

Figure 5b corresponds to Figure 5a, but the ratio of divergence corrections is ex-
pressed as a function of reflector dip and vertical time. Whereas Figure 5a indicates
the amount of over-amplification after conventional correction on a zero-offset section,
Figure 5b shows amplitude error after conventional correction for a migrated section.
For the velocity function v = 1.5 + 0.6z, the conventional divergence correction ex-
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FIG. 5. (a) Contours of the ratio of conventional to dip-dependent divergence correc-
tion as a function of reflection slope and reflection time, m a medium with velocity
function v = 1.5+0.6z km/s. For events in a stacked section with reflection slopes and
times that fall along a given contour, such as the 1..75 contour, the conventional cor-
rection over-amplifies dipping events by a factor of 1.75. (b) Corresponding contours
as a function of reflector dip and vertical (migrated) time.
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aggerates amplitudes by less than three percent for reflectors dipping at less than 20
degrees. Note that error increases with dip.

The error contours of Figure 5b converge at the bottom of the figure. The contours
are bounded by the largest possible dips from which a normal-incidence ray in the
v = 1.5 + 0.6z medium can be reflected and recorded within the maximum recording
time of 7 s.

Velocity Gradient

Figure 5 describes the amplitude error that results from applying the conventional
divergence correction to dipping reflectors for a medium with velocity function V =
1.5 + 0.6z. If the velocit3 gradient is increased, tile amplitude error in cenventioaally
corrected data will become significant at smaller reflection slopes and earlier times.
In other words, the amplitude error contours will migrate to the left, as in Figure 6a,
where the velocity function equals 1.5 + 0.9z. The error contours in Figure 6b reach
later vertical (migrated) times than those in Figure 5b. This is because within the
maximum recording time of 7 s, a normal-incidence ray in a medium with a high
velocity gradient will reach greater depths and larger migrated times than a normal-
incidence ray in a medium with a smaller velocity gradient.

A large velocity gradient will increase the velocity along a normal-.incidence r_y-
path, and thus magnify the ratio of conventional to dip-dependent divergence cor-
rection. Similarly, a small velocity gradient will diminish the difference between
conventional and dip-dependent divergence correction. This is the case for the Gulf
of Mexico velocity function. (See the section on Results, p. 27.)

Velocity Curvature

The dip-dependent divergence corrections depends on the curvature v,_z of the
velocity function as well as the velocity gradient. For a velocity function with changes
in the curvature V,z_ (Figure Ta), the contours of amplitude error after conventional
divergence correction (Figure 7c) are twisted relative to the smooth contours of a
velocity function with zero curvature (Figure 5a). Note that the velocity function used
in Figure 5a has constant gradient with respect to depth z, and thus zero curvature.

Recall that the curvature v,_ contributes to dip-dependent divergence correction

x/b-_ through the in-plane divergence factor q, given by equations (18). The differen-
tial equation for q is coupled to p, and the derivative of p with respect to traveltime
is proportional to the curvature v,_. Changes in curvature v,z_ affect both magnitude
and sign of p. As the derivative of q with respect to traveltime is proportional to p,
the changes in curvature v,_ will retard or accelerate increments in q. Because q at
a given traveltii,_e depends on velocity and p at earlier times along the ray, a change
in curvature at a particular depth will affect not only p and q at that point along the
raypath, but also later values of p and q.
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j FIc. 6. (a) Contours of amplitude error after conventional divergence correction asa function of reflection slope and reflection time for a medium with velocity function
v= 1.5+0.9z km/s. Corresponding contours as a function of reflector dip and vertical
(migrated) time. Compare with Figure 5.
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FiG. 7. (a) Two interval velocity functions. (b) Second derivative of the velocity
function, given by the dashed line in (a), with respect to depth z as a function of
vertical time T; i.e., V,zz(T). (C)Amplitude error contours that result from applying the
conventional divergence correction for a medium described by the interval velocity,
given by the dashed line in (a). Compare the distorted contours in (c) with the
contours in Figure 5a.
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Two velocity functions are displayed in Figure 7a. Tile dashed line corresponds to
the velocity function v - 1.5+0.6z. This function is linear with depth and exponential
in vertical time; the curvature v,_z is zero. The velocity function described by the
solid line includes a high-velocity zone between 3 and 5 s. This high-velocity zone
introduces changes in curvature v,,z, shown in Figure 7b. Just, as velocity is given
as a function of vertical time T, the second derivative of velocity v,zz with respect to
depth z is also given as a function of vertical time. The curvature v,z_ as a function
of vertical time T is defined by the inapt)ing:

For the velocity function given by the solid line in Figure 7a, there are two regions
of large change in curvature v_,(r); between 2.5 and 4 s, and around 5 s. Consider
the 3% amplitude error contour of Figure 7c. The small reflection slopes that fal! on
this contour correspond to nearly horizontal reflectors, with nearly vertical normal-
incidence raypaths. For these small reflection slopes, reflection time and vertical time
are similar. The 3% amplitude error contour is strongly distorted with respect to
the 3% error contour of Figure 5a between 2.5 and 4 s, and again around 5 s. This
distortion correlates to t.he changes in curvature near those vertical times. For large
reflection slopes and steep reflectors, the deformations in the amplitude error contours
cannot be so .easily correlated to changes in v,,, as a function of vertical time.

Transmission Factor

If after dip-dependent divergence correction, the data will be migrated with an
exploding reflector migration scheme based on the constant density acoustic wave
equation, then amplitudes a.fter divergence correction will be consistent with explod-
ing reflector data, only if the transmission factor is included.

Consider tlm dip-dependent divergence correction, when st)reading v/'_'_ is mul-

the transmi._,,sion factor x/t,o/v(z). For a velocity function that increasestiplied 4_y

monotonically with depth, as reflector depth increases the divergence correction i.n-
creases; however, the transInission factor decreases. Amplitudes are less exaggerated
after conventional correction when the transmission factor is included. With the

transmission factor, the amount of over-amplification is significant only for large re..
flection slopes or steep reflectors, and lat,', times.

Figure 8 shows contours of the ratio of conventional divergence correction to dip-

when the transmission factor _0/v(z) is included in bothdependent correction,

corrections. The contours for the same values of amplitude error ms in Figure 5a are
shifted to higher reflection slopes. An event with reflection slope of 0.75 s/km and
reflection time of 3.5 s falls on the 75% error contour of Figure 5a, but the 25% error
contour of Figure 8.

The amount of over-amplification for a particular event after conventional cor-
rection depends ox).reflection slope, reflection time, velocity, velocity curvature, and
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FIe,. 8. Contours of amplitude error after conventional divergence correction, where

|
the transmission factor ?v0/v(z)is included. The velocity function in the medium

i equals 1.5 + 0.6z km/s. Compare with Figure 5a.i

i whether or not tile transmission factor is required. Figure 5 demonstrates that arn-
plitude error increases with reflector dip and reflection slope. For large reflection
lopes, the amount of over-amplification increases with reflection time. Amplitude

:rror becomes significant at smaller reflection slopes and smaller reflection times if
the velocity of the medium has a large gradient, as in Figure 6a. As well, ampli-
tude error due to conventional divergence correction of a dipping event is sensitive
to changes in velocity curvature v,zz, as in Figure 7. Finally, Figure 8 demonstrated
that with the tra,nsmission factor included, tile amount of over-amplification after
conventional divergence correction is decreased.
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RESULTS

In the previous chapter, the dip-dependent divergence correction w_ cornpared
to the conventional correction in contour plots of the ratio of conventional to dip-
dependen_ correction. In this section, I show synthetic and field data examples
of dip-dependent and conventional divergence-corrected data. Here, I compare the
dip-dependent divergence-corrected data with the conventionally corrected data by
taking the difference, i.e., subtracting tlie dip-dependent corrected data from the
conventionally corrected data. The significance of the dip-dependent divergence cor-
rection is apparent when the amplitude difference is plotted at the same scale as the
divergence-corrected data.

The amplitude difference, as. shown in Figures 12 and 16, is evaluated after
d',vergence-corrected data are migrated with an exploding reflector scheme. The data
examples in this chapter have been migrated with a reverse time migration based on
the constant impedance or non-reflecting ac,oustic wave equation. Amplitude, given
by equation (9), in the constant impedance acoustic wave equation includes only a
spreading term and no transmi_Aon factor. Consequently, the dip-dependent diver-
gence correction applied to these data examples does not include the transmission
factor.

The examples in Figures 10 through 16 demonstrate the amplitude effect of tlm
dip-dependent divergence correction. In these examples, both conventional and dip-
dependent divergeace correction have been divided by the correction for zero slope
at the first time sampling interval t_' V2ms(t_)t_/vo. This ensures that divergence
correction is dimensionless, and is not a function of the units of velocity measurement.

The synthetic data were generated by a modeling program based on the 2.5-
D Kirchhoff approximation (Bleistein, 1986). This program produced a zero-offset
section, part of which is displayed in Figure 9. The data in this synthetic example as

-=_ well as the field data example were migrated using a finite difference migration scheme
J (Hale, 1991). This migration process is implemented in the time-wavenumber t-k

| domain, and yields amplitudes proportional to the reflection coefficients. Reflection
i coefficients of the model reflectors were constant throughout the model; within the
. limits of the modeling program, this constancy is preserved in the migrated dip-
t dependent divergence-corrected data of Figure 1lb.

The reflection at 4.5 s with reflection slope of 0.75 s/km indicated by the arrow

i in Figure 9 corresponds to the steep reflector in the migrated data, Figure 11. Tlm

i velocity function v = 1.5 + 0.6z was used to generate the synthetic section. For this
velocity, amplitude error after conventional correction applied to zero-offset data is
contoured in Figure 5a. Note that the dipping event at 4.5 s falls on the 2.25 contour
of Figure 5a; i.e, the conventional divergence correction will over.-amplify that event
by a factor of 2.25. Figures 10a and 10b show the synthetic stack after conventional
and dip-dependent divergence correction respectively.
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FIG. 9. Zero-offset synthetic data generated with interval velocity function v =
1.5 + 0.6z. No divergence correction has been applied. The amplitude error contours
are those shown in Figure 5a. The dipping event at 4.5 s has a reflection slope of 0.75
s/km. This event falls on the 2.25 contour of Figure 5a.

Figure 11 displays the divergence-correctedstacked data of Figure 10 after migra-
tion. The contours of amplitude error after conventional divergence correction and
migration are displayed as a function of reflector dip and vertical (migrated) time in
Figure 5b. At _ m';grated time of 2.25 s, the steeply dipping reflector is overhung by
about 7 degree,s from the vertical. For a reflector with dip of 97 degrees and a mi-
grated time of 2.25 s, Figure 5b indicates that the conventionM divergence correction
has over-amplified that reflector by 2.25 times.

Amplitudes in the dip-dependent divergence-corrected data of Figure 11b corre-
spond to the interface reflection coefficients of the synthetic model, within the limits
of the modeling program. Note that amplitudes in Figure 11b are nearly constant
with a small increase in amplitude with depth. This amplitude increase with depth
is an artifact of the modeling program. Although the reflection coefficients in the
synthetic model were constant; the zero-offset amplitudes generated by the modeling
program correspond to reflection coefficients that increase slightly with depth. Conse-
quently, the dip-dependent divergence-corrected amplitude of the shallow horizontal
reflector is 5% less than that of the deeper horizontal reflector.

The difference plot in Figure 12 demonstrates that the conventional divergence
correction has exaggerated the amplitudes of dipping reflections. For nearly horizontal
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FIG. 10. (a) The synthetic stack with conventional divergence correction applied.
(b) With dip-dependent divergence correction applied. The _mplitudes of the steep
reflection are stronger in the conventionally corrected data.
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FIG. 11. (a) Migration of conventionally divergence,corrected data. (b) Migration
of dip-dependent divergence-corrected data. Compare the amplitudes of the steep
reflector.
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F]_. 12. The post.-migration difference: conventionally corrected amplitudes minus
dip-dependent divergence-corrected amplitudes.

reflectors, the dip-dependent divergence correction and the conventional divergence
correction have the same action.

The dip-dependent divergence correction is applied to a Gulf of Mexico seismic
line. In the Gulf of Mexico, an interval velocity function that varies with depth
is a good approximation to the velocity of sediments through which seismic waves
propagate. The arrow on the stacked data, Figure 13a, points to the salt flank
reflection, with a, reflection slope of 0.98 s/km at a time of about 3.5 s. This event
falls on the 1.6 contour of Figure 14a. The conventionally corrected amplitudes along
the salt flank are thus over-amplified by 60 percent.

In Figure 15, I compare the migrated conventionally corrected field data to the mi-
grated dip-dependent divergence-corrected field data. As tbr the synthetic example,
amplitudes of migrated reflections from the steep beds are brighter on the conven-
tionally corrected data, although the difference as shown in Figure 16 is more subtle
here.

Figure 16 shows that the conventional correction has also over-amplified the dip-
ping interface at the crown of the salt dome, about 1.7 s. These interfaces dip at
an angle of about 45 degrees, and from Figure 14b, the conventional correction will
have over-amplified these reflections by a factor of about 1.1, Because this reflector
h_ a relatively high amplitude, its small 10% error in amplitude after conventional
correction shows on the difference plot of Figure 16.
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FIG. 13. (a) A part of the field data stack without divergence correction showing
the dipping events that cgrrespond to the salt flank. The dipping event at 3.5s has a
reflection slope of 0.98 s/km. This event falls on the 1.6 contour of Figure 14a. (b)
Interval velocity used to migrate the field data.
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Fla. 14. (a) Contours of the ratio of conventional to dip-dependent divergence
correction as a function of reflection slope and reflection time. (b) Corresponding
contours as a function of reflector dip and vertical time. The velocity model is shown

.- in Figure 13b.
|
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F_G. 15. (_t)Migration of conventionMly divergence-corrected d_t_. (b) Migrated
d_t_ with _mplitudes -_djusted by the dip-dependent divergence correction.
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FIG. 16. The post-migration difference: conventionally corrected amplitudes minus
dip-dependent divergence-corrected amplitudes.

Tile velocity increase in the Gulf of Mexico data is less rapid here than in the
synthetic model studied above, therefore the amplitude difference in Figure 16 is less
dramatic than for the synthetic example. II1 this medium, the conventional divergence
correction is valid over a larger range of'dips and traveltimes. As before, the dip-
dependent divergence correction has decreased the amplitudes of dipping beds relative
to the conventional divergence correction, and the amount of over-amplification after
conventional correction increases with reflector dip.
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CONCLUSION

The poststack dip-dependent divergence correction compensates for amplitude
decay due to geometrical spreading in a v(z) medium. It is designed to correct the
zero-offset amplitudes of a 2-D seismic line oriented in the direction of geological dip.
After application of the dip-dependent divergence correction, amplitudes in zero-offset
data will be consistent with the exploding reflector model. If an exploding reflector
migration that treats amplitudes in accordance with the acoustic wave equation,
i.e., reverse time migration, is then applied to the divergence-corrected data, then
the migrated amplitudes will be more interpretable in terms of interface reflection
coefficients, than if the conventional divergence correction had been applied.

The error in amplitude due to the conventional divergence correction is most
significant for events with large reflection slope at late times. For the field data
example from the Gulf of Mexico shown in the previous section, the conventional
divergence correction over-amplified dipping events by as much as 60 percent.

The dip-dependent divergence correction improves the amplitude processing of
dipping reflectors in a medium where the velocity varies only with depth. Gulf of
Mexico data, which often contain steep reflectors and where the velocity profiles have
little lateral variation, are particularly suited ibr the application of this correction.

For dipping beds with large reflection coefficients, the difference in amplitude
after dip-dependent divergence correction may be dramatic. Where the conventional
correction would introduce 'bright spots' in such beds, amplitudes in the migrated
dip-dependent divergence-corrected data are more closely related to the interface
reflection coefficients. Note that for dipping beds that do contain 'bright spots',
dip-dependent divergence correction preserves the relative brightness.

Although the dip-dependent divergence correction has been applied to 2D zero-
offset sections in this thesis; it is a simple matter to extend the correction for 3D data
sets. Just as the downward continuation operator is extended to 3D migration schemes
by considering the magnitude of the horizontal wavenumber, the dip-dependent di-
vergence correction may be extended to 3D by replacing the horizontal slowness p_ in

the x direction with the magnitude of the horizontal slowness vector _ + p_, where
p_ is the horizontal slowness in the y direction.

To correct for dip-dependent divergence in finite-offset data, the dip-dependent
correction must compensate for geometrical spreading along both the raypath from
shot to reflection point and along the raypath from reflection point to receiver. As
disc,_ssed in the introduction, such a divergence correction would require two-point
ray tracing to determine the traveltimes and horizontal slownesses of the incident
and reflected rays associated with each finite-offset reflection. Furthermore, while
the divergence correction for the incident raypath may be tabulated as a function of
horizontal slowness, and traveltime; the divergence correction for the reflected raypath
must be tabulated for every reflection point, horizontal slowness, and traveltime.
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Clearly, dip-dependent divergence_ ¢,_,rrection for finite-offset data would be an
expensive process in terms of the rgy t.__cing necessary to determine the reflection
point and the appropriate divergence correction for every finite-offset reflection from
that point. The finite-offset dip-dependent divergence correction and its implemen-
tation require further study; however, I expect that the amplitude effects of the dip-
dependent divergence correction applied to finite-offset data, which are subsequently
stacked, will not differ significantly from those of the poststack divergence correction.

To see this, consider a dipping reflector in a constant velocity medium, with
velocity v0. The divergence correction along the incident raypath will equal the total
distance along that raypath: voti, where ti is the traveltime to the reflection point.
Similarly, the divergence correction for the reflected raypath will be vote, where tr
is the traveltime to the reflection point. The total divergence correction will equal
vo(t_ + t_) = vot, where t is the reflection time. Except for a factor of two to account
for the exploding reflector model, this divergence correction v0t is identical to the
poststack divergence correction for a consta,nt velocity medium. Admittedly, the
divergence correction is more complicated for a v(z) medium; however, the averaging
effect seen in the constant velocity case will also occur in the v(z) medium; and
consequently, I do not expect a significant improvement in amplitude processing to
result from extending the dip-dependent divergence correction to finite-offset data.
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Appendix A

THE TRANSMISSION FACTOR

In this appendix, I justify my identification of the velocity ratio x/_2/vl as the
transmission factor, rl'Yansmission coefficients and amplitude losses due to transmis-
sion are defined in a medium with interfaces across which the velocity fimction v(z)
changes discontinuously. However, the dip-dependent divergence correction was de-
rived for a continuous medium. Strictly speaking, no amplitude losses due to trans-
mission may occur in the continuous model used for the dip-dependent divergence
correction. However, the continuous v(z) medium where velocity v varies with depth
z only may be modelled by a series of constant velocity horizontal layers in the limit,
as the change in velocity between the layers goes to zero. I consider tile amplitude
change across a single interface in the layered medium. Across this interface, velocity
changes from vi to v2. For the limit in which the discrete medium with transmission
effects equals the continous medium, I show that the change in amplitude across this

interface is independent of angle of incidence and is simply _r-_/v 1.

The amplitude change across any interface is the product of incident amplitude,
transmission coe_cient of the interface, and change in geometrical spreading of the
ray tube across the interface. First consider the transmission coefficient.

Transmission

The transmission coefficient (Towne, 1967, p. 411.-417) across a single horizontal
interface for an acoustic plane wave travelling in a constant density medium is

2v2 cos 01
T = . (A-l)

v2 cos 01 + vi cos 02

The subscript 1 refers to quantities in the incident layer and 2 refers to quantities in
the refracted layer. The ar_gles 01 and 02 are, respectively, the angles of incidence and
transmission with respect to the normal to the interface; see Figure A-1. The change
in velocity Av between the layers is defined by

Av - v2- vi. (A-2)

Similarly the change in angle AO between the layers is defined by

A_ -= _2 - _l. (A-3)

To evaluate the transmission coefficient in the limit as Av goes to zero, expand v2
and cos82 in terms of Av, vi, AO and cos_l. From equation (A-,2), v2 = vi + Av.
The Taylor series expansion of cos 02 gives the two-term approximation

cos 0_. __ cos _91+ At0(- sin _1). (A-4)

4O
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FIG. A-1. _IYansmission across a single interface in a discretized v_()z medium. The
ray tube is shown incident on arid refracted from the interface. The spreading, or
breadth of the ray tube is measured along the perpendicular line that connects the
exterior rays of the ray tube. r is the horizontal width of the raytube along the

interface. The two angles marked in gray are equal to 01, the angle made by thenormal to the incident wavefront with respect to the vertical. Similarly, the two
angles marked in black are equal to 02.

No further terms in the expansion are necessary, because AO is of order Av, as shown
below. Angles of incidence and refraction are related to velocity by Snell's law

sin 01 sin 02

Vl V2

Replacing sin 02 by the first two terms of its Taylor series expansion yields

sin01 sin01 + A0(cos01)

V 1 V 1 -_" A V

Multiplication by v2/sin01 gives

[] V2 AV
-- -= 1 + --- -_ 1 + A0(cot 01), (A-5)

-_ V1 Vl

from which it follows that
Av

A0 __ _ tan 01. (A-6)
Vl

!

J For 01 < "z/2, A0 is.thus proportional to Av. As At, approaches zero, so does AO at
t the same rate.ii

Using equation (A-4) in the expression for transmission coefficient and substituting
for v2 yields

T _ 2(vl + Av)cos01
(vi + Av) cos01 + vi(cos01- A0sin01)'
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Fazzari Divergence Correction
ct

Dividing both numerator and denominator by 2vl cos01 gives

1 + AV/VlT _-
!(1 + Auvi)+ ½(1 - A0tan01)2

1+ Av/vl
1 4-(Av/2vl)- (A0 tan 0, /2) '

The transmission coefficient can be written as (1 4- Av/vl)(1 4- x) -1 where x is equal
to the sum of the Av and AO terms. In the limit as Av and consequently AO go to
zero, x << 1 and

(1 4- x)" "" 1 -t-ax. (A-7)

With the approximation of equation (A-7), the transmission coefficient is thus

(T __ 1 4- 1 2vl t- 2

Av A0tan01 (A-8)
__ 1 +_vl 4- 2 '

when terms of higher order than Av are neglected. Applying equation (A-7) a second
time, the transmission coefficient may be rewritten as a square root

T _ 1 + m + AO tan01 . (A-9)
Vl

This result for the transmission coefficients is equivalent to the expansion of

_vfc-_s 01/cos02, also in the limit as Av goes to zero. To see this, start with

V_V_ -_ Vl(COS0, - A0 sin 01) "

Dividing both numerator and denominator on the right side by vi cos 01 yields

1/2

 z/cos0,( )1/_ V_02 - 1 -- AO tan 01

1/2

__ [(1+ A__)(14- A0tan01)] (A-I.0)

( Av )1/2-_ 1 +- + A0tan01 . (A-11)
'/)1

The approximation of equation (A-7) was used to obtain (A-10), and terms of higher
order than Av were neglected to obtain (A-11).
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" Fazzari Divergence Correction

The right side of equation (A-11) is identical to that of equation (A-9). Therefore
the transmission coefficient for a wavefront incident upon a horizontal boundary in
the limit as the velocity difference Av goes to zero is

T,-,,V (A-12)
Note that for normal-incidence, 01 = 02 0, and the transmission coefficient T

reduces to X/_/vl.

Spreading

The change in spreading of a ray tube across an interface is also angularly depen-
dent. Figure A-1 relates the sl)reading dS1 of the incident ray tube, to the spreading
dS2 of the refracted ray tube. The breadth of the ray tube is defined by the angle
0 and horizontal width of the ray tube along the interface, 7". Thus the breadth

(perpendicular width) of the incident ray tube is

dS1 = r cos 01.

Similarly, the breadth of the transmitted ray tube is

dsa. = r cos 0_

Eliminating r from these equations yields

dS___22= cos 02 (A- 13)
dS1 cos01'

The ratio of refracted to incident breadth defines the change in geometrical spreading
across an interface. Note that this accounts for only a part of the divergence; because
geometrical spreading also occurs as the ray tube travels within the constant velocity
layers.

The amplitude A2 of the refracted ray tube is the product of the incident am-
plitude Al, the change in geometrical spreading, and the transmission coefficient.
The change in geometrical spreading across the interface is given by equation (A-13).
Equation (A-12) describes the transmission coefficient. If AI is the amplit, ude just
above a horizontal interface., then the amplitude A_ just below the interface is:

,_xT
A2 =-: AI x V

c02 vA,/c°s01
• = c-- s07V Vcos0

A1 v(_. (A-14)
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Fazzari Divergence Correction

The change in amplitude across a single interface is equal to the normal-incidence

coefficient _, what I have called the transmission factor. Fortransmission many]

layers, the change in amplitude across the layer interfaces is

,F iv,z,= x x... x v(z Az)'V 'ro

Both the transmission coefficient and the discontinuity in the spreading across an
interface are functions of the angle of incidence. As equation (A-14) illustrates, this

angular dependence cancels across an interface, thus leaving only _/_/vl, or the more

general _/v(z)/v0, as the transmission factor.
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